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POSTPROCESSING OF CONTINUOUS GALERKIN SOLUTIONS

FOR DELAY DIFFERENTIAL EQUATIONS WITH NONLINEAR

VANISHING DELAY

QIUMEI HUANG, KUN JIANG AND XIUXIU XU

Abstract. In this paper we propose several postprocessing techniques to accelerate the conver-

gence of the continuous Galerkin solutions for delay differential equations with nonlinear vanish-
ing delay. They are interpolation postprocessings (including integration type, Lagrange type, and

polynomial preserving recovery type) and iteration postprocessing. The theoretical expectations

are confirmed by numerical experiments.
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methods, postprocessing, global superconvergence.

1. Introduction

Delay differential equations (DDEs) have a wide range of application in science
and engineering. The nonlinear vanishing delay equation is an important type of
delay differential equation and has received considerable attention in both theoret-
ical analysis and numerical computation since the early 1970s (cf. [14, 15, 10]).
Runge-Kutta and collocation methods are two popular numerical methods used to
solve this kind functional differential equation, which can be found in the mono-
graphs by Bellen and Zennaro [1] and Brunner [3], the survey paper [2], and the
recent papers [4, 6, 22, 27], etc..

Finite element methods (FEMs) are efficient numerical methods that extensively
used in solving partial differential equations and integral equations. FEMs have
also been introduced to solve ordinary differential equations (ODEs) and delay
differential equations. See, for example, [8, 9, 20, 21] for ODEs, [7, 16] for DDEs
with constant delay, [5, 13] for DDEs with proportional delay, and [26] for Volterra
functional integro-differential equations with vanishing delays.

Superconvergence and supercloseness are two hot topics in FEMs. If the errors
of numerical solutions U at some points are far less than the global error, we call
this phenomenon as superconvergence and the points are called superconvergence
points. If the distance between the numerical solution U and some interpolant Πu
of the exact solution u is far less than that between the numerical solution U and
the exact solution u, that is, ‖U − Πu‖ � ‖u − U‖, we call this phenomenon as
supercloseness. Based on the superconvergence and supercloseness, one can put
postprocessing techniques onto the numerical solution U and get a new approxi-
mation U∗ of higher order convergence. There are several popular postprocessing
techniques. In the early stages, Sloan iteration was proposed in [23, 24] to improve
the convergence of solutions of integral equations. Zienkiewice and Zhu [28, 29]
mentioned the postprocessing method of superconvergence patch recovery which
leads to global superconvergence of the new approximate solution U∗ for partial
differential equations (PDEs). The polynomial preserving recovery postprocessing
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method was proposed in [19, 30]. By combining the two adjacent elements and
constructing higher order interpolation for one dimensional case (or combining al-
l adjacent elements in high dimensional space), the interpolation postprocessing
method ([17, 18]) was proposed to accelerate the numerical solutions.

The superconvergent points of CG and DG solutions are Lobatto [7, 13] and
Radau II points [16, 12] respectively for DDEs of constant delay and proportional
delay. For DDEs of pantograph type, Huang et al. [12] used two types of post-
processing techniques to improve the global convergence of DG solutions. They
[25] obtained all the superconvergent points of CG solutions according to the su-
percloseness between the CG solution U and the interpolation Πhu of the exact
solution under uniform mesh and analyzed the optimal global convergence and lo-
cal superconvergence of continuous Galerkin solutions for pantograph DDEs under
quasi-geometric meshes (more general quasi-graded case).

As a sequel to papers [13, 25], we consider in this paper the delay differential
equation with nonlinear vanishing delay,

u′(t) = a(t)u(t) + b(t)u(θ(t)) + f(t), t ∈ J = [0, T ],

u(0) = u0.
(1)

The delay item θ satisfies the conditions: (i) θ(0) = 0 and θ(t) < t for t > 0, (ii)

min
t∈J

θ
′
(t) =: q0 > 0. We study the superconvergence properties of the “postpro-

cessed” CG solutions obtained by postprocessing for DDE (1). It will be shown
that the convergence order of the CG solutions can be improved considerably by
several postprocessing methods.

The outline of this paper is as follows. In section 2 we review the CG method for
(1) and introduce the convergence results of the CG solutions. In section 3, we il-
lustrate the supercloseness between the CG solution U and a suitable interpolation
Πu of the exact solution u and locate all the superconvergent points (subsection
3.1). Then we present two kinds of interpolation postprocessing methods, which
respectively based on the supercloseness and the superconvergence points (subsec-
tions 3.2 & 3.3 ). In subsection 3.4, we present a type of postprocessing method
using integral iteration to accelerate the convergence order of the CG solutions.
In order to obtain higher order of convergence, in section 4, we propose another
interpolation postprocessing method based on the superconvergence properties of
the nodal points. Finally, we display numerical results to illustrate our theoretical
analysis in section 5.

2. The CG method and convergence analysis

In this section, we introduce the CG method for DDE (1) with quasi-graded
meshes and the global convergence properties of the CG solution.

2.1. The CG method. We assume that the given functions a, b and f in (1) are
continuous on J = [0, T ]. Suppose that on a small initial subinterval J0 = [0, t0] (
t0 = θk(T ), k ∈ N), for a suitable value of k, the approximation φ(t) of the exact
solution u is known. φ(t) can be obtained by the CG method or by the truncation
of Taylor expansion of the exact solution u(t). We then solve the following equation

u′(t) = a(t)u(t) + b(t)u(θ(t)) + f(t), t0 ≤ t ≤ T,

u(t) = φ(t), θ(t0) ≤ t ≤ t0.
(2)
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Selecting the appropriate mesh is crucial, which impact the computational com-
plexity of numerical scheme. We introduce the macro-mesh {ξµ} of the interval
[t0, T ] by setting

t0 = ξ0 < ξ1 < · · · < ξk = T, ξµ := θk−µ(T ) (0 ≤ µ ≤ k),

with increasing size Hµ := ξµ − ξµ−1 (µ = 1, · · ·, k) denoting the macro-steps.
On the subinterval

Iµ := [ξµ−1, ξµ] (µ = 1, · · ·, k),

we insert l − 1 nodes

t0 = ξ0 < t1 < · · · < tl = ξ1 < · · · < t2l = ξ2 < · · · < tkl = ξk = T,

and the nodes satisfy the property tn−l = θ(tn) (n = l, · · · , kl). In the last macro
subinterval Ik, t(k−1)l+1, · · · , tkl−1 can be chosen arbitrarily. The mesh JN : t0 =
ξ0 < t1 < · · · < tl = ξ1 < · · · < t2l = ξ2 < · · · < tkl = ξk = T is called the
quasi-graded mesh. We will use the following notation

In := [tn−1, tn], hn := tn − tn−1,

N = kl, Ñ = N + 1, h := max
1≤n≤N

hn (1 ≤ n ≤ N).

The corresponding CG finite space can be defined as

S(0)
m (JN ) = {v ∈ C(J) : v|In ∈ Pm, 1 ≤ n ≤ N}.

Where Pm denotes the set of polynomials of degree not exceeding m, with m ≥ 1.
In the CG method, we expect to get an approximation solution U ∈ Pm(In) for
(2), satisfying

N∑
n=1

∫
In

U ′(t)v(t)dt =

N∑
n=1

∫
In

[a(t)U(t) + b(t)U(θ(t)) + f(t)]v(t)dt, v(t) ∈ S(0)
m−1(JN ).(3)

Here we set U(t) = φ(t), θ(t0) ≤ t ≤ t0. Because of the continuity of U(t), we have
U(tn) = lim

t→t−n
U(t) = lim

t→t+n
U(t). Which implies U(t) ∈ Jn has only m degrees of

freedom on each subinterval and v(t) ∈ Pm−1(In) accordingly.
We also note that the CG method (3) can be interpreted, and thus formulated,

as a time-stepping scheme. If U is known on the time intervals In, we find U |In ∈
Pm(In) by solving∫

In

U ′(t)v(t)dt =

∫
In

[a(t)U(t) + b(t)U(θ(t)) + f(t)]v(t)dt,∀v ∈ Pm−1(In).(4)

2.2. Convergence analysis. Suppose the global convergence order of U is hp

and U∗ is a new approximation to u derived by some postprocessing process for U ,
we will say that U∗ is global superconvergent on J , if

‖u− U∗‖∞ = O(hp
∗
)� ‖u− U‖∞ = O(hp) with p∗ > p.

To carry out the global superconvergence analysis of CG method, we introduce
some useful lemmas.

Lemma 2.1. ([13]) Assume the following:
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(1) The functions a(t), b(t), f(t) describing the DDE (1) are in Cm(J).
(2) u ∈Wm+1,∞([0, T ]) is the exact solution of the DDE (1).
(3) φ ∈ Cm(J0), and ‖u−φ‖J0,∞ ≤ Chm+1

0 ‖u‖J0,m+1,∞, where h0 = t0 (choos-
ing t0 such that t0 ≤ h).

(4) JN is a quasi-graded mesh for [t0, T ] and h is sufficiently small.

(5) U ∈ S(0)
m (JN ) is the CG solution in [t0, T ].

(6) U is the approximation of u in J (i.e., U = φ in [0, t0], U = U in [t0, T ]).

Then there follows the optimal global convergence estimate:

‖u− U‖∞ ≤ Chm+1‖u‖m+1,∞ (m ≥ 2).

We will discuss the superconvergent points of the CG approximation. Let
{ln,i(t) : i ≥ 0} denote the set of Legendre polynomials defined on given subinter-

val In. Then, the zeros of the polynomial Mn,m(t) =
∫ t
tn−1

ln,m−1(t)dt (m ≥ 2) are

called the Lobatto points on In. They have the following property:

Mn,m(t) = ln,m(t)− ln,m−2(t) (m ≥ 2).

The following theorem shows that the superconvergence of CG solution occurs
at the mesh points and other Lobatto points.

Lemma 2.2. ([13]) Let the assumptions (1),(2),(4),(5),(6) in Lemma 2.1 hold and
suppose that ‖u− φ‖∞,J0 ≤ Ch2m

0 ‖u‖2m,∞,J0 . Then the nodal superconvergence is
given by

|(u− U)(tn)| ≤ Ch2m‖u‖2m,∞, n = 1, · · · , Ñ (m ≥ 2).(5)

If we have ‖u − φ‖∞,J0 ≤ Chm+2
0 ‖u‖m+2,∞,J0 , the attainable superconvergence

order at other Lobatto points tnr is

|(u− U)(tnr)| ≤ Chm+2‖u‖m+2,∞, n = 1, · · · , Ñ , r = 1, · · · ,m− 1 (m ≥ 2)

where tnr = tn− 1
2

+ hnsr and sr are the zeros of the (m + 1)-degree polynomial

Mm+1(s) in (−1, 1).

Remark 2.1. We see from Lemma 2.2 that the Lobatto points tnr are super-
convergent points of CG solutions. Thus, there arises the question as to whether
we can improve the global convergence order of numerical solutions based on the
superconvergent points and some postprocessing techniques.

3. Postprocessing Methods for CG Solution

In this section, we first get the supercloseness between the CG solution U and
a particular interpolation of the exact solution u defined by (6)-(8). Based on the
superconvergent points and supercloseness properties, we introduce several post-
processing methods to get the global superconvergence of numerical solutions.

3.1. Supercloseness analysis. We introduce the continuous interpolation oper-
ator Πh which is important in supercloseness analysis. The interpolation operator

Πh : C[0, 1]→ S
(0)
m (JN ) is defined by

Πhu(tn−1) = u(tn−1);(6)

Πhu(tn) = u(tn);(7) ∫
In

Πhuvdt =

∫
In

uvdt, ∀v ∈ Pm−2(In), m ≥ 2.(8)
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(Πh only satisfies (6), (7) when m=1). It is obvious that the interpolation operator
satisfy the error estimate

‖u−Πhu‖In,∞ ≤ Chm+1‖u‖In,m+1,∞ ,(9)

‖u−Πhu‖In,0 ≤ Chm+1‖u‖In,m+1.(10)

In the following, we show the definition of “supercloseness” by citing from [17,
18].

Definition 3.1. If the error between the finite element solution and some interplant
of the exact solution is much smaller than that between the finite element solution
and the exact solution, that is, if

‖Πhu− U‖∞ � ‖u− U‖∞
then this phenomenon is called “supercloseness”.

Remark 3.1. If we obtained a new approximation U∗ by applying some type of
postprocessing operations on the CG solution U , satisfying ‖U∗−u‖∞ � ‖U−u‖∞,
this means U∗ has higher convergence than U itself.

We analyze the supercloseness between the CG solution U and the interpolant
Πhu of the exact solution u as follows.

Theorem 3.1. Under the conditions in Lemma 2.1, the following global super-
closeness result holds when u ∈Wm+1,∞(J) :

‖Πhu− U‖∞ ≤Chm+2‖u‖m+1,∞, (m ≥ 2).(11)

Proof. In order to prove this theorem, we also need to introduce the orthogonal

projection operator P : L2(JN )→ S
(0)
m−1(JN )∫

In

Puvdt =

∫
In

uvdt, ∀v ∈ Pm−1(In), m ≥ 2.

It is easy to prove that
∫
In

(Pu)2du ≤
∫
In
u2du. The proof is similar to the idea of

Theorem 2.1 of [25] in which the authors proved the same conclusion under uniform
mesh. Under the quasi-graded mesh, θ(t) maps precisely the current nodes to some
previous ones, we don’t have to consider the case that θ(t) maps t of In to some
two adjacent former subintervals. We leave this proof to the reader. �

Remark 3.2. Theorem 3.1 implies that the CG solution U is closer to Πhu
(the interpolation of the exact solution) than to u itself. This is a supercloseness
property of the CG solution for the DDE (2) under quasi-graded mesh.

3.2. Interpolation postprocessing technique. Based on the supercloseness
and the superconvergence results in the last two subsections, we are ready now to
use the interpolation postprocessing to improve the convergence order and analyze
the resulting global superconvergence. We will define two different interpolation
postprocessing methods, those are, an integration postprocessing method based
on the integral conditions, and a Lagrange postprocessing method based on the
superconvergent points.

We assume that I2h, with mesh size 2h, is obtained by combining two adjacent
subintervals Ii and Ii+1. Which means the number of elements Ñ for Jh is even.
The easiest and natural way of constructing a higher-order interpolation operator
is to define Π2m

2h of degree 2m associated with J2h ,

Π2m
2h u|Ii∪Ii+1

∈ P2m (i = 1, 3, . . . , Ñ − 1).(12)
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We first introduce the integration scheme. The interpolation operator Π2m
2h sat-

isfies the conditions

Π2m
2h u(ti) = u(ti), i = n− 1, n, n+ 1,(13) ∫

Ii

Π2m
2h uvdt =

∫
Ii

uvdt, ∀v ∈ Pm−2(Ii), m ≥ 2, i = n, n+ 1.(14)

For this type of interpolation definition, it is easy to check that

‖v −Π2m
2h v‖∞ ≤ Chm+2‖u‖m+2,∞, ∀v ∈Wm+2,∞(J),(15)

Π2m
2h Πhv = Π2m

2h v, ∀v ∈ L∞(J),(16)

‖Π2m
2h v‖∞ ≤ C‖v‖∞, ∀v ∈ L∞(J).(17)

Based on the superconvergent points, we then introduce the Lagrange scheme.
The interpolation operator Π2m

2h satisfies the conditions

Π2m
2h u(t∗i ) = u(t∗i ), (i = 1, . . . ,m+ 1),(18)

where t∗i (i = 1, 2, · · · ,m + 1) are the m + 1 Lobatto points that lie in In and

In+1(n = 1, 3, . . . , Ñ − 1). It can be readily verified that this type of interpolation
operator also satisfies conditions (15)-(17).

The following theorem shows that one can obtain global superconvergence of
order m+ 2 by the integration (or the Lagrange) postprocessing method.

Theorem 3.2. Suppose u ∈ Wm+2,∞(J) and the conditions stated in Lemma 2.1
hold. If the interpolation operator Π2m

2h is defined either by (13), (14) or by (18),
then the following global superconvergence estimate holds for m ≥ 2 :

‖u−Π2m
2h U‖∞ ≤ Chm+2‖u‖m+2,∞.(19)

Proof. We first prove the case that the interpolation operator Π2m
2h is defined by

(13) and (14). From Theorem 3.1 and the properties (15)-(17) of the interpolation
postprocessing operator Π2m

2h , we have that

‖u−Π2m
2h U‖∞ ≤ ‖u−Π2m

2h u‖∞ + ‖Π2m
2h u−Π2m

2h Πhu‖∞
+‖Π2m

2h Πhu−Π2m
2h U‖∞

≤ Chm+2‖u‖m+2,∞ + C‖Πhu− U‖∞
≤ Chm+2‖u‖m+2,∞ + Chm+2‖u‖m+1,∞

≤ Chm+2‖u‖m+2,∞.

For the interpolation operator Π2m
2h defined by (18), we can prove the correspond-

ing superconvergence result (19) in a similar way. �

In fact, the degree (2m) is not the only choice for the interpolation postprocessing
operator, the superconvergence result (19) can be obtained by any interpolation
operator Πp

2h (p ≥ m + 1) which satisfies (15)-(17). We can also construct the
operator Πp

2h based on the least-square theory.

3.3. Polynomial preserving recovery (PPR) postprocessing technique.
For this method, the interpolation operator Πm+1

2h U of degree (m + 1) associated
with J2h is

Πm+1
2h u|In∪In+1

∈ Pm+1 (n = 1, 3, · · · , Ñ − 1).(20)
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In each “bigger” subinterval In ∪ In+1, Πm+1
2h u is the solution of the least-square

problem

2m+1∑
i=1

∣∣u(t∗i )−Πm+1
2h u(t∗i )

∣∣2 = min
v∈Pm+1(In∪In+1)

2m+1∑
i=1

∣∣u(t∗i )− v(t∗i )
∣∣2,(21)

where t∗i (i = 1, · · · ,m + 1) are the m + 1 Lobatto points in In and In+1 (n =

1, 3, . . . , Ñ − 1). It can be verified that this type of interpolation also satisfies the
conditions (15)-(17). We thus have the following theorem.

Theorem 3.3. Under the conditions in Lemma 2.1 and assume that u ∈Wm+2,∞(J).
If the interpolation operator Πm+1

2h is defined by (20)-(21), then the following global
superconvergence estimate holds for m ≥ 2:

‖u−Πm+1
2h U‖∞ ≤ Chm+2‖u‖m+2,∞.(22)

The proof of Theorem 3.3 is similar to that of Theorem 3.2. We leave the proof
to the reader.

3.4. Iteration postprocessing technique. In this section, we introduce another
postprocessing method. For any t ∈ In, we define a new numerical solution Π2

hU(t)
satisfying

Π2
hU(t) := U(tn−1) +

∫ t

tn−1

(
a(s)U(s) + b(s)U(θ(s)) + f(s)

)
ds,(23)

We then obtain the following global superconvergence result for the new postpro-
cessed solution “Π2

hU(t)”.

Theorem 3.4. Let the conditions stated in Lemma 2.1 hold, under the assumption
that u ∈ Wm+1,∞(J) with m ≥ 2, if the iteration operator Π2

hU(t) is defined by
(23). Then we have

‖u−Π2
hU‖∞ ≤ Chm+2‖u‖m+1,∞.(24)

Proof. Integrating both sides of (1) from tn−1 to t (t ∈ In), we find that

u(t) = u(tn−1) +

∫ t

tn−1

(
a(s)u(s) + b(s)u(θ(s)) + f(s)

)
ds.(25)

Combining (23) with (25), there follows

u(t)−Π2
hU(t) = u(tn−1)− U(tn−1)

+

∫ t

tn−1

(a(s)(u(s)− U(s)) + b(s)(u(θ(s))− U(θ(s)))ds

=: I1 + I2.(26)

From Lemma 2.2

|I1| = |u(tn−1)− U(tn−1)| ≤ Chm+2‖u‖m+1,∞(27)
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and∥∥I2∥∥In,∞ =
∥∥∥ ∫ t

tn−1

(
a(s)(u(s)− U(s)) + b(s)(u(θ(s))− U(θ(s))

)
ds
∥∥∥
In,∞

≤ max
tn−1≤t≤tn

(
|a(t)|, |b(t)|

) ∫
In

(
|u(s)− U(s)|+ |u(θ(s))− U(θ(s))|

)
ds

≤ C max
tn−1≤t≤tn

(
|a(t)|, |b(t)|

)
‖u− U‖∞ · h

≤ Chm+2‖u‖m+1,∞,(28)

we complete the proof of Theorem 4.1. �

4. Higher Order Interpolation Postprocessing Method

We notice that the 2m-order superconvergence (see (5)) holds at the mesh points
of J . This section will show that one can obtain the global superconvergence order
of 2m after suitable postprocessing based on the nodal superconvergence results.

For simplicity, we demonstrate our idea for the case of m = 3. Let Ñ (number of
elements for J) be a multiple of 5 so that we can define an interpolation operator
Π5

5h of degree 5 associated with J5N as follows:

Π5
5hu|In∪In+1∪In+2∪In+3∪In+4 ∈ P5, (n = 1, 6, 11, . . . Ñ − 4),

and

Π5
5hu(ti) = u(ti), (i = n− 1, n, n+ 1, n+ 2, n+ 3, n+ 4).(29)

It is easy to verify that

‖v −Π5
5hv‖∞ ≤ Ch6‖u‖6,∞, ∀v ∈W 6,∞(J),(30)

‖Π5
5hv‖∞ ≤ C‖v‖∞, ∀v ∈ L∞(J).(31)

Theorem 4.1. Under the conditions in Lemma 2 and assume that u ∈W 2m,∞(J).
We have

‖u−Π5
5hU‖∞ ≤ Ch6‖u‖6,∞.(32)

Proof. Denoting the Lagrange basis function corresponding to {tj} by {ψj}(1 ≤
j ≤ Ñ) , we have

Π5
5h(U − u)(t) =

N∑
j=1

Π5
5h(U − u)(tj)ψj(t),

which together with (5), (31) and the uniform boundedness of {ψj}N1 lead to

‖Π5
5h(U − u)‖0,∞ ≤

N∑
j=1

Ch6‖u‖6,∞‖ψj‖0,∞ ≤ Ch6‖u‖6,∞.(33)

Thus, using the interpolation property (30), we obtain that

‖Π5
5hU − u‖0,∞ ≤ ‖Π5

5h(U − u)‖0,∞ + ‖Π5
5hu− u‖0,∞ ≤ Ch6‖u‖6,∞.

�

Similarly, we can define an interpolation operator Π2m−1
(2m−1)h of degree 2m − 1

associated with the mesh J(2m−1)N ,

‖u−Π2m−1
(2m−1)hU‖∞ ≤ Ch2m‖u‖2m,∞.(34)
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Table 1. Global errors and the supercloseness for m = 2.

global error supercloseness

l Ñ err R er RE

2 259 2.6158e-05 1.1195e-06
4 2081 3.3138e-06 2.9807 7.0795e-08 3.9839
6 7033 9.8623e-07 2.9890 1.4027e-08 3.9912
8 16673 4.1699e-07 2.9923 4.4474e-09 3.9928

Remark 4.1. It is clear that when m ≥ 3 the global superconvergence order
of 2m obtained by this postprocessing method is higher than the order of m + 2
obtained by the postprocessing methods above.

5. Numerical Experiment

In this section, we use numerical examples to verify the global superconvergence
order of CG solutions that proposed in the above theoretical analysis. We use the
following notations:

err = ‖u− U‖∞ = max
t∈J
|u(t)− U(t)|, R =

log(errN1/errN2)

log(hN1/hN2)
,

er = ‖Πhu− U‖∞ = max
t∈J
|Πhu(t)− U(t)|, RE =

log(erN1/erN2)

log(hN1/hN2)
,

Ierr = ‖u−Π2m
2h U‖∞ = max

t∈J
|u(t)−Π2m

2h U(t)|, RI =
log(IerrN1/IerrN2)

log(hN1/hN2)
.

Where the notations “err, Ierr” and “R,RI” are errors and convergence orders
of the CG solutions and the “post-processed’ solutions by integration postprocess-
ing respectively. In the following tables, we use similar notations “Lerr”, “Perr”,
“Nerr”, “Herr” to represent errors of “post-processed” CG solutions by Lagrange,
PPR, iteration, and the higher order interpolation postprocessings respectively.
“RL”, “RP ”, “RN”, “RH” represent the corresponding convergence orders. The
notations“er” and “RE” are supercloseness and the corresponding convergence or-
der respectively.

Example 5.1 We consider the DDE with nonlinear vanishing delay:

(35)
u′(t) = −2u(t) + u(θ(t)) + 3et − eθ(t), 0 < t ≤ 1,

u(0) = 1.

The delay function is θ(t) = arctan(t) and the exact solution is u(t) = et. In

the initial subinterval J0 = [0, t0], we get the approximation φ(t) = 1 + t + t2

2! +
t3

3! + t4

4! + t5

5! of the exact solution u(t) by Taylor expansion. Here, we choose the
quasi-graded mesh Jh with the last l + 1 nodes being chosen equidistantly. The
total number of subsections is Ñ = N + 1 = kl + 1. The numerical results are
obtained by the piecewise quadratic CG approximation (PCG2 ) and piecewise cubic
CG approximation (PCG3 ), respectively.

We plot a simple quasi-graded mesh in Figure 1 which shows that θ(t) maps
precisely the current nodes to some previous ones.

(1) The convergence order of the CG solution for PCG2 and PCG3 and the corre-
sponding supercloseness are presented in Tables 1-2.
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                                   θ(𝜉𝜇−1)                    θ(𝜉𝜇)             

 

 

 

        𝜉𝜇−2                   𝜉𝜇−1                                 𝜉𝜇     

 

  𝑡(𝜇−1)0 𝑡(𝜇−1)1 𝑡(𝜇−1)2     𝑡𝜇0    𝑡𝜇1      𝑡𝜇2                𝑡𝜇3 

              
                    θ(𝑡𝜇1)    θ(𝑡𝜇2) 

Figure 1. A simple quasi-graded mesh.

Table 2. Global errors and the supercloseness for m = 3.

global error supercloseness

l Ñ err R er RE

2 259 1.7772e-07 4.1470e-09
4 2081 1.1417e-08 3.9604 1.3241e-10 4.9690
8 7033 2.2759e-09 3.9774 1.8443e-11 4.9717
16 16673 7.2367e-10 3.9829 6.5326e-12 4.9992

Table 3. Errors of the interpolation postprocessing (m = 2).

global error integration error Lagrange error PPR error

l Ñ err R Ierr RI Lerr RL Perr RP
2 259 2.6158e-05 1.4537e-06 1.2954e-06 2.6597e-06
4 2081 3.3138e-06 2.9807 9.2330e-08 3.9768 8.3288e-08 3.9592 1.7205e-07 3.9503
6 7033 9.8623e-07 2.9890 1.8335e-08 3.9870 1.6602e-08 3.9777 3.4394e-08 3.9706
8 16673 4.1699e-07 2.9923 5.8177e-09 3.9901 5.2777e-09 3.9836 1.0949e-08 3.9788

Table 4. Errors of the interpolation postprocessing (m = 3).

global error integration error Lagrange error PPR error

l Ñ err R Ierr RI Lerr RL Perr RP
2 259 1.7772e-07 5.2095e-09 4.3440e-09 2.3304e-08
4 2081 1.1417e-08 3.9604 1.6593e-10 4.9725 1.3763e-10 4.9801 7.6121e-10 4.9361
6 7033 2.2759e-09 3.9774 2.1761e-11 5.0102 1.7982e-11 5.0194 1.0186e-10 4.9606
8 16673 7.2367e-10 3.9829 5.4068e-12 5.0403 4.5133e-12 4.8051 2.4740e-11 4.9916

We conclude from Tables 1-2 that

‖u− U‖∞ = O(hm+1), ‖Πhu− U‖∞ = O(hm+2), (m = 2, 3).

(2) We present errors of the interpolation postprocessing approximations ( (13),
(14), (18) and (20) ) for PCG2 and PCG3 in Tables 3-4.
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Table 5. Errors of the iteration postprocessing (m = 2).

global error iteration error

l Ñ err R Nerr RN

2 259 2.6158e-05 1.4537e-06
4 2081 3.3138e-06 2.9807 9.2330e-08 3.9768
6 7033 9.8623e-07 2.9890 1.8335e-08 3.9870
8 16673 4.1699e-07 2.9923 5.8177e-09 3.9901

Table 6. Errors of the iteration postprocessing (m = 3).

global error iteration error

l Ñ err R Nerr RN

2 259 1.7772e-07 5.4067e-09
4 2081 1.1417e-08 3.9604 1.7203e-10 4.9740
8 7033 2.2759e-09 3.9774 2.2657e-11 4.9907
16 16673 7.2367e-10 3.9829 5.7292e-12 4.9992

Table 7. Errors of the higher order interpolation postprocessing.

global error higher order interpolation error

l Ñ err R Herr RH

5 4066 4.7020e-09 3.6287e-10
10 32561 2.9770e-10 3.9814 5.3140e-12 6.0935

We conclude from Tables 3-4 that

‖u− U‖∞ = O(hm+1), max
1≤n≤N

|u−Π2m
2h U | = O(hm+2),

max
1≤n≤N

|u−Πm+1
2h U | = O(hm+2), (m = 2, 3).

(3) We show the errors of the iteration postprocessing approximations (23) for
PCG2 and PCG3 in Tables 5-6.

We conclude from Tables 5-6 that

‖u− U‖∞ = O(hm+1), max
1≤n≤N

|u−Π2
hU | = O(hm+2) (m = 2, 3).

The new numerical solution Π2
hU by iteration postprocessing method gains high-

er global convergence order than the CG solution U . This confirms the correctness
of Theorem 3.4.

(4) We show the errors of the higher order interpolation postprocessing approx-
imations (29) for PCG3 in Table 7.

For m = 3, we conclude from Table 7 that

‖u− U‖∞ = O(h4), max
1≤n≤N

|u−Π5
5hU | = O(h6).

The new numerical solution Π2m−1
(2m−1)hU obtained by the higher order interpola-

tion postprocessing method gains higher global convergence than the normal post-
processed CG solution. This confirms the correctness of Theorem 4.1.
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6. Concluding remarks

In this paper, we discuss the global superconvergence of the “postprocessed”
CG solutions for DDEs of nonlinear vanishing delay under quasi-graded meshes
by several postprocessing techniques. Based on the supercloseness between the CG
solution U and the interpolation Πhu of the exact solution u, we improve the global
convergence by some postprocessing methods. All the results can be extended to
the general nonlinear case. The numerical example illustrate the validation of the
postprocessing methods.

In the future, we will research the Galerkin methods and postprocessing tech-
niques of the nonlinear multiple delay differential equations and get numerical so-
lutions of higher order global convergence.
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