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Abstract. The aim of this paper is to propose and analyze a numerical method to solve a time-
dependent eddy current problem in a domain containing moving non magnetic conductors. To this
end, we choose a formulation in terms of the magnetic field, what leads to a parabolic problem
for which we prove an existence result. For space discretization, we propose a finite element
method based on Nédélec edge elements on a mesh that remains fixed over the time. The curl-free
constraint in the dielectric domain is relaxed by means of a penalty strategy that can be easily
implemented, without the need that the mesh fits the moving conducting and dielectric domains.
For time discretization, we use a backward Euler scheme. We report some numerical results.
First, we solve a test problem with a known analytical solution, which allows us to assess the
convergence of the method as the penalization and discretization parameters go to zero. Finally,
we solve a problem with cylindrical symmetry, which allows us to compare the results with those
obtained with an axisymmetric code.

Key words. Eddy current problems, transient electromagnetic problems, moving domains, edge
finite elements, penalty formulation.

1. Introduction

This paper deals with a finite element method to solve a time-dependent eddy
current problem in a three-dimensional (3D) bounded domain containing moving
non magnetic conductors. Such a problem arises in different physical applications
such as electromagnetic forming process or magnetic levitation. In particular, our
work is motivated by the simulation of electromagnetic forming processes (EMF)
[8], which leads to solving the transient eddy current model with the conducting
part being a workpiece which is deformed over the time due to electromagnetic
forces, while the current source arises from a coil placed in a fixed position. A
strategy often used in the literature to simulate this process is based on a sequential
coupling [11] between an electromagnetic model and a structural one; the former
allows computing the Lorentz-forces which drives the motion of the workpiece while
the latter uses these forces as data to compute the workpiece deformation. In this
way, the mechanical results would allow us to update the geometry to be used in
the subsequent step of the electromagnetic model. To perform this coupling it is
very useful to have an electromagnetic tool able to consider conducting subdomains
whose form and position can change over the time. Thus, in this paper we develop
a model for this purpose but we will assume that the geometry and position of the
workpiece is known at any time. Our goal is to compute the eddy currents and
thereby the Lorentz force in this moving conductor as a first step for a sequential
magneto-mechanical coupling.
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The motion of the conductor introduces serious difficulties in the mathematical
analysis of the eddy current model, mainly due to the different nature of the equa-
tions in the dielectric and conducting parts of the domain. In fact, to the best of our
knowledge, there is no result guaranteeing the well-posedness of the 3D continuous
problem.

Actually, there are just a few papers dealing with the analysis of the eddy cur-
rent model considering moving conductors in either two or three dimensions. In
particular, a two-dimensional transient eddy current problem arising from model-
ing electrical engines by considering the rotor motion has been analyzed in [5, 7].
The 3D case has been studied in [6], where a time-primitive of the electric field has
been used as the main unknown leading to a degenerate parabolic problem. We
notice that in these papers the interface between the moving and the fixed part is
always the same. Moreover, the fact that the motion is a rotation is used in the
theoretical proofs of existence and uniqueness of solution. Such a special kind of
motion is quite different to what happens in other processes like EMF or magnetic
levitation. From the point of view of the numerical solution, the techniques used
in these papers are based on using different reference frames in the moving and
non-moving parts, which involve Lagrangian formulations: this leads to work with
independent meshes at each part of the domain, while the coupling transmission
conditions are taken into account by using mortar techniques.

On the other hand, an axisymmetric eddy current model with workpiece motion
has been more recently studied in [3, 4]. The main unknown in this case is a mag-
netic vector potential and the resulting problem is also parabolic and degenerate;
the well-posedness of the problem is proved by means of a regularization argument.
In this case, the problem is studied by using a unique reference frame. From the
numerical point of view the proposal in these papers is to work with a fixed mesh
over the whole time interval, even though the workpiece changes its position. This
procedure is based on using low-order quadrature rules with a large number of in-
tegration points in those terms involving piecewise smooth discontinuous functions
which appear due to the motion of the workpiece.

In this paper, we are interested in 3D problems where the conducting piece is not
magnetic and moves freely in the dielectric domain and its motion is not necessarily
rigid. From the mathematical point of view, to apply the above discussed results
to this kind of problems does not seem to be feasible. In fact, the techniques from
[6] do not seem to be applicable to these problems, because the geometry changes
arbitrarily over the time. On the other hand, the approach from [3] is based on the
fact that the cylindrical symmetry leads to a two-dimensional problem for a scalar
variable and the proofs rely on a specific Reynold’s transport theorem which does
not hold in the present case.

Among the variety of possible formulations (see, for instance, [2]), for our choice
we have prioritized three aspects: (i) the possibility of using a fixed mesh of the
whole domain at all time, (ii) to avoid the need of building cutting surfaces (what
can be extremely cumbersome in complex topologies) and (iii) to use a number of
unknowns as small as possible. According to this, we have chosen a formulation in
terms of the magnetic field which only involves this vector unknown in the whole
domain. Let us remark that an alternative formulation with similar features could
be based on a primitive of the electric field without using a gauge condition in the
dielectric domain (see again [6]). The ideas used in the present paper regarding how
to deal with a fixed mesh could be also tried in this case, although this choice would
lead to solving a system with a singular matrix. Let us remark that we will not
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neglect the velocity terms in Ohm’s law in order to propose a general methodology
to model physical applications in which this convective term may be relevant. Thus,
the magnetic formulation leads to a parabolic problem with a convective term for
which we obtain an existence result by following some ideas from [13]; however,
uniqueness remains an open question.

Then, we introduce a numerical method to solve this problem based on Nédélec
finite elements for space discretization combined with a backward Euler scheme for
time discretization. The curl-free constraint in the dielectric domain is relaxed by
means of a penalty strategy (see, for instance [10, Section 1.4.3]). This approach
applied to the eddy current model corresponds to replacing the dielectric domain
by a so called fake conductor, namely, a material with a very low conductivity ([9]).
Let us emphasize that in spite of the fact that the dielectric domain changes over
the time, the proposed numerical method does not need moving meshes. Thus,
to be able to use a fixed mesh, we resort to the same idea exploited in [4] in
the axisymmetric case of using low-order quadrature rules with a large number of
integration points for computing integrals involving discontinuous coefficients.

Although we do not have a convergence analysis for the numerical method applied
to a problem with a moving workpiece, we report promissory numerical results
obtained in a couple of test problems, which provide numerical evidence of the
effectiveness of this approach. In particular, one of these tests is a problem on a
cylindrical geometry, which allows us to compare our results with those obtained
with the axisymmetric code from [4].

The outline of the paper is as follows. In Section 2, we introduce the time-
dependent eddy current problem in a bounded domain with moving conductors
and derive a weak formulation, for which we prove existence of solution. Then,
we introduce two alternative formulations more adequate for numerical purposes;
one of them is mixed while the other is a penalty formulation. The former can
be seen as the limit of the latter as the penalization parameter goes to zero. We
introduce numerical schemes to solve each of them and establish some advantages
of the penalty formulation. In Section 3 we report numerical results for a couple of
test problems. The first one is a problem with analytical solution that allows us to
check the convergence properties of the proposed method. The second one is based
on an axisymmetric setting and a rigid motion, and the results will be compared
with those obtained in [4]. Finally, in Section 4, we draw some conclusions.

Throughout this paper, we will use classical Sobolev as well as other well-known
spaces like Hyp(curl;w) := {G € H(cur,w): G xn =0 on dw}, Ho(divo;w) =
{F ¢ H(div;w) : divF = 0inwand F-n = 0 on dw}, H,(div;w) := {F ¢
H(div;w) : divF =0in w and F -n =0 on 7}, etc., for any subdomain w C Q
and any connected component 7 of dw. Here and thereafter, we use boldface letters
to denote vector fields and variables as well as vector-valued operators. Finally,
C will denote strictly positive generic constants, not necessarily the same at each
occurrence.

2. A magnetic field formulation on moving conductors

The aim of this section is to introduce a numerical method to solve transient
eddy current problems on moving conductors with a fixed mesh. With this end, we
propose a formulation based on the magnetic field. Then, we introduce a convenient
weak form of this problem for which we prove existence of solution. Next, we
propose a penalty method to deal with the curl-free constraint in the dielectric
domain and we show that this penalized formulation has a unique solution, bounded
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FIGURE 1. Sketch of the domain at initial time (up) and at time
t >0 (down).

independently of the penalization parameter. Finally we introduce a penalized fully
discrete scheme which can be easily implemented on a fixed mesh that does not need
to fit the conducting and dielectric domains.

2.1. Statement of the problem. Let us consider a coil which carries a given
current density J; and a non-magnetic moving conducting workpiece. Let €2 be a
simply connected bounded 3D domain with Lipschitz continuous connected bound-
ary ', which contains the coil and the workpiece at all time ¢ in an interval [0, T].
We assume that J; is supported in 2, C Q. We are interested in computing the
induced currents in the workpiece that moves over the time with a motion not
necessarily rigid. Therefore, the domain occupied by the workpiece will depend on
¢ and will be denoted by Qf. Obviously, its complement Qf := Q\ QF also depends
on t. We assume that Qf is connected and that Qf N Qg = 0 for all ¢t € [0,7] (see
Figure 1). We notice that Qg C Q| so that Jila: = 0 at all time ¢ € [0,T]. We
also notice that the domain Qg of the source current is assumed to be fixed over
the whole time interval.
The problem to be solved is the following:

(1) O(uH) +curlE =0 in (0,7) x Q,
(2) curlH = J,+0E +ov x nH in [0,7] x €,
(3) div(uH) =0 in [0,7] x Q,

where E(t,x) is the electric field, H (¢, ) the magnetic field, v(t, x) the velocity at
each point @ of the workpiece, p the magnetic permeability and o (¢, x) the electric
conductivity.

We assume that the source current Jyo, € H'(0,T; Hy(div’; Q,)). Moreover,
since J, is supported in Qg this implies that its extension by zero belongs to
H'(0, T; Ho(div"; ), too. On the other hand, since the workpiece is assumed to be
non magnetic, the permeability is constant in the whole domain Q: p = pg, with
1o being the magnetic permeability of vacuum. In turn, o vanishes in the dielectric
and varies with time and space in the conductors; moreover, we assume that there
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exist positive constants g and &, lower and upper bounds of o, respectively; namely,
0<o<o(t,m) <o, xec and c=0inQf, tel0,7T)]
Finally, each point of the workpiece is assumed to move with a given bounded
velocity v which satisfies
t
lv(t,x)| < [|v| o < oo, xe, tel0,T].

Equations (1)—(3) must be completed with suitable boundary and initial condi-
tions. For the latter, we consider
4) H(0,z) = Hy(x) x e,

where Hy € Hy(curl; Q) and satisfies div(uHy) = 0 in Q. Note that this last
equation together with (1) imply that H satisfies (3) at all time ¢ € [0, 7.

The transient eddy current model (1)—(4) defined in the whole space R® with
appropriate conditions at infinity and fixed conductors has been studied in [12]. In
our case, we restrict our analysis to a bounded domain €2 and consider the following
homogeneous boundary conditions:

(5) Hxn=0 on[0,T]xT.

Let us remark that this is a reasonable approximation, provided the domain 2 is
chosen sufficiently large so that its boundary is far enough from Qg and €, for all
te0,T).

To obtain a weak formulation of this problem for Wthh the existence of a solu-
tion will be established, we use an auxiliary vector field H ¢ Hl(O T;Hp(curl; Q)
satisfying curl H = J, in Q. In order to define such an H we use that, since
OpJ(t) € Ho(div’; Q) and Q is simply connected, there exists a unique vector po-
tential Q(t) € Hy (curl; ) such that

(6) curl Q(t) = 9:J4(t) in

and div @Q(t) = 0 in Q (see [10, Theorem 1.3.6]). Moreover, there exists C' > 0 such
that ”Q(t)HH(curl;Q) < C”ath(t)HL?(QS)s- Then,
(7)

T T
2 2 2
/ Q) f1(curny) dt < C/ 10t Ts(D)l|L2 s At < C Nl Il 0,120 < o
0 0

Similarly, since J(0) € Ho(diVO; Q) as well, there also exists a unique vector poten-
tial Ry € Ho(curl;2) such that

(8) curl Ry = J(0) in Q,
div Ry = 0 in @ and || Ro|[gy(curt0) < C ||JS(0)HL2(QS)3. Therefore, we define
t
(9) H(t) := Ry +/ Q(s)ds
0

so that 8tﬁ(t) = Q(t) in the sense of distributions in (0,7") (see [16, Remark
131(b)], for instance). Then, from (7) we have

| 10BO s @ = [ 1@ i 1 <

On the other hand, straightforward computations allow us to bound
fo HH HH curl:0) dt too, so that we conclude that H € H!(0,T; Ho(curl; 2)) and

(10) [ H || . o7Heurq)) < C 1 slm 0,2 ys) -
(0,T5H( ) s
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Furthermore, from (9), (8), (6) and [16, Theorems 111 & 127] we have that
t
curl H(t) = curl R +/ curl Q(s) ds = Jy(t) inQ, tel0,T].
0

Now, we write H = H + H, so that equations (1)=(5) lead to

(11) 8 (nH) + curl E = —8,5(;LH) in [0,7] x Q,
(12) curlﬁ—avxuﬁ:aE+avxuﬁ in [0, 7] x £,
(13) Hxn=0 onl0,T]xT,
(14) H(0)=Hy,—H(0) inQ.

For each t € [0,T], we define
Y :={G € Hy(curl; Q) : curlG=0inQ'},
L*(0,T;Y;) :== {G € L*(0, T;Ho(curl; ) : G(t) € Yy, t €[0,T]}.
The latter is a closed subspace of L2(0, T; Hy(curl; 2)) and hence a Hilbert space

(cf. [13)).

Notice that, because of (12) and the fact that ¢ vanishes in Q! we have that
H € 12(0,T;Y;). By testing (11) with G € L?(0,T;Y;) and integrating by parts,
we write

OwH) G+ | E-curlG=—- [ 0,(uH)-G.
Q Ot Q
C

Hence, using (12) to eliminate E we obtain

— 1 — —

(15) 8t(uH)-G—|—/ —curlH - curlG — v X uH - curlG
Q a0 Qt

C C

—/ 8,5(,uﬁ)~G+/ v x uH - curl G.
Q o,
Let f € L2(0,T; Ho(curl; Q)’) be defined by

(f( / O ( uH / v X MH( )-curlG VG € Hy(curl; ),

where (-, ) denotes the duality pairing between Hp(curl; Q) and Ho(curl; ). Let
a(t; -, ) be the continuous bilinear form defined in Hy(curl; Q) x Ho(curl; Q) by

- 1 ~ ~
a(t; G,G) == / ——curlG - curlG — v(t) X uG - curl G
o o(t) L

and c(+,-) the continuous bilinear form defined in L?(Q)3 x L2(Q)3 by
(G, G) = / 1LG-G.
Q

Then, integrating by parts in time the first term in (15) leads us to the following
weak form of problem (1)—(5):

Problem 1. Find H € L2(0,T;Y,) such that
T T
/ a(t;H(t),G(t))dt—/ c(H(t),0,G(t)) dt
0 0

:/0 (f(t), G(t)) dt + ¢(Hy — H(0),G(0))
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for all G € L2(0,T;Y;) NH(0,T;L2(Q)3) with G(T) = 0 in .

Now, we are in a position to apply results from [13] to prove the existence of
solution to this problem.

Theorem 1. Problem 1 has a solution.

Proof. The result is an application of Theorem 1 from [13]. In fact, since p is
assumed to be time-independent, the bilinear form c(-,-) does not depend on ¢ and
hence we only need to check the following hypotheses of this theorem:

(i) Vi C Ho(curl; Q) C L3(Q)3;
(i) ¢(G,G) >0 VG € L%(Q)3
(i) I, a>0: Ae(G,G)+at;G,G) > |Gy VG EVi, ae te
[0, 7.
Properties (i) and (ii) clearly hold in our case. The last property is a Garding

inequality that holds true for any sufficiently large A. In fact, using Young’s in-
equality, we have that

1
<u||voo{ G2y + o ||cur1G|L2<m>3}

/ v(t) X uG - curl G
Qt
C

for all v > 0 and, consequently,

(16)  Ae(G Q) +at;G, @)
~ 9 1 1 2
> ()\/i —5H H”Hoo> |Gtz ) + (O_ - %“ ||”|oo> ||curlG||L2(th)3 :

Hence, by taking v = &u ||v| ,, we write

Ae(G,G) +a(t; G, G)

. 1_ 1
> min {)\,u - §Uu2 HvHio ; 20} ||G||§I(curl;Q) VG eY:, te[0,T].

rru\lv\l

Therefore, property (iii) holds true for any A > === with

o =min {)\ﬂ — ou? ||v||OO , 20} > 0. Thus, we Conclude the proof. O

Unfortunately, we cannot apply Theorem 2 from [13] to conclude that Problem 1
has a unique solution, because two of the hypotheses of this theorem are not fulfilled
in this case. On one side, the set {a(¢;-,-) : ¢t € [0,T]} should be a regular family
on Y;. For this property to hold, apparently we would need a Reynold’s transport
formula for |curl G|* with G € Y, C Ho(curl; Q). Recently, a version of such a
formula for functions with reduced smoothness was proved in [3], however it seems
mandatory that the integrand (in our case |curl G|*) be in W1(Q), which is not
the case in the problem we are dealing with. On the other hand, another hypothesis
of Theorem 2 from [13] is that the family of spaces Y; has to be decreasing in the
sense that

Vi, s €[0,T] t>s=Y: CYs.
This would hold in our case only if the workpiece shrinks without other motion,

which would be a rather particular case. Thus, the uniqueness of the solution to
Problem 1 remains an open question.
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2.2. Mixed and penalty formulations. The formulation in Problem 1 is useful
to prove the existence of solution to (1)—(5), but not for computational purposes.
In order to numerically solve this problem, we introduce in this subsection two
more convenient alternative formulations. The former is a mixed one, in which the
constraint

(17) curl H(t) = J(t) in Q]t3

that follows from (2) is imposed by means of a Lagrange multiplier. The second
one is based on relaxing this constraint by means of a penalization technique.

To derive a mixed formulation of problem (1)—(5), we integrate (1) multiplied
by a time-independent test function G € Hy(curl; ), integrate by parts and use
(2) to substitute E in terms of curl H and v x pH in Qf. The resulting equation
combined with a weak form of constraint (17) lead us to the following.

Problem 2. Find H € L%*(0,7T;Hy(curl;)) N H'(0,T; Ho(curl; Q)’) and E €
L2(0,T; Hr(div%; Q) such that

d 1
— uH~G+/ —curlH - curlG
dt Q th g

b
b,

H0)=H, Q.

vXx uH - curlG Jr/ curlG-E =0 VG € Hy(curl; ),
Q

t t
C D

curlH-F:/ J,-F  VF € Hp(div’; Q),
Qg

This mixed formulation has been introduced and analyzed in the case of fixed
conductors in [1] and [12], in the harmonic and the time-domain regimes, respective-
ly. However, when the dielectric domain changes over the time, the mathematical
analysis of this problem does not follow from the same arguments used in these
references.

On the other hand, the finite element approximation of this mixed problem looks
expensive, since two vector fields have to be discretized: H in the whole domain and
E in the dielectric (which moves over the time). Moreover, as it will be explained
in more detail in the following subsection, it is not immediate to find a basis of the
finite element space used to discretize the space Hrp (divO; Qg) where the Lagrange
multiplier lies.

Instead of pursuing this approach, we resort to a penalization technique to re-
lax constraint (17). The penalization consists in assuming that the dielectric is
not a perfect insulator but a fake conductor; namely, a material with a very low
conductivity € > 0. More precisely, instead of (17) we impose

curl H(t) — J (t) = cE(t) in QF,

where € is a small positive parameter. For the forthcoming analysis, we will consider
¢ € (0,0), which is not restrictive at all since, in practice, € is taken significantly
smaller than g. Therefore, for any such e, the same steps that lead to Problem 2,
but using now the above equation to substitute E in terms of H and Jj in Qg,
yield the following penalized form of problem (1)—(5).
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Problem 3. Find H. € L%(0,T;Ho(curl; Q)) N H(0, T; Ho(curl; Q)’) such that

d 1
— /LHE'G-"-/ —curlH, - curlG — v X uH, - curlG
ot O

dt Jo : 2,
1 1
+g/ curlHE-curlG:g/ J,-curlG VG € Hy(curl; ),
Qt Q
D

S

HE(O):HO in Q.

The above problem is well posed and its solution is bounded uniformly in € as
it is shown in what follows.

Proposition 1. For anye € (0,0), Problem 3 has a unique solution H.. Moreover,
there exists a constant C > 0, independent of €, J, and Hy, such that

2 2 2 2
”HE||L°O(0,T;L2(Q)3)+||cur1 HSHLQ(O,T;LZ(QP) < C {”HOHL2(Q)3 + HJSHHI(O,T;LZ(QS)S)} .

Proof. First, we proceed as we did to derive (15). In fact, let H be defined by
(9) and let H. be such that H. = H. + H. Substituting this into Problem 3 we

obtain

d — 1 —
(18) —/MHE~G+/ —curlH, - curlG

t O

C
N 1 N
—/ vquE-curlG—l—g/ curl H. - curlG
Q

t Ot
C D

:—/325(,uﬁ).G+/ vxuﬁ'curlG VG € Hy(curl; ),
Q Qt
C
(19) H_(0)=H,— H(0) in Q.
The existence of a unique solution ﬁg of the above problem is a consequence of

[14, Proposition I111.2.3]. Indeed, the continuous bilinear form defined in Hy(curl; 2) x
Hy(curl; ) by

~ 1 ~ 1 ~ -
a:(t; G, G) ::/ —— curl G-curl G+/ —curlG-curlG— | v(t)xpuG-curl G
L o(t) a € Qr

satisfies

a.(t; G, G) = a(t; G, G) —I—/

1
~|curl G|
ot €

t
D
Hence ac(t;-,-) satisfies a Garding inequality in H(curl; Q) with the same param-
eters A and « as in the proof of Theorem 1. This property combined with an
exponential shift allow us to use [14, Proposition II1.2.3] to prove the existence of
a unique solution of (18)—(19).

Now, for the a priori estimate, we take G = ﬁs (t) in (18) and apply standard
arguments (Young’s inequality, Gronwall’s lemma and time integration) to derive
that, for ¢ < g, there exists C' > 0 independent of ¢ such that

|He] | cwrl F |,

(0,T;L2(Q)3) (0,75L2(22)%)

<C {200 + I 001200 |

2 2
<C{IHol 2@y + 190 0102 |

where we have used (10) for the last inequality. O
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2.3. Discretization. The aim of this subsection is to introduce a numerical method
to approximate the solution of Problem 3. Before doing this, we will present a dis-
cretization of Problem 2, which can be seen as the limit case of Problem 3 as ¢
goes to zero. The reason for this is two-fold. On one side, it will allow us to make
it clear that solving Problem 3 is less expensive than solving Problem 2. On the
other hand, in the next section, we will use the numerical solution of Problem 2 to
estimate the dependence of the error on the parameter € and thus to establish how
small must be chosen € in practice.

From now on, we assume that 2 and (), are Lipschitz polyhedra and consider
a regular family of tetrahedral meshes 7} of €2, such that each element K € T
is contained either in Qg or in Q \ Qg (h stands, as usual, for the corresponding
mesh-size). We employ edge finite elements to approximate the magnetic field;
more precisely, elements from the lowest-order Nédélec space

Nu(Q) :={G), € H(curl;Q) : Gy|x € N(K) VK € T},
where
N(K)={G,LeP}: Gh(z)=axz+b, a,beR? 2z K}.
We introduce the discrete subspace
NL(Q) ={GrL e Nn(): G, xn=0o0nT} C Hy(curl; Q).

To discretize in time Problem 2, we use a backward Euler scheme on a uniform
partition of [0,T]: t,,, := mAt, m =0,..., M, with time-step At := % Finally, we
use an approximate initial data Hoy, € N7, (Q) (for instance, the Nédélec interpolant

of H, provided this initial data is smooth enough for this interpolant to be well
defined). Thus we are led to the following problem, where

N (@) = {Gh|%m L G € NE(Q)}, m=0,...,M.

Problem 4. Let HY), := Hy,. Form =1,...,M, find H" € N},(Q) and E}" €
curl (N}, (Q4)) such that

H"—H"! 1

/,uhih-Gh—&—/ fcurlHZL-curlGh—/ v X pH} - curl Gy,
0 At QMn g th
C C

+/ curlG, - El' =0 VG, € N, (Q),
Qg

/ curl H" - F), = / J(tm)  Frn  VF) € curl (N}, (Q)).
Qg

S

The following proposition shows that this problem is well posed.

Proposition 2. There exists a unique solution to Problem 4, provided At <
FullvlZ,

Proof. To prove the well-posedness of the problem to be solved at each time step
m = 1,..., M, we resort to the classical theory of mixed problems (see [10], for
instance) and prove the discrete inf-sup and the ellipticity in the discrete kernel
conditions.

Since dim N}, (Q) < oo, for the former it is enough to prove that for each non-
vanishing F, € curl (M, (Q4)) there exists G, € N}, () such that fﬂg’" curl G, -
F}, # 0, which in turn follows immediately from the definition of the space N7, (QLm)
by choosing G}, € N}, (R2) such that F), = curl Gh|Q]t3m.
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On the other hand, the ellipticity in the discrete kernel property means in this
case that there exists a > 0 such that

1 1
AL / ©|Ghl? / = |curl G, |? —/ v X uGp, - curl Gy,
Qe 0 Qe

> a|Gulfieuy  VGh € KT
where the discrete kernel is
Ky = {Gh eNT(Q): /, curlG, - Fp, =0 VF} € curl (NZ(Q;))}
Q'Wl
- {Gh eNT(Q): curlG, =0 in Q;;m}.

To prove the ellipticity, we follow the same steps as in the proof of Theorem 1 that
lead to (16) and obtain

1 1
A / w|Grl? + /, = eurl Gy, |2 —/ v X uGy, - curl Gy,
Qg g thm

ol o e Lol 2
> (4 - 2B )yt + 5 - Jeurl G gy

for all v > 0. Then, by taking v = op v, we have that

1 1
A / w|Grl? + /, = eurl Gy, |2 —/ v X uGy, - curl Gy,
Qcm g thm

< min At 2 e hilH(curl;Q)

for all G}, € KC}'. Hence, we conclude the ellipticity in the discrete kernel for any

At<*\| 8 w1tha—m1n{ﬁt_%,zlo}>0 .

Problem 4 can be implemented by using a fixed mesh. However, in such a case, in
general there will be tetrahedra which do not lie entirely in Qém or Qf)’". To compute
all but the first and last integrals from Problem 4 in these tetrahedra, we use a low-
order quadrature rule with a large number of integration points. An additional
difficulty of this implementation is that it is not simple to obtain a basis of the
discrete space curl (N E(QtDm)) Because of this, we have used the standard basis
of N}, () to construct with their curls a (non-linearly independent) spanning set of
that space. By so doing, at each time step we are led to solving a singular system of
linear equations, well-determined in the sense that it has an (obviously non-unique)
solution. This rank-degenerate linear system has to be solved in the least-square
sense, what can be easily done in the MATLAB environment, for instance.

Let us come back now to the main goal of this section: to propose a well-posed
discretization of Problem 3. We also use Nédélec edge elements from A} (), a
backward Euler scheme on a uniform partition of [0, 7] and an approximate initial
data Hoj, € N}, (Q) as for Problem 4. Thus we are led to the following scheme.
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Problem 5. Let H(,)I’E = Hop. Form=1,...,M, find Hy'_ € N} () such that

m—1

/ " Zl,s - Hh,s G _|_/ 1 curl H" - curlG
— .Gy e’ h
Q At Qtm o(tm) "

1
+ f/ curl H)', - curl Gj, — / v(tm) X pH}', - curl Gy,
g Jqotm ’ Qé’m’ ’

1
= g/ J(tm) - curl Gy, VG, € N} (9Q).
QS
The following lemma shows that the above problem is also well posed.
Proposition 3. For alle € (0,0) and At < =
to Problem 5.

uH eI there exists a unique solution

Proof. The Lax-Milgram Lemma ensures the existence and uniqueness of solution
of the problem to be solved at each time step m = 1,..., M. Indeed, by repeating
the steps from the proof of Proposition 2, we obtain

1 1 1
/u|Gh| +/ f|cur1Gh|2+f/ |cur1Gh|2—/ v X uGp, - curl G,
At o O e Jaim Qtm

C
— 92 2
) o] 1 2
> min {At - #a % ||Gh||H(cur1;QtCm)
1 2
+ ; ||Gh||H(cur1;QfI')m) VGh € NE(Q)

= 2 2
Thus, the ellipticity follows for any At < = H EIE with & = min { £ - %7 %}
> 0. (I

Let us remark that the same mesh is used over the whole time interval. The
motion of the workpiece affects the domains of all but the first and the last integrals
of Problem 5. To compute integrals on those tetrahedra that do not lie entirely
in one of the domains, thm or Qg”, we also use a low-order quadrature rule with
a large number of integration points. The implementation of Problem 5 is very
simple. It does not need moving meshes and the number of unknowns is kept
reasonably small (it equals the number of inner edges of the mesh). However, the
analysis of convergence of this penalized formulation as all the parameters, €, h and
At, go to zero remains an open problem.

3. Numerical results

In this section, we will report some numerical results obtained with a MATLAB
code which implements the penalization technique described above. First, it is ap-
plied to solve a test problem with a known analytical solution, in order to illustrate
the convergence of the method with respect to the penalization and the discretiza-
tion parameters. Next, we consider a problem with cylindrical symmetry, which
will allow us to compare the results with those obtained with another code based
on an axisymmetric formulation introduced and analyzed in [3, 4].

3.1. Test 1: Problem with a known analytical solution. We approximate
the solution of the following source problem:

curlH =oE +ov x uH in (0,7) x Q,
O(uH) + curlE = f in (0,7) x Q,
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z

1+t <z < 2+t

FIGURE 2. Test 1. Sketch of the domain.

where f is a given data defined in the whole domain Q := (0, 1) x (0, 1) x (0, 3) and
T=1.

Wé assume that the initial position of the workpiece is the cube (0,1) x (0,1)
(1,2) and that it moves as a rigid body with velocity v = e, so that Qf = (0,1)
(0,1) x (1 +t,2+1t) (see Figure 2).

We have used for this test p = po = 47 x 107" Hm ™', 0 = 10% (Qm) ! in Q! and
o =0in QY. Notice that we can freely choose any At in the time interval [0, 7],
because it satisfies the restriction At < m = 1.5915 given in Proposition 3.

X
X

The data f has been chosen so that the analytical solution be
H(t,z) =t | p(t,z

with

fGe=1=0*Gz=-2-0?%  ze[l+t2+1],
‘p(t’z>'_{0 g [1+6,2+1],

and

—scurl H(t,z) —v(t,z) x pH(t,z) inQ,

R o(t)
B = { ; ot

Notice that curl H(t) = 0 in Q! for all ¢ € [0,7]. This is the constraint that
will be penalized, since there is no source current J in this test. Given ¢ > 0, the
corresponding penalized problem reads as follows: find H. € L2(0,7;H(curl; 2))N
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H'(0,7;H(curl; 2)') such that

d 1
— MHE-G—i—/ —curlH, - curlG
dt Q ot O

C

1
—/ vquE-curlG’—i—f/ curl H, - curlG
Q € Ja

o b
:/f-G+/g~G VG € H(curl; ),
Q r
HE(O):HO inQ,

where the exact values of f in €2 and g := F x n on I have been used as problem
data.

These equations have been discretized by using Nédélec finite elements in space
and the backward Euler method in time, leading to a scheme similar to that in
Problem 5. To compute the integrals on those tetrahedra that do not lie entirely
in th or Qt]y we have used a simple average of the discontinuous integrand in 2925
equispaced points of the tetrahedron. We have also solved the problem with larger
numbers of integration points to check that the reported results are essentially
indifferent to this number.

The error of the computed solution depends on the penalization parameter ¢,
the mesh size h and the time-step At. First, we focused on analyzing the de-
pendence on €. With this in view, we have also solved the corresponding mixed
formulation of this problem, which reads as follows: find H € L2(0, T; H(curl; Q))N
HY(0,7;H(curl; Q)’) and E € L(0,T; H(div’; Q!)) such that

d

—/,uH~G—|—/ lcurlH~curlG
dt Q cho'

/,

:/f-G+/g~G VG € H(curl; Q)),
Q r

vx,uH~curlG+/ curlG- E
Q

t
D

/ curlH -F=0 VFeH(div’Q!),
Qt
D

H(0)=H, inqQ.

To assess the dependence of the errors on the penalization parameter €, we have
solved both problems with the same fixed mesh and time-step and with varying
€. In such a case, the difference between the solutions H ﬁﬁ and H Z of these
two problems is due only to the penalization. We have computed the following
percentage errors:

1£I,1€agXMHHZ,e - H§’|L2(Q)3

max (|-

1<k<M Q)3

and
1/2
@{Zkle HHI}CME o Hﬁ”?{(curl;ﬁ)}

iz
\/Kt {Z;cw:l HHZ ||?—I(cur1;Q) }

which are time-discrete forms of the errors in L>°(0, T’; L?(2)?) and L?(0, T’; H(curl; ))
norms, respectively.

100
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TABLE 1. Test 1. Percentage penalization errors.

€ efo | L°(0,T;L%(Q)%) | L?(0,T; H(curl; 2))
102 [107* 0.008162 0.102870
10t | 107° 0.001187 0.015876
10° 10-6 0.000125 0.001680
107t | 1077 0.000015 0.000169
X L>(0,T;L%(R)) X L2(0,T; H(curl; Q))
b —e—Percentage error in Hy a¢ b —e—Percentage error in Hy, a¢ -1
—— Percentage error in H.i, a 4 —s— Percentage error in Hg,% g )
10t —x—Percentage error in Hy ac -7 " —»— Percentage error in Hg,%
- = O(e) convergence o W O(e) convergence

Percentage error
Percentage error

Value of € Value of ¢

FicureE 3. Test 1. Percentage penalization error curves in
L>(0,T;L2(2)3) (left) and L?(0, T; H(curl;Q)) (right) norms for
several discretizations. The coarsest one corresponds to a mesh
with 144 elements and a time-step At = %.

We report in Table 1 the penalization errors on a fixed mesh with 9216 elements
and with a time-step At = % (i.e., M = 40), for different values of the penalization
parameter €. We also include in the table the relative values of ¢ with respect to
the conductivity o = 10% used in this test.

The numerical results from Table 1 show clearly a linear convergence with re-
spect to the parameter . The penalization errors are actually very small, even for
not so small relative values of the penalization parameter; however, for values of
g/o < 1077, the linear convergence deteriorates mildly due to ill-conditioning of
the resulting linear system.

The results do not change significantly when the experiments are repeated with
different time-steps and mesh-sizes. This can be clearly seen in Figure 3, where
penalization error curves in the same norms as above are shown for different com-
binations of time-steps and mesh-sizes. Indeed, all the curves show a clear linear
dependence of the error with respect to the penalization parameter.

Next, in order to assess the dependence of the errors on the discretization param-
eters h and At, we have chosen a sufficiently small fixed value of the penalization
parameter: ¢ = 107!, As can be seen from Table 1, for such a small value of ¢,
the penalization errors are absolutely negligible. For this test, we have computed
the actual errors, namely the differences between the obtained numerical solution
and the analytical one. We report in Tables 2 and 3 the percentage errors for H
in time-discrete L>°(0, T; L2(2)?) and L?(0, T’; H(curl; Q)) norms, respectively.

In order to appreciate simultaneously the dependence of the errors on h and
At, we have plotted in Figure 4 the errors that appear within boxes in Tables 2
and 3 versus the number of degrees of freedom (d.o.f.). These values within boxes
correspond to the errors of the present method when using different discretization
parameters h and At with time-steps At proportional to the mesh-sizes h. In these
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TABLE 2. Test 1. Percentage errors for H in L*(0,7;L2%(Q)3)

norm (¢ = 107!) for several discretizations. The coarsest one cor-

responds to a mesh with 144 elements and a time-step At = %.

h n/2 | R/3 | h/A | h/5
At |[12.880] 9.561 | 8.805 | 8.532 | 8.400
At/2 | 10.827 |[6.502] | 5.328 | 4.854 | 4.617

At/3 | 10377 | 5.723 |[4.345|| 3.745 | 3.431
At/4 | 10.215 | 5.421 | 3.937 ||3.262|| 2.897

At/5 | 10.138 | 5.275 | 3.733 | 3.012 ||2.610

TABLE 3. Test 1. Percentage errors for H in L?(0, T; H(curl; ))
norm (¢ = 107!) for several discretizations. The coarsest one cor-
responds to a mesh with 144 elements and a time-step At = %.

h h/2 | h/3 | hj/a | Bj5

At |[15.512] | 11.458 | 10.470 | 10.169 | 9.996
At/2 | 13.319 |[8.209]| 6.727 | 6.172 | 5.908
At/3 | 12.773 | 7.200 4767 | 4.355
At/4 | 12.565 | 6.798 | 4.975 3.682

At/5 | 12.463 | 6.615 | 4.712 | 3.806 ||3.303

L=(0, T; L2(0)%) L2(0, T; H(curl; ©2))

——Percentage error in H —— Percentage error in H
- = O(h+ At) convergence - = O(h + At) convergence

Percentage error

0
10% 10% 10* 10° 10? 10% 10* 10°

Number of d.o.f. Number of d.o.f.

FIGURE 4. Test 1. Percentage discretization error curves in
L>(0,T;L2(2)3) (left) and L2(0, T; H(curl; 2)) (right) norms (¢ =
1071).

figures, d.o.f. refers to the number of unknowns of the system to be solved at
each time step (which is roughly speaking proportional to h=3). A clear linear
dependence O(h + At) can be easily observed from these curves.

3.2. Test 2. A problem with cylindrical symmetry and rigid motion.
Comparison with an axisymmetric code. We consider the cylindrically sym-
metric geometry sketched in Figure 5. As we advanced in the introduction, our
method is a first step to solve magneto-mechanical models and our present goal
is to validate the genuine electromagnetic model by considering th as a data. In
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0.5m|

0.2m|

0.5m

0.5m 0.5m ™\

Coil
0.5m

FIGURE 5. Test 2. Sketch of the domain (up). Meridian section (down).

this case we will assume that the workpiece is not deformed but it changes its po-
sition over the time; more precisely, it moves as a rigid body with velocity equal to
v = 50e, (length is written in meters and time in seconds).
The source current density supported in € is given by
1 -y
with ey = ——— | =
Vi +y? |
being the azimuthal unit vector in cylindrical coordinates and I(¢) the source cur-
rent intensity. In this test, we have proceeded as in [15] and used a damped sinu-
soidal function I(t) := I exp(—ft) sin(wt) with Iy = 3.07x 105 A, 8 = 5327s~! and
w = 34.315s57! (see Figure 6). Concerning the physical parameters, we have taken
= po = 47 x 107"Hm ™', ¢ = 10* (Qm)~"! in the workpiece and T = 0.002s.
We notice that also in this case we can freely choose any At in the time interval
[0,0.002], because restriction At < m = 0.0637 is widely satisfied.

In this case, there is no analytical solution available. However, since the source
current density field has only azimuthal non-zero component and the workpiece
moves only vertically, it is known that the solution has cylindrical symmetry. Such
an axisymmetric problem with moving domains has been studied in [3, 4], where
a two-dimensional scalar formulation written in terms of the azimuthal component
of a magnetic vector potential has been proposed. Under appropriate assumptions,
a piecewise linear discretization of this formulation was proved to converge with
optimal order error estimates in terms of h and At. We have used a code of this
method on a very fine mesh and with a very small time-step, to build a reference
solution of the problem.

Figure 7 shows the two dimensional fine mesh of the meridian section that we
have used for the axisymmetric code. Concerning the 3D meshes, we have exploited

J.

S

(t,x) = auiz(:()S)ea in Q,
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FIGURE 6. Test 2. Source current intensity (A) vs. time (s).
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FIGURE 7. Test 2. Mesh used for the axisymmetric code (up).
Coarsest mesh used for the 3D code (down).

the symmetry of the problem and solved it in 1/8 of the whole domain to reduce
the number of degrees of freedom. We show in Figure 7, the coarsest used mesh.
As in the previous subsection, we have solved the problem with the penaliza-
tion parameter ¢ = 10~'. We have used several 3D meshes with mesh-sizes and
time-steps conveniently reduced, namely the time-steps have been chosen roughly

speaking proportional to the respective mesh-sizes. We report in Table 4 the data
of each of the used meshes.
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TABLE 4. Test 2. Total numbers of degrees of freedom (d.o.f.) and
time steps (M) for each of the used meshes.

Mesh | 7, | 77 | 7@ | T T,
d.o.f. | 20,616 | 36,097 | 61,987 | 120,750 | 238,861
M | 40 | 48 | 58 72 90

FIGURE 8. Test 2. Modulus of the current density at time
0.00018 s computed with the axisymmetric code (up) and the 3D
code on 7,2 with e = 107! (down).

In the applications, the quantity of most practical interest is typically the current
density, J := curl H, induced in the workpiece ij Figure 8 shows the modulus
of J obtained with the axisymmetric and the 3D codes at the time in which the
input current intensity attains its maximum (¢ = 0.00018s). For the 3D code, we
have used the finest mesh 7;>. A very good agreement between the results obtained
with these two methods can be clearly appreciated. To illustrate the comparison
for a non-local quantity over the time, we report in Figure 9 the induced current
intensity in the meridian section (6 = 0) of QY which will be denoted by ©; i.e. the
quantity plotted is f@ J - egdS). This quantity is computed with the 3D code on
the different meshes over the time and also with the axisymmetric code.

For a more quantitative assessment, we report in Figure 10 the LQ(QtC)?’ norm
of the errors of the current densities computed with the 3D code on the different
meshes over the time. To allow for comparison, we also include in this figure the
L2 (92)3 norm of the current density obtained from the reference solution. As can
be seen from this figure, the errors of the computed current density are very large
for the coarsest 3D meshes, but they reduce appropriately as the mesh-size and the
time-step become smaller.
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Intensity of the induced current in the workpiece
100

<
2
Z’ -100
o ——Mesh 1
§ —Mesh 2
7 ——Mesh 3
~200 ——Mesh 4
—Mesh 5
—— Axisymmetrid
30 0 0.5 1 15 2
Time (s) %107

FIGURE 9. Test 2. Current intensity (A) induced in the worpiece

vs. time (s) on meshes 7}/, i = 1,...,5, and with the reference
solution.
Errorin J
6007
——Mesh 1
—— Mesh 2
500 ——Mesh 3
( ——Mesh 4
400/ ——Mesh5
-\ | —— Axisymmetrid

300
200

100

1 .
Time (s) X107

FIGURE 10. Test 2. L?(Q%)® norm of the errors of the current
densities computed with the 3D code on meshes 77f, i=1,...,5,
over the time. L2 (92)3 norm of the current density obtained from
the reference solution is also plotted.

In physical applications with motion, such us EMF or magnetic levitation, the
induced current density is used to compute the Lorentz force density, F := J x B,
that acts on the workpiece. Figure 11 shows the vertical resultant of this force,
fszt J x B - e,, computed with the 3D code on the different meshes over the time,

as well as the same quantity resulting from the reference solution.

It can be seen from Figure 11 that the vertical resultant of the Lorentz force
computed with the 3D code provides a very good approximation of the same quan-
tity computed with the reference solution, even for the coarsest meshes. Moreover,
as the mesh-size and the time-step become smaller, the approximation clearly im-
proves.

Finally, Figure 12 shows the value of the Lorentz force density versus the radial
coordinate in the workpiece at a fixed time. With this aim, we have fixed the
azimuthal and vertical coordinates and chosen the time at which the maximum
value of this density force is reached. Notice that, as expected, the largest values
of this density force in the workpiece are attained just above the coil.
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Resultant Lorentz force in the workpiece
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FIGURE 11. Test 2. Vertical resultant of the Lorentz force com-
puted with the 3D code on meshes 7;/, ¢ = 1,...,5, and with the
reference solution over the time.
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FIGURE 12. Test 2. Lorentz force density (N/m3) vs. radial coor-
dinate (m) in the workpiece; vertical coordinate z = 1.2578 m and
time ¢ = 1.55 x 1074 s.

4. Conclusions

We have introduced a numerical method based on a magnetic field formulation
to approximate the transient eddy current problem in the presence of moving non
magnetic conductors. We have proposed a numerical technique where the only un-
known is the magnetic field in the whole domain, which allows us to use a fixed
mesh over the time. The proposal is based on replacing the dielectric by a fake
conductor with a very low electrical conductivity to impose the curl-free constraint
in the dielectric domain. This so-called penalty strategy leads to a parabolic prob-
lem with discontinuous coefficients; to compute the corresponding integrals in those
elements that do not lie entirely in the dielectric or the conducting domains, we
have used low-order quadrature rules with a large number of integration points.
The methodology is suitable to model conductors which move freely in a dielectric
medium, even in the case that the convective terms arising from this motion could
be non-negligible in Ohm’s law.

We have reported numerical results for two different test problems, which demon-
strate that the choice of the fake conductivity in the dielectric is not critical at all;
indeed, choosing this conductivity five or six orders of magnitude below that of the
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conducting parts leads to results indistinguishable from those obtained with a more
expensive mixed method in which the curl-free constraint is explicitly imposed. On
the other hand, extremely low values of the fake conductivity should be avoided
since they could lead to ill-conditioned matrices. We have also reported numerical
results for a problem with cylindrical symmetry and rigid motion. The comparison
of the results with those arising from an axisymmetric model are highly promissory.

From the theoretical point of view, further exploration on this subject is chal-
lenging, since the uniqueness of solution of the continuous model and convergence
results for the proposed numerical scheme remain to be proved.
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