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WONG–ZAKAI APPROXIMATIONS OF STOCHASTIC

ALLEN–CAHN EQUATION

ZHIHUI LIU AND ZHONGHUA QIAO

Abstract. We establish an unconditional and optimal strong convergence rate of Wong–Zakai
type approximations in Banach space norm for a parabolic stochastic partial differential equation
with monotone drift, including the stochastic Allen–Cahn equation, driven by an additive Brow-
nian sheet. The key ingredient in the analysis is the full use of additive nature of the noise and
monotonicity of the drift to derive a priori estimation for the solution of this equation. Then
we use the factorization method and stochastic calculus in martingale type 2 Banach spaces to
deduce sharp error estimation between the exact and approximate Ornstein–Uhlenbeck processes,
in Banach space norm. Finally, we combine this error estimation with the aforementioned a priori
estimation to deduce the desired strong convergence rate of Wong–Zakai type approximations.

Key words. Stochastic Allen–Cahn equation, Wong–Zakai approximations, strong convergence
rate.

1. Introduction

Consider the following parabolic stochastic partial differential equation (SPDE)
driven by an additive Brownian sheet W :

∂u(t, x)

∂t
=

∂2u(t, x)

∂x2
+ f(u(t, x)) +

∂2W (t, x)

∂t∂x
, (t, x) ∈ (0, T ]× (0, 1),(1)

with the following initial value and homogeneous Dirichlet boundary conditions:

u(t, 0) = u(t, 1) = 0, u(0, x) = u0(x), (t, x) ∈ [0, T ]× (0, 1).(2)

Here f satisfies certain monotone and polynomial growth conditions (see Assump-
tion 2.1). We remark that if f(x) = x − x3, then Eq. (1) is called the stochastic
Allen–Cahn equation. This type of stochastic equation, arising from phase tran-
sition in materials science by stochastic perturbation such as impurities of the
materials, has been extensively studied in the literatures; see, e.g., [4, 12] for one-
dimensional white noises and [9, 13] for possibly high-dimensional colored noises.

The main concern in this paper is to derive an unconditional and optimal strong
convergence rate of Wong–Zakai–Galerkin approximations to simulate the Brow-
nian sheet in Eq. (1). Specifically, we simulate the space-time white noise by
temporal piecewise constant approximation and then make the spectral projection
to this temporal approximation (see Eq. (19)). This type of approximation and its
versions, such as the spatiotemporal piecewise constant approximation, have been
investigated by many researchers in mathematical and numerical settings. See,
e.g., [1, 8] for mathematical applications to support theorem in Hölder norm for
parabolic SPDEs and the existence of stochastic flow for a stochastic differential
equation without Lipschitz conditions; see, e.g., [3, 7, 16] for numerical applications
to construct Galerkin approximations for SPDEs with Lipschitz coefficients and the
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convergence of the Wong–Zakai approximate attractors to the original attractor of
stochastic reaction-diffusion equations.

We note that the same simulation method had been used in [10] for the stochastic
Burgers equation, where the authors derived the strong convergence of the proposed
simulation method without any algebraic rate. On the other hand, the authors of
[12] regularized the white noise by a spatiotemporal Wong–Zakai approximations
and apply to a practical Monte–Carlo method combined with an Euler–Galerkin
scheme for the stochastic Allen–Cahn equation. They used a probabilistic maximum
principle which leads to the assumption that u0 ∈ L∞(0, 1) to prove the conditional
convergence rate

(
E

[
χΩτ,h

‖u− û‖2L2((0,T )×(0,1))

]) 1
2

= O
(
τ

1
4 + h/τ

1
4

)
,

in a large subset Ωτ,h ⊂ Ω such that P(Ωτ,h) → 1 as the temporal and spatial step
sizes τ, h tend to 0, where u and û denote the exact and Wong–Zakai approximate
solution of the stochastic Allen–Cahn equation, respectively.

These problems are main motivations for this study to give an unconditional
and optimal strong convergence rate of Wong–Zakai-type approximations of Eq.
(1) with a monotone drift which grows polynomially. Our approach shows that, to
derive a strong convergence rate of the proposed Wong–Zakai–Galerkin approxima-
tions under the L∞(0, T ;L2(Ω;L2(0, 1)))-norm, it is necessary to bound the exact
solution and derive the strong convergence rate of the associated exact and ap-
proximate Ornstein–Uhlenbeck processes in the Lp(0, T ;Lp(Ω;Lp(0, 1)))-norm and
the L∞(0, T ;Ll(Ω;Ll(0, 1)))-norm, respectively, for possibly large indices p, l > 2
(see (26)). This is mainly due to the appearance of the polynomial growth in the
nonlinearity and quite different from that of [3, 7] where these authors only needed
to deal with the L∞(0, T ;L2(Ω;L2(0, 1)))-norm.

To derive the aforementioned a priori estimation for the solution of Eq. (1), the
key ingredient in our analysis is by making full use of the additive nature of the
noise which allows the transformation of Eq. (1) to the equivalent random partial
differential equation (PDE) (13) and the monotonicity of f (see Proposition 2.1).
Then we combine the factorization method with stochastic calculus in martingale
type 2 Banach spaces to bounded uniformly the exact and approximate Ornstein–
Uhlenbeck processes and derive a sharp strong convergence rate for them in Banach
setting (see Lemma 2.1 and Theorem 3.1).

The main result is the following unconditional strong convergence rate of the
aforementioned Wong–Zakai–Galerkin approximations applied to Eq (1):

sup
t∈[0,T ]

(
E

[
‖u(t)− um,n(t)‖pLp(0,1)

]) 1
p

= O
[( 1

m

) 1
4 ∧

( 1

n

) 1
2
]
,(3)

for any 1 ≤ p < p∗

2 + 1 provided that u0 ∈ Lp∗(Ω;Lp∗(0, 1)) (see Theorem 3.2
and Remark 3.2). Here m, n are the number of temporal steps and dimension of
spectral Galerkin space, and u and um,n denote the exact solution of Eq. (1) and
the Wong–Zakai–Galerkin approximate solution of Eq. (19), respectively. Note
that we generalize, in a separate paper [14], the approach of the present paper
in combination with new techniques to derive a strong convergence rate of a fully
discrete approximation for Eq. (1) under certain regularity condition on the initial
datum.
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The rest of this article is organized as follows. Some frequently used notations
and preliminaries of stochastic calculus in martingale type 2 Banach settings are
given in the next section, where we derive a priori estimation for the solution of Eq.
(1). Finally, we deduce the optimal strong convergence rate for the Wong–Zakai–
Galerkin approximation (19) of Eq. (1) in the last section.

2. Preliminaries

In this section, we give some commonly used notations and preliminaries of the
stochastic calculus in martingale type 2 Banach setting, as well as a priori estimation
for the solution of Eq. (1).

2.1. Notations and Assumption. Let p ≥ 1, r ∈ [1,∞], q ∈ [2,∞], θ ≥ 0 and
δ, κ ∈ [0, 1]. Here and after we denote by Lq

x := Lq
x(0, 1) and H := L2

x. Similarly,
Lp
ω and Lr

t denote the related Lebesgue spaces on Ω and [0, T ], respectively. For
convenience, sometimes we use the temporal, sample path and spatial mixed norm
‖ · ‖Lp

ωLr
tL

q
x
in different orders, such as

‖X‖Lp
ωLr

tL
q
x
:=

(∫

Ω

(∫ T

0

(∫ 1

0

|u(t, x, ω)|qdx
) r

q

dt

) p
r

dP(ω)

) 1
p

for u ∈ Lp
ωL

r
tL

q
x, with the usual modification for r = ∞ or q = ∞.

Denote by A the Dirichlet Laplacian on Lq
x for q ≥ 2. Then A is the infinitesimal

generator of an analytic C0-semigroup S(·) on Lq
x, and thus one can define the

fractional powers (−A)θ for θ ∈ R of the self-adjoint and positive definite operator
−A. Let θ ≥ 0 and W

θ,q
x be the domain of (−A)θ/2 equipped with the norm ‖·‖

W
θ,q
x

(denote Ḣ
θ
x := W

θ,2
x and ‖ · ‖θ := ‖ · ‖

W
θ,q
x

):

‖X‖
W

θ,q
x

:= ‖(−A)
θ
2X‖Lq

x
, X ∈ W

θ,q
x .

For a Banach space (B, ‖ · ‖B) and a bounded subset O ⊂ R, we use C(O;B) to
denote the Banach space consisting of B-valued continuous functions f such that
‖f‖C(O;B) := supx∈O

‖f(x)‖B < ∞, and Cκ(O;B) with κ ∈ (0, 1] to denote the
B-valued function f such that

‖f‖Cκ(O;B) := sup
x∈O

‖f(x)‖B + sup
x,y∈O,x 6=y

‖f(x)− f(y)‖B
|x− y|κ < ∞.

In the following we simply denote Cκ([0, 1];R) = Cκ. Similarly, Lp(Ω; C([0, T ];B))
is used to denote the Banach space consisting of B-valued a.s. continuous stochastic
processes u = {u(t) : t ∈ [0, T ]} such that

‖X‖Lp(Ω;C([0,T ];B)) :=

(
E

[
sup

t∈[0,T ]

‖u(t)‖pB
]) 1

p

< ∞,

and Lp(Ω; Cδ([0, T ];B)) with δ ∈ (0, 1] to denote B-valued stochastic processes
u = {u(t) : t ∈ [0, T ]} such that

‖X‖Lp(Ω;Cδ([0,T ];B)) : =

(
E

[
sup

t∈[0,T ]

‖u(t)‖pB
]) 1

p

+

(
E

[(
sup

t,s∈[0,T ],t6=s

‖u(t)− u(s)‖B
|t− s|δ

)p]) 1
p

< ∞.
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Throughout we assume that the drift coefficient f of Eq. (1) satisfies the follow-
ing condition.

Assumption 2.1. f is continuously differentiable and there exist constants b ∈ R,

Lf , L̃f ∈ R+ and q ≥ 2 such that

(f(x)− f(y))(x − y) ≤ b|x− y|2 − Lf |x− y|q, x, y ∈ R;(4)

|f(0)| < ∞, |f ′(x)| ≤ L̃f (1 + |x|q−2), x ∈ R.(5)

It is clear from (5) that f grows as most polynomially of order (q − 1) by mean
value theorem:

|f(x)| ≤ C(1 + |x|q−1), x ∈ R,(6)

where C = C(|f(0)|, L̃f ) is a positive constant. Here and what follows we use C to
denote a universal constant independent of various discrete parameters which may
be different in each appearance. A motivating example of f such that Assumption
2.1 holds true is a polynomial of odd order (q− 1) with negative leading coefficien-
t perturbed with a Lipschitz continuous function (for the stochastic Allen–Cahn
equation, q = 4); see, e.g., [6, Exmple 7.8].

2.2. Stochastic Calculus. In order to apply the theory of stochastic analysis
in Banach setting, we need to transform the original SPDE (1) into an infinite

dimensional stochastic evolution equation. To this purpose, let us define F : Lq′

x →
Lq
x by the Nymiskii operators associated with f , respectively:

F (u)(x) := f(u(x)), u ∈ Lq′

x , x ∈ [0, 1].

where q′ denote the conjugation of q, i.e., 1/q′+1/q = 1. Then by Assumption 2.1,

F has a continuous extension from Lq′

x to Lq
x, and(7)

Lq′

x
〈F (x)− F (y), x− y〉Lq

x
≤ b‖x− y‖2 − Lf‖x− y‖q

Lq
x
, x, y ∈ Lq

x,(8)

where
Lq′

x
〈·, ·〉Lq

x
denotes the dual between Lq′

x and Lq
x. Denote by WH the H-valued

cylindrical Wiener process in a stochastic basis (Ω,F , (Ft)t∈[0,T ],P), i.e., there
exists an orthonormal basis {hk}∞k=1 of H and a sequence of mutually independent
Brownian motions {βk}∞k=1 such that

WH(t) =

∞∑

k=1

hkβk(t), t ∈ [0, T ].(9)

Then Eq. (1) with initial-boundary value condition (2) is equivalent to the following
stochastic evolution equation:

du(t) = (Au(t) + F (u(t)))dt + dWH(t), t ∈ (0, T ]; u(0) = u0.(SACE)

Note that for any q ≥ 2 and θ ≥ 0, the function space W
θ,q
x is a martingale

type 2 Banach space. We need the following Burkholder-Davis-Gundy inequality
in martingale type 2 Banach space (see, e.g., [2, Theorem 2.4] and [11, Section 2]):

∥∥∥∥
∫ t

0

Φ(r)dWH(r)

∥∥∥∥
Lp

ωL∞

t Lq
x

≤ C
∥∥Φ

∥∥
Lp(Ω;L2(0,T ;γ(H,Lq

x)))
,(10)
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for any Φ ∈ Lp(Ω;L2(0, T ; γ(H, Lq
x))) with p, q ≥ 2, where γ(H, Lq

x) denotes the
radonifying operator norm:

‖Φ‖γ(H,Lq
x) :=

∥∥∥
∞∑

k=1

γkΦhk

∥∥∥
L2(Ω′;Lq

x)
.

Here {hk}∞k=1 is any orthonormal basis of H and {γn}n≥1 is a sequence of indepen-
dent N (0, 1)-random variables on a probability space (Ω′,F ′,P′), provided that
the above series converges. We also note that Lq

x with q ≥ 2 is a Banach function
space with finite cotype, then Φ ∈ γ(H;Lq

x) if and only if (
∑∞

k=1(Φhk)
2)1/2 belongs

to Lq
x for any orthonormal basis {hk}∞k=1 of H; see [15, Lemma 2.1]. Moreover, in

this situation,

‖Φ‖2γ(H;Lq
x)

≃
∥∥∥∥

∞∑

k=1

(Φhk)
2

∥∥∥∥
L

q
2
x

, Φ ∈ γ(H;Lq
x).(11)

2.3. Ornstein–Uhlenbeck Process. Recall that a predictable stochastic process
u : [0, T ]× Ω → H is called a mild solution of Eq. (SACE) if u ∈ L∞(0, T ;H) a.s.
and it holds a.s. that

u(t) = S(t)u0 +

∫ t

0

S(t− r)F (u(r))dr +WA(t), t ∈ [0, T ],(12)

where {WA(t) :=
∫ t

0
S(t − r)dWH(r) : t ∈ [0, T ]} is the so-called Ornstein–

Uhlenbeck process. The uniqueness of the mild solution of Eq. (SACE) is un-
derstood in the sense of stochastic equivalence. Set z(t) := u(t)−WA(t), t ∈ [0, T ].
Due to the additive nature, it is clear that u is the unique mild solution of Eq.
(SACE) if and only if z is the unique solution of the following random PDE:

ż(t) = Az(t) + F (z(t) +WA(t)), t ∈ [0, T ]; z(0) = u0.(13)

We begin with the following sharp Hölder regularity and Lp
ωL

∞
t L∞

x -estimation of
the Ornstein–Uhlenbeck process WA. Our main tool is the following factorization
formula, which is valid by stochastic Fubini theorem:

∫ t

0

S(t− r)dWH(r) =
sin(πα)

π

∫ t

0

(t− r)α−1S(t− r)Wα(r)dr,

where α ∈ (0, 1) and Wα(t) :=
∫ t

0
(t − r)−αS(t− r)dWH(r), t ∈ [0, T ]. It is known

that, when p > 1 and 1/p < α < 1, the linear operator Rα defined by

Rαf(t) :=

∫ t

0

(t− r)α−1S(t− r)f(r)dr, t ∈ [0, T ],

is bounded from Lp(0, T ;Lq
x) to Cδ([0, T ];Wθ,q

x ) for any q ≥ 2 with δ < α − 1/p
when θ = 0 or δ = α − 1/p − θ/2 when θ > 0 and α > θ/2 + 1/p; see, e.g., [6,
Proposition 5.14] or [11, Proposition 4.1].

Lemma 2.1. For any p ≥ 1, WA ∈ Lp(Ω; Cδ([0, T ]; Cκ)) for any δ, κ ≥ 0 with

δ + κ/2 < 1/4. In particular, there exists a constant C = C(p) such that

E

[
sup

t∈[0,T ]

‖WA(t)‖pL∞

x

]
≤ C.(14)
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Proof. Let p, q ≥ 2. Applying Fubini theorem and the Burkholder-Davis-Gundy
inequality (10) implies that

∥∥Wα

∥∥p
Lp

ωLp
tL

q
x
=

∫ T

0

E

[∥∥∥∥
∫ t

0

(t− r)−αS(t− r)dWH(r)

∥∥∥∥
p

Lq
x

]
dt

≤ C

∫ T

0

(∫ t

0

r−2α‖S(r)‖2γ(H;Lq
x)
dr

) p
2

dt.

By (11) and the uniform boundedness of {ek =
√
2 sin(kπ·)}k∈N+ (which vanishes

on the boundary 0 and 1), we have

‖S(t)‖2γ(H;Lq
x)

≃
∥∥∥∥

∞∑

k=1

(S(t)ek)
2

∥∥∥∥
L

q
2
x

≤
∞∑

k=1

e−2λjt‖ek‖2Lq
x
≤ Ct−

1
2 , t ∈ (0, T ],

where we have used the elementary inequality
∑∞

k=1 e
−2λjt ≤ Ct−

1
2 . Then

∥∥Wα

∥∥
Lp

ωLp
tL

q
x
≤ C

(∫ T

0

(∫ t

0

r−(2α+ 1
2 )dr

) p
2

dt

) 1
p

,

which is finite if and only if α ∈ (0, 1/4). As a result of the Hölder continuity
characterization, WA ∈ Lp(Ω; Cδ([0, T ];Wθ,q

x )) for any δ, θ ≥ 0 with δ + θ/2 < 1/4.
We conclude by the Sobolev embedding W

θ,q
x →֒ Cκ with κ ∈ [0, θ−1/q) and taking

q sufficiently large. �

2.4. A Priori Moments’ Estimation. The existence of a unique mild solution of
Eq. (12) which belongs to C([0, T ];H)∩Lq((0, T )× (0, 1)) a.s. under the conditions
(7)-(8), and thus Eq. (SACE) under Assumption 2.1, had been established in [6,
Theorem 7.17]. In the following, we give a priori estimation of the moments of this
solution, which plays a key role in our analysis. A weak moments’ estimation had
been given in [5, Theorem 4.8] for Eq. (SACE) (with non-random initial datum)
where f is a polynomial whose derivative is nonpositive perturbed by a linear

function (see [5, Hypothesis 4.4]), i.e., f(x) = λx −∑K
k=1 a2k+1x

2k+1, x ∈ R, with
λ ∈ R and a2k+1 > 0, k = 1, · · · ,K ∈ N+.

Proposition 2.1. Let p ≥ 2 and Assumption 2.1 hold. Assume that u0 ∈ Lp(Ω;Lp
x).

Then Eq. (SACE) exists a unique mild solution u = {u(t) : t ∈ [0, T ]} which is in

Lp(Ω; C(0, T ;Lp
x)) ∩ Lp+q−2(Ω;Lp+q−2(0, T ;Lp+q−2

x )) such that

E

[
sup

t∈[0,T ]

‖u(t)‖p
Lp

x

]
+

∫ T

0

E

[
‖u(t)‖p+q−2

Lp+q−2
x

]
dt ≤ C

(
1 + E

[
‖u0‖pLp

x

])
.(15)

Proof. Let t ∈ [0, T ]. Testing both sides of Eq. (13) by |z|p−2z and integrating
by parts yield that

1

p
‖z(t)‖p

Lp
x
+ (p− 1)

∫ t

0

〈|z(r)|p−2, |∇z(r)|2〉dr

=
1

p
‖u0‖pLp

x
+

∫ t

0

〈(F (u(r)), |z(r)|p−2z(r)〉dr.
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It follows from the condition (4) and Young inequality that
∫ t

0

〈(F (u(r)), |z(r)|p−2z(r)〉dr

=

∫ t

0

〈(F (z(r) +WA(r)) − F (WA(r)), |z(r)|p−2z(r)〉dr

−
∫ t

0

〈WA(r), |z(r)|p−2z(r)〉dr

≤ C

∫ t

0

(
‖z(r)‖p

Lp
x
+ ‖WA(r)‖pLp

x

)
dr − Lf

∫ t

0

‖z(r)‖p+q−2

Lp+q−2
x

dr.

Thus we obtain

1

p
‖z(t)‖p

Lp
x
+ Lf

∫ t

0

‖z(r)‖p+q−2

Lp+q−2
x

dr

≤ 1

p
‖u0‖pLp

x
+ C

∫ t

0

‖z(r)‖p
Lp

x
dr + C

∫ t

0

‖WA(r)‖pLp
x
dr.(16)

Now taking L
p/p
ω L∞

t -norm, we conclude from the estimation (14) and Hölder and
Grönwall inequalities that

E

[
sup

t∈[0,T ]

‖z(t)‖p
Lp

x

]
+ E

[ ∫ T

0

‖z(t)‖p+q−2

Lp+q−2
x

dt

]
≤ C

(
1 + E

[
‖u0‖pLp

x

])
.

This estimation, in combination with the fact that u = z +WA and the estimation
(14), shows (15). �

Remark 2.1. Using the arguments in Proposition 2.1, one can also show the well-

posedness of Eq. (SACE) in Lp(Ω; C(0, T ;Lρ
x))∩Lp(ρ+q−2)/ρ(Ω;Lρ+q−2(0, T ;Lρ+q−2

x ))
for any p ≥ ρ ≥ 2, provided u0 ∈ Lp(Ω;Lρ

x) and Assumption 2.1 hold. Moreover,

the following estimation holds true:

E

[
sup

t∈[0,T ]

‖u(t)‖p
Lρ

x

]
+ E

[(∫ T

0

‖u(t)‖ρ+q−2

Lρ+q−2
x

dt

) p
ρ
]
≤ C

(
1 + E

[
‖u0‖pLρ

x

])
.

3. Wong–Zakai–Galerkin Approximations

This section is devoted to establishing the optimal strong convergence rate for
Wong–Zakai type approximations.

Let m,n ∈ N+. Let {Ii := (ti, ti+1] : i = 0, 1, · · · ,m − 1} be an equal length
subdivision of the time interval (0, T ], and Pn denote the orthogonal projection
fromH to its finite dimensional subspace Vn := span{e1, e2, · · · , en}, where {ek(·) =√
2 sin(kπ·)}nk=1 are the n eigenvectors corresponding to the first eigenvalues {λj =

(kπ)2}nk=1 of the Dirichlet Laplacian A.
Let βm

k be the piecewise linear approximation

βm
k (t) = βk(ti) +

m

T
(βk(ti+1)− βk(ti))(t − ti), t ∈ Ii,(17)

with initial datum βm
k (0) = 0, i = 0, 1, · · · ,m − 1. Since WH can be formally

represented as (9), the resulting approximation of WH can be formally given by

Wm
H (t) = WH(ti) +

m

T
(WH(ti+1)−WH(ti))(t− ti), t ∈ Ii.(18)
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Denote by um,n the mild solution of

dum,n(t) = (Aum,n(t) + F (um,n(t)))dt + PndW
m
H
(t), t ∈ (0, T ];

um,n(0) = u0.
(19)

Then the related approximate Ornstein–Uhlenbeck process is

Wm,n
A (t) :=

∫ t

0

S(t− r)PndW
m
H (r), t ∈ (0, T ].

Since Wm is piecewise linear and therefore of bounded variation, Wm,n
A is indeed a

classical Riemann-Stieltjes integral whose sample paths can be simulated:

Wm,n
A (t) =

m

T

m−1∑

i=0

∫

Ii

[
S(t− r)Pn

∫

Ii

dWH(τ)

]
dr, t ∈ [0, T ].(20)

Here and in the rest part of the paper we set S(t − r) = 0 for any 0 ≤ t < r ≤ T
to lighten the notations.

We note that such simulation method had been studied in [10, Lemma 2.2] where
the authors derived strong convergence in Lp

ωL
∞
t,x-norm for any p ≥ 1 but without

any algebraic rate:

lim
m,n→∞

‖WA −Wm,n
A ‖Lp

ωL
∞

t,x
= 0.

The following result shows the strong error estimation, between the exact and
approximate Ornstein–Uhlenbeck processes, under a weak L∞

t Lp
ωL

q
x-norm for any

p ≥ 1 and q ≥ 1.

Theorem 3.1. Let p ≥ 1 and ρ ≥ 1. There exists a constant C = C(p, ρ) such

that

‖WA −Wm,n
A ‖L∞

t Lp
ωL

ρ
x
≤ C

[( 1

m

) 1
4 ∧

( 1

n

) 1
2
]
.(21)

Proof. Due to the monotonicity of the Lp-space with respect to p, to prove (21)
for any p ≥ 1 and ρ ≥ 1 it suffices to show (21) for any p = ρ = 2k which is a even
number.

Fix t ∈ [0, T ]. By stochastic Fubini theorem, the approximate Ornstein–Uhlenbeck
process Wm,n

A in (20) can be rewritten as

Wm,n
A (t) =

m

T

m−1∑

i=0

∫

Ii

[ ∫

Ii

S(t− τ)Pndτ

]
dWH(r).

Then we have

E

[
‖WA(t)−Wm,n

A (t)‖2kL2k
x

]

= E

[∥∥∥∥
m

T

m−1∑

i=0

∫

Ii

[ ∫

Ii

(S(t− r) − S(t− τ)Pn)dτ

]
dWH(r)

∥∥∥∥
2k

L2k
x

]

=
(m
T

)2k
∫ 1

0

E

[∣∣∣∣
m−1∑

i=0

∫

Ii

[∫

Ii

(S(t− r) − S(t− τ)Pn)dτ

]
dWH(r)

∣∣∣∣
2k]

dx.
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It is not difficult to show that

E

[∣∣∣∣
m−1∑

i=0

ai

∣∣∣∣
2k]

= E

[(m−1∑

i=0

|ai|2
)k]

,(22)

for any independent centered random variable ai, i = 0, 1 · · · ,m − 1. Due to the
independence of the Wiener integral in disjoint temporal intervals, we can use (22)
with ai =

∫
Ii

[ ∫
Ii
(S(t − r) − S(t − τ)Pn)dτ

]
dWH(r), i = 0, 1, · · · ,m − 1, and

Minkovskii inequality to deduce that

E

[
‖WA(t)−Wm,n

A (t)‖2kL2k
x

]
=

(m
T

)2k
∫ 1

0

E

[(m−1∑

i=0

|ai|2
)k]

dx

=
(m
T

)2k
∥∥∥∥

m−1∑

i=0

|ai|2
∥∥∥∥
k

Lk
ω,x

≤
(m
T

)2k
(m−1∑

i=0

‖ai‖2L2k
ω,x

)k

.

It follows from the Burkholder-Davis-Gundy inequality (10), the estimation (11)
and Minkovskii inequality that

E

[
‖WA(t)−Wm,n

A (t)‖2kL2k
x

]

≤ Cm2k

(m−1∑

i=0

∫

Ii

∥∥∥∥
∫

Ii

(S(t− r) − S(t− τ)Pn)dτ

∥∥∥∥
2

γ(H,L2k
x )

dr

)k

≤ Cm2k

(m−1∑

i=0

∫

Ii

∞∑

j=1

∥∥∥∥
∫

Ii

(S(t− r)− S(t− τ)Pn)ejdτ

∥∥∥∥
2

L2k
x

dr

)k

.

As a result of Minkovskii inequality and Fubini Theorem, we get

E

[
‖WA(t)−Wm,n

A (t)‖2kL2k
x

]
≤ Cm2k

( ∞∑

j=n+1

m−1∑

i=0

Ψi
k(t)

)k

,

where

Ψi
k(t) :=

∫

Ii

[∫

Ii

(
χr<te

−λj(t−r) − χτ<te
−λj(t−τ)

)
dτ

]2
dr,

for t ∈ [0, T ) and i = 0, 1, · · · ,m − 1. Here χ denotes the indicative function, i.e.,
χr<t = 1 when r < t and vanishes otherwise.

If follows from [3, Lemma 3.1] that

m−1∑

i=0

Ψi
k(t) ≤ 8

( 1

m

)2 1− eλjm
−1

λj
,

from which we get

∞∑

j=n+1

m−1∑

i=0

Ψi
k(t) ≤ 8

( 1

m

)2
( ∞∑

j=n+1

1− e−λjm
−1

λj

)
≤ C

( 1

m

)2[( 1

m

) 1
2 ∧

( 1

n

)]
.

Collecting the above estimations, we conclude (21) with p = ρ = 2k being a even
number and complete the proof �
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Remark 3.1. The strong error estimation (21) is optimal. The temporal strong

convergence rate O(m−1/4) under the L∞
t L2

ω,x-norm had been derived in [3, (31)
of Theorem 3.1] for white noise which is a fractional noise with Hurst parameter

H = 1/2. To illustrate the optimality of the spatial convergence rate O(n−1/2),
we use the elementary estimation ex ≥ 1 + x for any x ≥ 0 to show the reverse

estimation

E

[∥∥∥∥
∫ t

0

S(t− r)dWH(r) −
∫ t

0

S(t− r)PndWH(r)

∥∥∥∥
2]

=

∞∑

j=n+1

1− e−2λjt

2λj
≥ t

2(1 + 2π2t)
· 1
n
, t > 0.

Now we can give the optimal strong convergence rate of theWong–Zakai–Galerkin
approximation (19) for Eq. (SACE).

Theorem 3.2. Let p∗ ≥ 2, u0 ∈ Lp∗(Ω;Lp∗

x ) and Assumption 2.1 hold. Let u
and um,n be the solutions of Eq. (SACE) and (19), respectively. Then for any

p ∈ [1, p∗

q−2 + 1), there exists a constant C = C(T, p, p∗, b, q, Lf , L
′
f) such that

sup
t∈[0,T ]

E

[
‖u(t)− um,n(t)‖p

Lp
x

]
+

∫ T

0

E

[
‖u(t)− um,n(t)‖p+q−2

Lp+q−2
x

]
dt

≤ C
(
1 + ‖u0‖

p∗p(q−2)
p∗+q−2

Lp∗
ω,x

)[( 1

m

) 1
4 ∧

( 1

n

) 1
2
]p
.(23)

Proof. Define zm,n := um,n −Wm,n
A . Then zm,n satisfies

żm,n(t) = Azm,n(t) + F (zm,n(t) +Wm,n
A (t)), t ∈ (0, T ]; zm,n(0) = u0.

Let t ∈ (0, T ] and denote by em,n(t) := z(t)− zm,n(t). Then

ėm,n(t) = Aem,n(t) + F (z(t) +WA(t)) − F (zm,n(t) +Wm,n
A (t)), t ∈ (0, T ];

em,n(0) = 0.
(24)

Testing both sides of Eq. (24) by |em,n(t)|p−2em,n(t) and integrating by parts,
similarly to the proof of Proposition 2.1, yield that

1

p
‖em,n(t)‖p

Lp
x
+ (p− 1)

∫ t

0

〈|em,n|p−2, |∇em,n|2〉dr

=

∫ t

0

〈F (z +WA)− F (z +Wm,n
A ), |em,n|p−2em,n〉dr

+

∫ t

0

〈F (z +Wm,n
A )− F (zm,n +Wm,n

A ), |em,n|p−2em,n〉dr.(25)

Using mean value theorem and the conditions (4)-(5), and applying Young and
Hölder inequalities, we can bound the two terms in the right-hand side of the above
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equality by

≤ C

∫ t

0

‖F (z +WA)− F (z +Wm,n
A )‖p

Lp
x
dr + C

∫ t

0

‖em,n‖p
Lp

x
dr

− Lf

∫ t

0

‖em,n‖p+q−2

Lp+q−2
x

dr

≤ C

∫ t

0

∥∥∥
(
1 + |z|q−2 + |WA|q−2 + |Wm,n

A |q−2
)
|WA −Wm,n

A |
∥∥∥
p

Lp
x

dr

+ C

∫ t

0

‖em,n‖p
Lp

x
dr − Lf

2

∫ t

0

‖em,n‖p+q−2

Lp+q−2
x

dr.

Now taking L1
ωL

∞
t -norm on both sides of (25), we have

E

[
sup

t∈[0,T ]

‖em,n(t)‖p
Lp

x

]
+

∫ T

0

E

[
‖em,n(t)‖p+q−2

Lp+q−2
x

]
dt

≤
∥∥∥
(
1 + |z|q−2 + |WA|q−2 + |Wm,n

A |q−2
)
|WA −Wm,n

A |
∥∥∥
p

Lp
t,ω,x

+ C

∫ T

0

E

[
‖em,n(t)‖p

Lp
x

]
dt.

Let ǫ > 0 and denote pǫ :=
p(p+ǫ)

ǫ such that 1
p+ǫ +

1
pǫ

= 1
p . By Hölder inequality,

we get
∥∥∥
(
1 + |z|q−2 + |WA|q−2 + |Wm,n|q−2

)
|WA −Wm,n

A |
∥∥∥
p

Lp
t,ω,x

≤
∥∥WA −Wm,n

A

∥∥p
Lpǫ

t,ω,x

·
(
1 + ‖z‖p(q−2)

L
(p+ǫ)(q−2)
t,ω,x

+ ‖WA‖p(q−2)

L
(p+ǫ)(q−2)
t,ω,x

+ ‖Wm,n‖p(q−2)

L
(p+ǫ)(q−2)
t,ω,x

)
.

Since p ∈ [1, p∗

q−2 +1), one can choose 0 < ǫ < p∗

q−2 +1−p such that (p+ ǫ)(q− 2) <

p∗ + q − 2. It follows that

E

[
sup

t∈[0,T ]

‖em,n(t)‖p
Lp

x

]
+

∫ T

0

E

[
‖em,n(t)‖p+q−2

Lp+q−2
x

]
dt

≤ C

∫ T

0

E

[
‖em,n(t)‖p

Lp
x

]
dt+ C‖WA −Wm,n

A ‖p
Lpǫ

t,ω,x

×
(
1 + ‖z‖p(q−2)

Lp∗+q−2
t,ω,x

+ ‖WA‖p(q−2)

Lp∗+q−2
t,ω,x

+ ‖Wm,n‖p(q−2)

Lp∗+q−2
t,ω,x

)
.(26)

The error estimation of WA and Wm,n
A in Theorem 3.1, combining with the regu-

larity of WA in Lemma 2.1 and the estimation (15), ensures that

‖z‖p(q−2)

Lp∗+q−2
t,ω,x

+ ‖WA‖p(q−2)

Lp∗+q−2
t,ω,x

+ ‖Wm,n‖p(q−2)

Lp∗+q−2
t,ω,x

≤ C
(
1 + ‖u0‖

p∗p(q−2)
p∗+q−2

Lp∗
ω,x

)
.

Substituting the above estimation into (26), we obtain

E

[
sup

t∈[0,T ]

‖em,n(t)‖p
Lp

x

]
+

∫ T

0

E

[
‖em,n(t)‖p+q−2

Lp+q−2
x

]
dt

≤ C
(
1 + ‖u0‖

p∗p(q−2)
p∗+q−2

Lp∗
ω,x

)∥∥WA −Wm,n
A

∥∥p
Lpǫ

t,ω,x

.
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It follows from the relations u = z + WA and um,n = zm,n + Wm,n
A and triangle

inequality that

sup
t∈[0,T ]

E

[
‖u(t)− um,n(t)‖p

Lp
x

]
+

∫ T

0

E

[
‖u(t)− um,n(t)‖p+q−2

Lp+q−2
x

]
dt

≤ ‖em,n‖p
L∞

t Lp
ω,x

+ ‖em,n‖p+q−2

Lp+q−2
t,ω,x

+ ‖WA −Wm,n
A ‖p

L∞

t Lp
ω,x

+ ‖WA −Wm,n
A ‖p+q−2

Lp+q−2
t,ω,x

≤ C
(
1 + ‖u0‖

p∗p(q−2)
p∗+q−2

Lp∗
ω,x

)(∥∥∥WA −Wm,n
A

∥∥∥
p

L∞

t Lpǫ
ω,x

+
∥∥∥WA −Wm,n

A

∥∥∥
p+q−2

L∞

t Lp+q−2
ω,x

)
.

Applying Theorem 3.1, we get (23). �

Remark 3.2. In the case of stochastic Allen–Cahn equation, i.e., Eq. (SACE)
with f(x) = x − x3 for x ∈ R, then Assumption 2.1 holds with q = 4. Applying

the estimation (23) of Theorem 3.2, the Wong–Zakai–Galerkin approximation (19)
applied to this equation possesses the strong convergence rate

sup
t∈[0,T ]

E

[
‖u(t)− um,n(t)‖p

Lp
x

]
+

∫ T

0

E

[
‖u(t)− um,n(t)‖p+2

Lp+2
x

]
dt

≤ C
(
1 + ‖u0‖

2p∗p
p∗+2

Lp∗
ω,x

)[( 1

m

) p
4 ∧

( 1

n

) p
2
]
,

for any 2 ≤ p < p∗

2 + 1 provided that u0 ∈ Lp∗(Ω;Lp∗

x ).

One can also use a modified argument as in Theorem 3.2 to derive a strong
convergence rate which might not optimal when q > 2 under minimal assumptions
on the initial datum.

Corollary 3.1. Let p ≥ 2, u0 ∈ Lp(Ω;Lp
x) and Assumption 2.1 hold. Let u and

um,n be the solutions of Eq. (SACE) and (19), respectively. Then there exists a

constant C = C(T, p, b, q, Lf , L
′
f ) such that

sup
t∈[0,T ]

E

[
‖u(t)− um,n(t)‖p

Lp
x

]
+

∫ T

0

E

[
‖u(t)− um,n(t)‖p+q−2

Lp+q−2
x

]
dt

≤ C
(
1 + E

[
‖u0‖pLp

x

])[( 1

m

) 1
4 ∧

( 1

n

) 1
2
] p+q−2

q−1

.(27)

Proof. One only need to modify the proof of Theorem 3.2 by estimating the term

E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

〈F (z +WA)− F (z +Wm,n
A ), |em,n|p−2em,n〉dr

∣∣∣∣
]
.

Using mean value theorem and the conditions (4)-(5), and applying Young inequal-
ity, we have

E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

〈F (z +WA)− F (z +Wm,n
A ), |em,n|p−2em,n〉dr

∣∣∣∣
]

≤ C

∫ T

0

‖F (z +WA)− F (z +Wm,n
A )‖

p+q−2
q−1

L
p+q−2
q−1

ω,x

dr +
Lf

2
‖em,n‖p+q−2

Lp+q−2
t,ω,x

≤ C
∥∥∥
(
1 + |z|q−2 + |WA|q−2 + |Wm,n

A |q−2
)
|WA −Wm,n

A |
∥∥∥

p+q−2
q−1

L
p+q−2
q−1

t,ω,x

+
Lf

2
‖em,n‖p+q−2

Lp+q−2
t,ω,x

.
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By Young and Hölder inequalities and the estimation (15), we have

∥∥∥
(
1 + |z|q−2 + |WA|q−2 + |Wm,n

A |q−2
)
|WA −Wm,n

A |
∥∥∥

p+q−2
q−1

L
p+q−2
q−1

t,ω,x

≤ C
∥∥WA −Wm,n

A

∥∥
p+q−2
q−1

Lp+q−2
t,ω,x

(
1 + ‖z‖p+q−2

Lp+q−2
t,ω,x

+ ‖WA‖p+q−2

Lp+q−2
t,ω,x

+ ‖Wm,n‖p+q−2

Lp+q−2
t,ω,x

)

≤ C
(
1 + E

[
‖u0‖pLp

x

])∥∥WA −Wm,n
A

∥∥
p+q−2
q−1

Lp+q−2
t,ω,x

.

Consequently,

E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

〈F (z +WA)− F (z +Wm,n
A ), |em,n|p−2em,n〉dr

∣∣∣∣
]

≤ C
(
1 + E

[
‖u0‖pLp

x

])∥∥WA −Wm,n
A

∥∥ p+q−2
q−1

Lp+q−2
t,ω,x

+
Lf

2
‖em,n‖p+q−2

Lp+q−2
t,ω,x

.

Taking L1
ωL

∞
t -norm on both sides of (25) and substituting into the above estima-

tion, we have by Grönwall inequality that

E

[
sup

t∈[0,T ]

‖em,n(t)‖p
Lp

x

]
+

∫ T

0

E

[
‖em,n(t)‖p+q−2

Lp+q−2
x

]
dt

≤ C
(
1 + E

[
‖u0‖pLp

x

])∥∥WA −Wm,n
A

∥∥
p+q−2
q−1

Lp+q−2
t,ω,x

.

Following the proof of Theorem 3.2, we get

E

[
sup

t∈[0,T ]

‖u(t)− um,n(t)‖p
Lp

x

]
+

∫ T

0

E

[
‖u(t)− um,n(t)‖p+q−2

Lp+q−2
x

]
dt

≤ C
(
1 + E

[
‖u0‖pLp

x

])(
‖WA −Wm,n

A ‖
p+q−2
q−1

Lp+q−2
t,ω,x

+ ‖WA −Wm,n
A ‖p

L∞

t Lp+q−2
ω,x

)
.

Applying Theorem 3.1, we get (27). �

Remark 3.3. The assumption on the initial datum, to derive a strong convergence

rate between u and um,n under the Lp
ω,x-norm, is minimal. However, the conver-

gence rate in Remark 3.1 is far from sharp, since p+q−2
q−1 ≤ p and the equality holds

if and only if q = 2 which reduces to the Lipschitz case.
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