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COLOR-TO-GRAY CONVERSION WITH PERCEPTUAL

PRESERVATION AND DARK CHANNEL PRIOR

JUN LIU1, FAMING FANG2, AND NING DU1

Abstract. This paper aims to present a decolorization strategy based on perceptual consistency
and dark channel prior. The proposed model consists of effective fidelity terms and a prior term.

We use the `0-norm to control the sparsity of the dark channel prior. To solve the non-convex

minimization problem, we employ the split and penalty technique to simplify the minimization
problem and then solve it by the carefully designed iteration scheme. Besides, we show the

convergence of the algorithm using Kurdyka- Lojasiewicz property. The numerical evaluation in

comparison with other state-of-the-art methods demonstrates the effectiveness of the proposed
method.

Key words. Color-to-gray, perceptual consistency, dark channel, Kurdyka- Lojasiewicz property,
non-convex.

1. Introduction

Color-to-gray, which is also named as decolorization, is a technique that trans-
forms a color image (3-D) to a grayscale one (1-D). It is of great importance in
black-and-white printing, E-ink monotone display, image preprocessing (then for
segmentation, edge detection) and object recognition. A natural problem in de-
colorization is that information loss happens due to dimension reduction. How to
produce a perceptually plausible grayscale image, which hopes to preserve enough
structures and contrast from the original color image, is the main concern in the lit-
erature. The application-driven tasks and unavoidable difficulties in decolorization
make the problem important and attract a lot of research attention [6, 16, 15, 8].

Extracting the luminance channel in a transformed color space such as CIE
Lab is an intuitive way of generating a grayscale image. Although this method is
very simple and cost-less, it fails to preserve salient structures and features of the
iso-luminant regions in the color images. Another simple decolorization method
is to implement a linear combination of different channels if the color image is
represented in RGB color space. The same disadvantage happens since the linear
combination of different sets of R, G and B values may generate the same luminance
response in the grayscale result [22]. To overcome this problem, many outstanding
decolorization methods have been proposed to perceptually preserve salient features
in the color-to-gray conversion.

As reported in [17, 11, 15, 14], decolorization methods can be roughly classified
into two categories: one is the local mapping method which treats the pixels differ-
ently in different local regions in one image [2, 20, 11]; However, these algorithms
would bring artifacts since they tried to visualize all details. The other type of
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method is the global mapping method which processes the pixel mapping indepen-
dent of the pixel location [8, 9, 12, 21, 16]. Recently, deep learning based methods
are used for decolorization. Zhang and Liu [27] proposed to combine global fea-
tures and local semantic features learned by the convolution neural network for
decolorization. They reported that their method can better preserve the contrast
in both local color blocks and adjacent pixels of the color image. Cai et al. [7]
proposed a system which used deep representations to extract content information
based on human visual perception, and automatically selected suitable grayscale
for decolorization.

Different from other methods, You et al. [25] emphasized that many existing
methods mainly focus on best-preserving contrast while paying less attention to
the consistency with human perception. The authors designed two optimization
framework using `1-norm and `2-norm respectively. Their experiments showed that
`1-norm works better than `2-norm. As we know, the computation related to `1 is
more difficult compared with `2-norm. In this paper, we propose a new color to
gray conversion model in light of the perceptual consistency and the dark channel
prior. Our idea is to consider `1-norm and `2-norm in one model which can bal-
ance the quality and computation. Furthermore, to better improve the quality of
decolorization, we enforce the sparsity prior to the dark channel. This prior has
been successfully applied in blind deconvolution [19] and image dehazing [10]. Our
experiments show that the proposed method works very well compared with other
popular decolorization methods.

The main contribution of this paper is that we propose a new sparsity-driven
and perceptually consistent model for decolorization. The perceptual fidelity on
brightness and contrast are controlled by the `1 norm and the `2 norm, respectively.
The prior information of the gray is that the dark channel property preservation.
To control the sparsity the dark channel, we use `0 norm as a regularization term.
We propose an alternating minimization algorithm with the technique of split and
penalty to solve our model. Although the `0-norm which makes the problem highly
nonconvex, we use Kurdyka- Lojasiewicz (KL) property [4] to prove the convergence
of the related algorithm.

2. Proposed method

2.1. Related work. In [25], You et al. elaborately proposed a graphical model
based method which balances brightness and contrast perceptual consistency. They
aim to preserve the perceptual properties of the color image as much as possible.
The model is composed of the brightness perceptual energy Eb and the contrast
consistency term Ec:

(1) Eb(g) = ‖Λ(p1 − g)‖`, Ec(g) =
∑3

i=1
αi‖C(pi − g)‖`,

where g ∈ Rmn×1, pi ∈ Rmn×1, i = 1, 2, 3, m and n are the height and width of the
input image. g is the decolorized gray-scale image, p1 is the brightness, p2 and p3

are the color values in the CIE Lab space of the input color image, respectively.
The parameters αi, i = 1, 2, 3 balance the importance between different channels.
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The diagonal matrix Λ ∈ Rmn×mn is with Λi,i = 1

(
√

1002−p22−p23+ε)i(
√

1002−(2p1−100)2+ε)i
,

where ε is a small positive constant. Note that Λi,i is used to penalize color with
large variance. The matrix C is the complex contrast operator constructed from
several linear combination of difference of Gaussian kernel. In [25], the authors
pointed out that the model had closed-form solution when ` = 2. While for ` = 1,
the iteratively reweighted least square method is used to find the solution. For the
details of matrices Λ and C, please check You et al’s work [25].

2.2. Proposed model. In this section, we propose a new color-to-gray conversion
method by using both `1 norm and `2 norm based on You et al.’s work [25]. This
modification can balance the simplicity of computation and the quality of decol-
orization. More importantly, we incorporate a regularization function: the dark
channel prior. This term describes the minimum values in an image patch and
has been successfully applied in image dehazing [10] and image blind deconvolution
[19]. The reason we employ this prior is that most elements of the dark channel
are zero for natural color images. This prior is used to restrict the minimization
of a pixel value on the local region of the image. In a small local neighborhood,
the smaller dark channel value is, the more obvious contrast is and vice versa. We
want to keep this property after the color-to-gray conversion.

Based on You et al’s perceptual measurement method and the dark channel
prior, our model is proposed as follows:

(2) min
g
‖Λ(g − p1)‖1 +

3∑
i=1

αi‖C(g − pi)‖22 + η‖D(g)‖0,

where the dark channel D(g)(x) = min
y∈N (x)

g(y), x and y are the pixel locations of

the gray image g, where g is matrix version of g, N (x) is an image patch centered
at x. Although the operator D(·) is a non-linear function, as observed in [19], the
non-linear operation D(g) is equivalent to a linear operator M multiply g. The
matrix M is computed by

(3) M(x, z) =

{
1, z = arg minu∈N (x) g(u),

0, otherwise.

Then the minimization problem (2) can be rewritten as:

(4) min
g
‖Λ(g − p1)‖1 +

3∑
i=1

αi‖C(g − pi)‖22 + η‖Mg‖0.

The advantages of the proposed model are: 1) perceptually driven brightness and
contrast consistency; 2) dark channel property preservation.
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2.3. Algorithm. We use the split and penalty technique to design alternating
scheme to solve the corresponding minimization problem. By introducing two aux-
iliary variables f and v, we transform the unconstrained problem (4) into the fol-
lowing equivalent constrained problem:

min
g,f,w

‖Λ(f − p1)‖1 +
∑3

i=1
αi‖C(g − pi)‖22 + η‖w‖0,

s.t. f = g, Mg = w.
(5)

Using the penalty technique, we set problem (5) as

(6) min
g,f,w

‖Λ(f −p1)‖1 +
∑3

i=1
αi‖C(g−pi)‖22 +η‖w‖0 +γ‖Mg−w‖22 +β‖f − g‖22.

This formulation benefits the algorithm design so that we can solve (6) efficiently.
We can alternatively minimize the function with respect to one variable while other
variables are temporarily fixed. To ensure the convergence of the algorithm, we
carefully design the following iteration scheme:

Given gk, fk and wk, the minimizer wk+1 can be obtained by solving

(7) wk+1 = arg min
w
γ‖w −Mgk‖22 + η‖w‖0 + σ1‖w − wk‖22.

The solution is given by a shrinkage [24],

(8) wk+1 =

{
Mgk, γ|Mgk|2 + σ1|wk|2 ≥ η,
0, otherwise.

For the subproblem of g given fk and wk+1,

gk+1 = arg min
g

∑3

i=1
αi‖C(g − pi)‖22 + γ‖Mg − wk+1‖22 + β‖fk − g‖22.(9)

This linear least squares minimization problem has unique solution given by solving
its normal equations:

(β +
∑3

i=1
αiC

TC + γMTM)gk+1 = βfk +MTwk+1 + CTC
∑3

i=1
αipi.(10)

Note that MTM is identity operator (please see the supplemental material of [19]
for detail [18]), CTC has block circulant with circulant blocks (BCCB) structure
when the periodic boundary conditions are used. Then the computation is very
efficient by the discrete Fourier transformations (DFTs) [28, 23].

Given gk+1 and w, we solve fk+1 by

(11) fk+1 = arg min
f
‖Λ(f − p1)‖1 + β‖f − gk+1‖22 + σ2‖f − fk‖22.

It is a simple shrinkage computation [13], i.e.,

(12) fk+1 = max

{
|ξk|

2(β + σ2)
− Λ1

2(β + σ2)
, 0

}
· sign(ξk) + p1,

where ξk = β(gk+1 − p1) + σ2(fk − p1) and 1 denotes a vector with each element
equals 1.

Above all, we summarize the iteration scheme for solving the minimization prob-
lem (6) as Algorithm 1 shown below:
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Algorithm 1 Alternating iteration for solving minimization problem (6)

1. initialization: given (f0, g0)

2. iteration: generate a sequence {(wk, gk, fk)}
1) solve for wk+1 using (8);

2) solve for gk+1 using (10);

3) solve for fk+1 using (12).
3. stop: if a stopping criterion is satisfied

Definition 1. (KL property [1, 26]) Let σ : Rd → (−∞,+∞] be a proper lower
semicontinuous function.

1) For x̄ ∈ dom ∂σ := {x ∈ Rd : ∂σ(x) 6= ∅}, if there exists an η ∈ (0,+∞],
a neighborhood X of x̄ and a function ξ ∈ Φη, such that for all x ∈ X ∩ {σ(x̄ <
σ(x) < σ(x̄) + η)}, the following inequality holds

φ′(σ(u)− σ(x̄))dist(0, ∂σ(x)) ≥ 1,

then σ is said to have the Kurdyka- Lojasiewicz (KL) property at x̄. Note that Φη
denotes the class of all concave and continuous functions ξ : [0, η) → R+, η ∈ R+

which satisfies: a) ξ(0) = 0; b) ξ is continuous differentiable on (0, η); c) for all
s ∈ (0, η), ξ′(s) > 0.

2) σ is called a KL function, if σ satisfies the KL property at each point of
dom ∂σ.

Theorem 1. Let {νk = (wk, gk, fk)}k∈N be a sequence generated by Algorithm 1,
then {νk} converges to ν∗ which is a critical point of (6).

Proof. For the convenience of theoretical analysis, we set

(13) Φ(w, g, f) = H(w, g, f) + φ1(w) + φ2(f),

where H(w, g, f) =
∑3
i=1 αi‖C(g−pi)‖22 +γ‖Mg−w‖22 +β‖f−g‖22, φ1(w) = η‖w‖0

and φ2(f) = ‖Λ(f − p1)‖1. Let the sequence νk = {(wk, gk, fk)}, and ∂Φ(νk) =
(∂wΦ(νk), ∂gΦ(νk), ∂fΦ(νk)). Then we have

∂wΦ(νk+1) = 2γ(wk+1 −Mgk+1) + η∂wφ1(wk+1);(14)

∂gΦ(νk+1) = 2
∑3
i=1 αiC

TC(gk+1 − pi) + 2γMT (Mgk+1 − wk+1);(15)

∂fΦ(νk+1) = 2β(fk+1 − gk+1) + ΛT∂fφ2(fk+1).(16)

According to Algorithm 1 and equations (14)-(16), we obtain

∂wΦ(νk+1) = 2γM(gk − gk+1)− 2σ1(wk+1 − wk);(17)

∂gΦ(νk+1) = 2β(fk − fk+1);(18)

∂fΦ(νk+1) = 2σ2(fk+1 − fk).(19)

i.e., a subgradient lower bound for the iterates gap satisfies

‖∂Φ(νk+1)‖2 ≤ 2γ‖M‖F ‖gk − gk+1‖2 + 2σ1‖wk − wk+1‖2
+ 2(σ2 + β)‖fk − fk+1‖2 ≤ ρ1‖νk − νk+1‖2,

(20)

where ρ1 = 2 max{γ‖M‖F , σ1, σ2 + β}.
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Then we will next prove the sufficient decrease property for the iterates gap. It
is easy to check

(21) Φ(wk, gk, fk)− Φ(wk+1, gk, fk) ≥ 2σ1‖wk − wk+1‖22.
For g-subproblem, using Taylor expansion gk+1 of Φ, we know that

(22) Φ(wk+1, gk, fk)− Φ(wk+1, gk+1, fk) ≥ 2β‖gk − gk+1‖22.
Since fk+1 is the stationary point of f -subproblem, we get

(23) Φ(wk+1, gk+1, fk)− Φ(wk+1, gk+1, fk+1) ≥ 2σ2‖fk − fk+1‖22.
Summing up (21), (22) and (23), we obtain the sufficient decrease property

(24) Φ(wk, gk, fk)− Φ(wk+1, gk+1, fk+1) ≥ 2ρ2‖νk − νk+1‖22,
where ρ2 = 2 min{σ1, σ2, β}.

We will next prove Theorem 1 using KL inequality. In Jacek et al’s monograph
[3], the Euclidean norm ‖·‖ is shown to be semi-algebraic. Furthermore, ‖·‖1-norm
and ‖ · ‖0-norm are also shown to be semi-algebraic [4]. Thus, we know Φ is semi-
algebraic and then satisfies the KL property an any point of dom(Φ) according to
Theorem 3 in [4]. Then by Theorem 1 in [4], we know that the sequence {νk}k∈N
converges to a critical point ν∗ = (w∗, g∗, f∗) of Φ. The proof completes. �

As we know, as β, γ → ∞, the solution of (6) converges to that of (4). In real
application, we intuitively set a gradual incrementation on the penalty parameter
β and γ. The corresponding algorithm is shown as follows:

Algorithm 2 Decolorization by perceptual consistence and dark channel prior

1. initialization: given (f0, g0), the maximum penalty value Pmax
2. iteration: generate a sequence {(wk, gk, fk)}
while β < Pmax, Do

1) solve for wk+1 using (8);

2) solve for gk+1 using (10);

3) solve for fk+1 using (12);
4) update β = 2 ∗ β, γ = 2 ∗ γ.

3. Numerical experiments

In this section, we present numerical results to illustrate the performance of
our method. We compare the proposed method with state-of-the-art methods
[16, 15, 14, 11]. The test color images are from Cadik’s color-to-gray benchmark
dataset which is publicly available [5]. The quantitative evaluation for different
methods is the average color contrast-preserving ratio (ACCPR) [16]. The results
by Lu et al. [16] and Smith [20] can be obtained from http://www.cse.cuhk.
edu.hk/˜leojia/projects/color2gray/ and http://cadik.posvete.
cz/color_to_gray_evaluation/. For the results obtained by Jin et al. [11]
and Liu et al. [15, 14], we use the suggested parameters in their codes which can be
downloaded from the authors’ homepage to get the best results. For our method,
we fix the parameters σ1 = σ2 = 1×10−3, α2 = α3, β0 = γ0 = 2∗η, Pmax = 26 and
tune the α1, α2 and η empirically to get the best visual and quantity performance.

http://www.cse.cuhk.edu.hk/~leojia/projects/color2gray/
http://www.cse.cuhk.edu.hk/~leojia/projects/color2gray/
http://cadik.posvete.cz/color_to_gray_evaluation/
http://cadik.posvete.cz/color_to_gray_evaluation/
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(j) without dark-prior (k) with dark-prior (l) color

Figure 2. The decolorization results by our method without the
dark channel prior and with the dark channel prior.

In Table 1, we report the ACCPR values for decolorization of all test images in
the dataset. According to the table, we observe that our method gives the highest
value for eight images and Liu’s gradient correlation similarity method [15] gives
the highest value for six images. In total, our method performs better than the
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other methods, in terms of the average ACCPR value. Due to the limited space
of this paper, we only present three representative images decolorized by different
methods. The decolorized images and color images are shown in Fig. 1. From
the figures, we observe that our decolorized results can keep the color contrast
and luminance better than other methods. Specifically, according to the color
conversion of the sunlight and flower color, our method can perceptually reflect the
color distinctiveness and preserve the contrast better than the methods of Jin et
al. [11] and Liu et al. [14]. Note that Lu et al.’s method gives the result with
incorrect contrast, i.e., it is too dark compared with the color image. Although
Liu et al.’s method [15] performs better than the methods in [16, 11, 20], it is not
that good in comparison with our result and the method in [14] which can be seen
from the boats in decolorized images. In the third row of Fig. 1, we can observe
that the result obtained by our method can perceptually preserve the contrast and
brightness of the color image compared with other methods.

Table 1. The ACCPRs of the decolorized images in the dataset
by different methods. The boldface number refers to the largest
value in each row.

Image Lu[16] Jin[11] Liu[14] Liu[15] ours
1 0.5465 0.5294 0.5148 0.5858 0.4841
2 0.9792 0.9705 0.9694 0.9678 0.9858
3 0.7722 0.7476 0.7740 0.8206 0.6004
4 0.5398 0.6003 0.5190 0.5907 0.7976
5 0.7628 0.7998 0.7568 0.7604 0.5613
6 0.5985 0.5865 0.5237 0.5839 0.7372
7 0.9261 0.8952 0.7718 0.6403 0.8250
8 0.6729 0.6204 0.7154 0.6465 0.5818
9 0.4167 0.6962 0.4672 0.7005 0.5900
10 0.5674 0.6121 0.6161 0.6749 0.5926
11 0.8461 0.7580 0.8661 0.7945 0.7541
12 0.7110 0.6836 0.5383 0.6034 0.8854
13 0.2677 0.4104 0.4038 0.4024 0.7699
14 0.6078 0.7654 0.7388 0.7286 0.4457
15 0.7074 0.6847 0.6815 0.6395 0.6441
16 0.7127 0.6732 0.6645 0.7288 0.7157
17 0.8069 0.8113 0.9588 0.6882 0.6554
18 0.5288 0.5887 0.6381 0.6876 0.8777
19 0.5458 0.7197 0.6537 0.7201 0.6848
20 0.4776 0.7075 0.7213 0.6839 0.7087
21 0.9252 0.9596 0.9585 0.9562 0.6387
22 0.7155 0.5425 0.4752 0.5295 0.9462
23 0.7431 0.4342 0.5949 0.5736 0.6340
24 0.8274 0.7816 0.6765 0.7832 0.8555

Avg 0.6752 0.6908 0.6749 0.6871 0.7071
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We also show the decolorization results by our model with the dark channel prior
and without dark channel prior in Fig. 2. As shown in the figures, we can observe
that both methods can generate good color-to-gray conversion results while our
model with the dark channel prior can better distinguish the contrast of the test
color images.

Since the code is not available for the method of You et al. [25], we do not evalu-
ate the ACCPR result here and we only compare the visual quality of decolorization
results. The decolorized images of You et al.’s method are directly cropped from
the authors’ paper. As can be seen from Fig. 3, both methods can preserve the
contrast and brightness of the original color images. The decolorization results
obtained by our method is slightly better than You et al.’s method.

4. Conclusion

In this paper, we have presented an effective decolorization method based on
perceptual preservation and the dark-channel prior. Our model can perceptually
keep the contrast and brightness of the color image. Besides, we carefully design the
iteration algorithm and prove the corresponding convergence property. Numerical
results on a publicly available test dataset show that our method is competitive
with some other state-of-the-art methods.
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