INTERNATIONAL JOURNAL OF © 2019 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 16, Number 4, Pages 626646

ERROR ANALYSIS OF
AN IMMERSED FINITE ELEMENT METHOD
FOR TIME-DEPENDENT BEAM INTERFACE PROBLEMS

MIN LIN

Abstract. This article presents an error analysis of a Hermite cubic immersed finite element (IFE)
method for solving certain initial-boundary value problems (IBVP) modeling a time-dependent
Euler-Bernoulli beam formed by multiple materials together with suitable jump conditions at
material interfaces. The optimal convergence of this IFE method is shown by both theoretical
proof and numerical simulations.
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1. Introduction

In this paper, we present an error analysis of a Hermite cubic immersed finite
element (IFE) method for solving interface problems related to a mathematical
model for a time-dependent Euler-Bernoulli beam formed with multiple materials.
Without loss of generality, we consider a beam of length 1 formed with two materi-
als, and we assume its dynamics is modeled by the following initial-boundary value
problem (IBVP) [23]:

(1) p(@)ug(z,t) + (B(@)use(2,1) = f(z,1), 2 € (0,1)\{a}, t € (0,7,
(b)) w(0,) = by(t), ux(0,2) = ba(t), u(l,t) = bs(t), us(1,t) = ba(t),
(Ie)  u(z,0) = gi1(2), w(z,0)=ga(z),

and the rigid connection condition across the material interface a as follows:

[u(z,t)] _. =0, (continuity in the deflection),
[%h:a =0, (continuity in the bending angle),
(1d) [ﬁ(m)%h:a =0, (continuity of the bending moment),
O*u(x,t
[8(B(x) axg%’ ))]z_a =0, (continuity of the shear),

where u(x,t) is the transverse displacement of the beam at time ¢ and longitudinal
coordinate x, p(x) is the mass density, S(x) is the bending modulus or stiffness
parameter, and f(x,t) is the distributed loading force. Note that [w(z,t)]z=a =

lim w(z,t)— lim w(z,t). For simplicity, we assume that the material parameters
z—at T—a~
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p(x) and S(x) are both piecewise positive constant functions:

p=, x€Q,
BT, zeQ,
(]‘f) ﬂ(l’)— {6+, .TGQ+,

where Q = (0,1), Q2™ = (0, ), QT = (a, 1) and a € Q is the interface position of the
two materials. In the discussion from now on, we let piin == min{p™, p*}, pmaz =
maz{p~, pt} and Biar = max{B~, BT}, Bmin = min{B~, 81 }.

IFE methods are desirable for solving interface problems with a mesh indepen-
dent of the discontinuity of the coefficients associated with the material interfaces in
the differential equations. The author of [§] introduced an IFE method for solving
an interface problem of a two point boundary value problem. Afterwards, authors
of [T, 11, 9, B, B, 05, 22, [, IR, 14, 06, 0, 5, [0, 7, 19] developed IFE methods for
solving elliptic interface problems, some time-dependent interface problems, Stokes
interface problems as well as elasticity interface problems and so on. In particular,
a Hermite cubic IFE space was developed in [I3, 23] for solving interface problems
of the 4-th order differential equations modeling a static Euler-Bernoulli beam and
numerical examples were provided in those articles to show the optimal convergence
of the related IFE method. A recent followup article [I2] carried out an error anal-
ysis proving the optimal approximation capability for the Hermite cubic IFE space
developed in |3, 23] and the optimal convergence of the numerical solution for
the static Euler-Bernoulli beam produced in this IFE space by the usual Galerkin
finite element scheme. However, so far there has been no error analysis for the
IFE method developed in [23] to solve the time-dependent Euler-Bernoulli Beam
interface problem, and this promotes us in this article to extend the error analysis
reported in [[7] to this fully discrete IFE method.

In the error analysis to be presented later, the standard Sobolev space defined
on an open set D C Q) will be used: for every integer m > 0,

(2) H™(D) = {w(z) | w? € L*(D), j=0,1,--- ,m},

on which we have the following norm and semi-norm:

@ Wellirnoy = || o100 a0l = [0, ,, - Y € H (D).
=0

Also, we will use the following related Sobolev space: for every integer m > 1,
(4) HM(D) = {w(z) € H™(D) | w\W|op =0, j=0,1,--- ,m — 1}.

In the case when a € D, we let D* = DN Q* and we will consider the following
space:

(5) H™(D) = {w(z) | w|p= € H™(D*)},
which is endowed with the following norm and semi-norm:
2 2
lw@)ll gy = Il oy + 1013 o)
(6) vw € H™(D).

2 2
@)y =y ooy + 0w ooy
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For a time-dependent function w(x,t) defined on D x (0,T") , we will use the Sobolev
space LP(0,T; H™(D)) with p > 1 and the related norms are defined by:

(7)
T 1/p
) o2 ) = ( | 10l dt) V€ LP(0.T; ™ (D)),

(8)

”w(xat)”Lw(O,T;f{m(D)) = etss(osglp ||w('»t)||ﬁlm(p) ; Vw e Lw(OaTJ:Im(D))-
€(0,

By the usual procedure based on the integration by parts, we can obtain the
following weak form for the IBVP (I): for any ¢ € (0,7}, find u(z,t) € H?(Q2) such
that
(9a) {puse,v) + A(u,v) = (f,v), Yo € H(Q), t € (0,T],

(9¢) A(u(z,0),v) = A(g1,v), A(us(z,0),v) = A(ga,v), Yo € HE(Q),

where (w,v) and A(w,v) are such that

1
(10) (w,v) = / w(z)v(z)de,
0
(11) A(w,v) = (Bw”,v").
2. A Hermite cubic IFE Space and a fully discrete IFE method

Finite element methods can be derived from the weak form (8) by following the
Galerkin framework which requires a H? finite element space. Since we would like
to solve the interface problem of a time-dependent Euler-Bernoulli beam with an
interface-independent mesh, we choose the Hermite cubic immersed finite element
developed in I3, 23]. To describe this IFE space, let T, be a quasi-uniform mesh of
the solution domain Q = (0,1) = Q~ U{a} UQT with following nodes independent
of the interface point «:

(12) O=21<z2 <3< - <N, =1
with
er = [xg, Thy1], he = Tpp1 —ak, E=1,2,..., Ny — 1, h= 1§1§22}\)7§71 hi.
On each of the non-interface elements such that o ¢ eg, k = 1,2,..., Ny —1, we use

the following standard Hermitian cubic local shape functions:

N;(Fy(z)), j=1,3,
m,j(x):{ AR

(13)
hkNj(Fk(x))7 ] = 2,4,

where N;(§),j = 1,2,3,4 are the Hermite cubic shape functions on reference ele-
ment [0, 1] defined by

{N1<£)=2§3—352+17 No(€) =€ 26246

(14) Na(6) = —26% £ 362, Ny(€) =€ - €2, =&s

and Fy(z) = z Ekxk is the affine mapping from element ey, to the reference element.

On the interface element such that « € ey, the following immersed Hermite cubic
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local shape functions are used:

Drj(x) = {Nj(Fk(l“)% j=1,3,

(15) ~
hkNj(Fk(iE)), ] = 2,4,

where ]\7} (£),7 =1,2,3,4 are the immersed Hermite cubic shape functions on the
reference element [0, 1] [I3, 23] such that

wo-{ S 1Tl
o= { FLHIT ) TS

16

" Ns(6) :{ §szgg—bf)("’g(c_séé+))dg(g—@)) i‘;iiii‘
Nu(©) = { i (541)++b4((££—_ 1(3;)2)(% +dy( — &) igééécf

with & = Fj(«) and the coefficients in (IH) are determined by the following linear
systems:

a? 0 —(&— 1)2 0 [a;
26 &* 2(6-1) —(a—-17 | |bi| _ . . _
(17) 28~ 4aB-  —28t  —d(a—1)pt| |e| =B P 1,2,3,4,
0 657 0 _66+ _di
-1 —& 1 6 -1
. — R _1 . 0 . 1
0 0 0 I 0

With these Hermite cubic local shape functions, we can define a function ¢y, ;(z),7 =
1,2,3,4 on each element as follows:

i(x), if ex € Ty is a non-interface element,
19 >={lf’“’” e

Yr,i(z), if ex € Tr is an interface element.
By their design, it is easy to verify that ¢ (x),i = 1,2, 3,4 satisfy the following
Hermite interpolation conditions:
br1 (k) = 1,0 1 (x1) = 0, k1 (Thet1) (
Or2(wx) = 0,8 o(vx) = 1, Bk 2(Th11) = 0 D 2(Tht1
Or3(xk) = 0,0y 3(vx) = 0,k 3(Th11) = (
bra(zr) = 0,0 4(xx) = 0, dp a(hi1) = 0 D a(@ht1) =

and the rigid connection condition (Id) in the interface problem, i.e., across the
interface element, they satisfy

(21) I:(bkd}a = 07 I:(b;c,]jla [ﬁ¢k7j:| [ﬁ¢k},j] - 07 .7 = 1a27374'

We can continue to define the global IFE basis functions gbi(x),i =1,2,--- ,2Ng —
1,2N, over ) as follows:

(20)
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At node z1, we define

(22) b1 (x) = {fl’l(x)’ ii ; Eizj
and
(23) 3a(x) = {?’2“)’ i ; Eiii

At node 2,k =2,3--- , Ny, — 1, we define

B Or—1,3(x), ifx € [zp_1,x],
(24) Por—1(x) = < ¢p.1(2), if x € [zh, xpq1],
Oa if x ¢ [xk—laxk+1];

and

_ ¢k)71,4(x)7 lf.’L' € [xkflaxk]a
(25) bor(z) =  br2(x),  if x € [z, 2pqa],
0, it x ¢ [zr_1,Tpt1]-

At node zp,, we define

- Jonas(x), ifxery,1,2N,]
(26) dan,—1(z) = {0, ifzérn,_1,2zN.],
and
- B ON.—14(x), ifz€lry_1,2Nn,]
(27) ¢2Ns(z) - {0’ if ¢ [xN5717.’[,'N5].

Then, the Hermitian cubic IFE space is constructed as follows:

(28) Sh(Q) = span{$17$2,~-- 7(;21\/'5717(’52]\75}7
(29) Sn0(€) = Su(2) N H ().

We consider a fully discretized method for solving the time-dependent beam
with the Hermite cubic IFE space. We introduce a uniform partition for the time
interval [0, T7:

0=t<t'<t?<...<tM =T,
and let

T=t"—t""! n=12--- M,



ERROR ANALYSIS OF AN IMMERSED FINITE ELEMENT METHOD 631

the time step size. For simplicity, we use w™(z) = w(x,t"™) to denote a function
w(x,t) restricted at time level t” and we adopt the following notations:

ni/a wn+1 + 2™ + wn—l

30
(30) w . 7
n+1l n—1
(31) 8,5’[1)” = v v y
27
" wn+1 _ an + ,wnfl
(32) Opw" = ) ’
n+1 n
+w
33 mi2 2 TW
(33) w .
n+1 n
(34) atwn+1/2 — w —w
T

We now define the IFE solution to the weak problem (H) at the time level ¢ as the
function u} (x) € S,(€2) such that:

(35a) <p8ttu2,vh> + A(u2’1/4,vh) = <f",vh>, Yoy, € Sho(9),
n=1,2-,M—1,

(35Db) up (0) = b1(t"), up »(0) = b2(t"), up(1) = bs(t"), up (1) = ba(t"),
n=1,2,---,M,

(35¢) A, vp) = Algr,vn), Alup,vp) = A(u*, ), Yoy, € Sh,0(€2),

with

72
(35d) u'(2) = g1 (x) + mg2(w) + Suy (),
where we suppose that uY, () is provided by (IH).

In (B5d), we employ uZ’l/ ! to approximate the unknown at time level ¢t using
approximations at three time levels around t". This scheme can be traced back
to [d] where a similar fully discrete scheme was discussed for the second order
hyperbolic equations. For the interface problem (I) of a time dependent beam with
multiple materials, our error analysis to be presented later in this article shows that
the IFE method described by (BH) is not only an optimal descritization of the weak
problem (H) but also a stable scheme for any choice of the step size 7 in the time
variable.

3. Error Bounds for the IFE solution
In this section, we derive error bounds for the IFE solution of the IBVP (). As

usual in error analysis and without loss of generality, we assume that this IBVP
has a homogeneous boundary condition, i.e., b1 (t) = ba2(t) = bs(t) = bs(t) = 0. Pro-
ceeding to the error bound estimation, we introduce two auxiliary error functions:
(36) n(z,t) == Pyu(z,t) — u(z,t),

(37) §"(x) = up(z) — Pyu"(z),

where Py, is the Ritz projection such that for every w(z) € HZ(2), Pyw is the IFE
function S, ¢(€2) uniquely determined by

(38) A(Pyw,v) = Alw,v), Yo € S}, 0(2).
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Then, we have the following error decomposition for the IFE solution u} (x):

e"(x) = ujp(v) —u"(x)
= (up(z) — Pyu"(x)) + (Ppu™(z) — u”(x))
(39) =&"(x) + 0" (2).

We start from the estimation for n(z,¢) which is the error in the Ritz projection
Pru(zx,t) of u(zx,t) associated with the bilinear form A(-,-). This Ritz projection
of a function can be considered as the IFE solution to an interface problem of
the related static beam equation described by the fourth order spatial differential
operator in (Id), therefore, following the same arguments of [[2], we can obtain
error bounds for n(z,t) given in the following Lemma.

Lemma 3.1. Assume that the exact solution u(xz,t) to the interface problem de-
scribed by () is such that u € W°(0,T; H*(Q)), wyy € L2(0,T; H*(Q)). Then,
there exists a constant C independent of the interface location such that n(x,t) has
the following error bounds with m = 0,1,2,3:

40) 0Dl < CH () sy + 0Dl s ) -
(41) ”nttHLOO(OTHm(Q))—C m(HUtt||Loo(oTH4(Q ))+Hutt||LoooTH4(Q+)))

(42) HntttHLz(O T H™(Q)) = < Ch* HutttHLz(O T;H4(Q-)) + ||Uttt||L2(0 T. H4(Q+)))

proof. By Theorems 4.1 and 4.2 in [I7], we have

m

2
G, Ol g () = ()53 ()
=0

m 2
<[22 [em3 (Ol sy + I Ol )|
7=0

<CH=™ (Jul Dl gragay + a5 )l s

<CH™ (Jlul Dl gragay + NuC )l s o))
which establishes the estimate in (20). For (EI),

”ntt”L‘X’(O,T;I:I’"(Q)) = €ss sup ||77tt('7t)||ﬁ1m(n)
te(0,T]

)

< Cptm (ess sup Hutt('vt)HH“(Q_) T ess sup ||utt("t)|H4(Q+)>
+€(0,7) te(0,T7]

=Cptm (Hutt”Lm(O,T;H“(Q*)) + ||utt||Loo(0,T;H4(Q+))) :
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For (22),
T 1/2
meeell p20, 7, m () = (/0 ||77ttt('at)||%rm(g) dt)

1/2

T 2
< Chtm [/0 (”uttt('vt)HH‘l(Q*) + ||Uttt(‘»t)||H4(Q+)) dt]

T 1/2 T
< Chtm (/0 ||Uttt("t)||?{4(ﬂ)dt> +</O ||Uttt('at)||§{4(m)dt>

= Ch47m (||Uttt||L2(07T;H4(Q—)) + HutttHL2(0,T;H4(Q+))> .

1/2

Correspondingly, we have the following results for the finite differences of n(z,t)
with respect to the time variable.

Lemma 3.2. Suppose u(x,t) has the same reqularity stated in Lemmas @3. Then,
there exists a constant C independent of the interface location such that the time
variable differences of n(x,t) have the following estimates:

(43) 1™ || 7o @2y < Ch* (HuttHLw(O,T;H“(Q*))

+ ||utt||L°°(O7T;H4(Q+))) ,n=12--- M-—1,

2
< Ch® (Huttt ||L2(0,T;H4(9‘))

N-1 5
(44) T Hﬁtt(am"“/z)ugo(m
n=1

2
+ ||UtttHL2(O)T;H4(Q+))) , N=2-.. M-—1.

Proof. By the definition of the difference operator (82), we have

1
(45) ||3tt77n|\i10(9) ] H”nH —2n" + ”n_lHHO(Q) :

With Taylor expansions:

tn+1
="+ + Ry, Ry = (" — )y, t) dt,
tTL
o
vl =g — ™y + R, Ry = / (t— t"_l)ntt(x,t) dt,
tnfl

we obtain
[ = 20" + 0" gogq) = 1B + Rall o) < 1Rl og) + 1 Rell oy -

Now, we continue to estimate the norms of R; and Rs. First, applying Cauchy-
Schward inequality to R, we have

tn+1 tn+1 tn+1

R? g/ ("t — )2 dt-/ nZ dt < 73/ nZ dt
tm tn tm
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Then, applying the result above as well as the integral mean value theorem , we
have

2

||R1||g0(9)=</ R? dx + R%dx)
Q- Q+

tn+1 tn+1 %
‘ ( / / nZ, dtdx + / nz, dtdm)
Q- Jin Qt Jin
1

P tn+1
T3 [/ </ 77t2t d:v+/ ntzt dx>dt]
tn - Q+
1

tn+1 5

2
( / 2 (- ) 170 0 dt)
tn

=7 ) oy » € 7],

IN
\]
o

2

<7’ ||77ttHLoc(tn,t"+1;f10(Q)) )

similarly,

3
||R2||ﬁ0(9) = (/Q RS dx + /m R% dﬂ?) <7 ”nttHLOO(t"*I,t";I:IU(Q)) :

Accordingly, we have
(46) H"7n+1 - 27711 + Wn_ngo(Q) < 2T2 ||77tt||Loo(0’T;f{0(Q)) .

Hence, combining (E5), (E8) and (&) yields (&3).
As for (B2, we notice that

_nn 1
77) — ;(3tt77n+1 _ attnn)

B 1 nn+2 _ 277n+1 + nn nn-i—l _ 27771 + nn—l
T T2 T2
1
(47) _ ﬁ(nn—&-Q _ 3,'7n+1 + 3nn _ nn—l)

By Taylor expansions:

1 ~ _ tn+2
"t =gt 4 2m 27 + SR, Bi= / ("2 — )% 1use (2, 1) dt,
tn
9 et

"t =" gt + %ng + %RQ, Ry = ) (" — )20y (2, t) dt,
2 1~ = o
=" -+ ?773 - §R3, R; = /tnq(t — "z, t) dt,
we have
n+2 n+1 n n—1(|2 1 5 112 5 112 5 |1
[ = 3"+ 30" = ||F10(Q) = 4 (HRIHHO(Q) 9 HRQHHO(Q) + HRS‘ HO(Q)) '
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We continue to estimate the norms of Ry , Ry and Rs . First, applying Cauchy-
Schward inequality to Ry , R and R3, we obtain

g2 pnt2 g2

R weonta [ pea<err [ e
tm tn
gt gl gt
R% < (tn+1 77ttt dt <t / 77t2tt dt,
t’fL

tn /

) o i

R: < / (t—t"1H)* dt- / n2, dt <7° / 07, dt.
t tn—1

n—1 n—
Then,
-2
HR1H~ :/ R der/ 2 4
HO(Q) O+
2 2
27' (/ / tht dtdx —|—/ / nttt dtda:)
O+
tn+2
= (27')5/ </ 77t2tt dz "‘/ 77t2tt dx) dt
tn Q- Q+
tnt2
= [ e
similarly,

gntt
5 2
[l oy <7 [ U Oy .

n

n—

i
N . )
HRP’HHo(Q) =7 /t MG ) oyt

Accordingly, we obtain

2 = 302 4 30" = g

tn+2 tn+1

7 2 2
ST (32/t l[7eee (5 )l 00 dt+9/t meee (- D)o () it

i
(48) + /ﬂH ||77ttt(',t)||i“10(9) dt)

Combining (EEZl) and (AR) yields

- Z (
1 N— ¢nt2 gt
393 < 2 [ Dy @t +9 [ Il Ol

i
+ / ||77ttt(',t)||i‘10(ﬂ) dt)
tn—1

T
2 2
< C/o ||77ttt('7t)||f10(9) dt =C HntttHLZ(O,T;EIO(Q)) .

Finally, (£2) follows from applying (B2) to the estimate above.

0@ 1/2)HHO(Q)
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Now, let us consider the estimates for the term £"(x).

Lemma 3.3. Let u(x,t) be the exact solution described by () satisfying uue €
L>(0,T; H?(Q2)). Then, there exists a constant C independent of the interface
location such that the following inequalities hold:

(49) 16" 2y < CT° (”uttt”Lw(O,T;H?(Q*)) + ||utttHL°°(0,T;H2(Q+))> ;
(50) Hfl/QHHQ(Q) <cor® (||uttt||Loo(0,T;H2(sr)) + ||utttHL°°(0,T;H2(Q+))> ;
(51) H&tfl/QHm(Q) <Cr? <||uttt||L°°(0,T;H2(Q—)) + ||utttHL°°(0,T;H2(Q+))> :

Proof. By the definitions of £ and the Ritz Projection, we have

1€ 300y < CAEL.€") = CA(ul, — Pt &)
= CA(u* —u', ') < C‘

= gy 1€ | ey
which, along with (B5d), implies
(1 —1t)?

||§1||H2(Q) <C H/ 5 Ui (-, 1) dtH <cr? ||uttt||L°°(07T;H2(Q))
0 H2(Q)

< cr? <||Uttt||Loo(o,T;H2(Q—)) + ||utttHL°°(O,T;H2(Q+))> :

1 1
It is obvious that /2 = %, 0,12 = % due to the fact that € = 0. Hence, (B0)
and (BI) can be easily obtained from (9).

|
Using similar arguments, we can obtain estimates about « in the following lemma.
Lemma 3.4. Assume that the exact solution u(x,t) to the interface problem de-

scribed by (8) has the regularity specified in Lemma B3 and uyy € L2(0,T; HO(S2)).
Then, there exists a constant C' independent of the interface location such that

un,1/4 —

(52) |

2 _
weey = O Illie o) m=12--, M -1

)

N
n n |2 2
(53) TZ [|Opeu™ — Utt”ﬁ]O(Q) <cort Hutttt||L2(o,T;F10(Q)) N=1,2,--- M —1,
n=1

2

N
T n+1/2,1/4 n+1/2 4 2
o 73 s <o (b

+ ||uttt||2L2(0,T;H4<ﬂ+>>> y N=12,---, M =2,

Proof. We only provide a proof for (63) and the proofs for the other estimates
are omitted because of the similarities. By definition,

unJrl — 2" + unfl
2 )

8ttu” =
T
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and by Taylor expansions:

2 3 tn+1 n+1 3
T T t —t
M =t U+ g+ g, + / (71”’5“ dt,
2 6 tn 6
2 3 tn71 n—1 3
_ T T (t —1)
u" Tt =" — Tl + ?u?t — Fu?ﬁ + /tn T U dt,
we have
2
[|Osru™ — u?t”HU(Q)
n+1 n—1 2
1 t tn+1—t3 t tn—l_t3
== / gutttt dt +/ Qutttt dt
T tn 6 tm 6 g
HO(Q)

2 2
< cor? (”utttt||L2(tn’tn+1;f[0(ﬂ)) + ||Utttt||L2(tn—17tn;HO(Q))) )

from which we straightforwardly obtain (B53)

Lemma 3.5. Assume that u(z,t) satisfies the regularity requirements of Lemmas

B3 and B3. Then the following estimate holds:

N 2

n n 8 6 N+1/2
) |3 (oo o) < OO 47 ] S [

2
g”“/z’H CN=1,2,--- M—1
H2(Q)

SN-1
52 ‘

n=0
where § is an arbitrary positive auziliary constant.

Proof. When N = 1, using the inequality |(u,v)| <& ||u||%,o + % ||v||%,o for arbi-
trary 6 > 0, we have

T

N
Z <patt7]n76t€n>| _ ’<p6ttnl’€1+1/2 . 61/2>‘
n=1

2 2
pmﬂ.x 2
< ‘<Patt771751+1/2>‘ + ‘<p8tt771,€1/2>‘ < <4§ [[0een* [ o0 +5”51+1/2HH2(Q)>

2
)

P2ran 2 1
+ (22 o o+ 5 6]
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which leads to (B3) according to estimates given in (E3) and (B0). Similarly, for
N > 1, we have

N N
TZ@WﬂM| > (o, €412 — %)
n=1 n=1
N -1
_ Z <patt77n7£n+1/2 Z pattnn+1,§n+1/2>
=1 n=0
N-1
= Z <p Oun" — 3tt77n+1)7§n+1/2> + <Patt77N7§N+1/2> - <patt7717£1/2>
n=1
N-1
S T <p8tt 8m”+1/2) §n+1/2> + ’<patt"7N7§N+l/2>’ + ‘<patt771)€1/2>‘
n=1

IN

5n+1/2H2
H2(Q)

2N PN =
max n

< 2 | Z: o) ey + 5 Z |
* ( ||8tt77 HHO(Q) +9 5 HHQ(Q )

pmafl: 1
T ( |@sen’* ||H0(Q) T3 1/2HH2(Q)>

Then, using the estimates in Lemma B2 and Lemma B=3, we obtain

T Z <p8tt77n: 6t§">

I
S(Ch +2nz_:1‘§

<Ch®+71%) +4 H,SNH/?‘

] ‘

n+1/2‘

;@)+Q%mﬁkmwwm®)+am+w>

7_]\f—l
H2(Q) +2nz_;‘

which leads to the estimate (B3)

§n+1/2‘ 2
H2(Q)

Lemma 3.6. Let u(x,t) be the exact solution described by (8) with the regularity
specified by Lemmas B3 and B4. Then we have

N
7Y {p(Ouu™ — ), ™)

N-1
<&uzzwwww
- 2 HO(Q)

(56) Ha PR VCl S VAT P S VO
o)’
N
u™ 1/4 o a "Ml <O 6H N+1/2‘
T;A u" ") S O+ )+ 8]
TN71 2
T “+1/2H N=1,2--,M—1
(57) +2n§_:0\£ )’ 2,0 ,

where § < 1 is an arbitrary positive constant.
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Proof. By definition, for n > 1, we have

2 2

§n+1 _ gnfl

§n+1 _ gn En _ gnfl
27 +

T T

HO(Q) 4 ‘

2 (106 oy * 06 )

10:6™ o0

HO()

\ /\

When N =1, we have

TZ (p(Opu™ — uy), 8t§">‘ = ‘T<p(8ttu —ul,), 0," >|

Tpmaac Ha tu

IA

2 2
u%t”ﬁo(g) + 5 ||6‘tg HHO(Q)

ort+ 7 (Joe]] )

which leads to (B8) for 6 < 1. For N > 1, using (B3), we have:

IN

e

HO(Q)

TZ <p 8ttu utt 8t§">

— N—-1
Tpmaz n n |12 T n|2
S Z [0reu™ — uii o) + 5 Z 10e€" (1770 (02)
n=1
pmam 74 N2
+ =5 || O™ uft||Ho(g) 5 10 700
n 2 n—1/2

<cr! ||Utttt||L2(0THO(Q)) Ty Z <H3§ o HHO(Q - Haf / HHo Q)>

+7 (o éN“”HHO(m o)

< crt ||utttt||L2(0 T, HO(Q)) + = Z Ha gn—&-l/QH H N+1/2‘

H“(Q) ()

which yields (BB) again. For the second estimate in the lemma, we first consider
the case for N = 1:

N
T ZA(un,1/4 _ u”,&ff”)

n=1

‘A(ul’l/‘l _ u1,§1+1/2)‘ + ‘A(u1,1/4 _ u1,§1/2)‘

1,1/4 1 1+1/2
ﬂmawHu Mt

uli1/4

= [T ALYt —ut, 9,eh)
| |

IN

IN

1,1/4 1’ Héq/z‘

+ Bmam u

H2(Q) H2(Q) ’H2 ) H2(Q)

L2
,u‘

H2(Q)

Bmam

Jr5H£1+1/2H

H2(Q)

51/2“

ub/4 _

+ Bmax

1
HH2(Q) 2 H H2(Q)
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which leads to (B2) according to estimates given in (62) and (B0). Then, for N > 1,
we have

N
3 A, 06"

n=1

N—-1
(un,1/4 _ un,€n+1/2) _ Z A(Un+1’1/4 _ un+17€n+1/2)

n=0

N-1
<r Z ‘A(@t(u”+1/2’1/4 _ un+l/2)7£n+l/2)‘ n ’A(UN,1/4 _ ,U,N7£N+1/2)‘

n ‘A<u1,1/4 _ u17£1/2)‘

N-1
<1Brras 9, (yn /214 _ yn+1/2 H ‘ n+1/2H
<78 nz::l H i (u u ) 2(0)
N,1/4 NH H N+1/2H H 1,1/4 1H H 1/2”
+ﬁmamHu 0N oo €2 gy B e =t €2
By utL/2:1/4 _ g nt1/2 2 T n+1/2
max Z H )HH2(Q) t3 2 ; ¢ HH2(Q)
+ @nw N1/47UNH2 5H£N+1/2H
H2(Q) H2()
IR VS 1/2”
+ 6’”‘” b HHz(Q) 2 HE H2(Q)

where § is an arbitrary positive constant. Then, estimate (54) following from ap-
plying (80), (62), and (64) to the above.
|

With these preparations, we can derive an estimate for £"t1/2 n =1,2,--- , M —
1 in the following theorem.

Theorem 3.1. Let u(z,t) be the ezact solution described by (H) and suppose u €
W2,oo(07 T, H4(Q)), Ut € LQ(O, T, H4(Q))OLOO(O, T, Hz(Q)), Uttt € LQ(O, T, HO(Q))
Then we have the following estimate:

n+1/2H n+1/2” BA 4 2 — ...
() |one ) g SO T, =1,

M —1.

HO(Q) ‘ ’
Proof. We note that
(59) {pduut,vn) + A(up ™ op) = (f o), Yon € Spo(9),
(60)  (puly,vn) + AWM vp) = (f on) + AW —u" vy, Yop, € Sho(),
Subtracting (B0) from (B9), we have

<p(6ttuh — Oyu™ 4 Opu™ — utt),vh> + A(e”’1/4,vh) = —A(u"’1/4 —u",vp),
which leads to

<p8tte",vh> + A(e"’1/4,vh) = —A(u"’1/4 —u" ) — <p(8ttu" — uﬁ)7vh>.
Because e = £" + 7™ and A(n™'/*, v,) = 0, we obtain

<p8tt§”,vh> + A({"’l/‘l,vh) = —A(u"’1/4 —u" vp) — <p(8ttu” —upy), vh>

- <P6tt77n,vh>-
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Choosing v, = 0,£™ based on the fact that 9" € Sp 0(€2) and combining the
definitions given by (B2)-(B4) yields

% |:<p8t§n+1/2’8t€n+1/2> _ <pat€n—1/2’at§n_1/2>
A2, A2, )

= A(Un’1/4 —u",0:") — <P(3ttun — Upy), 3t§n> - <P5tt77n7 3tfn>-

Furthermore, we sum the above fromn = 1ton = N with N < M —1 and multiply
by 27 to have:

<pat§N+1/276t€N+1/2>+A(§N+1/27£N+1/2)

N
— <pat§1/27at€1/2> + A(€1/27§1/2) _ 2TZA(un,1/4 _ un’até-n)

n=1

—27’2 8ttu _utt) 8t§ —QTZ p@tm 8t§ >

n=1

Then, applying the coercivity and boundedness of the bilinear form A(-,-) to the
above, we have

Pmin

9 eN+1/2 ‘

winCo 4172
HO(Q) +0 ais H2(Q)

§<pat£N+l/2,at§N+1/2>+A £N+1/2’€N+1/2)

N
:<p8t£1/2;8t§1/2> + A(§1/2,£1/2) _ ZTZA(un,1/4 _ un7at£n)

—27’2 Bttu —utt 8t§ >—2TZ p@tm 8t£ >

n=1
1/2 2 1/2 2 ol n,1/4 n n
Spmax até- HO(Q) + ﬁmam g ‘ H2(Q 2|7 Z A(u ’ —u 78t§ )
N N
T Z attu utt (9t£" Z patm atf
n=1 n=1
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where C) is the constant such that Cy ||v||§{2(9) < ‘vﬁﬂ(ﬂ) for all v € HZ(€2). Then,
applying the estimates in Lemmas BZ3, B3, and B8 to the above, we have

2
N+1/2 ) N+1/2
0, H + BminCo [€VF12||

Pmin o )

2 N-1 2
<crt+ 078+ C(T4+T6)+25H§N+1/2H +7y 6”*1/2H
HA Q) H2(Q)
R
<CT 7 Z Hag PO L o

£n+1/2H2
H2(Q)

) N-1
C(h8 + 75 25” N+1/2H
+< (h® + 7% +24||¢ HZ(Q)JFT;

<ot s+ o, e

HO(Q) H2(Q)

9 Ha n+1/2H n+1/2H
+T;O<tg e 1T

Because 0 is arbitrary, we can let it be small enough such that for a certain constant
C there holds

e

e,

H0(Q) H2(Q)

N—
<Cr 41+ or Y (Ha §"+1/2‘

n+1/2H
¢ H2(9)>

Hence, by the standard discrete Gronwall-Bellman’s inequality [8, 20] and Lem-
ma B33, we have

Ha €N+1/2‘

H9(Q) ‘

e

HO(Q) H2(Q)

<C {h8+r + (Ha 51/2H Hgl/QH )} < C(h+11),

HO(Q) H2(Q)
for 1 < N < M — 1 which proves (BJ).
|
Finally, we can obtain an estimate for the IFE solution uj in the following
theorem.

Theorem 3.2. Assume that u(x,t) satisfies the same reqularity as required in
Theorem B. Then

(61) [/ w2 <o), n=1 ML

H2(Q)
proof. Estimate in (61) follows easily from the results of Lemma B and Theorem
BI:

1/2
n+1/ _un+1/2H

[

£n+1/2 n nn+1/2 H

H?(Q) H?(Q)

nn+1/2‘

£n+1/2H

H2(Q) ’ H2(Q)
< CO(h* +72) + Ch? < C(h* + 72).
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4. Numerical examples

In this section, we numerically examine the order of accuracy of the Hermite
cubic IFE solution for the time dependent interface beam problem by applying the
IFE method described by (BH) to the initial boundary value problem defined by ()
whose exact solution is as follows:

(62) ul( ) = {eZ'Zz: (acos(2x) + bsz:n(aj) +1), %f 0<z<a,t>0,

%02 (ccos(2z) + d sin(x)), ifa<z<1,t>0,
in which the coefficients a, b, ¢, d are chosen so that u(x,t) satisfies the interface
jump conditions (Id). The force function f(z,t), the boundary condition functions
bi(t),i = 1,2,3,4, as well as the initial condition functions g;(x),i = 1,2 are de-
rived by u(z,t). For simplicity, we let the time interval be ¢ € (0, 1], mass density
p~ = pT =1, interface « = m/6 and the following three configurations of 3(x) are
considered:

Casel: 3~ =2, 3t =3,
Case2: B~ =2, 87 =30,
Case 3: 3~ =2, 37 = 3000,

which represent small, moderate, and large discontinuities of the coefficient at the
interface respectively.

We examine the error of the IFE solution at two representative times: one is in
the middle and the last one is in the end of the time interval (0, 1]. To investigate the
order of accuracy numerically, we use a uniform partition for the spacial solution
domain © = (0,1) and time interval (0,1] to generate IFE solution up(z,t") =
up(z) € Sp(Q),n = 1,2,--- , M. In the numerical simulation, we use mesh size
h = i:1,2,-~-,10andatimestepsize7':%.

5x1’
Data Tables M-8 list H2 norm errors of the cubic Hermite IFE solutions UZH/ 2

at time level ¢ = ¢390,¢ = tM~1 for various values of mesh size h. Applying linear
regression to these data, we note that these numerical results obey the following
relationships:

For Case 1:
Hu300+1/2 _ 300+1/2 ~ 0.772242-0017
g H2(Q) ’
HU(M—1)+1/2 _ oy (M-D)+1/2 ~ 0.7745]1-9974
L . ) .
For Case 2:
Hu300+1/2 _ 300+1/2 ~ 0.2561 119874
g H2(Q) ’
HU(M—1)+1/2 _ oy (M-D)+1/2 ~ 0.256971-9831
L . ) .
For Case 3:
Hu300+1/2 _ 300+1/2 ~ 0.2370h1-9851
. Q) ’
HU(M_1)+1/2 _ U(M71)+1/2 ~ 0.23781711'9808.
h H2(Q)
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These numerical results obviously corroborate the following error estimate derived
in Theorem B72:

(63) ’u’g“/z—u"“/QH <Ch%, n=1,---,M—1.
H2(Q)

TABLE 1. H? norm errors of IFE solution for the beam interface

problem with a =7/6, 3~ =2, 7 =3.

h Hu300+1/2 _ u300+1/2H HU(M*I)H/? _ u(M—1)+1/2H

h @) | 11" H2(Q)

1/5 3.080931326602829e-02 3.105553405826669e-02
1/10 7.703511870235500e-03 7.811963275214073e-03
1/15 3.407157315246679e-03 3.462064122715313e-03
1/20 1.920814998973799¢-03 1.953728454806770e-03
1/25 1.230544341605216e-03 1.252383613721194e-03
1/30 8.526766070336298e-04 8.681579633540466e-04
1/35 6.266057066929438e-04 6.381653928362991e-04
1/40 4.793927381786260e-04 4.883416064008635e-04
1/45 3.789901082250086e-04 3.861293161711144e-04
1/50 3.070514901767621e-04 3.128774111665804e-04

TABLE 2. H? norm errors of IFE solution for the beam interface

problem with a = 7/6, 3~ =2, 7 =30.

h Hu300+1/2 B u300+1/2H Hu(Mfl)H/Z B u(M—l)—i—l/QH

h 2@ | I H2(Q)
1/5 1.030202357504485e-02 1.038435492714779¢e-02
1/10 2.678087182434285e-03 2.715789768272097e-03
1/15 1.181374043129116e-03 1.200412047823178e-03
1/20 6.674660591807658e-04 6.789031907859465e-04
1/25 4.293145532068404¢e-04 4.369338779112072e-04
1/30 2.962391337062861e-04 3.016177071739973e-04
1/35 2.186421970937499e-04 2.226757307067679e-04
1/40 1.673958506215580e-04 1.705206443226521e-04
1/45 1.320070058112771e-04 1.344936811962275e-04
1/50 1.072021298525442¢e-04 1.092361569468198¢e-04
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TABLE 3. H? norm errors of IFE solution for the beam interface
problem with o = 7/6, 3~ =2, 87 = 3000 .

h Hu300+1/2 _ u300+1/2H HU(M*1)+1/2 _ u(M—1)+1/2H
h @) | 117 H2(Q)
1/5 9.554467686977073e-03 9.630824747690184e-03
1/10 2.493511847976944e-03 2.528615949557647¢-03
1/15 1.102873666343827e-03 1.120646626695687e-03
1/20 6.214883012612048e-04 6.321375971040403e-04
1/25 4.007901425003836e-04 4.079032259258491e-04
1/30 2.764878460235710e-04 2.815078115158901e-04
1/35 2.038487489048730e-04 2.076093714067065e-04
1/40 1.563032432088006¢e-04 1.592209702068999¢-04
1/45 1.231570948296918e-04 1.254770604054279¢-04
1/50 1.000676164110465e-04 1.019662750383065¢e-04
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