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FORMULAS OF NUMERICAL DIFFERENTIATION

ON A UNIFORM MESH FOR FUNCTIONS WITH THE

EXPONENTIAL BOUNDARY LAYER

ALEXANDER ZADORIN AND SVETLANA TIKHOVSKAYA

Abstract. It is known that the solution of a singularly perturbed problem corresponds to the

function with large gradients in a boundary layer. The application of Lagrange polynomial on a
uniform mesh to interpolate such functions leads to large errors. To achieve the error estimates
uniform with respect to a small parameter, we can use either a polynomial interpolation on a

mesh which condenses in a boundary layer or we can use special interpolation formulas which are
exact on a boundary layer component of the interpolating function. In this paper, we construct
and study the formulas of numerical differentiation based on the interpolation formulas which
are exact on a boundary layer component. We obtained the error estimates which are uniform

with respect to a small parameter. Some numerical results validating the theoretical estimates
are discussed.

Key words. Function of one variable, exponential boundary layer, formulas of numerical
differentiation, an error estimate.

1. Introduction

Singularly perturbed problems are used for modeling convection-diffusion
processes with dominant convection therefore the question of numerical solution
of such problems is relevant. Solutions of singularly perturbed problems have large
gradients in a boundary layer, thus application of classical difference schemes leads
to large errors. To construct the difference schemes which converge uniformly with
respect to a small parameter ε, there are two basic approaches based on papers
A.M. Ilyin [1] and N. S. Bakhvalov [2].

In [1], it is proposed to construct difference schemes based on a fitting to the
boundary layer component. These schemes are known as the exponential fitting
schemes and were constructed in many works, for example in monographs [3,4] and
the references therein. The schemes of arbitrarily high ε-uniform order of accuracy
on a uniform mesh were constructed in [5,6]. According to [7] the exponential fitted
scheme on a uniform mesh is ε-uniformly accurate in the case of an elliptic problem
with regular boundary layers.

In [2], it is proposed to apply classical difference scheme on a special mesh that
condenses in a boundary layer. This approach was developed in [8–15] and in a
number of other works.

The question of construction of numerical differentiation formulas for functions
with large gradients in a boundary layer is relevant too, because the use of classical
formulas based on a differentiation of the Lagrange polynomial [16] leads to large
errors. We can use the approaches used to construct difference schemes which
converge ε-uniformly to create the acceptable numerical differentiation formulas.

The approach based on application of classical numerical differentiation formulas
on meshes that condense in a boundary layer was investigated in [17–21] and some
other works. In [17], an ordinary convection-diffusion equation is considered. The
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upwind scheme on the Shishkin and the Bakhvalov meshes with the property of
ε-uniform convergence was used. To calculate the first derivative of the solution of
differential problem, the authors used the solution of difference scheme and one-
sided difference formula. The estimate of the relative error in a boundary layer and
the estimate of the absolute error outside a boundary layer were obtained. These
estimates are ε-uniform. In [20], this approach was applied to solve numerically
a weakly coupled system of two singularly perturbed convection-diffusion second
order ordinary differential equations on the Shishkin mesh. In [18, 19], the error
of difference formulas on the Shishkin mesh for the derivatives of the solution of a
singularly perturbed elliptic problem was investigated. In [21], the difference scheme
on the Shishkin mesh for a linear singularly perturbed parabolic convection-diffusion
problem was investigated. Similarly to [17] the error of the numerical differentiation
formulas at mesh nodes was estimated.

In this paper, we study a problem of numerical differentiation on a uniform
mesh by the use of a fitting of the difference formulas to the component responsible
for the large gradients of the function in a boundary layer. The study of this
approach is of interest for the following reasons. Difference schemes on uniform
meshes are applicable to the numerical solution of a number of singularly perturbed
problems as was mentioned above. Difference formulas for derivatives with the
exponential fitting can be successfully applied to construct difference schemes and
splines which converge ε-uniformly. It can be necessary in the case of initial or
boundary conditions in a boundary layer region to approximate the first or the
second derivatives. We applied such approach in [22,23]. In [24], special difference
formulas for approximation of derivatives were used to construct exact difference
schemes but this method was not applied to singularly perturbed problems.

We assume that a function u(x) has the decomposition:

(1) u(x) = p(x) + γ Φ(x), x ∈ [0, 1],

where the functions u(x), p(x), Φ(x) are sufficiently smooth, the boundary
layer component Φ(x) is known and responsible for the large gradients of the
function u(x), the function p′(x) is uniformly bounded. We also assume that
the constant γ and the function p(x) are unknown but the estimates of certain
derivatives of the function p(x) are known.

In [25], the decomposition (1) of the solution of a singularly perturbed boundary
value problem was investigated. The authors applied the decomposition to prove a
uniform convergence of the difference scheme.

To construct the example of decomposition (1), we consider a singularly
perturbed problem

(2) εu′′(x) + a(x)u′(x)− b(x)u(x) = f(x), u(0) = A, u(1) = B,

where a(x) > α0 > 0, b(x) > 0, ε ∈ (0, 1], functions a, b, f are sufficiently smooth,
the constant α0 is separated from zero. It is known [25] that for small values of
parameter ε a solution of the problem (2) has exponential boundary layer near x = 0
and the function u(x) has the form (1). If we specify

Φ(x) = e−a0 x/ε, a0 = a(0), γ = −εu′(0)/a0,

then there are the estimates |p′(x)| 6 C0, |γ| 6 C0, where the constant C0 is
independent of ε. In this case the derivatives p(j)(x), j > 2 can be unbounded for
small value ε but the function γΦ(x) is responsible for the main growth of u(x) in a
boundary layer. For this reason, we construct formulas of numerical differentiation
that are exact on the function Φ(x). We also study an accuracy of such formulas
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in the case of the exponential boundary layer under conditions that Φ(x) = e−αx/ε,
α > 0, ε ∈ (0, 1], the constant α is separated from zero.

Let us give a review of the papers in which this approach was applied. In [26],
it is shown in the case u(x) = e−x/ε, x ∈ [0, 1] that the relative error of classical
formula for the first derivative u′(x) ≈ (un − un−1)/h in the case ε = h on the first
interval of mesh has an order O(1) independently of h. In [26], the numerical
differentiation formula on two nodes which is exact on a boundary layer component
is constructed in the case of the exponential boundary layer and it is proved that
the relative error of that formula has an order O(h) uniformly with respect to ε.
In [27], for a function of the form (1) the numerical differentiation formula on two
nodes was constructed.

In [28], non-polynomial interpolation formula with arbitrarily given number
of the interpolation nodes for a function of the form (1) is constructed. The
proposed interpolant is exact on the boundary layer component Φ(x). Numerical
differentiation formulas based on a differentiation of the proposed interpolant are
obtained to calculate derivatives of the function u(x). The constructed formulas of
numerical differentiation with arbitrarily given number of nodes are exact on the
boundary layer component Φ(x). However in [28], the ε-uniform error estimates of
the constructed formulas are absent. In [29], to calculate the first and the second
derivatives at nodes of mesh in the case of the exponential layer component, ε-
uniform estimates of the relative error of the numerical differentiation formulas are
obtained.

Notation. Let ∥f∥[a, b] = max
x∈[a, b]

|f(x)|. Here C, sometimes subscripted, denotes

a generic positive constant which is independent of the perturbation parameter ε
and the step size of the mesh.

2. Problem

We assume that the function u(x) has the form (1) and Ωh is a uniform mesh of
the considered interval

Ωh = {xn : xn = nh, n = 0, 1, . . . , N, x0 = 0, xN = 1}.

We also assume that the function u(x) is given at the nodes xn ∈ Ωh. Let us
denote un = u(xn).

The formula of numerical differentiation which is exact on the boundary
layer component Φ(x), for a function of the form (1) is constructed in [28].
The formula for computation of the jth-derivative of the function u(x) on the
interval [xm, xm+k−1] has the form

(3) L
(j)
Φ, k(u, x) = L

(j)
k−1(u, x)+

[xm, xm+1, . . . , xm+k−1]u

[xm, xm+1, . . . , xm+k−1]Φ

(
Φ(j)(x)− L

(j)
k−1(Φ, x)

)
,

where j > 0, Lk−1(u, x) is the Lagrange polynomial interpolating the function u(x)

on (k − 1) nodes xm, xm+1, . . . , xm+k−2, L
(j)
k−1(u, x) is the jth-derivative of

Lagrange polynomial Lk−1(u, x) and [xm, xm+1, . . . , xm+k−1]u is the divided
difference of the function u(x) [30, p. 340].

Further we investigate the formula (3) for function of the form (1), in the
case Φ(x) = e−αx/ε, α > 0, ε ∈ (0, 1] for the first derivative (j = 1) on k = 2, 3
and for the second derivative (j = 2) on k = 3, 4.
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3. Formulas of numerical differentiation for the first derivative

3.1. Formula of numerical differentiation for the first derivative on two
nodes. We consider the formula (3) in the case j = 1, k = 2

(4) L′
Φ, 2(u, x) =

un − un−1

Φn − Φn−1
Φ′(x), x ∈ [xn−1, xn].

Assume that the condition Φ′(x) ̸= 0, x ∈ (xn−1, xn) is fulfilled. Then the
formula (4) is correctly defined.

In [26], the formula (4) in the case Φ(x) = e−αx/ε is investigated and the
following error estimate is proved

(5) ε|L′
Φ,2(u, x)− u′(x)| 6 Ch, x ∈ [xn−1, xn], n = 1, 2, . . . , N.

Further we obtain the estimate (5) in the integral form and specify the constant C.

Theorem 3.1. Let Φ(x) = e−αx/ε. Then for n = 1, 2, . . . , N one has

(6)

ε|L′
Φ,2(u, x)− u′(x)| 6 α

xn∫
xn−1

|p′(t)| dt+ ε

xn∫
xn−1

|p′′(t)| dt 6

6 h
(
α ∥p′∥[xn−1, xn] + ε ∥p′′∥[xn−1, xn]

)
, x ∈ [xn−1, xn].

Proof. Taking into account that the formula (4) is exact on Φ(x), we obtain

(7) ε|L′
Φ,2(u, x)− u′(x)| 6 ε|L′

Φ,2(p, x)− L′
2(p, x)|+ ε|L′

2(p, x)− p′(x)|.

At first, we estimate the second term in (7). Then one has

(8)

ε|L′
2(p, x)− p′(x)| = ε

∣∣∣∣pn − pn−1

h
− p′(x)

∣∣∣∣ = ε|p′(s)− p′(x)| 6

6 ε

xn∫
xn−1

|p′′(t)| dt 6 ε h ∥p′′∥[xn−1,xn], s ∈ [xn−1, xn].

For the first term in (7) it is satisfied

(9)

ε
∣∣L′

Φ, 2(p, x)− L′
2(p, x)

∣∣ = |pn − pn−1|
∣∣∣∣ εΦ′(x)

Φn − Φn−1
− ε

h

∣∣∣∣ =
=

∣∣∣∣∣∣
xn∫

xn−1

p′(t) dt

∣∣∣∣∣∣ |F1, 2(x)| , F1, 2(x) =
εΦ′(x)

Φn − Φn−1
− ε

h
.

Then substituting Φ(x) = e−αx/ε into the function F1, 2(x), one obtains

F1, 2(x) =
ε

h

(
−

αh
ε e−

αx
ε

e−
αxn

ε − e−
αxn−1

ε

− 1

)
.

We show that |F1, 2(xn)| 6 α. Let t = αh/ε then

F1, 2(xn) =
α

t

(
t

et − 1
− 1

)
, |F1, 2(xn)| = α

∣∣∣∣ t− et + 1

t(et − 1)

∣∣∣∣ = α
et − t− 1

t(et − 1)
6 α.

It is analogically verified that |F1, 2(xn−1)| 6 α. Taking into account that the
function F1, 2(x) is decreasing, we obtain

|F1, 2(x)| 6 α, x ∈ [xn−1, xn].
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Then from (9) one has

(10) ε|L′
Φ,2(p, x)− L′

2(p, x)| 6 α

xn∫
xn−1

|p′(t)| dt 6 αh ∥p′∥[xn−1,xn].

Thus the estimate (6) follows from (7), (8) and (10). �

3.2. Formula of numerical differentiation for the first derivative on three
nodes. We consider classical formula of numerical differentiation for the first
derivative

(11) u′(x) ≈ L′
3(u, x) =

un+1 − un−1

2h
+
un+1 − 2un + un−1

h2
(x− xn),

where x ∈ [xn−1, xn+1].
Let u(x) = e−x/ε. Then in the case ε = h one has

ε |(−3u0 + 4u1 − u2)/(2h)− u′(0)| =
∣∣(−1.5 + 2e−1 − 0.5e−2)− (−1)

∣∣ ≈ 0.168.

We obtained that in the case ε = h the relative error of the formula (11) can be
large for small values of h.

Now we consider the formula (3) in the case k = 3, j = 1

(12) L′
Φ,3(u, x) =

un − un−1

h
+

un−1 − 2un + un+1

Φn−1 − 2Φn +Φn+1

(
Φ′(x)− Φn − Φn−1

h

)
,

where x ∈ [xn−1, xn+1]. Assume that the condition Φ′′(x) ̸= 0, x ∈ (xn−1, xn+1) is
fulfilled. Then the formula (12) is correctly defined.

Theorem 3.2. Let Φ(x) = e−αx/ε. Then for n = 1, 2, . . . , N − 1 one has

(13)

ε|L′
Φ,3(u, x)− u′(x)| 6 min{αh, ε}

2

xn+1∫
xn−1

|p′′(t)| dt+

+
5

4α
max{αh, ε}

xn+1∫
xn−1

|p′′′(t)| dt

 6 2hmin{αh, ε}
(
2 ∥p′′∥[xn−1, xn+1]+

+
5

4α
max{αh, ε} ∥p′′′∥[xn−1, xn+1]

)
, x ∈ [xn−1, xn+1].

Proof. Since the formula (12) is exact on Φ(x) we obtain

(14)
ε(L′

Φ,3(u, x)− u′(x)) = ε(L′
Φ,3(p, x)− p′(x)) =

= ε(L′
Φ,3(p, x)− L′

3(p, x)) + ε(L′
3(p, x)− p′(x)).
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In order to estimate the second term in (14) we use the Taylor formula with the
integral form of the remainder

|L′
3(p, x)− p′(x)| =

∣∣∣∣pn+1 − pn−1

2h
− p′(xn) +

pn+1 − 2pn + pn−1

h2
(x− xn)−

−p′(x) + p′(xn)| 6
1

4h

∣∣∣∣∣∣
xn∫

xn−1

p′′′(t)(xn−1 − t)2 dt+

xn+1∫
xn

p′′′(t)(xn+1 − t)2 dt

∣∣∣∣∣∣+

+

∣∣∣∣∣∣
x∫

xn

(
pn+1 − 2pn + pn−1

h2
− p′′(s)

)
ds

∣∣∣∣∣∣ 6 h

4

xn+1∫
xn−1

|p′′′(t)| dt+

+

∣∣∣∣∣∣
x∫

xn

(p′′(r)− p′′(s)) ds

∣∣∣∣∣∣ 6 h

4

xn+1∫
xn−1

|p′′′(t)| dt+

∣∣∣∣∣∣
x∫

xn

r∫
s

p′′′(t) dt ds

∣∣∣∣∣∣ 6

6 5

4
h

xn+1∫
xn−1

|p′′′(t)| dt, r ∈ [xn−1, xn+1].

Therefore, one has

(15) ε|L′
3(p, x)− p′(x)| 6 5

4
ε h

xn+1∫
xn−1

|p′′′(t)| dt 6 5

2
ε h2 ∥p′′′∥[xn−1, xn+1]

.

In order to estimate the first term in (14) we use the Taylor formula with the
integral form of the remainder

ε
∣∣L′

Φ,3(p, x)− L′
3(p, x)

∣∣ = ε

∣∣∣∣ pn−1 − 2pn + pn+1

Φn−1 − 2Φn +Φn+1

(
Φ′(x)− Φn − Φn−1

h

)
−

− (pn−1 − 2pn + pn+1)(2x− xn − xn−1)

2h2

∣∣∣∣ =
= |pn−1 − 2pn + pn+1|

∣∣∣∣ε(Φ′(x)− (Φn − Φn−1)/h)

Φn−1 − 2Φn +Φn+1
− ε(2x− xn − xn−1)

2h2

∣∣∣∣ =
=

∣∣∣∣∣∣
xn+1∫
xn

p′′(t)(xn+1 − t) dt+

xn−1∫
xn

p′′(t)(xn−1 − t) dt

∣∣∣∣∣∣ |F1, 3(x)| ,

where the function F1, 3(x) corresponds to the expression in the last module.
Therefore, one has

(16)
ε|L′

Φ,3(p, x)− L′
3(p, x)| 6 h |F1, 3(x)|

xn+1∫
xn−1

|p′′(t)| dt 6

6 2h2 ∥p′′∥[xn−1, xn+1]
|F1, 3(x)| .
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Substituting Φ(x) = e−αx/ε into the function F1, 3(x), we obtain

(17) F1, 3(x) =
ε
(
−α ε−1e−

α (x−xn)
ε −

(
1− e

αh
ε

)
/h
)

e−
αh
ε − 2 + e

αh
ε

− ε(2x− xn − xn−1)

2h2
.

We show that on any interval [xn−1, xn+1] ⊂ [0, 1] the function F1, 3(x) is
bounded uniformly with respect to ε. Let t = αh/ε. Then from (17) at the
node xn−1 we yield

F1, 3(xn−1) = α
ε

αh

(
e

αh
ε − 1− αh

ε e
αh
ε

e−
αh
ε − 2 + e

αh
ε

+
1

2

)
= α

3et − 2tet + e−t − 4

2t(e−t − 2 + et)
.

Since for t > 0 the estimate φ1(t) = 3et − 2tet + e−t − 4 6 0 is satisfied then we
obtain

(18) |F1, 3(xn−1)| = α
2tet − 3et − e−t + 4

2t(e−t − 2 + et)
.

One can show that the function φ2(t) = 2t(e−t − 2 + et)− (2tet − 3et − e−t + 4)
and the function φ3(t) = 2(e−t − 2 + et)− (2tet − 3et − e−t + 4) are nonnegative in
the case t > 0, therefore, from (18) one has

|F1, 3(xn−1)| 6 α, |F1, 3(xn−1)| 6
α

t
=
ε

h
,

consequently, it is satisfied

(19) h|F1, 3(xn−1)| 6 min{αh, ε}.

It is analogically verified that

(20) h|F1, 3(xn+1)| 6 min{αh, ε}.

Now we investigate the function F1, 3(x) at the stationary point xd. It follows
from (17) that

F1, 3
′(x) =

α2 e−
α (x−xn)

ε

ε(e−
αh
ε − 2 + e

αh
ε )

− ε

h2
.

Therefore, one has

(21) e−
αxd

ε =
e−

αh
ε − 2 + e

αh
ε

(αh/ε)2
e−

αxn
ε =

e−
2αh
ε − 2 e−

αh
ε + 1

(αh/ε)2
e−

αxn−1
ε .

Since e−
αh
ε − 2 + e

αh
ε > (αh/ε)2 is satisfied then xd 6 xn. Taking into account

that e−
2αh
ε − 2 e−

αh
ε + 1 6 (αh/ε)2 holds, we obtain xd > xn−1. It follows

that xd ∈ [xn−1, xn ]. From (17) and (21) we obtain

F1, 3(xd) = α
ε

αh

(
e

αh
ε − 1− ε (e−

αh
ε − 2 + e

αh
ε )/(αh)

e−
αh
ε − 2 + e

αh
ε

− 1

2

(
1 +

2(xd − xn)

h

))

= α
t(et − e−t) + (δt− 2)(e−t − 2 + et)

2t2(e−t − 2 + et)
,

where δ = 2(xn − xd)/h.
Since δ > 0, we have φ7(t) = t(et − e−t) + (δt− 2)(e−t − 2 + et) > 0 in the

case t > 0. Thus, it follows that

(22) |F1, 3(xd)| = α
t(et − e−t) + (δt− 2)(e−t − 2 + et)

2 t2(e−t − 2 + et)
.
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We prove t > δ/2. In order to do this we consider the function

θ1(t) = t2 et
2 − (e−t − 2 + et) and prove θ1(t) > 0. For t > 0 one has

θ1(0) = 0, θ1
′
(t) = 2t et

2

+ 2t3 et
2

+ e−t − et, θ1
′
(0) = 0,

θ1
′′
(t) = (2et

2

− e−t − et) + (10t2 + 4t4) et
2

= θ11(t) + θ12(t),

where θ12(t) = (10t2 + 4t4) et
2 > 0 and θ11(t) = 2et

2 − et − e−t. For t > 0 we
obtain

θ11(0) = 0, θ11
′
(t) = 4t et

2

− et + e−t, θ11
′
(0) = 0,

θ11
′′
(t) = 8t2et

2

+ 4et
2

− et − e−t = 8t2et
2

+ (et − e−t) + 2et(2et
2−t − 1) =

= 8t2et
2

+ (et − e−t) + 2et(et
2−t+ln 2 − 1) >

> 2et(et
2−t+1/4 − 1) = 2et(e(t−1/2)2 − 1) > 0.

It follows that for t > 0 we have θ11(t) > 0. Therefore, one has θ1(t) > 0. Then
we obtain

e−
αxd

ε =
e−

αh
ε − 2 + e

αh
ε

(αh/ε)2
e−

αxn
ε 6 e(αh/ε)2 e−

αxn
ε ,

hence, the estimate xd > −αh2/ε+ xn holds, therefore, t > δ/2 is satisfied.
One can show in the case t > 0 that the function φ8(t) = 2 t2(e−t − 2 + et) −

(t(et − e−t) + (δt− 2)(e−t − 2+ et)) is nonnegative by taking into account that the
estimate t > δ/2 holds true.

One can also show in the case t > 0 that the function φ9(t) = 4 t(e−t − 2+ et)−
(t(et − e−t) + (δt− 2)(e−t − 2+ et)) is nonnegative by taking into account that the
estimate δ 6 2 holds true.

Since φ8(t) > 0 and φ9(t) > 0, from (22) we get

|F1, 3(xd)| 6 α, |F1, 3(xd)| 6
2α

t
=

2 ε

h
,

therefore, one has

(23) h|F1, 3(xd)| 6 min{αh, 2 ε} 6 2 min{αh, ε}.
Thus, from (16), (19), (20), (23) we obtain

(24)

ε|L′
Φ,3(p, x)− L′

3(p, x)| 6 2 min{αh, ε}
xn+1∫

xn−1

|p′′(t)| dt 6

6 4hmin{αh, ε} ∥p′′∥[xn−1, xn+1]
.

Then the estimate (13) follows from (14), (15) and (24). �

4. Formulas of numerical differentiation for the second derivative

4.1. Formula of numerical differentiation for the second derivative on
three nodes. We consider classical formula of numerical differentiation for the
second derivative

(25) u′′(x) ≈ L′′
3(u, x) =

un−1 − 2un + un+1

h2
, x ∈ [xn−1, xn+1].

Let u(x) = e−x/ε. Then in the case ε = h we have

ε2
∣∣(u0 − 2u1 + u2)/h

2 − u′′(0)
∣∣ ≈ 0.6.
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We notice that in this case ε 6 h the relative error of the formula (25) can be
large.

Now we consider the formula (3) in the case k = 3, j = 2

(26) L′′
Φ,3(u, x) =

un−1 − 2un + un+1

Φn−1 − 2Φn +Φn+1
Φ′′(x), x ∈ [xn−1, xn+1].

Assume that the condition Φ′′(x) ̸= 0, x ∈ (xn−1, xn+1) is fulfilled. Then the
formula (26) is correctly defined.

Theorem 4.1. Let Φ(x) = e−αx/ε. Then for n = 1, 2, . . . , N − 1 one has

(27)

ε2|L′′
Φ,3(u, x)− u′′(x)| 6

3α max{αh, ε}
xn+1∫

xn−1

|p′′(t)| dt+

+2 ε2
xn+1∫

xn−1

|p′′′(t)| dt

 6 2h
(
3α max{αh, ε} ∥p′′∥[xn−1, xn+1]+

+2 ε2 ∥p′′′∥[xn−1, xn+1]

)
, x ∈ [xn−1, xn+1].

Proof. Since the formula (26) is exact on Φ(x) we have

(28)
ε2(L′′

Φ,3(u, x)− u′′(x)) = ε2(L′′
Φ,3(p, x)− p′′(x)) =

= ε2(L′′
Φ,3(p, x)− L′′

3(p, x)) + ε2(L′′
3(p, x)− p′′(x)).

In order to estimate the second term in (28) we use the Taylor formula with the
integral form of the remainder

|L′′
3(p, x)− p′′(x)| =

∣∣∣∣pn+1 − 2pn + pn−1

h2
− p′′(xn) + p′′(xn)− p′′(x)

∣∣∣∣ 6
6 1

2h2

∣∣∣∣∣∣
xn+1∫
xn

p′′′(t)(xn+1 − t)2 dt−
xn∫

xn−1

p′′′(t)(t− xn−1)
2 dt

∣∣∣∣∣∣+

+

∣∣∣∣∣∣
xn∫
x

p′′′(t) dt

∣∣∣∣∣∣ 6 2

xn+1∫
xn−1

|p′′′(t)| dt.

Therefore, one has

(29) ε2|L′′
3(p, x)− p′′(x)| 6 2 ε2

xn+1∫
xn−1

|p′′′(t)| dt 6 4 ε2 h ∥p′′′∥[xn−1, xn+1]
.
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In order to estimate the first term in (28) we use the Taylor formula with the
integral form of the remainder

ε2
∣∣L′′

Φ,3(p, x)− L′′
3(p, x)

∣∣ = ε2
∣∣∣∣ pn−1 − 2pn + pn+1

Φn−1 − 2Φn +Φn+1
Φ′′(x)−

−pn−1 − 2pn + pn+1

h2

∣∣∣∣ = |pn−1 − 2pn + pn+1|
∣∣∣∣ ε2Φ′′(x)

Φn−1 − 2Φn +Φn+1
− ε2

h2

∣∣∣∣ =
=

∣∣∣∣∣∣
xn+1∫
xn

p′′(t)(xn+1 − t) dt+

xn−1∫
xn

p′′(t)(xn−1 − t) dt

∣∣∣∣∣∣ |F2, 3(x)| ,

where the function F2, 3(x) corresponds to the expression in the last module.
Therefore, one has

(30)

ε2|L′′
Φ,3(p, x)− L′′

3(p, x)| 6 h |F2, 3(x)|
xn+1∫

xn−1

|p′′(t)| dt 6

6 2h2 ∥p′′∥[xn−1, xn+1]
|F2, 3(x)| .

Substituting Φ(x) = e−αx/ε into the function F2, 3(x) we obtain

(31) F2, 3(x) =
α2 e−

α (x−xn)
ε

e−
αh
ε − 2 + e

αh
ε

− ε2

h2
.

We show that on any interval [xn−1, xn+1] ⊂ [0, 1] the function F2, 3(x) is
bounded uniformly with respect to ε. Let t = αh/ε then from (31) at the node xn−1

we yield

F2, 3(xn−1) = α2

(
e

αh
ε

e−
αh
ε − 2 + e

αh
ε

− ε2

α2 h2

)
= α2 e

t(t2 − 1) + 2− e−t

t2(e−t − 2 + et)
.

Since for t > 0 the estimate ψ1(t) = et(t2 − 1) + 2− e−t > 0 is satisfied then we
obtain

(32) |F2, 3(xn−1)| = α2 e
t(t2 − 1) + 2− e−t

t2(e−t − 2 + et)
.

On can show that the function ψ2(t) = 3t2(e−t − 2 + et)− (et(t2 − 1) + 2− e−t)
is nonnegative in the case t > 1, and in the case 0 6 t < 1 the
function ψ3(t) = 3t(e−t − 2 + et)− (et(t2 − 1) + 2− e−t) is nonnegative. Then
from (32) we yield

|F2, 3(xn−1)| 6 3α2, α h > ε; |F2, 3(xn−1)| 6
3α2

t
= 3α

ε

h
, α h < ε,

therefore, it is satisfied

(33) h|F2, 3(xn−1)| 6 3α max{αh, ε}.
Now we estimate F2, 3(xn+1). It follows from (31) that

F2, 3(xn+1) = α2 t
2e−t + 2− et − e−t

t2(e−t − 2 + et)
.

Since the following function ψ4(t) can be presented in the form

ψ4(t) = et + e−t − 2− t2e−t = (et/2 − e−t/2 + te−t/2)(et/2 − e−t/2 − te−t/2),
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and the function ψ42(t) = et/2 − e−t/2 − te−t/2 is nonnegative for t > 0 then one
has ψ4(t) > 0 for t > 0. Therefore, we obtain

(34) |F2, 3(xn+1)| = α2 e
t + e−t − 2− t2e−t

t2(e−t − 2 + et)
.

Since the following function ψ5(t) can be presented in the form

ψ5(t) = t(e−t − 2 + et)− (et + e−t − 2− t2e−t) = (t− 1)(e−t − 2 + et) + t2e−t,

then ψ5(t) > 0 for t > 1. Next, it is easy to verify that ψ5(t) > 0 for 0 6 t 6 1.
Therefore, one has ψ5(t) > 0 for t > 0.

Taking into account that in the case t > 0 the function ψ5(t) and the
function ψ6(t) = (e−t − 2 + et)− (et + e−t − 2− t2e−t) are nonnegative then it
follows from (34) that

|F2, 3(xn+1)| 6
α2

t
= α

ε

h
, |F2, 3(xn+1)| 6

α2

t2
=
ε2

h2
,

therefore, one has

(35) h2|F2, 3(xn+1)| 6 εmin{αh, ε}.

It follows from (31) that

F2, 3
′(x) = − α3 e−

α (x−xn)
ε

ε(e−
αh
ε − 2 + e

αh
ε )

< 0, x ∈ [xn−1, xn+1],

then taking into account (33) and (35), from (30) we obtain

(36)
ε2|L′′

Φ,3(p, x)− L′′
3(p, x)| 6 3α max{αh, ε}

xn+1∫
xn−1

|p′′(t)| dt 6

6 6αhmax{αh, ε} ∥p′′∥[xn−1, xn+1]
.

Then the estimate (27) follows from (28), (29) and (36). �

4.2. Formula of numerical differentiation for the second derivative on
four nodes. We consider classical formula of numerical differentiation for the
second derivative

(37) L′′
4(u, x) =

un−1 − 2un + un+1

h2
+
un+2 − 3un+1 + 3un − un−1

h3
(x− xn),

where x ∈ [xn−1, xn+2].
Similarly to analysis of the error of the formula (25), it can be shown that the

error of the formula (37) is of order O(1) in the case ε = h.
Now we consider the formula (3) in the case k = 4, j = 2

(38)

L′′
Φ,4(u, x) =

un−1 − 2un + un+1

h2
+

+
un+2 − 3un+1 + 3un − un−1

Φn+2 − 3Φn+1 + 3Φn − Φn−1

(
Φ′′(x)− Φn−1 − 2Φn +Φn+1

h2

)
,

where x ∈ [xn−1, xn+2]. Assume that the condition Φ′′′(x) ̸= 0, x ∈ (xn−1, xn+2)
is fulfilled. Then the formula (38) is correctly defined.



FORMULAS OF NUMERICAL DIFFERENTIATION ON A UNIFORM MESH 601

Theorem 4.2. Let Φ(x) = e−αx/ε. Then for n = 1, 2, . . . , N − 2 one has

(39)

ε2|L′′
Φ, 4(u, x)− u′′(x)| 6 h

C1 ε
2

xn+2∫
xn−1

|p(4)(s)| ds+

+C2 max{αh, ε}
xn+2∫

xn−1

|p(3)(s)| ds

 6 3h2
(
C1 ε

2∥p(4)∥[xn−1, xn+2]+

+C2 max{αh, ε}∥p(3)∥[xn−1, xn+2]

)
, x ∈ [xn−1, xn+2],

where C1 = 19/6, C2 = 12 e3 α.

Proof. The formula (38) is exact on the function Φ(x), therefore we have

(40)
ε2(L′′

Φ,4(u, x)− u′′(x)) = ε2(L′′
Φ,4(p, x)− p′′(x)) =

= ε2(L′′
Φ,4(p, x)− L′′

4(p, x)) + ε2(L′′
4(p, x)− p′′(x)).

Let us consider the relative error corresponding to the first term in (40) in the
form

(41) ε2(L′′
Φ,4(p, x)− L′′

4(p, x)) =
1

h
(pn+2 − 3pn+1 + 3pn − pn−1)F2, 4(x),

where

F2, 4(x) = ε2h

(
Φ′′(x)− (Φn−1 − 2Φn +Φn+1)/h

2

Φn+2 − 3Φn+1 + 3Φn − Φn−1
− x− xn

h3

)
.

Applying the Taylor formula with the integral form of the remainder at the
node xn for p(xn±1) and p(xn+2), we yield

(42) |pn+2 − 3pn+1 + 3pn − pn−1| 6
3

2
h2

xn+2∫
xn−1

|p(3)(s)| ds.

Substituting Φ(x) = e−αx/ε into the function F2, 4(x) we obtain

(43) F2, 4(x) =
ε2
(
1− e−

αh
ε

)2
− α2h2e−

α(x−xn−1)

ε

h
(
1− e−

αh
ε

)3 − ε2

h2
(x− xn).

Let us consider the case αh/ε > 1. Then 1− e−αh/ε > 1− e−1. It follows
from (43) that

(44) |F2, 4(x)| 6 α2

(( ε

α h

)2 h

1− e−1
+

h

(1− e−1)
3 +

( ε

α h

)2
|x− xn|

)
6 8α2h.

Let us consider the case αh/ε < 1. It follows from (43) that

(45) F2, 4(x) =
ε2h

(
1− e−

αh
ε

)2
− ε2(x− xn)

(
1− e−

αh
ε

)3
− α2h3 e−

α(x−xn−1)

ε

h2
(
1− e−

αh
ε

)3 .

Next, we raise (1− e−αh/ε) to the second and the third powers in the numerator
of the formula (45) and apply the Maclaurin series expansion with the Lagrange
form of the remainder for exponential functions.
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Then we combine the like terms and obtain

(46)

F2, 4(x) =
α4h3

ε2(1− e−αh/ε)3

((
1

12
+

∆

2
− ∆2

2

)
+

+
αh

ε

((
1

60
− ∆

40

)
e−s1 +

(
4∆

5
− 4

15

)
e−s2 − 81∆

40
e−s3 +

∆3

6
e−s4

))
,

where s1 ∈ (0, α h/ε), s2 ∈ (0, 2αh/ε), s3, s4 ∈ (0, 3αh/ε), ∆ = (x− xn)/h.

The following inequality for t ∈ [0, 1] is valid

1− e−t > e−1 t,

therefore, it follows from (46) that

(47) |F2, 4(x)| 6 α e3 ε

(
11

12
+
αh

ε

811

120

)
6 8 e3 α ε.

Taking into account the estimates (44), (47), we obtain

(48) |F2, 4(x)| 6 8 e3 α max{αh, ε}, x ∈ [xn−1, xn+2].

It follows from (41), (42), (48) that

(49)

ε2|L′′
Φ,4(p, x)− L′′

4(p, x)| 6 12 e3 αh max{αh, ε}
xn+2∫

xn−1

|p(3)(s)| ds 6

6 36 e3 αh2 max{αh, ε} ∥p′′′∥[xn−1, xn+2].

In order to estimate the second term of the right-hand (40) we transform the
formula (37) and yield

(50)

L′′
4(p, x)− p′′(x) =

(
pn+1 − 2pn + pn−1

h2
− p′′n

)
+

+

xn∫
x

(
p(3)(s)− pn+2 − 3pn+1 + 3pn − pn−1

h3

)
ds.

Applying the Taylor formula with the integral form of the remainder at the
node xn for p(xn ± h), we obtain

(51)

∣∣∣∣pn+1 − 2pn + pn−1

h2
− p′′n

∣∣∣∣ 6 h

6

xn+1∫
xn−1

|p(4)(s)| ds 6 h2

3
∥p(4)∥[xn−1, xn+1].

It is known that for some s0 ∈ [xn−1, xn+2] it is satisfied

pn+2 − 3pn+1 + 3pn − pn−1 = h3p(3)(s0),

therefore, for the second term in (50) one has

(52)

∣∣∣∣∣∣
xn∫
x

(
p(3)(s)− pn+2 − 3pn+1 + 3pn − pn−1

h3

)
ds

∣∣∣∣∣∣ 6 3h

xn+2∫
xn−1

|p(4)(s)| ds 6

6 9h2 ∥p(4)∥[xn−1, xn+2].
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Substituting (51), (52) into (50), we obtain

(53)

|L′′
4(p, x)− p′′(x)| 6 h

6

xn+1∫
xn−1

|p(4)(s)| ds+ 3h

xn+2∫
xn−1

|p(4)(s)| ds 6

6 28

3
h2 ∥p(4)∥[xn−1, xn+2].

Then the estimate (39) follows from (40), (49) and (53). �

Notice 1. In this paper, the numerical differentiation formulas which are exact
on a boundary layer component of the differentiable function u(x) are investigated.
Outside the boundary layer where the derivatives of u(x) become uniformly

bounded, we can use the classical numerical differentiation formulas L
(j)
k (u, x) to

calculate the derivatives u(j)(x).
For example, let us consider the formula to calculate the first derivative

u′(x) ≈ L′
2(u, x) =

un − un−1

h
, x ∈ [xn−1, xn].

Then the following estimate is fulfilled∣∣∣∣un − un−1

h
− u′(x)

∣∣∣∣ 6 h ∥u′′∥[xn−1, xn].

If it begins with some n the following estimate is valid

Φ′′(x) =
α2

ε2
e−

αx
ε 6 1 x > xn−1,

then there is a constant C0 such that the estimate ∥u′′∥[xn−1, xn] 6 C0 holds true.
Therefore, the following estimate is satisfied for x ∈ [xn−1, xn]∣∣∣∣un − un−1

h
− u′(x)

∣∣∣∣ 6 C0 h xn−1 > −2 ε

α
ln
ε

α
.

Notice 2. The approach proposed here can be extended to two-dimensional case.
In [31], a generalization of one-dimensional formula (3) in the case j = 0 is studied.
We can use analogously the two-dimensional interpolation formula from [31] to
construct a two-dimensional formula of numerical differentiation. Such formula can
be applied to approximate derivatives in the case of elliptic problem with regular
boundary layers.

5. Numerical results

Example 1. We consider the following function

u(x) = e−
5 x
ε + 4 cos

(π x
2

)
+

1

x+ 1
, x ∈ [0, 1].

Let us define the error norms

∆
(j)
L,N, k = max

i=0, 1, ..., 4(k−1)
l=0, k−1, ..., N−k+1

εj |L(j)
k (u, xl+i/4)− u(j)(xl+i/4)|,

∆
(j)
Φ, N, k = max

i=0, 1, ..., 4(k−1)
l=0, k−1, ..., N−k+1

εj |L(j)
Φ, k(u, xl+i/4)− u(j)(xl+i/4)|,

where xl+1/2 = (xl + xl+1)/2, xl+1/4 = (xl + xl+1/2)/2, xl+3/4 = (xl+1/2 + xl+1)/2
and other fractional nodes are similarly defined. Thus, the error norm is calculated
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as maximum of the error at all nodes of the fined mesh which can be obtained from
the given mesh by dividing each mesh interval into four equal parts.

Table 1 contains the error norm ∆
(1)
L,N, 3 of classical numerical differentiation

formula for the first derivative (left table) and the error norm ∆
(1)
Φ, N, 3 of the proposal

formula (right table) for various values of N and ε.

Table 1. The error norm ∆
(1)
L,N, 3 of classical numerical

differentiation formula for the first derivative (in the left)

and ∆
(1)
Φ, N, 3 of the proposal formula (in the right).

3 ε
N

48 192 768 3072

3 1.75e−2 1.16e−3 7.37e−5 4.62e−6
2−2 1.13e+0 1.30e−1 9.60e−3 6.27e−4
2−4 3.51e+0 1.13e+0 1.30e−1 9.60e−3

2−5 4.25e+0 2.32e+0 4.18e−1 3.63e−2
2−8 4.91e+0 4.63e+0 3.51e+0 1.13e+0
2−10 4.98e+0 4.91e+0 4.63e+0 3.51e+0
2−13 5.00e+0 4.99e+0 4.95e+0 4.81e+0

2−14 5.00e+0 4.99e+0 4.98e+0 4.91e+0

3 ε
N

48 192 768 3072

3 6.69e−3 4.12e−4 2.57e−5 1.60e−6
2−2 7.96e−3 4.05e−4 2.39e−5 1.47e−6
2−4 1.28e−2 4.98e−4 2.53e−5 1.49e−6

2−5 1.53e−2 6.19e−4 2.72e−5 1.52e−6
2−8 1.76e−2 1.04e−3 5.00e−5 2.00e−6
2−10 1.79e−2 1.10e−3 6.49e−5 3.13e−6
2−13 1.80e−2 1.12e−3 6.96e−5 4.22e−6

2−14 1.80e−2 1.12e−3 6.99e−5 4.31e−6

From Table 1 follows that the error of classical numerical differentiation
formula (11) is O(h2) only in the case h < ε but the error of the proposal
formula (12) is uniform with respect to ε. These results correspond to the estimates
obtained in Theorem 3.2.

Table 2 contains the error norm ∆
(2)
L,N, 3 of classical numerical differentiation

formula for the second derivative (left table) and the error norm ∆
(2)
Φ, N, 3 of the

proposal formula (right table) for various values of N and ε.

Table 2. The error norm ∆
(2)
L,N, 3 of classical numerical

differentiation formula for the second derivative (in the left)

and ∆
(2)
Φ, N, 3 of the proposal formula (in the right).

3 ε
N

48 192 768 3072

3 2.57e+0 6.72e−1 1.70e−1 4.26e−2
2−2 1.69e+1 6.56e+0 1.87e+0 4.83e−1
2−4 2.40e+1 1.69e+1 6.56e+0 1.87e+0
2−5 2.48e+1 2.16e+1 1.12e+1 3.57e+0

2−8 2.50e+1 2.49e+1 2.40e+1 1.69e+1
2−10 2.50e+1 2.50e+1 2.49e+1 2.40e+1
2−13 2.50e+1 2.50e+1 2.50e+1 2.50e+1

2−14 2.50e+1 2.50e+1 2.50e+1 2.50e+1

3 ε
N

48 192 768 3072

3 9.81e−1 2.38e−1 5.92e−2 1.48e−2
2−2 1.19e−1 2.05e−2 4.64e−3 1.13e−3
2−4 8.75e−2 7.44e−3 1.28e−3 2.90e−4
2−5 8.90e−2 5.77e−3 7.27e−4 1.50e−4

2−8 8.98e−2 5.60e−3 3.42e−4 2.97e−5
2−10 8.99e−2 5.62e−3 3.50e−4 2.14e−5
2−13 8.99e−2 5.62e−3 3.51e−4 2.19e−5

2−14 8.99e−2 5.62e−3 3.51e−4 2.19e−5

From Table 2 follows that the error of classical numerical differentiation
formula (25) is O(h) only in the case h < ε but the error of the proposal formula (26)
is uniform with respect to ε. These results correspond to the estimates obtained in
Theorem 4.1.
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Table 3 contains the error norm ∆
(2)
L,N, 4 of classical numerical differentiation

formula for the second derivative (left table) and the error norm ∆
(2)
Φ, N, 4 of the

proposal formula (right table) for various values of N and ε.

Table 3. The error norm ∆
(2)
L,N, 4 of classical numerical

differentiation formula for the second derivative (in the left)

and ∆
(2)
Φ, N, 4 of the proposal formula (in the right).

3 ε
N

48 192 768 3072

3 2.40e−1 1.63e−2 1.04e−3 6.53e−5

2−2 1.10e+1 1.61e+0 1.29e−1 8.56e−3
2−4 2.30e+1 1.10e+1 1.61e+0 1.29e−1
2−5 2.45e+1 1.85e+1 4.75e+0 4.73e−1

2−8 2.50e+1 2.49e+1 2.30e+1 1.10e+1
2−10 2.50e+1 2.50e+1 2.49e+1 2.30e+1
2−13 2.50e+1 2.50e+1 2.50e+1 2.50e+1
2−14 2.50e+1 2.50e+1 2.50e+1 2.50e+1

3 ε
N

48 192 768 3072

3 3.31e−2 2.00e−3 1.24e−4 7.78e−6

2−2 4.15e−3 1.78e−4 1.01e−5 6.18e−7
2−4 3.21e−3 6.50e−5 2.78e−6 1.58e−7
2−5 3.34e−3 5.12e−5 1.58e−6 8.16e−8

2−8 3.41e−3 5.31e−5 7.85e−7 1.59e−8
2−10 3.41e−3 5.34e−5 8.31e−7 1.23e−8
2−13 3.41e−3 5.34e−5 8.35e−7 1.30e−8
2−14 3.41e−3 5.34e−5 8.35e−7 1.30e−8

From Table 3 follows that the error of classical numerical differentiation
formula (37) is O(h2) only in the case h < ε but the error of the proposal
formula (38) is uniform with respect to ε. These results correspond to the estimates
obtained in Theorem 4.2.

Example 2. We consider the following function

u(x) = e−
(x+x2/2)

ε + cos
(π x

2

)
, x ∈ [0, 1].

We note that this function is the exact solution of the problem

ε u′(x) + (1 + x)u(x) = −ε π
2
sin
(π x

2

)
+ (1 + x) cos

(π x
2

)
,

u(0) = 2, x ∈ [0, 1],

and in this case Φ(x) = e−
x
ε and γ = 1 in the representation (1).

Table 4 contains the error norm ∆
(1)
L,N, 3 of classical numerical differentiation

formula for the first derivative (left table) and the error norm ∆
(1)
Φ, N, 3 of the proposal

formula (right table) for various values of N and ε.
From Table 4 follows that the error of classical numerical differentiation

formula (11) is O(h2) only in the case h < ε but the error of the proposal
formula (12) is uniform with respect to ε. These results correspond to the estimates
obtained in Theorem 3.2.

Table 5 contains the error norm ∆
(2)
L,N, 3 of classical numerical differentiation

formula for the second derivative (left table) and the error norm ∆
(2)
Φ, N, 3 of the

proposal formula (right table) for various values of N and ε.
From Table 5 follows that the error of classical numerical differentiation

formula (25) is O(h) only in the case h < ε but the error of the proposal formula (26)
is uniform with respect to ε. These results correspond to the estimates obtained in
Theorem 4.1.

Conclusion

The numerical differentiation formulas which are exact on a boundary layer
component of the function with large gradients in an exponential boundary layer
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Table 4. The error norm ∆
(1)
L,N, 3 of classical numerical

differentiation formula for the first derivative (in the left)

and ∆
(1)
Φ, N, 3 of the proposal formula (in the right).

3 ε
N

48 192 768 3072

3 5.13e−4 3.21e−5 2.00e−6 1.25e−7
2−2 1.37e−2 9.45e−4 6.05e−5 3.81e−6
2−4 1.63e−1 1.64e−2 1.17e−3 7.55e−5

2−5 3.78e−1 5.70e−2 4.61e−3 3.08e−4
2−8 9.06e−1 6.34e−1 1.68e−1 1.73e−2
2−10 9.77e−1 9.06e−1 6.34e−1 1.68e−1

2−13 9.97e−1 9.88e−1 9.53e−1 8.13e−1
2−14 9.99e−1 9.94e−1 9.77e−1 9.06e−1

3 ε
N

48 192 768 3072

3 5.87e−4 3.70e−5 2.32e−6 1.45e−7
2−2 2.46e−3 1.84e−4 1.20e−5 7.58e−7
2−4 5.30e−3 6.76e−4 5.00e−5 3.26e−6

2−5 3.98e−3 1.10e−3 9.59e−5 6.51e−6
2−8 9.70e−4 2.90e−4 3.54e−4 4.35e−5
2−10 1.05e−3 6.06e−5 8.10e−5 8.89e−5

2−13 1.07e−3 6.61e−5 3.99e−6 2.97e−6
2−14 1.07e−3 6.65e−5 4.09e−6 1.51e−6

Table 5. The error norm ∆
(2)
L,N, 3 of classical numerical

differentiation formula for the second derivative (in the left)

and ∆
(2)
Φ, N, 3 of the proposal formula (in the right).

3 ε
N

48 192 768 3072

3 7.39e−2 1.85e−2 4.62e−3 1.15e−3
2−2 1.70e−1 4.57e−2 1.16e−2 2.93e−3

2−4 5.77e−1 2.05e−1 5.66e−2 1.45e−2
2−5 8.02e−1 3.72e−1 1.13e−1 2.97e−2
2−8 9.95e−1 9.38e−1 5.99e−1 2.16e−1
2−10 9.99e−1 9.96e−1 9.39e−1 6.00e−1

2−13 1.00e+0 1.00e+0 9.99e−1 9.84e−1
2−14 1.00e+0 1.00e+0 1.00e+0 9.96e−1

3 ε
N

48 192 768 3072

3 8.46e−2 2.13e−2 5.33e−3 1.33e−3
2−2 3.29e−2 9.07e−3 2.32e−3 5.83e−4

2−4 2.45e−2 9.02e−3 2.46e−3 6.30e−4
2−5 1.48e−2 8.10e−3 2.43e−3 6.33e−4
2−8 1.06e−3 1.62e−3 1.61e−3 5.79e−4
2−10 1.07e−3 2.59e−4 4.17e−4 4.04e−4

2−13 1.07e−3 6.69e−5 3.65e−5 4.13e−5
2−14 1.07e−3 6.69e−5 1.62e−5 2.01e−5

are investigated. The numerical differentiation formulas are considered to calculate
the first derivative on two and three nodes and the second derivative on three and
four nodes. The ε-uniform estimates of the relative error for these formulas are
obtained. Numerical results are given to confirm the theoretical results.
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