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IMPROVED ERROR ESTIMATION FOR THE PARTIALLY

PENALIZED IMMERSED FINITE ELEMENT METHODS FOR

ELLIPTIC INTERFACE PROBLEMS

RUCHI GUO, TAO LIN AND QIAO ZHUANG

Abstract. This paper is for proving that the partially penalized immersed finite element (PPIFE)
methods developed in [25] converge optimally under the standard piecewise H

2 regularity assump-
tion for the exact solution. In energy norms, the error estimates given in this paper are better
than those in [25] where a stronger piecewise H

3 regularity was assumed. Furthermore, with the
standard piecewise H

2 regularity assumption, this paper proves that these PPIFE methods also
converge optimally in the L

2 norm which could not be proved in [25] because of the excessive H
3

regularity requirement.

Key words. Interface problems, immersed finite element methods, optimal convergence, discon-
tinuous coefficients, finite element spaces, interface independent mesh, regularity.

1. Introduction

In this article, we establish better error estimates for the numerical solutions
generated by the partially penalized immersed finite element (PPIFE) methods
[25] for the interface problem governed by the second-order elliptic equation:

−∇ · (β∇u) = f, in Ω− ∪ Ω+,(1a)

u = 0, on ∂Ω,(1b)

where, without loss of generality, the domain Ω ⊆ R2 is divided by an interface curve
Γ into two subdomains Ω− and Ω+, and the coefficient β is a piecewise positive
constant function such that

β(X) =

{

β− for X ∈ Ω−,
β+ for X ∈ Ω+.

In addition, the exact solution u satisfies the following jump conditions across the
interface

[u]Γ := u−|Γ − u+|Γ = 0,(2)
[

β∇u · n
]

Γ
:= β−∇u− · n|Γ − β+∇u+ · n|Γ = 0,(3)

where n is the unit normal vector to the interface Γ. For the sake of simplicity, as
in [25], we assume the interface Γ is a C2-curve and does not intersect ∂Ω.

The immersed finite element (IFE) method is developed to solve the interface
problem (1)-(3) on an interface independent mesh, if desirable, a simple struc-
tured (Cartesian) mesh can be used. The key idea of this method is to utilize
Hsieh-Clough-Tocher type macro polynomials [3, 6], i.e., the piecewise polynomials
constructed according to the jump conditions on interface elements to capture the
jump behaviors of the exact solutions [2, 9, 16, 22], while standard polynomials are
used on all the non-interface elements. The global IFE functions such as those used
in [16, 22, 25] are, in general, not continuous across the interface edges, even though
the continuity at the mesh nodes is imposed. The partially penalized IFE (PPIFE)
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methods developed in [25] employed the interior penalties [8] on interface edges to
control the adverse effects from those discontinuities so that these PPIFE methods
converge optimally in a certain energy norm. Penalties are also used in Cut-FEMs
[4, 14] mainly for enhancing jump conditions across the interface. IFE methods for
interface problems associated with other types of PDEs or jump conditions as well
as the applications can be found in [1, 5, 10, 11, 17, 18, 19, 20, 21, 23, 24, 26, 28],
to name just a few.

The authors in [25] employed a piecewise H3 regularity assumption for the exact
solution to the interface problem to prove the optimal convergence of the PPIFE
solutions. However, given the body force term f ∈ L2(Ω), the exact solution to
(1)-(3) only has the piecewise H2 regularity [7] in general. This motivates us to
investigate whether the PPIFE methods developed in [25] can converge optimally
under the standard piecewise H2 regularity assumption instead of the excessive
piecewise H3 regularity. Towards this goal, we introduce a new energy norm that
is stronger than the one used in [25]. Inspired by [13], we derive an estimate
for the IFE interpolation error gauged by this energy norm on a patch of each
interface element. Furthermore, the bilinear form in the PPIFE method has both
the continuity and coercivity in this energy norm. These properties enable us to
derive an error bound for the PPIFE solution in the energy norm under the standard
piecewise H2 regularity assumption. As an important consequence, the improved
estimation further enables us to show the optimal convergence in the L2 norm,
which, to our best knowledge, has not been established in the literature for the
PPIFE methods.

This article consists of four additional sections. The next section reviews some
notations from [25] which will be also used in this article. In Section 3, we introduce
the patches for the interface elements and recover the approximation capabilities
of IFE spaces on these patches. In Section 4 we show the optimal convergence of
the PPIFE solutions. Finally, we make some conclusions in Section 5.

2. Notations and IFE Spaces

We herein adopt some notations from [25]. For every measurable open set Ω̃ ⊆ Ω,

we let Ω̃s := Ω̃ ∩ Ωs, s = ±, and we let W k,p(Ω̃) be the standard Sobolev space

on Ω̃ with the standard norm ‖ · ‖k,p,Ω̃ and the semi-norm |v|k,p,Ω̃. When Ω̃s 6= ∅,
s = ±, we let the related Sobolev norms and semi-norms be

‖ · ‖2
k,p,Ω̃

= ‖ · ‖2
k,p,Ω̃−

+ ‖ · ‖2
k,p,Ω̃+ , | · |2

k,p,Ω̃
= | · |2

k,p,Ω̃−
+ | · |2

k,p,Ω̃+ .

Furthermore, we introduce the following spaces on Ω̃ in the case Ω̃s 6= ∅, s = ±:

PW k,p(Ω̃) = {u : u|Ω̃s ∈W k,p(Ω̃s), s = ±; [u] = 0, [β∇u · nΓ] = 0 on Γ ∩ Ω̃},

for suitable k and p such that involved qualities on Γ∩Ω̃ are well defined. As usual,
we will drop p from the pertinent norms and semi-norms for Hk(Ω̃) =W k,2(Ω̃) and

PHk(Ω̃) = PW k,2(Ω̃).
We let Th be a triangular or a rectangular mesh for the domain Ω ⊂ R2 and let

Nh be the collection of the nodes in the mesh Th. We denote the sets of interface
elements and non-interface elements by T i

h and T n
h . Also, we denote the set of

interior edges by E̊h, the interior interface edges by E̊ i
h and the interior non-interface

edges by E̊n
h , respectively. For each element T ∈ Th, we define its index set as

IT = {1, 2, 3} when T is triangular, but IT = {1, 2, 3, 4} when T is rectangular.
Given each T , let Ai, i ∈ IT be the vertices of T , and the interface partitions the
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index set I into I−
T = {Ai : Ai ∈ T−} and I+

T = {Ai : Ai ∈ T+}. As usual
[16, 15, 17], we make the following assumptions on the mesh Th:

(H1) The interface Γ cannot intersect an edge of any element at more than two
points unless the edge is part of Γ.

(H2) If Γ intersects the boundary of an element at two points, these intersection
points must be on different edges of this element.

Figure 1. left: triangular interface element; right: rectangular
interface element.

Let ψj,T , j ∈ I be the standard linear or bilinear Lagrangian shape functions on
T , i.e.,

(4) ψj,T (Ai) = δij , ∀i, j ∈ IT .

Then we use the polynomial space

(5) P(T ) = Span{ψj,T , j ∈ IT } and Q(T ) = Span{ψj,T , j ∈ IT }

as the local IFE space on the non-interface triangular element and rectangular
elements, respectively. But on the interface elements, we will use the linear and
bilinear IFE shape functions [15, 16, 22]. To be specific, let the interface Γ intersect
the edges of an interface element at the points D and E, as shown in Figure 1. Let l
be the line passing through D, E with the normal vector n̄ = (n̄x, n̄y), and this line

partitions T into two subelements T±
l . Then, on each triangular interface element

T , a linear IFE shape function φT (x, y) is a piecewise linear polynomial specified
by [22] :

(6) φT (x, y) =























φ−T (x, y) = a−x+ b−y + c−, if (x, y) ∈ T−
l ,

φ+T (x, y) = a+x+ b+y + c+, if (x, y) ∈ T+
l ,

φ−T (D) = φ+T (D), φ−T (E) = φ+T (E),

β+ ∂φ+

T

∂n̄ − β− ∂φ−

T

∂n̄ = 0.

Similarly, on each rectangular interface element T , a bilinear IFE shape function
φT (x, y) is a piecewise bilinear polynomial specified by [16]:

(7) φT (x, y) =























φ−T (x, y) = a−x+ b−y + c− + d−xy, if (x, y) ∈ T−
l ,

φ+T (x, y) = a+x+ b+y + c+ + d+xy, if (x, y) ∈ T+
l ,

φ−T (D) = φ+T (D), φ−T (E) = φ+T (E), d− = d+,
∫

DE
(β+ ∂φ+

T

∂n̄ − β− ∂φ−

T

∂n̄ )ds = 0.
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It has been shown [15, 16, 22] that there is a unique IFE shape function φi,T (x, y), i ∈
IT in the format of (6) or (7) satisfying the nodal value conditions

(8) φi,T (Aj) = δij , ∀i, j ∈ IT .

Then the local IFE space on an interface element T is defined as

(9) Sh(T ) = Span{φi,T , i ∈ IT }.

By enforcing the continuity on the mesh nodes, we define the global IFE space as

Sh(Ω) =
{

v ∈ L2(Ω) : v|T ∈ Sh(T ), ∀T ∈ Th,

v is continuous at each X ∈ Nh, v|∂Ω = 0} .
(10)

Now, we recall the PPIFE method [25]. First, we recall the following underline
function space

Vh(Ω) =
{

v ∈ L2(Ω) : v|T ∈ H1(T ),∇v · n|∂T ∈ L2(∂T ),

v is continuous across each e ∈ En
h , v|∂Ω = 0

}

.
(11)

Clearly, we have Sh(Ω) ⊂ Vh(Ω), and functions in eigher of these two spaces can be
discontinuous on the interface edges. For functions in Vh(Ω), the following operators
on each e ∈ E i

h are adopted for the penalties:

(12) [v]e = v|T e
1
− v|T e

2
, and {v}e =

1

2

(

v|T e
1
+ v|T e

2

)

,

where T e
1 and T e

2 are the two elements sharing the edge e. Then the bilinear form
ah(·, ·) : Vh(Ω) × Vh(Ω) → R and the linear form Lf : Vh(Ω) → R for the PPIFE
method are given by

ah(u, v) =
∑

T∈Th

∫

T

β∇u · ∇vdX −
∑

e∈E̊i
h

∫

e

{β∇u · ne}e[v]eds

+ε
∑

e∈E̊i
h

∫

e

{β∇v · ne}e[u]eds+
∑

e∈E̊i
h

σ0
e

|e|

∫

e

[u]e [v]eds,

(13)

(14) Lf (v) =

∫

Ω

fvdX.

Following the same arguments used in [25], we can see that the exact solution u
to the interface problem (1)-(3) with a suitable regularity can satisfy the following
weak equation:

ah(u, vh) = Lf (vh), ∀v ∈ Vh(Ω).(15)

Accordingly, the PPIFE scheme [25] for the interface problem (1) is to find uh ∈
Sh(Ω) such that

(16) ah(uh, vh) = Lf (vh), ∀vh ∈ Sh(Ω).

In this article, we follow [25] to consider the PPIFE methods associated with three
possible choices ε = 0,−1, 1, respectively, and we call the corresponding PPIFE
method the incomplete PPIFE (IPPIFE), the symmetric PPIFE (SPPIFE), and
the non-symmetric PPIFE (NPPIFE) method, respectively.
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3. Approximation Capabilities on a Patch

In this section, following similar ideas in [11, 13], we consider the approximation
capability of the IFE spaces locally around an interface element. Specifically, for
each interface element T ∈ T i

h , we consider a patch around it defined as the union
of the neighbor elements:

(17) ωT = ∪{T ′ ∈ Th : T ′ ∩ T 6= φ},

where the notation S is the closure of a set S. In the discussions from now on, we
make the following assumption on a patch of an interface element:

Patch Assumption: For every interface element T and its patch ωT , let e be an
interface edge of T . Then for s = ±, there exists a triangle T s

e ⊂ Ωs ∩ ωT and two
constants C1, C2 independent of the interface location such that e∩ T s is one edge
of T s

e and

(18) C1|e ∩ T
s|h ≤ |T s

e | ≤ C2|e ∩ T
s|h, s = −,+.

For example, for the interface element T = 4A1A2A3 and the interface edge e =
A1A2 in Figure 2, it is easy to see that

T+
e = 4A1DP, T

−
e = 4A2DQ

can be used to fulfill the Patch Assumption for this interface element T , here, D ∈ e
is the intersection point of the interface Γ and ∂T , P ∈ ωT and Q ∈ ωT are points
whose distance to the line passing A1 and A2 is of about h. Basically, the inequality
(18) to be satisfied in the patch assumption means that the height of the auxiliary
triangle T s

e corresponding to the edge e∩T s has the length O(h). In general, when
the mesh size h is sufficient small so that the interface is locally flat enough, the
patch assumption can be easily satisfied.

Figure 2. The patch of a triangular interface element T = 4A1A2A3.

We now proceed to investigate the approximation capability of the IFE space
on the patch of each interface element. As a preparation, we first consider a few
subsets formed according to the interface geometry inside the patch of an interface
element. Let T be an interface element. We recall l is the line that passes through
the two intersection points of Γ and ∂T . The interface Γ and the line l partition the
patch ωT into the sub-patches ωs

T and ω̂s
T (s = ±), respectively. Let ω̃s

T = ωs
T ∪ ω̂s

T ,
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s = ±, and we can see that ω̃T = (ω̃+
T ∩ω−

T )∪(ω̃
−
T ∩ω+

T ) is the sub-patch sandwiched
between l and Γ. Following [11, 12], we consider the sub-set

(19) ωint
T = ∪{lt ∩ ωT : lt is a tangent line to Γ ∩ ωT }.

For every vertex Ai of T , i ∈ IT , and each point X ∈ ωT \ωint
T , the line segment

AiX has either zero or one intersection point with Γ ∩ ωT . When there is no
intersection point, Ai and X must be on the same side of Γ∩ωT ; while when there
is one intersection point, Ai and X are on the different sides of Γ∩ωT . We further
denote ω∗,s

T = (ω̂s
T ∩ ωs

T )\ω
int
T , s = ±, and ω∗

T = ωT \(ω
∗,−
T ∪ ω∗,+

T ). By Lemma 3.4
of [11], when the mesh size is small enough, there holds

(20) |ω∗
T | ≤ Ch3.

For every X ∈ ω∗,s
T , we let Yi(t,X) = tAi + (1 − t)X . When X and Ai are on

different sides of Γ, we let t̃i = t̃i(X) ∈ [0, 1] such that Ỹi = Yi(t̃i, X) is on the

curve Γ∩ T . Let n(X̃) = (ñx(X̃), ñy(X̃)) be the normal vector to Γ at every point

X̃ ∈ Γ ∩ ωT . Recall n̄ = (n̄x, n̄y) be the normal vector to l and denote X̃⊥ as the

projection of a point X̃ onto l. It can be shown, by the similar discussion as the
Lemmas 3.1 and 3.2 in [9], that, for any X̃ ∈ Γ ∩ ωT , there holds

(21) ‖X̃ − X̃⊥‖ ≤ Ch2, ‖n(X̃)− n̄‖ ≤ Ch.

As in [16, 22], for a function u ∈ H2(Ω− ∪ Ω+), we let Ihu ∈ Sh(Ω) be its IFE
interpolation defined by

Ihu|T = Ih,Tu, with

{

Ih,Tu(X) =
∑

i∈IT
u(Ai)φi,T (X), ∀X ∈ T, ∀T ∈ T i

h ,

Ih,Tu(X) =
∑

i∈IT
u(Ai)ψi,T (X), ∀X ∈ T, ∀T ∈ T n

h .

On each interface element T , every IFE shape function φi,T (X), i ∈ IT can be
naturally considered as a piecewise polynomial defined on the patch ωT according
to the sub-patches ω̂s

T , s = −,+. Therefore, for a function u ∈ H2(Ω− ∪ Ω+), we
can consider its local IFE interpolation Ih,Tu(X) on an interface element T as a
piecewise polynomial defined on the patch ωT according to sub-patches ω̂s

T , s = ±,
and we proceed to the analysis of its accuracy in the rest of this section. In the
discussions below, we denote s = ±, s′ = ∓, namely, s and s′ take opposite signs
whenever a formula have them both. Also, we adopt the following notations: X =
(x, y) and x1 = x, x2 = y.

Following the same arguments in [9], we have the following expansions for Ihu−u:

∂xd
(Ih,Tu(X)− u(X)) =

∑

i∈Is′

(Es
i + F s

i )∂xd
φi,T (X)(22)

+
∑

i∈I

Rs
i∂xd

φi,T (X), ∀X ∈ ω∗,s
T , s = ±,

∂xdx′

d
Ih,Tu(X) =

∑

i∈Is′

(Es
i + F s

i )∂xdx′

d
φi,T (X)(23)

+
∑

i∈I

Rs
i∂xdx′

d
φi,T (X), ∀X ∈ ω∗,s

T , s = ±,

∂xd
Ih,Tu =

∑

i∈I

R̃i∂xd
φi,T (X) ∀X ∈ ω∗

T ,(24)

∂xdxd′
Ih,Tu =

∑

i∈I

R̃i∂xdxd′
φi,T (X) ∀X ∈ ω∗

T ,(25)
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where d, d′ = 1, 2 and

Rs
i (X) = Rs

i1(X) +Rs
i2(X) +Rs

i3(X), i ∈ Is′ , X ∈ ω∗,s
T , with(26)







































Rs
i1(X) =

∫ t̃i

0

(1− t)
d2us

dt2
(Yi(t,X))dt,

Rs
i2(X) =

∫ 1

t̃i

(1− t)
d2us

′

dt2
(Yi(t,X))dt,

Rs
i3(X) = (1 − t̃i)

∫ t̃i

0

d

dt
((M s(Ỹi)− I)∇us(Yi(t,X)) · (Ai −X))dt,

(27)

Es
i = ((M s(Ỹi)−M

s
)∇us(X))(Ai − Ỹi), i ∈ Is′ ,(28)

F s
i = −((M

s
− I)∇us(X))(Ỹi − Ỹi

⊥
), i ∈ Is′ ,(29)

R̃i(X) =

∫ 1

0

d

dt
u(Yi(t,X))dt, i ∈ I,(30)

in which M− = (N+)−1N−, M+ = (N−)−1N+, M
−

= (N
+
)−1N

−
, M

+
=

(N
−
)−1N

+
, with

(31) Ns = Ns(X̃) =

(

ñy(X̃) −ñx(X̃)

βsñx(X̃) βsñy(X̃)

)

and N̄s =

(

n̄y −n̄x

βsn̄x βsn̄y

)

, s = ±.

Now we show the optimal approximation capabilities for the IFE spaces in terms
of the interpolation errors on the patch ωT for each interface element T . This result
is stated in the following theorem and it is complementary to that given in [9, 16, 22].

Theorem 3.1. Assume that the mesh Th is sufficiently fine, then there exists a

constant C independent of the interface location such that the following estimate

holds on each patch ωT associated with every interface element T :

‖∇(Ih,Tu− u)‖L2(ωT ) + h‖∇2(Ih,Tu− u)‖L2(ωT )

≤Ch(‖u‖PH2(ωT ) + ‖u‖PW 1,6(ωT )), ∀u ∈ PH2(ωT ).
(32)

Proof. Using Lemma 4.1 in [9] and the fact ‖Ai −X‖ ≤ Ch for i ∈ I, X ∈ ωT , we
directly have

‖Rs
i ‖L2(ω∗,s

T
)

=(

∫

ω∗,s

T

(

∫ 1

0

(1− t)(Ai −X)THs
u(Yi(t,X))(Ai −X)dt)2dX)1/2

≤Ch2
∫ 1

0

(

∫

ω∗,s

T

(1− t)2
2

∑

k,l=1

|∂xk
∂xl

us(Yi, t)|
2dX)1/2dt

≤Ch2‖u‖PH2(ωT ),

(33)

where Hs
u is the Hessian matrix given by

(34) Hs
u(Yi(t,X)) =

(

usxx(Yi(t,X)) usxy(Yi(t,X))
usyx(Yi(t,X)) usyy(Yi(t,X)))

)

.
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Note that (21) implies the ‖M s(Ỹi) −M
s
‖ ≤ Ch, s = ±. Then, because of (28),

we further have

‖Es
i ‖L2(ω∗,s

T
) ≤‖M s(Ỹi)−M

s
‖‖∇us‖L2(ω∗,s

T
)‖Ai − Ỹj‖

≤Ch‖M s(Ỹi)−M
s
‖‖∇us‖L2(ω∗,s

T
)

≤Ch2‖u‖PH2(ωT ).

(35)

Next, (21) yields

‖F s
i ‖L2(ω∗,s

T
) ≤‖M

s
− I‖‖∇us‖L2(ω∗,s

T
)‖Ỹi − Ỹi

⊥
‖

≤Ch2‖u‖PH2(ωT ).
(36)

In addition, using |ω∗
T | ≤ Ch3 from (20) and the similar argument as the one used

in Lemma 3.2 in [12], we have

‖R̃i‖L2(ω∗

T
) ≤ Ch2‖u‖PW 1,6(ωT ),

‖∂xd
u‖L2(ω∗

T
) ≤ Ch‖u‖PW 1,6(ωT ),

(37)

where d = 1, 2. Note that the IFE shape functions have the following bounds
[9, 16, 22]

(38) |φi,T |Wk,∞(ωT ) ≤ Ch−k, k = 1, 2.

Based on the estimations above, it follows from the expansions (22)-(25) that

‖∂xd
(Ih,Tu− u)‖L2(ω∗,s

T
)(39)

≤Ch−1





∑

i∈Is′

(

‖Es
i ‖L2(ω∗,s

T
) + ‖F s

i ‖L2(ω∗,s

T
)

)

+
∑

i∈I

‖Rs
i ‖L2(ω∗,s

T
)





≤Ch‖u‖PH2(ωT ),

‖∂xdx′

d
(Ih,Tu− u)‖L2(ω∗,s

T
)(40)

≤Ch−2





∑

i∈Is′

(

‖Es
i ‖L2(ω∗,s

T
) + ‖F s

i ‖L2(ω∗,s

T
)

)

+
∑

i∈I

‖Rs
i ‖L2(ω∗,s

T
)





≤C‖u‖PH2(ωT ),

‖∂xd
(Ih,Tu− u)‖L2(ω∗

T
)(41)

≤Ch−1
∑

i∈I

‖R̃i‖L2(w∗

T
) + ‖∂xd

u‖L2(ω∗

T
) ≤ Ch‖u‖PW 1,6(ωT ),

‖∂xdx′

d
(Ih,Tu− u)‖L2(ω∗

T
)(42)

≤Ch−2
∑

i∈I

‖R̃i‖L2(ω∗

T
) + ‖∂xdx′

d
u‖L2(ω∗

T
) ≤ C(‖u‖PW 1,6(ωT ) + ‖u‖PH2(ωT )),

where d, d′ = 1, 2. Note that ωT = ω∗
T ∪ ω∗,−

T ∪ ω∗,+
T , thus (32) follows from (39)-

(42). �
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4. Error estimation for PPIFE method

In this section, we derive optimal estimates for the errors of PPIFE solutions
under the usual H2 regularity assumption for the exact solution. The following
quantities will be used to gauge the errors of PPIFE solutions:

(43) ‖v‖2h =
∑

T∈Th

∫

T

β‖∇v‖2dX +
∑

e∈E̊i
h

σ0
e

∫

e

‖|e|−1/2[v]‖2ds, ∀v ∈ Vh(Ω),

(44) |||v|||2h = ‖v‖2h +
∑

e∈E̊i
h

(σ0
e)

−1

∫

e

‖|e|1/2{β∇v · ne}‖
2ds, ∀v ∈ Vh(Ω).

In fact, the following Lemma shows the quantities defined in (43) and (44) are
indeed energy norms on the space Vh(Ω).

Lemma 4.1. ‖ · ‖h and |||·|||h are both norms on Vh(Ω).

Proof. We only present a proof for |||·|||h and the argument for ‖ · ‖h is similar.
Suppose |||v|||h = 0 for some v ∈ Vh(Ω). By (43), it is easy to see that v is a
piecewise constant on each element and sub-elements of interface elements. Besides,
since v|∂Ω = 0 and v is continuous across all the non-interface edges, we have v = 0
on ∪T∈T n

h
T . In addition, the second term in (43) vanishing implies that v is actually

continuous over all the interface edges, and thus, v = 0 on ∪T∈T i
h
T . Hence, v = 0

on the whole Ω. Since it is easy to verify that |||·|||h is a semi-norm, we conclude
that |||·|||h is a norm. �

We note that the energy norm (43) was already used for the analysis in [25]. It
is easy to see that

(45) ‖v‖h 6 |||v|||h, v ∈ Vh(Ω).

The following lemma shows the norms (43) and (44) are actually equivalent when
restricted on the IFE space Sh(Ω).

Lemma 4.2. For sufficiently large σ0
e , there exists a constant C independent of the

interface location such that |||v|||h 6 C‖v‖h, ∀v ∈ Sh(Ω).

Proof. For each e ∈ E̊ i
h, let T

e
1 and T e

2 be the two elements sharing the same edge e.
By the trace inequality given by Lemmas 3.2 and 3.5 in [25], there exists a constant
C independent of the interface location on both T e

1 and T e
2 , such that

∫

e

‖|e|1/2{β∇v · ne}‖
2ds 6Ch(‖β∇v|T e

1
· ne‖

2
L2(T e

1
) + ‖β∇v|T e

2
· ne‖

2
L2(T e

2
))(46)

6C‖
√

β∇v‖2L2(T e
1
∪T e

2
), ∀v ∈ Sh(Ω).

Then, adding and subtracting the term
∑

e∈E̊i
h

(σ0
e)

−1
∫

e
‖|e|1/2{β∇v · ne}‖2ds in

‖ · ‖h yields

‖v‖2h >

(

1−
2C

σ0
e

)

∑

T∈Th

∫

T

β‖∇vh‖
2dX +

∑

e∈E̊i
h

σ0
e

∫

e

‖|e|−1/2[vh]‖
2ds

+
∑

e∈E̊i
h

(σ0
e)

−1

∫

e

‖|e|1/2{β∇v · ne}‖
2ds,

(47)

where the constant C is from (46). It is easy to see that the desired result follows
from taking σ0

e large enough in (47). �
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The following theorem derives an optimal bound for the error in the flux of the
IFE interpolation of a piecewise H2 function on interface edges.

Theorem 4.1. Assume the mesh Th is sufficiently fine and satisfies the Patch

Assumption. Then there exists a constant C independent of the interface location

such that:

(48)
∑

e∈E̊i
h

‖{β∇(u− Ihu) · ne}‖
2
L2(e) ≤ Ch‖u‖2PH2(Ω), ∀u ∈ PH2(Ω).

Proof. For each interface element T ∈ T i
h , let e ∈ E i

h be one of its edges and
let es = e ∩ Ωs, s = ±. According to the Patch Assumption, there exists an
auxiliary triangle T s

e ⊂ ωT , possessing e
s as one of its edges, such that T s

e ⊂ Ωs

and |es|/|T s
e | ≤ Ch−1, s = ±. Letting βmax = max{β−, β+}, applying the standard

trace inequality on T s
e and using the estimation in (32), we have

‖β∇(u− Ihu) · ne‖L2(e)

≤βmax(‖∇(Ih,Tu− u)‖L2(e−) + ‖∇(Ih,Tu− u)‖L2(e+))

≤C
∑

s=−,+

(

|es|/|T s
e |
)1/2

(‖∇(Ih,Tu− u)‖L2(T s
e )

+ h‖∇2(Ih,Tu− u)‖L2(T s
e )
)

≤Ch1/2(‖u‖PH2(ωT ) + ‖u‖PW 1,6(ωT )).

(49)

For each interface edge e ∈ E̊ i
h, let T

e
1 and T e

2 be the two neighbor elements. Then
(49) implies

∑

e∈E̊i
h

‖{β∇(u− Ihu) · ne}‖
2
L2(e)

6C
∑

e∈E̊i
h

(‖β∇(u− Ih,T e
1
u) · ne‖

2
L2(e) + ‖β∇(u− Ih,T e

2
u) · ne‖

2
L2(e))

6Ch
∑

T∈T i
h

(‖u‖2PH2(ωT ) + ‖u‖2PW 1,6(ωT ))

6Ch(‖u‖2PH2(Ω) + ‖u‖2PW 1,6(Ω)),

(50)

where we have used the finite-overlapping property of the patches ωT , T ∈ T i
h . Then

(48) is obtained by applying the standard embedding inequality [27] ‖w‖1,6,Ωs ≤
C‖w‖2,Ωs , s = ± to (50). �

The following theorem is about the approximation capabilities of the IFE spaces
in terms of the energy norms on the whole domain Ω.

Theorem 4.2. Assume the mesh Th is sufficiently fine and satisfies the Patch

Assumption. Then there exists a constant C independent of the interface location

such that

(51) ‖Ihu− u‖h ≤ Ch‖u‖PH2(Ω), ∀u ∈ PH2(Ω),

(52) |||Ihu− u|||h ≤ Ch‖u‖PH2(Ω), ∀u ∈ PH2(Ω).

Proof. By (45), estimate (51) follows from (52). Estimate (52) simply comes from
the estimate (48) and the definition (44) together with the global optimal approx-
imation capabilities of the linear and bilinear IFE spaces given in [16, 22]. �

Now we show the coercivity and continuity for the bilinear form ah(·, ·) defined
in (13) in terms of the energy norm |||·|||h.
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Theorem 4.3. For ah(·, ·) defined in (13), if σ0
e is sufficiently large, then there

exists a constant κ such that

(53) ah(v, v) ≥ κ|||v|||2h, ∀v ∈ Sh(Ω).

Proof. The coercivity (53) follows from Lemma 4.1 in [25] together with the norm
equivalence given in Lemma 4.2. �

Theorem 4.4. For ah(·, ·) defined in (13), there exists a constant C such that

(54) ah(w, v) ≤ C|||w|||h|||v|||h, ∀w, v ∈ Vh(Ω).

Proof. Note that

|ah(w, v)| ≤
∣

∣

∑

T∈Th

∫

T

β∇w∇vdX
∣

∣+
∣

∣

∑

e∈E̊i
h

∫

e

{β∇w · ne}[v]ds
∣

∣

+
∣

∣

∑

e∈E̊i
h

∫

e

{β∇v · ne}[w]
∣

∣+
∣

∣

∑

e∈E̊i
h

∫

e

σ0
e

|e|α
[w][v]ds

∣

∣.

(55)

Denote each term on the right in (55) as Qi(i = 1, 2, 3, 4). Applying Hölder in-
equality on Qi, we have

|Q1| ≤ C‖w‖L2(T )‖v‖L2(T ) ≤ C|||w|||h|||v|||h,(56)

|Q2| ≤
∑

e∈E̊i
h

‖{β∇w · ne}‖L2(e)‖[v]‖L2(e)(57)

≤ (
∑

e∈E̊i
h

(σ0
e)

−1‖|e|1/2{β∇w · ne}‖
2
L2(e))

1/2(
∑

e∈E̊i
h

σ0
e‖|e|

−1/2[v]‖2L2(e))
1/2

≤ |||w|||h|||v|||h.

Using similar arguments, we obtain

(58) |Q3| ≤ |||w|||h|||v|||h,

(59) |Q4| ≤ |||w|||h|||v|||h.

Thus, (54) follows from applying (56)-(59) to (55). �

We note the estimate for ‖Ihu − u‖h given in (51) was also established in [25],
but the present article proves it by alternative arguments in which (51) follows
from (52) which is the optimal approximation capability of the IFE space in the
stronger energy norm |||·|||h. More importantly, adopting the stronger norm |||·|||h in
the error estimation allows us to establish both the coercivity and continuity for the
bilinear form ah(·, ·) employed in the PPIFE method, which are critical components
in obtaining the optimal error estimates for the PPIFE solution with the standard
PH2(Ω) regularity in the following theorems.

Theorem 4.5. Assume that the exact solution u to the interface problem (1)-(3)
is in PH2(Ω) and uh is the related PPIFE solution with σ0

e in ah(·, ·) large enough

on a mesh Th fine enough, then there exists a constant C such that

|||u− uh|||h ≤ Ch‖u‖PH2(Ω).(60)

Proof. From (15) and (16) we have

(61) ah(uh − Ihu, v) = ah(u− Ihu, v), ∀v ∈ Sh(Ω).
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Letting v = uh − Ihu and using both the coercivity and the continuity of ah(·, ·),
we have

κ|||uh − Ihu|||
2
h ≤ ah(uh − Ihu, uh − Ihu) =ah(u− Ihu, uh − Ihu)(62)

≤C|||u− Ihu|||h|||uh − Ihu|||h.

Thus, |||uh − Ihu|||h ≤ C|||u− Ihu|||h. Then, by (52), we have

|||u− uh|||h ≤ |||u− Ihu|||h + |||uh − Ihu|||h ≤ (1 + C)|||u− Ihu|||h ≤ Ch‖u‖PH2(Ω)

which proves (60). �

Because of (45), the estimate given by (60) leads to

‖u− uh‖h ≤ Ch‖u‖PH2(Ω),(63)

which is not only an optimal error estimate for the PPIFE solution uh in the energy
norm ‖ · ‖h but also a better estimate than the one given in Theorem 4.3 of [25]
because (63) follows from the standard regularity assumption for the exact solution
u.

Furthermore, using the standard regularity assumption in the error analysis al-
lows us to derive an optimal error estimate in the L2 norm in the following theorem,
which could not be accomplished by the analysis approaches employed in [25] that
relied on the excessive PH3(Ω) regularity.

Theorem 4.6. Under the conditions of Theorem 4.5, there exists a constant C
such that

(64) ‖u− uh‖L2(Ω) ≤ Ch2‖u‖PH2(Ω).

Proof. The proof is based on the standard duality argument. Let w ∈ PH2(Ω) be
the auxiliary function that is the solution to (1)-(3) with f at the right hand side
replaced by u− uh. Then, following standard arguments we have

(65) ‖u− uh‖
2
L2(Ω) = ah(w, u − uh).

Let Ihw be the interpolent of w in IFE space. Since Ihw ∈ Sh(Ω), by (15) and (16)
we have ah(Ihw, u − uh) = 0 which leads to ah(w, u − uh) = ah(w − Ihw, u − uh).
Then, by (65) and the continuity of ah(·, ·), we have

(66) ‖u− uh‖
2
L2(Ω) = ah(w − Ihw, u− uh) ≤ C|||w − Ihw|||h|||u− uh|||h.

According to (52) and the regularity for the elliptic interface problem [7], we have

(67) |||w − Ihw|||h ≤ Ch‖w‖PH2(Ω) ≤ Ch‖u− uh‖L2(Ω).

Putting (67) to (66) leads to

(68) ‖u− uh‖L2(Ω) ≤ Ch|||u− uh|||h,

which yields (64) by applying (60). �

We present a numerical example that corroborates the optimal error estimates
obtained in Theorems 4.5 and 4.6. Consider the domain Ω = (−1, 1)× (−1, 1) that
is separated by the circular interface Γ : x2 + y2 − r20 = 0, r0 = π/6.28 into two
subdomains

Ω− = {(x, y) : x2 + y2 < r20}, Ω
+ = Ω\Ω−.
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On Ω, we choose functions f and g such that the interface problem (1)-(3) has the
following exact solution:

(69) u(x, y) =















1

β−
rα, (x, y) ∈ Ω−,

1

β+
rα +

(

1

β−
−

1

β+

)

rα0 , (x, y) ∈ Ω+,

in which α = 1.5, r =
√

x2 + y2, β− = 1, β+ = 10. It can be verified that u ∈
PH2(Ω)\PH3(Ω). Table 4 presents errors of the PPIFE solution uh generated on
a sequence of uniform triangular meshes Th of Ω in which h = 2/N with the integer
N listed in the first column in Table 4. The data in this table clearly demonstrate
that the PPIFE solutions converge optimally in both the L2 and H1 norms to the
exact solution u that is a function in the Sobolev space PH2(Ω) but not in PH3(Ω).

Table 1. Errors of SPPIFE solutions, β− = 1, β+ = 10, α = 1.5.
N ‖u− uh‖0,Ω rate |u− uh|1,Ω rate

10 2.9428e-03 NA 3.2747e-02 NA

20 8.4280e-04 1.8039 1.5430e-02 1.0856

40 1.9635e-04 2.1018 7.8261e-03 0.9793

80 4.5931e-05 2.0958 3.9244e-03 0.9958

160 1.1242e-05 2.0305 1.9596e-03 1.0019

320 2.9990e-06 1.9064 9.7966e-04 1.0002

640 7.7099e-07 1.9597 4.8967e-04 1.0005

1280 1.9814e-07 1.9602 2.4490e-04 0.9996

5. Conclusions

In this article, we employ a new analysis framework to derive the error bounds
for the PPIFE methods developed in [25]. This new framework uses an energy
norm |||·|||h which is stronger than ‖ · ‖h norm originally used [25]. There are two
key-components in this analysis framework. First, it employs a patch technique to
show the optimal approximation capability on interface edges for the flux of the
IFE interpolation of a function with the standard piecewise H2 regularity. Second,
it shows that the bilinear form ah(·, ·) in the PPIFE methods is both coercive
and continuous in terms of the stronger energy norm |||·|||h. Benefitted from these
two key-components, not only can we show that the IFE space has the optimal
approximation capability gauged by the energy norm |||·|||h, but also we can show
the PPIFE solution converges optimally in both |||·|||h and ‖ · ‖h with the standard
piecewise H2 regularity for the exact solution. As a very important consequence
of the standard piecewise H2 regularity assumption, we can further show that the
PPIFE solution converges optimally in the L2 norm which the analysis techniques
used in [25] could not achieve.
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