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OPTIMAL ERROR ESTIMATES OF THE LOCAL

DISCONTINUOUS GALERKIN METHOD FOR THE

TWO-DIMENSIONAL SINE-GORDON EQUATION ON

CARTESIAN GRIDS

MAHBOUB BACCOUCH

Abstract. The sine-Gordon equation is one of the basic equations in modern nonlinear wave the-
ory. It has applications in many areas of physics and mathematics. In this paper, we develop and
analyze an energy-conserving local discontinuous Galerkin (LDG) method for the two-dimensional

sine-Gordon nonlinear hyperbolic equation on Cartesian grids. We prove the energy conserving
property, the L2 stability, and optimal L2 error estimates for the semi-discrete method. More
precisely, we identify special numerical fluxes and a suitable projection of the initial conditions
for the LDG scheme to achieve p + 1 order of convergence for both the potential and its gradi-

ent in the L2-norm, when tensor product polynomials of degree at most p are used. We present
several numerical examples to validate the theoretical results. Our numerical examples show the
sharpness of the O(hp+1) estimate.

Key words. Sine-Gordon equation, local discontinuous Galerkin method, energy conservation,

L2 stability, a priori error estimates, Cartesian grids.

1. Introduction

Developing energy-conserving and highly accurate numerical schemes to solve
nonlinear hyperbolic partial differential equations (PDEs) is a very challenging
scientific problem and is of fundamental importance to the simulation of waves and
solitons. They are also important when dealing with coarse grids and large time
steps. In this paper, we propose an energy-conserving local discontinuous Galerkin
(LDG) method for the following two-dimensional sine-Gordon nonlinear hyperbolic
equation

(1a) utt + βut + sin(u) = ∆u+ f(x, y, t), (x, y) ∈ Ω = [a, b]× [c, d], t ∈ [0, T ],

subject to the following initial conditions

(1b) u(x, y, 0) = u0(x, y), ut(x, y, 0) = v0(x, y), (x, y) ∈ Ω,

and to either periodic boundary conditions

u(x, c, t) = u(x, d, t), uy(x, c, t) = uy(x, d, t),

u(a, y, t) = u(b, y, t), ux(a, y, t) = ux(b, y, t),(1c)

or mixed Dirichlet-Neumann boundary conditions

(1d) u = gD, (x, y) ∈ ∂ΩD and ∇u · n = gN · n, (x, y) ∈ ∂ΩN ,

for some given functions f, g, h, gD, and gN . Here, ∂Ω = ∂ΩD ∪ ∂ΩN is the
boundary of the domain Ω, n is the outward unit normal to ∂Ω, and [0, T ] is a
finite time interval. The initial conditions u0(x, y) and v0(x, y) are the wave modes
or kinks and velocity functions, respectively. In our theoretical analysis we select the
initial/boundary conditions and the source, f(x, y, t), such that the exact solution

Received by the editors September 13, 2017 and, in revised form, September 4, 2018.
2010 Mathematics Subject Classification. 65M12, 65M15, 65M60, 65N12, 65N30, 35Q51.

436



ERROR ESTIMATES OF LDG METHOD FOR SINE-GORDON EQUATIONS 437

u is a smooth function on Ω× [0, T ]. Our results may be extended to 3-D Cartesian
meshes in straight forward manner. Details are not included to save space.

The nonlinear sine-Gordon equation plays an important role in modern physics;
see e.g., [44]. It is well-known that the sine-Gordon equation has soliton solutions
in the one- and two-dimensional cases. The simplest of these solutions are called
kinks and anti-kinks. It arises in many applications in physics, see e.g., [25, 43,
53, 57, 61, 62]. For instance, the sine-Gordon equation arises in many different
applications including propagation of magnetic flux on Josephson junctions, sound
propagation in a crystal lattice, differential geometry, self-induced transparency,
stability of fluid motion, laser physics, and particle physics. The two-dimensional
equation (1a) arises in extended rectangular Josephson junctions, which consist of
two layers of super conducting materials separated by an isolating barrier. The
nonlinear term sin(u) is the Josephson current across an insulator between two
superconductors [29]. Several other physical applications can be found in the review
article by Barone et al. [25]. It is known (see e.g., [64]) that the two-dimensional
sine-Gordon equation (1a) with β = f = 0 and compactly supported or periodic
boundary conditions admits the following important conserved quantity, called the
total energy,

E(t) =
1

2

∫∫
Ω

(
u2
t + u2

x + u2
y + 2(1− cos(u))

)
dxdy

= Ek(t) + Es(t) + Ep(t),(2)

where the kinetic, strain, and potential energies are, respectively, defined by

Ek(t) =
1

2

∫∫
Ω

u2
tdxdy, Es(t) =

1

2

∫∫
Ω

(u2
x + u2

y)dxdy,

Ep(t) =

∫∫
Ω

(1− cos(u))dxdy.

Several numerical schemes have been developed in the literature for the sine-Gordon
equation [1, 2, 26, 27, 35, 39, 40, 42, 46, 47, 48, 50, 51, 52, 55, 58, 59, 63, 67, 68,
71]. Among these methods, the finite-difference method, the finite-element method,
the pseudospectral technique, the domain decomposition method. Some of these
schemes are known to be energy-conserving. For instance, some energy-conserving
second-order finite difference schemes have been proposed in [27, 41, 49, 66] and the
references therein. These schemes are designed by using central second differences
to approximate the second derivative terms in the PDE. The difference among
the finite difference schemes is in the discretization of the nonlinear term sin(u).
However, to the best of the author’s knowledge, the application of the LDG method
to (1a) has not been considered in the literature.

The main motivation for the LDG method proposed in this paper originates from
the LDG techniques which have been successfully applied to many PDEs arising
from a wide range of applications. The LDG finite element method is an exten-
sion of the discontinuous Galerkin (DG) method aimed at solving PDEs contain-
ing higher than first-order spatial derivatives. It was first introduced by Cock-
burn and Shu [38] for solving convection-diffusion problems. Since then, several
LDG schemes have been developed and analyzed for various higher-order ordi-
nary and partial differential equations in one and multiple dimensions including
nonlinear two-point boundary-value problems [20], convection-diffusion problems
[3, 7, 10, 16, 24], second-order wave equations [6, 12, 13, 14, 17], the sine-Gordon
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equation [18, 19, 21, 22], KdV-type equations [15, 23], and the fourth-order Euler-
Bernoulli beam equation [8, 9, 11], just to mention a few. DG methods are suitable
numerical schemes for solving a wide class of engineering problems. Robustness,
local conservation, and flexibility for implementing hp-adaptivity strategies are well-
known advantages of DG methods stemming from the use of finite element spaces
consisting of discontinuous piecewise polynomials. They can be locally conservative
and capable of dealing naturally with discontinuous physical properties. The DG
method was initially proposed by Reed and Hill in 1973 as a technique to solve
neutron transport problems [60]. Lesaint and Raviart [54] provided the first nu-
merical analysis of the DG method for the linear advection equation. Since then,
DG methods have been used to solve many PDEs including hyperbolic, elliptic, and
parabolic equations. Consult [37, 65] and the references cited therein for a detailed
discussion of the history of DG methods and a list of important citations on their
applications to science and engineering.

The LDG method shares the advantages of the standard DG methods, such as good
stability, high order accuracy, and flexibility to handle complex geometry. One of
the advantages of the proposed method over the existing numerical schemes in the
literature is that the proposed LDG scheme achieves optimal (p + 1)th order con-
vergence for the solution and its gradient in the L2-norm. Furthermore, this LDG
method achieves superconvergence results which can be used to construct asymp-
totically exact a posteriori error estimates by solving a local steady problem on
each element; see [19]. There are many other motivations for using LDG methods.
For instance, stability is provided without slope limiters by carefully choosing the
numerical fluxes, they can achieve high order accuracy for smooth functions while
being non-oscillatory near discontinuities, and they are element-wise conservative.
This last property is very useful in the area of computational fluid dynamics, es-
pecially in situations where there are shocks, steep gradients or boundary layers.
Moreover, LDG methods are extremely flexible in the mesh-design; they can eas-
ily handle meshes with hanging nodes, elements of various types and shapes, and
local spaces of different orders. They further achieve global superconvergence that
can be used to estimate the global discretization errors. We also mention that our
proposed semi-discrete scheme is shown to be energy-conserving for the physical
energy. The energy-conserving property is one of the guiding principles for numer-
ical algorithms because it provides an accurate approximation and minimizes the
phase or shape errors after long time integration. Finally, the LDG method can
also be designed for many other higher-order nonlinear wave and diffusion equa-
tions. Examples include the KdV equations, the Kadomtsev-Petviashvili equations,
the Zakharov-Kuznetsov equations, the Kuramoto-Sivashinsky-type equations, the
Cahn-Hilliard equation, and the equations for surface diffusion and Willmore flow
of graphs. Consult [69] for more details.

It is well-known that energy-conserving schemes for wave propagation problems are
very suitable for long time simulations. In [18], we proposed and analyzed a high-
order and energy-conserving LDG method for the sine-Gordon nonlinear hyperbolic
equation in one space dimension. We proved the energy-conserving property, the
L2 stability, and optimal a priori error estimates for the solution and for the auxil-
iary variable that approximates the first-order derivative. The order of convergence
is proved to be p + 1, when piecewise polynomials of degree at most p are used.
Our numerical experiments demonstrate optimal order of convergence. In [19],
we investigated the superconvergence properties of the LDG method applied to the
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two-dimensional sine-Gordon nonlinear hyperbolic equation on Cartesian grids. We
performed a local error analysis and showed that the actual error can be split into
an O(hp+1) leading component and a high order component, when tensor product
polynomials of degree at most p are used. We further proved that the leading term
of the LDG error is spanned by two (p + 1)-degree Radau polynomials in the x
and y directions, respectively. Thus, the LDG solution is O(hp+2) superconvergent
at Radau points obtained as a tensor product of the roots of (p + 1)-degree right
Radau polynomials. Computational results suggest that these superconvergence
results hold globally, but it remains an open problem to investigate the global su-
perconvergence results. We used these results to construct simple, efficient, and
asymptotically exact a posteriori LDG error estimates. These estimates are com-
putationally simple and are obtained by solving local steady problems with no
boundary conditions on each element. We would like to emphasize that these re-
sults are based on local error analysis and there is no theoretical justification of
these results so far. This paper is a natural continuation of the work done in
[19]. We prove optimal error estimates and the energy-conserving property for the
semi-discrete LDG method.

In this paper, we present a high order and energy-conserving LDG method for
the two-dimensional sine-Gordon equation on Cartesian grids. We prove that the
semi-discrete LDG formulation conserves a discrete version of the continuous en-
ergy for all time. The L2 stability of the semi-discrete LDG method is also proved.
We further identify special numerical fluxes and a suitable projection of the initial
conditions for the LDG scheme to prove optimal L2 error estimates for the semi-
discrete formulation. The L2 errors for the potential and its gradient are shown to
converge with the optimal order O(hp+1), when tensor product polynomials of de-
gree at most p are used. We would like to mention that the proposed LDG method
has considerable advantages over the numerical method available in the literature.
The main advantages include: (i) it conserves the discrete approximation of energy
and consequently it can maintain the phase and shape of the waves accurately,
especially for long time simulation, (ii) it achieves stability without slope limiters,
(iii) it exhibits optimal convergence properties for the solution and for the auxiliary
variables that approximate the first-order partial derivatives, (iv) it is extremely
flexible in the mesh-design (it can easily handle meshes with hanging nodes, ele-
ments of various types and shapes, and local spaces of different orders), and (v) it
achieves superconvergence results which can be used to construct asymptotically
exact a posteriori error estimates by solving a local steady problem on each element;
see [19].

The rest of the paper is organized as follows: In section 2, we present the LDG
method for solving (1) and we introduce some preliminary results. We prove the
energy conservation and L2 stability of the LDG scheme in section 3. In section
4, we present the LDG error analysis and prove optimal L2 error estimates for the
semi-discrete LDG method. In section 5, we present several numerical results to
validate our theoretical results. Concluding remarks are given in section 6.

2. The LDG method and preliminary results

2.1. The semi-discrete LDG method for the sine-Gordon equation. To
define the semi-discrete LDG method, we introduce an auxiliary variable q = ∇u
and rewrite our model equation (1a) as a first-order system in space:

utt + βut + sin(u)−∇ · q = f, q−∇u = 0.(3)
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Next, we discretize (3) in space by using the LDG method, while leaving time
continuous. We divide the computational domain Ω = [a, b]× [c, d] into a Cartesian
grid Th consisting of N = n×m shape-regular rectangle elements ∆ij = [xi−1, xi]×
[yj−1, yj ] = Ii × Jj , i = 1, 2, . . . , n, j = 1, 2, . . . ,m, where a = x0 < x1 < · · · <
xn = b and c = y0 < y1 < · · · < ym = d. We denote the lengths of the intervals Ii =
[xi−1, xi] and Jj = [yj−1, yj ] by ∆xi = xi−xi−1 and ∆yj = yj − yj−1, respectively.
We also use h = max

1≤i≤n, 1≤j≤m
(∆xi,∆yj) and hmin = min

1≤i≤n, 1≤j≤m
(∆xi,∆yj) to

denote the length of the largest and smallest mesh size, respectively. We shall
consider regular meshes in the sense that h ≤ Khmin, where K ≥ 1 is a constant
(independent of h) during mesh refinement. If K = 1, then the mesh is uniformly
distributed. In the remainder of this paper, we omit the element index and refer to
an arbitrary element by ∆ whenever confusion is unlikely.

Multiplying the two equations in (3) by arbitrary smooth test functions v and w,
integrating over an arbitrary element ∆, and applying Green’s theorem, we obtain∫∫

∆

(utt + βut + sin(u)) vdxdy +

∫∫
∆

q · ∇vdxdy −
∫
Γ

vq · nds(4a)

=

∫∫
∆

fvdxdy,∫∫
∆

q ·w dxdy +

∫∫
∆

u∇ ·wdxdy −
∫
Γ

u w · n ds = 0,(4b)

where Γ is the boundary of the element ∆ and n is the unit outward normal vector
to Γ.

Let Qp(∆) be the tensor product space consisting of polynomials on the element ∆
with coefficients as functions of t, where the degree in each variable does not exceed
p. We also define the global discontinuous finite element spaces V p

h and Vp
h as

V p
h = {u ∈ L2(Ω) : u|∆ ∈ Qp(∆), ∀ ∆ ∈ Th},

Vp
h = {q ∈ [L2(Ω)]2 : q|∆ ∈ [Qp(∆)]2, ∀ ∆ ∈ Th}.

Note that polynomials in the spaces V p
h and Vp

h are allowed to have discontinuities
across element boundaries.

For a given partition Th of Ω, we approximate the exact solutions u and q at fixed
time t by piecewise polynomials uh ∈ V p

h and qh ∈ Vp
h. We note that uh and qh are

piecewise polynomials not necessarily continuous across inter-element boundaries.
Thus, we consider the following semi-discrete LDG method: find uh ∈ V p

h and
qh ∈ Vp

h such that∫∫
∆

((uh)tt + β(uh)t + sin(uh)) vdxdy +

∫∫
∆

qh · ∇vdxdy −
∫
Γ

vq̂h · nds(5a)

=

∫∫
∆

fvdxdy,∫∫
∆

qh ·wdxdy +

∫∫
∆

uh∇ ·w dxdy −
∫
Γ

ûh w · nds = 0,(5b)

for all test functions v ∈ V p
h , w ∈ Vp

h, and for all ∆ ∈ Th. Here, the functions ûh and
q̂h are the so-called numerical fluxes which are nothing but discrete approximations
to the traces of u and q on the boundary Γ.
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The initial conditions uh(x, y, 0) ∈ V p
h and (uh)t(x, y, 0) ∈ V p

h are obtained using
a special projection of the exact initial conditions u(x, y, 0) and ut(x, y, 0), respec-
tively. This particular projection will be defined later.

To complete the definition of the semi-discrete LDG method we need to select ûh

and q̂h on the boundaries of ∆. We would like to mention that the choice of the
numerical fluxes is perhaps the most delicate and crucial aspect of the definition of
the LDG methods as it can affect their consistency, stability, and even accuracy. To
define these numerical fluxes, we need to introduce some notation. For simplicity,
we use v−(xi, ·, ·) and v+(xi, ·, ·) to denote the left limit and the right limit of v at
the discontinuity point (xi, y) and time t, i.e.,

v−(xi, y, t) = v(x−
i , y, t) = lim

s→0−
v(xi + s, y, t),

v+(xi, y, t) = v(x+
i , y, t) = lim

s→0+
v(xi + s, y, t).

Similarly, we use v−(x, yj , t) = v(x, y−j , t) and v+(x, yj , t) = v(x, y+j , t).

Based on the LDG method for elliptic problems introduced by Cockburn et al.
[36, 38], we first use an arbitrary but fixed vector v with nonzero components to
define artificial outflow and inflow boundaries. The role of the vector v is to give a
single rule to pick the numerical fluxes ûh and q̂h for all the elements. For simplicity,
we choose v = [1, 1]t and we define artificial inflow and outflow boundaries

∂Ω+ = {(x, y) ∈ ∂Ω | v · n ≥ 0} = ∂Ω+
1 ∪ ∂Ω+

2 , ∂Ω− = ∂Ω\∂Ω+ = ∂Ω−
1 ∪ ∂Ω−

2 ,

where ∂Ω−
1 , ∂Ω

+
1 , ∂Ω

−
2 , and ∂Ω+

2 denote the left, right, bottom, and top edges of
the domain Ω, respectively.

We also define the boundary of each element ∆ ∈ Th as Γ = Γ− ∪ Γ+, where the
artificial inflow Γ− and outflow Γ+ boundaries are defined by

Γ+ = {(x, y) ∈ Γ | v · n ≥ 0} = Γ+
1 ∪ Γ+

2 , Γ− = Γ\Γ+ = Γ−
1 ∪ Γ−

2 ,

and Γ−
1 , Γ

+
1 , Γ

−
2 , and Γ+

2 are used to denote the left, right, bottom, and top edges
of the element ∆, respectively.

Now, we are ready to define the numerical fluxes. For the periodic boundary con-
ditions, we choose the following alternating fluxes

(5c) ûh = u−
h , q̂h = q+

h .

That is, if Γ is any edge, then, on the vertical edges, ûh is always equal to trace of
u from the left, and on horizontal edges, ûh is always equal to the trace of u from
below. Similarly, q̂h is the right trace of q on the vertical edges and the trace of q
from above on the horizontal edges. As discussed in [13], this particular choice is
not unique. In fact the choice ûh = u+

h and q̂h = q−
h yields similar results.

For the Dirichlet and mixed boundary conditions (1d), we use the so-called the
minimal dissipation LDG (md-LDG) method; see, e.g., [6, 7, 8, 10, 14, 30, 31, 56].
More precisely, on interior edges, we can still take the alternating fluxes

ûh = u−
h , q̂h = q+

h .(5d)
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However, if Γ lies on the boundary of Ω, we take

ûh =


P−gD, (x, y) ∈ ∂ΩD,
u−
h , (x, y) ∈ ∂ΩN ∩ ∂Ω+,

u+
h , (x, y) ∈ ∂ΩN ∩ ∂Ω−,

(5e)

q̂h =


gN , (x, y) ∈ ∂ΩN ,
q+
h , (x, y) ∈ ∂ΩD ∩ ∂Ω−,

q−
h − c11(u

−
h − P−gD) n, (x, y) ∈ Γb ⊂ ∂ΩD ∩ ∂Ω+,

where c11 is the stabilization parameter for our LDG method and P− is the Gauss-
Radau projection defined in (8). The stabilization parameter is defined as follows:
if h is the length of an edge Γ ⊂ ∂Ω+, then c11 = p/hΓb

; otherwise c11 = 0, where
hΓb

is the length of the edge Γb.

Remark 2.1. We would like to emphasize that this two-dimensional md-LDG
method applies stabilization only on the artificial outflow boundary. The distinctive
feature of the md-LDG method is that the stabilization parameter associated with
the numerical trace of q is taken to be identically zero on all interior nodes. In other
words, only the numerical flux on the boundary ∂ΩD ∩ ∂Ω+ is penalized and this is
why its dissipation is said to be minimal. In [3, 13, 19], we applied the same numer-
ical fluxes to investigate the superconvergence properties of the md-LDG method for
two-dimensional elliptic, parabolic, and hyperbolic equations on Cartesian meshes.

Remark 2.2. We remark that the auxiliary nonzero vector v is an arbitrary but
fixed vector. It is used to define the artificial outflow and inflow boundaries. Thus,
if other vector v is chosen, the artificial outflow and inflow boundaries ∂Ω± must
be changed accordingly.

2.2. Notation and definitions. We denote by EB the set of all boundary edges of
the triangulation Th on ∂Ω and by EI the set of all interior edges of the triangulation
Th. We use E to denote all edges i.e., E = EB ∪ EI . We also use ED and EN to
denote the set of edges on ∂ΩD and ∂ΩN , respectively.

In this paper, we define the L2 inner product of two integrable functions, u and v,
on ∆ ∈ Th as

(u, v)∆ =

∫∫
∆

u(x, y, t)v(x, y, t)dxdy.

Denote ∥u∥20,∆ = (u, u)∆ to be the standard L2-norm of u on ∆. Let Hs(∆), where
s = 1, 2, . . ., denote the standard Sobolev space. For any real-valued function u in
Hs(∆), the Hs(∆)-norm over ∆ is

∥u∥s,∆ =

∑
|α|≤s

∥Dαu∥2∆

1/2

.

For any vector-valued function q = [q1, q2]
t ∈ Hs(∆) = [Hs(∆)]2, the Hs(∆)-norm

over ∆ is

∥q∥s,∆ =

(
2∑

i=1

∥qi∥2s,∆

)1/2

.

We also define the norms on the whole computational domain Ω as follows:

∥u∥s,Ω =

(∑
∆∈Th

∥u∥2s,∆

)1/2

, ∥q∥s,Ω =

(∑
∆∈Th

∥q∥2s,∆

)1/2

.
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For simplicity, we use ∥u∥ and ∥u∥s to denote ∥u∥0,Ω and ∥u∥s,Ω, respectively. We

also use ∥u(t)∥ to denote the value of ∥u(·, ·, t)∥ at time t. In particular, we use
∥u(0)∥ to denote ∥u(·, ·, 0)∥. Throughout the paper, we omit the argument t and
we use ∥u∥ to denote ∥u(t)∥ whenever confusion is unlikely.

2.3. Projections. We first introduce some one-dimensional projections. Let Ii =
[xi−1, xi] be any interval and let Pp(Ii) be the space of polynomials of degree not
exceeding p on Ii. We denote by Px the L2-projection onto Pp(Ii), i.e., for a function
u ∈ L2(Ii) the projection Pxu is the unique polynomial in Pp(Ii) satisfying

(6)

∫
Ii

(Pxu− u)vdx = 0, ∀ v ∈ Pp(Ii).

Furthermore, we consider two one-dimensional Gauss-Radau projections, P±
x , which

are defined as follows: For a function u, the restriction of P−
x u to Ii is the unique

polynomial in Pp(Ii) satisfying the p+ 1 conditions

(7a)

∫
Ii

(P−
x u− u)vdx = 0, ∀ v ∈ Pp−1(Ii) and (P−

x u)− = u− at x = xi.

Similarly, the restriction of P+
x u to Ii is the unique polynomial in Pp(Ii) satisfying

(7b)

∫
Ii

(P+
x u− u)vdx = 0, ∀ v ∈ Pp−1(Ii) and (P+

x u)+ = u+ at x = xi−1.

Next, we introduce a two-dimensional Gauss-Radau projection. Let ∆ = Ii × Jj ,
where Ii = [xi−1, xi] and Jj = [yj−1, yj ], be an arbitrary rectangle element. The
projection P− for a scalar function u is defined as tensor product of the projections
in one dimension (see e.g., [36])

(8) P−u = P−
x ⊗ P−

y u,

with ⊗ denoting the standard tensor product, with the subscripts x and y indicating
the application of the one-dimensional operator, defined in (7), with respect to the
corresponding variable. We note that the projection P− on the Cartesian meshes
has the following superconvergence property [36].

Lemma 2.1. Let Z∆(u,w) be defined by

Z∆(u,w) =

∫∫
∆

(u− P−u)∇ ·wdxdy −
∫
Γ

(u− P−u)−w · nds.(9)

If u ∈ Hp+2(Ω) and w ∈ Vp
h then∑

∆∈Th

∣∣Z∆(u,w)
∣∣ ≤ Chp+1 ∥u∥p+2 ∥w∥ ,(10)

where C depends solely on p and the shape-regular constant.

Proof. The proof is given in [36], more precisely in its Lemma 3.6. �
Finally, we define a projection P+ for vector-valued function q = [q1, q2]

t as
follows [36]

(11) P+q = [P+
x ⊗ Pyq1, Px ⊗ P+

y q2]
t,

where Px and Py are the standard L2-projections in the x-direction and y-direction,
respectively. One can easily show that, for any smooth vector-valued function q,
the restriction of P+q to ∆ is the element of [Qp(∆)]

2
satisfying

(12)∫∫
∆

(P+q−q) · ∇vdxdy = 0 and

∫
Γ−

(P+q−q)+ ·nv+ds = 0, ∀ v ∈ Qp(∆).
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It can be easily seen that the conditions in (12) uniquely define the projection P+q.

We would like to mention that the above special projections are used in the error
estimates of the LDG methods to derive optimal L2 error bounds in the literature,
e.g., in [36].

In our analysis, we need several approximation results. Their proofs can be found
in [36, 45, 70].

Lemma 2.2. For any u ∈ Hp+1(Ω) and q ∈ [Hp+1(Ω)]2, there exists a constant
C independent of h such that∥∥u− P−u

∥∥ ≤ Chp+1 ∥u∥p+1 ,
∥∥q−P+q

∥∥ ≤ Chp+1 ∥q∥p+1 .(13)

2.4. Initial conditions for the LDG scheme. To obtain optimal error esti-
mates, we carefully design suitable projections of the initial conditions for the LDG
scheme. In our mathematical error analysis and numerical examples, we approxi-
mate the initial conditions of our LDG scheme on each interval as follows
(14)
uh(x, y, 0) = P−u(x, y, 0), (uh)t(x, y, 0) = P−ut(x, y, 0), (x, y) ∈ ∆, ∀∆ ∈ Th.
These approximated initial conditions are needed for technical purposes in the proof
of the error estimates.

Remark 2.3. We would like to emphasize that the special choice of the approxi-
mated initial conditions is necessary in the prove of optimal convergence rates of
the proposed LDG scheme. In our numerical experiments, we used the standard L2-
projections for both u(x, y, 0) and ut(x, y, 0) to approximate the initial conditions of
our numerical scheme and observed that the convergence rate does not converge to
the desired p+ 1 accuracy. Our special projection P− is designed to better control
the error of the initial conditions and it has an impact on the convergence results
(see section 4).

3. Energy conservation and L2 stability of the semi-discrete LDG scheme

3.1. Energy conservation of the semi-discrete LDG scheme. The conser-
vation of the energy for sine-Gordon equations is an important characteristic of the
nonlinear solitary waves. Also schemes conserving the discrete analogs of energy
often produce approximations that behave better for long time simulation.

Next, we will show that the proposed semi-discrete LDG method conserves the
following discrete energy

Eh(t) =
1

2

∫∫
Ω

(
((uh)t)

2 + q21,h + q22,h + 2(1− cos(uh))
)
dxdy,(15)

where q1,h and q2,h are the components of qh, i.e., qh = [q1,h, q2,h]
t. We note that

(15) is a consistent approximation of the continuous energy (2) since uh, q1,h and
q2,h are approximations to u, q1 = ux and q2 = uy, respectively.

Theorem 3.1. The discrete energy Eh(t) defined in (15) is conserved by the semi-
discrete LDG method (5) with β = f = 0 and compactly supported or periodic
boundary conditions for all time i.e.,

Eh(t) = Eh(0), ∀ t ∈ [0, T ].(16a)

If β > 0 and f = 0, then Eh(t) is dissipative for all time i.e.,

0 ≤ Eh(t) ≤ Eh(0), ∀ t ∈ [0, T ].(16b)



ERROR ESTIMATES OF LDG METHOD FOR SINE-GORDON EQUATIONS 445

Proof. Using the numerical fluxes defined in (5c) and a simple integration by parts,
we write (5a) with f = 0 as∫∫

∆

((uh)tt + β(uh)t + sin(uh)−∇ · qh) vdxdy

−
∫
Γ+

v−(q+
h − q−

h ) · nds = 0.(17)

We choose v = (uh)t in (17), then we take the first time derivative of (5b) and we
choose w = qh to get∫∫

∆

((uh)tt + β(uh)t + sin(uh)−∇ · qh) (uh)tdxdy

−
∫
Γ+

(uh)
−
t (q

+
h − q−

h ) · nds = 0,(18a) ∫∫
∆

(qh)t · qhdxdy +

∫∫
∆

(uh)t∇ · qhdxdy −
∫
Γ

(uh)
−
t qh · nds = 0.(18b)

Adding the two equations in (18), we get∫∫
∆

(qh)t · qhdxdy +

∫∫
∆

((uh)tt + β(uh)t + sin(uh)) (uh)tdxdy =∫
Γ+

(uh)
−
t q

+
h · nds+

∫
Γ−

(uh)
−
t q

+
h · nds.

Summing over all elements and noticing that the sum on the right-hand side tele-
scopes yields

1

2

d

dt

∫∫
Ω

(
qh · qh + (uh)

2
t + 2 (1− cos(uh))

)
dxdy

=

∫
EB

(uh)
−
t q

+
h · nds− β

∫∫
Ω

(uh)
2
tdxdy.(19)

For the periodic or compactly supported boundary conditions, the integral over EB
vanishes and (19) becomes

1

2

d

dt

∫∫
Ω

(
qh · qh + (uh)

2
t + 2 (1− cos(uh))

)
dxdy = −β

∫∫
Ω

(uh)
2
tdxdy ≤ 0,

since β ≥ 0.

Integrating with respect to time from 0 to t, we establish (16). �
Remark 3.1. Equation (16a) indicates that the semi-discrete LDG method con-
serves the discrete energy Eh(t). The energy-conserving property is one of the
guiding principles for numerical algorithms because it provides an accurate approx-
imation and minimizes the phase or shape errors after long time integration.

3.2. L2 stability. Here, we will prove the following L2 stability results for the
LDG scheme (5).

Theorem 3.2. Suppose f = 0. For periodic or compactly supported boundary
conditions for the computation domain Ω, the numerical solution given by the LDG
method defined by (5) satisfies the following L2 stability

(20a) ∥(uh)t∥2 + ∥qh∥2 ≤ ∥(uh)t(0)∥2 + ∥qh(0)∥2 + ∥uh(0)∥2 .

∥uh∥2 ≤2(1 + T (1 + β) + T 2) ∥uh(0)∥2 + 2(T + T 2) ∥(uh)t(0)∥2

+ 2T 2 ∥qh(0)∥2 + T 4(b− a)(d− c).(20b)
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Proof. Using (16) and the fact that 1− cos(uh) ≥ 0, we have

1

2
∥(uh)t∥2 +

1

2
∥qh∥2 ≤ Eh(t) ≤ Eh(0)

=
1

2
∥(uh)t(0)∥2 +

1

2
∥qh(0)∥2 +

∫∫
Ω

(1− cos(uh(x, y, 0))) dxdy.(21)

Using the classical Taylor’s theorem with integral remainder in the variable u, we
write

1− cos(uh(x, y, 0)) = θ(x, y) u2
h(x, y, 0),(22)

where θ is the mean value given by θ(x, y) = −1
2

∫ 1

0
s cos(suh(x, y, 0))ds. We note

that ∣∣θ(x, y)∣∣ ≤ 1

2

∫ 1

0

∣∣s cos(suh(x, y, 0))
∣∣ds ≤ 1

2
, ∀ (x, y) ∈ Ω.(23)

Using (22) and applying the estimate (23), (21) yields

1

2
∥(uh)t∥2 +

1

2
∥qh∥2 ≤1

2
∥(uh)t(0)∥2 +

1

2
∥qh(0)∥2 +

∫∫
Ω

θ(x, y) u2
h(x, y, 0)dxdy

≤1

2
∥(uh)t(0)∥2 +

1

2
∥qh(0)∥2 +

1

2
∥uh(0)∥2 ,

which completes the proof of (20a).

Next, we will prove (20b). Taking v = uh in (17) and w = qh in (5b) we obtain∫∫
∆

((uh)tt + β(uh)t + sin(uh)−∇ · qh)uhdxdy −
∫
Γ+

uh

−(q+
h − q−

h ) · nds = 0,(24a) ∫∫
∆

qh · qhdxdy +

∫∫
∆

uh∇ · qhdxdy −
∫
Γ

u−
h qh · nds = 0.(24b)

Adding the two equations in (24), we obtain∫∫
∆

((uh)tt + β(uh)t + sin(uh))uhdxdy +

∫∫
∆

qh · qhdxdy

=

∫
Γ+

u−
h q

+
h · nds+

∫
Γ−

u−
h q

+
h · nds.(25)

Summing (25) over all elements and applying the periodic or compactly supported
boundary conditions yields
(26)∫∫

Ω

(uh)ttuhdxdy+β

∫∫
Ω

(uh)tuhdxdy+

∫∫
Ω

sin(uh)uhdxdy+

∫∫
Ω

qh ·qhdxdy = 0.

Using the relation (uh)ttuh = (uh(uh)t)t − ((uh)t)
2 = 1

2

(
u2
h

)
tt
− ((uh)t)

2, the
estimate (20a), and the Cauchy-Schwarz inequality, we get

1

2

d2 ∥uh∥2

dt2
+

β

2

d ∥uh∥2

dt
+ ∥qh∥2

= ∥(uh)t∥2 −
∫∫

Ω

sin(uh)uhdxdy

≤∥(uh)t(0)∥2 + ∥qh(0)∥2 + ∥uh(0)∥2 +
∫∫

Ω

|uh|dxdy

≤∥(uh)t(0)∥2 + ∥qh(0)∥2 + ∥uh(0)∥2 + (b− a)1/2(d− c)1/2 max
t∈[0,T ]

∥uh(t)∥ .
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Thus, the following inequality holds, ∀ t ∈ [0, T ],

1

2

d2 ∥uh∥2

dt2
+

β

2

d ∥uh∥2

dt

≤∥(uh)t(0)∥2 + ∥qh(0)∥2 + ∥uh(0)∥2 + (b− a)1/2(d− c)1/2 max
t∈[0,T ]

∥uh(t)∥ .

Integrating in time from 0 to t gives, ∀ t ∈ [0, T ],

1

2

d ∥uh∥2

dt
+

β

2
∥uh∥2 ≤

∫∫
Ω

uh(x, y, 0)(uh)t(x, y, 0)dxdy +
β

2
∥uh(0)∥2

+t
(
∥(uh)t(0)∥2 + ∥qh(0)∥2 + ∥uh(0)∥2

)
+ t(b− a)1/2(d− c)1/2 max

t∈[0,T ]
∥uh(t)∥ ,

which, after applying the Cauchy-Schwarz inequality and the inequality 2ab ≤
a2 + b2, gives, ∀ t ∈ [0, T ],

d ∥uh∥2

dt
+ β ∥uh∥2 ≤ (1 + β) ∥uh(0)∥2 + ∥(uh)t(0)∥2

+2t
(
∥(uh)t(0)∥2 + ∥qh(0)∥2 + ∥uh(0)∥2

)
+2t(b− a)1/2(d− c)1/2 max

t∈[0,T ]
∥uh(t)∥ .

Since β ≥ 0, the following estimate holds

d ∥uh∥2

dt
≤ (1 + β) ∥uh(0)∥2 + ∥(uh)t(0)∥2

+2t
(
∥(uh)t(0)∥2 + ∥qh(0)∥2 + ∥uh(0)∥2

)
+2t(b− a)1/2(d− c)1/2 max

t∈[0,T ]
∥uh(t)∥ .

Integrating again in time from 0 to t, we get, ∀ t ∈ [0, T ],

∥uh(t)∥2 ≤ ∥uh(0)∥2 + t
(
(1 + β) ∥uh(0)∥2 + ∥(uh)t(0)∥2

)
+t2

(
∥(uh)t(0)∥2 + ∥qh(0)∥2 + ∥uh(0)∥2

)
+t2(b− a)1/2(d− c)1/2 max

t∈[0,T ]
∥uh(t)∥ .

Using the inequality ab ≤ 1
2a

2 + 1
2b

2, gives, ∀ t ∈ [0, T ],

∥uh(t)∥2 ≤ ∥uh(0)∥2 + T
(
(1 + β) ∥uh(0)∥2 + ∥(uh)t(0)∥2

)
+T 2

(
∥(uh)t(0)∥2 + ∥qh(0)∥2 + ∥uh(0)∥2

)
+
1

2
T 4(b− a)(d− c) +

1

2
max
t∈[0,T ]

∥uh(t)∥2 .

Taking the maximum on both sides with respect to t, we get

max
t∈[0,T ]

∥uh(t)∥2 ≤ 2 ∥uh(0)∥2 + 2T
(
(1 + β) ∥uh(0)∥2 + ∥(uh)t(0)∥2

)
+2T 2

(
∥(uh)t(0)∥2 + ∥qh(0)∥2 + ∥uh(0)∥2

)
+T 4(b− a)(d− c), ∀ t ∈ [0, T ],

which completes the proof of the theorem. �
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Remark 3.2. The estimate (20b) indicates that the upper bound for ∥uh(t)∥ grows
quadratically in time. We were not able to obtain sharpened bound for ∥uh(t)∥.
Even in the 1-D linear case, it is well-known that bounds for the LDG errors grow
linearly (for convection, convection-diffusion, and wave equations); see e.g. [32].
This is also the case for the LDG method applied to the 2-D linear second-order
wave equation; see [33]. In this paper we proved that ∥uh(t)∥ grows quadratically in
time. This is due to the nonlinear term involving sin(uh).

From now on, the notation C, C1, C2, C±, etc. will be used to denote pos-
itive constants that are independent of the discretization parameters, but which
may depend upon the exact smooth solution of the partial differential equation
(1a) and its derivatives. Furthermore, all the constants will be generic, i.e., they
may represent different constant quantities in different occurrences. Finally, notice
that throughout the paper, although C, C1, C2, . . . do not explicitly depend on
t, they are functions of time through the dependence on the norm of u. In this
paper, we always assume that the exact solution u is smooth enough. More pre-
cisely, we assume that ||u||p+3 and ||ut||p+2 are bounded uniformly for any time
t ∈ [0, T ]. Consequently, the constants C, C1, C2, . . . are bounded, namely, for any
t, C, C1, C2, . . . are bounded by a constant C independent of the time t.

4. A priori error estimates for the semi-discrete LDG method

Throughout this paper, eu and eq = [eq,1, eq,2]
t denote the errors between the

exact solutions of (3) and the LDG solutions defined in (5) i.e., eu = u − uh

and eq = q − qh. Let the projection errors be defined as ϵu = u − P−u and
ϵq = q−P+q, and the errors between the numerical solutions and the projection
of the exact solutions be defined as ēu = P−u − uh and ēq = P+q− qh. We note
that the true errors can be split as

(27) eu = ϵu + ēu, eq = ϵq + ēq.

In order to prove our optimal error estimates for the LDG scheme, we need to derive
the error equations. Subtracting (5a) from (4a) with v ∈ V p

h and (5b) from (4b)
with w ∈ Vp

h, we obtain the following error equations of the LDG scheme on ∆∫∫
∆

((eu)tt + β(eu)t + sin(u)− sin(uh)) vdxdy

+

∫∫
∆

eq · ∇vdxdy −
∫
Γ−

v+e+q · nds−
∫
Γ+

v−e+q · nds = 0,∫∫
∆

eq ·wdxdy +

∫∫
∆

eu∇ ·wdxdy −
∫
Γ−

e−uw
+ · nds−

∫
Γ+

e−uw
− · nds = 0.

Applying the classical Taylor’s series with integral remainder in the variable u and
using the relation u− uh = eu, we write

sin(u)− sin(uh) = θ(u− uh) = θeu,(29)

where θ = θ(x, y, t) =
∫ 1

0
cos(u+ s(uh − u))ds =

∫ 1

0
cos(u− seu)ds.

Using (29), (27), (9), and the property of the projection P+ given by (12), we
rewrite the error equations as∫∫

∆

((eu)tt + β(eu)t + θeu) vdxdy +

∫∫
∆

ēq · ∇vdxdy −
∫
Γ−

v+ē+q · nds(30a)

−
∫
Γ+

v−ē+q · nds = 0,
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(30b)∫∫
∆

eq·wdxdy+

∫∫
∆

ēu∇·wdxdy−
∫
Γ−

ē−uw
+·nds−

∫
Γ+

ē−uw
−·nds+Z∆(u,w) = 0,

which, after using a simple integration by parts, are equivalent to∫∫
∆

((eu)tt + β(eu)t + θeu) vdxdy −
∫∫

∆

∇ · ēqvdxdy

−
∫
Γ+

v−(ē+q − ē−q ) · nds = 0,(31a) ∫∫
∆

eq ·wdxdy −
∫∫

∆

∇ēu ·wdxdy

+

∫
Γ−

(ē+u − ē−u )w
+ · nds+ Z∆(u,w) = 0.(31b)

We note that∣∣θ∣∣ ≤ ∫ 1

0

∣∣ cos(u− seu)
∣∣ds ≤ 1, ∀ (x, y) ∈ Ω, ∀ t ∈ [0, T ].(32)

Furthermore, using the smoothness of ut, we have, ∀ (x, y) ∈ Ω and ∀ t ∈ [0, T ],∣∣θt∣∣ =

∣∣∣∣− ∫ 1

0

(ut − s(eu)t) sin(u− seu)ds

∣∣∣∣
≤

∫ 1

0

(∣∣ut

∣∣+ s
∣∣(eu)t∣∣) ∣∣ sin(u− seu)

∣∣ds ≤ ∫ 1

0

(C +
∣∣(eu)t∣∣)ds = C +

∣∣(eu)t∣∣.(33)

Next, we state and prove some preliminary results which will be needed to prove
the optimal L2 error estimates for ∥eu∥ and ∥eq∥.

Theorem 4.1. Let (u,q) be the exact solution of (3) with u ∈ Hp+3(Ω) and ut ∈
Hp+2(Ω). Also, let (uh,qh) be the numerical solution of (5) subject to (14), then
there exists a positive constant C depends on ∥u∥p+3 and ∥ut∥p+2 but independent
of h such that,

∥ēu(0)∥ = ∥(ēu)t(0)∥ = 0.(34)

∥ēq(0)∥ ≤ C hp+1.(35)

∥(ēu)t∥2 ≤ C(t+ 1)2h2p+2 + 16t

∫ t

0

∥ēu(s)∥2 ds, ∀ t ∈ [0, T ].(36)

∥ēq∥ ≤ C(t+ 1)2h2p+2 + 16t

∫ t

0

∥ēu(s)∥2 ds, ∀ t ∈ [0, T ].(37)

Proof. Because of the way the initial conditions (14) are chosen, we have

ēu(x, y, 0) =P−u(x, y, 0)− uh(x, y, 0) = P−u(x, y, 0)− P−u(x, y, 0) = 0,

(ēu)t(x, y, 0) =P−ut(x, y, 0)− (uh)t(x, y, 0) = P−ut(x, y, 0)− P−ut(x, y, 0) = 0.

Thus, the estimates in (34) hold.

To estimate ∥ēq(0)∥, we take t = 0 in the error equation (30b) and use ēu(x, y, 0) =
0 to obtain, at t = 0, ∫∫

∆

eq ·wdxdy + Z∆(u,w) = 0,(38)
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which, after taking w = ēq(x, y, 0), summing over all elements, and using (27),
yields ∫∫

Ω

ēq · ēqdxdy = −
∫∫

Ω

ϵq · ēqdxdy −
∑
∆∈Th

Z∆(u, ēq).

Applying Cauchy-Schwarz inequality and using the estimates (10) and (13), we get,
at t = 0,

∥ēq(0)∥2 =

∫∫
Ω

ēq · ēqdxdy ≤ ∥ϵq(0)∥ ∥ēq(0)∥+
∑
∆∈Th

∣∣Z∆(u, ēq)
∣∣

≤ Chp+1 ∥ēq(0)∥+ Chp+1 ∥u(0)∥p+2 ∥ēq(0)∥ .

Consequently, ∥ēq(0)∥ = O(hp+1), which completes the proof of (35).

Finally, we will prove (36) and (37). Choosing v = (ēu)t in (31a) and taking the
first time derivative of (30b) and choosing the test function w = ēq, we obtain∫∫

∆

((eu)tt + β(eu)t + θeu) (ēu)tdxdy −
∫∫

∆

∇ · ēq(ēu)tdxdy

−
∫
Γ+

(ēu)
−
t (ē

+
q − ē−q ) · nds = 0,

∫∫
∆

(eq)t · ēqdxdy +
∫∫

∆

(ēu)t∇ · ēqdxdy −
∫
Γ−

(ēu)
−
t ē

+
q · nds

−
∫
Γ+

(ēu)
−
t ē

−
q · nds+ Z∆(ut, ēq) = 0.

Adding the above two equations, we get∫∫
∆

((eu)tt + β(eu)t + θeu) (ēu)tdxdy +

∫∫
∆

(eq)t · ēqdxdy

−
∫
Γ+

(ēu)
−
t ē

+
q · nds−

∫
Γ−

(ēu)
−
t ē

+
q · nds+ Z∆(ut, ēq) = 0.

Summing over all elements, applying the periodic or compactly supported boundary
conditions, and using (27) yields

1

2

d

dt

(
∥(ēu)t∥2 + ∥ēq∥2

)
+ β ∥(ēu)t∥2 =−

∫∫
Ω

(θ(ϵu + ēu) + (ϵu)tt) (ēu)tdxdy

−
∫∫

Ω

(ϵq)tēqdxdy −
∑
∆∈Th

Z∆(ut, ēq).

Consequently, we have

1

2

d

dt

(
∥(ēu)t∥2 + ∥ēq∥2

)
≤
∫∫

Ω

(|θ|(|ϵu|+ |ēu|) + |(ϵu)tt|) |(ēu)t|dxdy

+

∫∫
Ω

∣∣(ϵq)t∣∣∣∣ēq∣∣dxdy + ∑
∆∈Th

∣∣Z∆(ut, ēq)
∣∣.(40)
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Applying the estimate (32), the Cauchy-Schwarz inequality, the projection result
(13), and the estimate (10) leads to

1

2

d

dt

(
∥(ēu)t∥2 + ∥ēq∥2

)
≤ (∥ϵu∥+ ∥ēu∥+ ∥(ϵu)tt∥) ∥(ēu)t∥+ ∥(ϵq)t∥ ∥ēq∥+ Chp+1 ∥ut∥p+2 ∥ēq∥
≤

(
C1h

p+1 + ∥ēu∥+ C2h
p+1
)
∥(ēu)t∥+ C3h

p+1 ∥ēq∥
≤ (C4h

p+1 + ∥ēu∥) (∥(ēu)t∥+ ∥ēq∥) ,

where C4 = max(C1, C2, C3).

Applying the inequality a+ b ≤
√
2(a2 + b2)1/2 with a = ∥(ēu)t∥ and b = ∥ēq∥, we

establish that

1

2

d

dt

(
∥(ēu)t∥2 + ∥ēq∥2

)
≤

√
2(C4h

p+1 + ∥ēu∥)
(
∥(ēu)t∥2 + ∥ēq∥2

)1/2
,

which leads to

d

dt

(
∥(ēu)t∥2 + ∥ēq∥2

)1/2
≤ Chp+1 + 2

√
2 ∥ēu∥ .

Integrating over the interval [0, t], we obtain(
∥(ēu)t∥2 + ∥ēq∥2

)1/2
≤ C t hp+1+

(
∥(ēu)t(0)∥2 + ∥ēq(0)∥2

)1/2
+2

√
2

∫ t

0

∥ēu(s)∥ ds.

Using the estimates (35), (34), and applying the Cauchy-Schwarz inequality yields(
∥(ēu)t∥2 + ∥ēq∥2

)1/2
≤ C(t+1)hp+1+2

√
2t1/2

(∫ t

0

∥ēu(s)∥2 ds
)1/2

, ∀ t ∈ [0, T ].

Squaring both sides and using the inequality (a + b)2 ≤ 2a2 + 2b2, completes the
proof of (36) and (37). �

Now, we are ready to prove several optimal L2 error estimates for the semi-
discrete formulation.

Theorem 4.2. Under the assumptions of Theorem 4.1, there exists a positive con-
stant C independent of h such that,

∥ēu∥ ≤ Chp+1, ∀ t ∈ [0, T ].(41)

∥(ēu)t∥ ≤ Chp+1, ∀ t ∈ [0, T ].(42)

∥ēq∥ ≤ Chp+1, ∀ t ∈ [0, T ].(43)

∥eu∥ ≤ Chp+1, ∀ t ∈ [0, T ].(44)

∥(eu)t∥ ≤ Chp+1, ∀ t ∈ [0, T ].(45)

∥eq∥ ≤ Chp+1, ∀ t ∈ [0, T ].(46)

Proof. In order to prove (41), we choose v = ēu in (31a) and w = ēq in (30b) to
obtain
(47)∫∫

∆

((eu)tt + β(eu)t + θeu) ēudxdy−
∫∫

∆

∇· ēqēudxdy−
∫
Γ+

ē−u (ē
+
q − ē−q ) ·nds = 0,

(48)∫∫
∆

eq·ēqdxdy+
∫∫

∆

ēu∇·ēqdxdy−
∫
Γ−

ē−u ē
+
q ·nds−

∫
Γ+

ē−u ē
−
q ·nds+Z∆(u, ēq) = 0.



452 M. BACCOUCH

Adding (47) to (48), we obtain∫∫
∆

((eu)tt + β(eu)t + θeu) ēudxdy +

∫∫
∆

eq · ēqdxdy

=

∫
Γ−

ē−u ē
+
q · nds+

∫
Γ+

ē−u ē
+
q · nds− Z∆(u, ēq).

Summing over all elements yields∫∫
Ω

((eu)tt + β(eu)t + θeu) ēudxdy +

∫∫
Ω

eq · ēqdxdy

=

∫
∂Ω−

ē−u ē
+
q · nds+

∫
∂Ω+

ē−u ē
+
q · nds−

∑
∆∈Th

Z∆(u, ēq).

Applying the periodic or compactly supported boundary conditions yields∫∫
Ω

((eu)tt + β(eu)t + θeu) ēudxdy +

∫∫
Ω

eq · ēqdxdy = −
∑
∆∈Th

Z∆(u, ēq),

which, after using (27), is equivalent to∫∫
Ω

(ēu)ttēudxdy + β

∫∫
Ω

(ēu)tēudxdy + ∥ēq∥2

=−
∫∫

Ω

((ϵu)tt + β(ϵu)t + θϵu) ēudxdy

−
∫∫

Ω

ϵq · ēqdxdy −
∑
∆∈Th

Z∆(u, ēq).

Using the fact that (ēu)ttēu = (ēu(ēu)t)t − ((ēu)t)
2 = 1

2

(
ē2u
)
tt
− ((ēu)t)

2, we obtain

1

2

d2 ∥ēu∥2

dt2
+

β

2

d ∥ēu∥2

dt
+ ∥ēq∥2

= ∥(ēu)t∥2 −
∫∫

Ω

((ϵu)tt + β(ϵu)t + θϵu) ēudxdy

−
∫∫

Ω

ϵq · ēqdxdy −
∑
∆∈Th

Z∆(u, ēq).

Using the triangle inequality, the estimate (32), the Cauchy-Schwarz inequality, the
projection result (13), and the estimate (10), we get

1

2

d2 ∥ēu∥2

dt2
+

β

2

d ∥ēu∥2

dt
+ ∥ēq∥2

≤ ∥(ēu)t∥2 +
∫∫

Ω

(|(ϵu)tt|+ |θ|(|ϵu|+ |ēu|)) |ēu|dxdy

+

∫∫
Ω

∣∣ϵq∣∣∣∣ēq∣∣dxdy + ∑
∆∈Th

∣∣Z∆(u, ēq)
∣∣

≤ ∥(ēu)t∥2 + (∥(ϵu)tt∥+ ∥ϵu∥) ∥ēu∥+ ∥ēu∥2 + ∥ϵq∥ ∥ēq∥+ Chp+1 ∥ēq∥
≤ ∥(ēu)t∥2 + C1h

p+1 ∥ēu∥+ ∥ēu∥2 + C2h
p+1 ∥ēq∥ .
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Applying the inequality ab ≤ a2

2 + b2

2 , we obtain

1

2

d2 ∥ēu∥2

dt2
+

β

2

d ∥ēu∥2

dt
+ ∥ēq∥2

≤ ∥(ēu)t∥2 +
C2

1

2
h2p+2 +

3

2
∥ēu∥2 +

C2
2

2
h2p+2 +

1

2
∥ēq∥2 .

Therefore, the following estimate holds, ∀ t ∈ [0, T ],

1

2

d2 ∥ēu∥2

dt2
+

β

2

d ∥ēu∥2

dt
≤ C3h

2p+2 +
3

2
∥ēu∥2 + ∥(ēu)t∥2 .

Integrating in time from 0 to t, using the estimates (36), and (34) gives

1

2

d ∥ēu∥2

dt
+

β

2
∥ēu∥2 ≤ C3th

2p+2 +
3

2

∫ t

0

∥ēu(s)∥2 ds+
∫ t

0

∥(ēu)t(s)∥2 ds

≤ C3th
2p+2 +

3

2

∫ t

0

∥ēu(s)∥2 ds

+
C

3

(
(t+ 1)3 − 1

)
h2p+2 + 16

∫ t

0

r

∫ r

0

∥ēu(s)∥2 dsdr

≤ C3th
2p+2 +

3

2

∫ t

0

∥ēu(s)∥2 ds+ C4(t+ 1)3h2p+2 + 16t

∫ t

0

∫ r

0

∥ēu(s)∥2 dsdr

≤ C5(t+ 1)3h2p+2 +
3

2

∫ t

0

∥ēu(s)∥2 ds+ 16t

∫ t

0

∫ r

0

∥ēu(s)∥2 dsdr.

Using a simple integration by parts, we conclude that

d ∥ēu∥2

dt
≤ d ∥ēu∥2

dt
+ β ∥ēu∥2

≤ 2C5(t+ 1)3h2p+2 + 3

∫ t

0

∥ēu(s)∥2 ds+ 32t

∫ t

0

(t− r) ∥ēu(r)∥2 dr

≤ 2C5(t+ 1)3h2p+2 + 3

∫ t

0

∥ēu(s)∥2 ds+ 32t2
∫ t

0

∥ēu(r)∥2 dr

≤ 2C5(t+ 1)3h2p+2 + C2(t+ 1)2
∫ t

0

∥ēu(s)∥2 ds, ∀ t ∈ [0, T ].

Integrating again in time from 0 to t and using (34), we get

∥ēu∥2 ≤ ∥ēu(0)∥2 + C6(t+ 1)4h2p+2 + C2

∫ t

0

(
(r + 1)2

∫ r

0

∥ēu(s)∥2 ds
)
dr

≤ C6(t+ 1)4h2p+2 + C2(t+ 1)2
∫ t

0

(∫ r

0

∥ēu(s)∥2 ds
)
dr

≤ C6(t+ 1)4h2p+2 + C2(t+ 1)2
∫ t

0

(t− r) ∥ēu(r)∥2 dr

≤ C6(t+ 1)4h2p+2 + C2t(t+ 1)2
∫ t

0

∥ēu(r)∥2 dr

≤ C6(T + 1)4h2p+2 + C2(T + 1)3
∫ t

0

∥ēu(r)∥2 dr, ∀ t ∈ [0, T ].

Invoking the classical Gronwall inequality, we get

∥ēu∥2 ≤ C6(T + 1)4h2p+2eC2(T+1)3t

≤ C6(T + 1)4eC2(T+1)3Th2p+2 ≤ Ch2p+2, ∀ t ∈ [0, T ],
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which establishes the estimate (41).

Combining (41) with the estimates (36)-(37) yield (42) and (43). Finally, using (27)
and applying the triangle inequality and the projection result (13), we establish
the estimates (44), (45), and (46). Thus, we have completed the proof of the
theorem. �
Remark 4.1. Our results are valid for arbitrary regular meshes and for Qp poly-
nomials and for (i) periodic, (ii) purely Dirichlet, (iii) purely Neumann, and (iv)
mixed Dirichlet-Neumann boundary conditions. In our proofs, we consider the
case of periodic or compactly supported boundary conditions only to get an energy-
conserving scheme.

Remark 4.2. The theoretical results of this section hold true for the LDG method
applied to more general wave equations of the form

utt = ∆u+ f(x, t, u), x ∈ Ω ∈ Rd, t ∈ [0, T ], d = 1, 2, 3,(49)

subject to some appropriate initial and boundary conditions. The error analysis
follows in a similar manner if we assume that the nonlinear term f(x, t, u) satisfies
a Lipschitz condition on the set D = Ω× [0, T ]× R in the variable u with uniform
Lipschitz constant L, i.e., there exists a constant L > 0 with∣∣f(x, t, u)− f(x, t, v)

∣∣ ≤ L
∣∣u− v

∣∣, for all (x, t, u) and (x, t, v) ∈ D.

We note that the sine-Gordon equation is a special case of (49).

5. Numerical examples

In this section, we provide several numerical examples to validate our theoretical
results. We will demonstrate the (p + 1)-th order for the errors of u and q. For
simplicity, we use uniform Cartesian meshes obtained by partitioning the compu-
tational domain Ω = [a, b]2 into N = n × n square elements. All examples are
performed using the spaces Qp. The initial conditions are determined by (14).
Time discretization is by the fourth-order explicit Runge-Kutta method with a suf-
ficiently small time step so that error in time is negligible compared to spatial errors.
The integrals in the semi-discrete LDG method are evaluated using Gauss-Legendre
quadrature. Finally, in all numerical experiments, the rate of convergence is com-

puted by − ln(||en1
u ||/||en2

u ||)
ln(n1/n2)

, where en1
u and en2

u denote the errors using N1 = n2
1 and

N2 = n2
2 elements, respectively.

Example 5.1. In this example, we consider the following inhomogeneous sine-
Gordon equation

(50)

{
utt + sin(u) = ∆u+ f(x, y, t), (x, y) ∈ Ω = [0, 2π]2, t ∈ [0, T ],
u(x, y, 0) = sin (x+ y) , ut(x, y, 0) = cos (x+ y) , (x, y) ∈ Ω,

subject to the periodic boundary conditions. We select f such that the exact
solution is

u(x, y, t) = sin (x+ y + t) .

We solve this problem on a uniform Cartesian mesh having N = 25, 100, 400,
900, 1600, and 2500 elements obtained by dividing the computational domain Ω
into n2 square elements with n = 5, 10, 20, 30, 40, and 50. We use the spaces
Qp, p = 0, 1, 2, 3, 4. In order to demonstrate the (p+1)-th order for the errors of u
and q, we use the semi-discrete LDG scheme with a sufficiently small time step so
that error in time is negligible compared to spatial errors. More precisely, we take
∆t = 0.001h2, where h = 2π/n, to reduce the time error. In Figure 1 we show the
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actual errors ||eu|| and ||eq|| versus n at time t = 1. For each Qp space, we fit, in
a least-squares sense, the data sets with a linear function and then calculate from
the fitting result the slopes of the fitting lines. The slopes of the fitting lines are
shown on the graph. We observe the (p + 1)-th order of accuracy with the spaces
Qp, p = 0, 1, 2, 3, 4. Thus, the error estimates proved in this paper are optimal in
the exponent of the parameter h. This is in full agreement with the theory.

n
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u
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p=1, slope =1.9969
p=2, slope =2.9683
p=3, slope =4.0015
p=4, slope =4.9934
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q
||
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10-4

10-2

100
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p=0, slope =0.98453
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p=2, slope =3.0091
p=3, slope =3.9864
p=4, slope =5.0235

Figure 1: Convergence rates at t = 1 for ||eu|| (left) and ||eq|| (right) for Example
5.1 on uniform meshes having N = 25, 100, 400, 900, 1600, 2500 square elements
using Qp, p = 0− 4.

Example 5.2. In this example, we consider the homogeneous sine-Gordon equation

(51a) utt + sin(u) = ∆u, (x, y) ∈ Ω = [0, 1]2, t ∈ [0, 1]

subject to the initial conditions

(51b) u(x, y, 0) = g(x, y), ut(x, y, 0) = h(x, y), (x, y) ∈ Ω,

and to the mixed Dirichlet-Neumann boundary conditions
(51c)

u = gD, (x, y) ∈ ∂ΩD = ∂Ω−
1 ∪∂Ω

−
2 ,

∂u

∂n
= gN ·n, (x, y) ∈ ∂ΩN = ∂Ω+

1 ∪∂Ω
+
2 ,

where ∂Ω−
1 , ∂Ω

+
1 , ∂Ω

−
2 , and ∂Ω+

2 denote the left, right, bottom, and top edges
of the domain Ω = [0, 1]2, respectively. The initial and boundary conditions are
extracted from the exact solution

u(x, y, t) = 4 tan−1 (exp (x+ y − t)) .

We solve (51) using the same parameters and meshes as in Example 5.1. In Figure
2, we present the L2-norm of the errors ||eu|| and ||eq|| at the final time t = 1 as well
as their orders of convergence. Again, these results indicate that the convergence
order for ||eu|| and ||eq|| is p+ 1, which is in full agreement with the theory.

Example 5.3. In this example, we consider the following problem subject to the
purely Dirichlet boundary conditions

(52)


utt + sin(u) = ∆u+ f(x, y, t), (x, y) ∈ Ω = [0, 2π]2, t ∈ [0, 1],
u(x, y, 0) = sin (x+ y) , ut(x, y, 0) = cos (x+ y) , (x, y) ∈ Ω,
u(0, y, t) = sin (y + t) , u(2π, y, t) = sin (y + t) ,
u(x, 0, t) = sin (x+ t) , u(x, 2π, t) = sin (x+ t) .

We select f such that the exact solution is u(x, y, t) = sin (x+ y + t). We solve
(52) using the same parameters and meshes as in Example 5.1. In Figure 3, we
present the L2-norm of the errors ||eu|| and ||eq|| at the final time t = 1 as well as
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Figure 2: Convergence rates at t = 1 for ||eu|| (left) and ||eq|| (right) for Example
5.2 on uniform meshes having N = 25, 100, 400, 900, 1600, 2500 square elements
using Qp, p = 0− 4.

their orders of convergence. These results indicate that the convergence order for
||eu|| and ||eq|| is p+ 1. This is in full agreement with the theory.
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Figure 3: Convergence rates at t = 1 for ||eu|| (left) and ||eq|| (right) for Example
5.3 on uniform meshes having N = 25, 100, 400, 900, 1600, 2500 square elements
using Qp, p = 0− 4.

Example 5.4 (Superposition of two orthogonal line solitons). In this example,
we simulate the superposition of two orthogonal line solitons by considering the
sine-Gordon equation in the region −10 ≤ x, y ≤ 10

(53)


utt + sin(u) = △u, (x, y) ∈ [−10, 10]2, t ∈ [0, T ],
u(x, y, 0) = 4 arctan(exp(x)) + 4 arctan(exp(y)), (x, y) ∈ [−10, 10]2

ut(x, y, 0) = 0, (x, y) ∈ [−10, 10]2,
∂u
∂n = 0, (x, y) ∈ ∂Ω.

This test problem was considered in many papers e.g., [5, 28, 34]. The LDG solu-
tions using p = 1 and N = 1600 are presented in Figure 4 at times t = 0, 1, 2, 3,
4, 5, 6, 7, and 10. It can be seen from the graphs that the break up of these two
orthogonal line solitons, which are parallel to the diagonal y = −x and are moving
away from each other in the direction of y = x, is found. These results are in full
agreement with those published in [5, 28, 34].
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Figure 4: The LDG solutions uh at t = 0, 1, 2, 3, 4, 5, 6, 7, 10 (upper left to lower
right) for Example 5.4 using N = 1600 and p = 1.

The initial energy E(0) is obtained analytically as following

E(0) =
1

2

∫ 10

−10

∫ 10

−10

(
u2
t (x, y, 0)

+u2
x(x, y, 0) + u2

y(x, y, 0) + 2(1− cos(u(x, y, 0)))
)
dxdy

≈303.9999988127755,

where we used Gaussian quadrature to approximate the integral. The results shown
in Figures 5-6 suggest that the energy Eh(t) remains approximately as a constant.
Thus, our LDG scheme conserves the energy even for large time T . This is in full
agreement with the theory. Numerical results further indicate that the energy Eh(t)
converges to the initial error with decreasing mesh size.
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Figure 5: The discrete energy for t ∈ [0, 3] for Example 5.4 using (N, p) = (400, 1)
(left) and (N, p) = (1600, 1) (right).
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Figure 6: The discrete energy for t ∈ [0, 3] for Example 5.4 using (N, p) = (2500, 1)
(left) and (N, p) = (400, 2) (right).

Remark 5.1. We would like to emphasize that the energy conservation property is
important in order to preserve the phase and shape of the waves. It is well-known
that energy-conserving numerical methods (conserve the discrete approximation of
the energy) are more suitable for solving wave propagation problems because they
are able to maintain the phase and shape of the waves accurately, especially for long
time simulation. We simulate the above problems using the same parameters and
meshes except the final time T = 100. We observed that the L2 errors do not grow in
time. We also observed that the shape of the solution after long time integration is
well preserved. Consult [4] and the references cited therein for a detailed discussion
of the dispersive and dissipative behaviour of high order DG finite element methods.

6. Conclusion

In this paper, we proposed and analyzed a high order and energy-conserving
LDG method for solving the two-dimensional sine-Gordon nonlinear hyperbolic
equation on Cartesian grids. We proved the energy-conserving property, the L2

stability, and optimal L2 error estimates for the semi-discrete LDG scheme. More
precisely, we identified suitable numerical fluxes and a suitable projection of the
initial conditions for the LDG scheme for which the L2-norm of the solution and
its gradient are both of order p + 1, when tensor product polynomials of degree
at most p are used. Our numerical experiments demonstrate that the proposed
scheme yields optimal rates of convergence. The extension of these proofs for 3-
D problems on Cartesian meshes is straight forward. We are currently studying
the superconvergence properties of the LDG method applied to two-dimensional
problems on Cartesian meshes. We are also planning to construct a posteriori
errors estimates based on superconvergence to construct efficient adaptive high
order LDG method for the sine-Gordon equations. Extending the error analysis to
problems on triangular and tetrahedral meshes involve many technical difficulties
and will be investigated in the future.
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tinuous Galerkin method for elliptic problems on cartesian grids. SIAM Journal on Numerical
Analysis, 39:264–285, 2001.

[37] B. Cockburn, G. E. Karniadakis, and C. W. Shu. Discontinuous Galerkin Methods Theory,
Computation and Applications, Lecture Notes in Computational Science and Engineering,
volume 11. Springer, Berlin, 2000.

[38] B. Cockburn and C. W. Shu. The local discontinuous Galerkin method for time-dependent

convection-diffusion systems. SIAM Journal on Numerical Analysis, 35:2440–2463, 1998.
[39] M. Darvishi, F. Khani, S. Hamedi-Nezhad, and S.-W. Ryu. New modification of the HPM

for numerical solutions of the sine-Gordon and coupled sine-Gordon equations. International

Journal of Computer Mathematics, 87(4):908–919, 2010.
[40] M. Dehghan and A. Shokri. A numerical method for solution of the two-dimensional sine-

Gordon equation using the radial basis functions. Mathematics and Computers in Simulation,
79(3):700–715, 2008.

[41] M. Dehghan and A. Shokri. Numerical solution of the nonlinear Klein-Gordon equation using
radial basis functions. Journal of Computational and Applied Mathematics, 230(2):400 –
410, 2009.

[42] K. Djidjeli, W. Price, and E. Twizell. Numerical solutions of a damped sine-Gordon equation

in two space variables. Journal of Engineering Mathematics, 29(4):347–369, 1996. cited By
38.

[43] R. K. Dodd. Solitons and nonlinear wave equations. Academic Press, London New York,
1982.

[44] R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris. Solitons and nonlinear wave
equations. Academic Press, London New York, 1982.

[45] B. Dong and C.-W. Shu. Analysis of a local discontinuous Galerkin method for linear time-
dependent fourth-order problems. SIAM Journal on Numerical Analysis, 47:3240–3268, 2009.

[46] R. Flesch, M. Forest, and A. Sinha. Numerical inverse spectral transform for the periodic
sine-Gordon equation: Theta function solutions and their linearized stability. Physica D:
Nonlinear Phenomena, 48(1):169–231, 1991.



ERROR ESTIMATES OF LDG METHOD FOR SINE-GORDON EQUATIONS 461

[47] A. Hussain, S. Haq, and M. Uddin. Numerical solution of Klein-Gordon and sine-Gordon
equations by meshless method of lines. Engineering Analysis with Boundary Elements,
37(11):1351–1366, 2013.

[48] Z.-W. Jiang and R.-H. Wang. Numerical solution of one-dimensional sine-Gordon equation

using high accuracy multiquadric quasi-interpolation. Applied Mathematics and Computa-
tion, 218(15):7711–7716, 2012. cited By 7.

[49] S. Jimnez and L. Vzquez. Analysis of four numerical schemes for a nonlinear Klein-Gordon

equation. Applied Mathematics and Computation, 35(1):61 – 94, 1990.
[50] D. Kaya. A numerical solution of the sine-Gordon equation using the modified decomposition

method. Applied Mathematics and Computation, 143(2-3):309–317, 2003.
[51] G. Kazacha and S. Serdyukov. Numerical investigation of the behaviour of solutions of the

sine-Gordon equation with a singularity for large t. Computational Mathematics and Math-
ematical Physics, 33(3):377–385, 1993.

[52] Y. Keskin, I. Caglar, and A. Koc. Numerical solution of sine-Gordon equation by reduced
differential transform method. volume 1, pages 109–113, 2011.

[53] G. L. Lamb. Elements of soliton theory. Wiley, New York, 1980.
[54] P. LeSaint and P. A. Raviart. On a finite element method for solving the neutron trans-

port equations. In C. de Boor, editor, Mathematical Aspects of Finite Elements in Partial
Differential Equations, pages 89–123, New York, 1974. Academic Press.

[55] O. Levring, M. Samuelsen, and O. Olsen. Exact and numerical solutions to the perturbed
sine-Gordon equation. Physica D: Nonlinear Phenomena, 11(3):349–358, 1984.

[56] X. Meng, C.-W. Shu, and B. Wu. Superconvergence of the local discontinuous Galerkin
method for linear fourth-order time-dependent problems in one space dimension. IMA Jour-

nal of Numerical Analysis, 32:1294–1328, 2012.
[57] J. Perring and T. Skyrme. A model unified field equation. Nuclear Physics, 31:550 – 555,

1962.

[58] S. Popov. Numerical analysis of soliton solutions of the modified Korteweg-de Vries-sine-
Gordon equation. Computational Mathematics and Mathematical Physics, 55(3):437–446,
2015.

[59] S. Ray. A numerical solution of the coupled sine-Gordon equation using the modified decom-

position method. Applied Mathematics and Computation, 175(2):1046–1054, 2006.
[60] W. H. Reed and T. R. Hill. Triangular mesh methods for the neutron transport equation.

Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos, 1973.
[61] A. Scott. Active and nonlinear wave propagation in electronics. Wiley-Interscience, New

York, 1970.
[62] A. C. Scott. A nonlinear Klein-Gordon equation. American Journal of Physics, 37:52 – 61,

1969.
[63] W. Shao and X. Wu. The numerical solution of the nonlinear Klein-Gordon and sine-Gordon

equations using the Chebyshev tau meshless method. Computer Physics Communications,
185(5):1399–1409, 2014.

[64] Q. Sheng, A. M. Khaliq, and D. Voss. Numerical simulation of two-dimensional sine-Gordon

solitons via a split cosine scheme. Mathematics and Computers in Simulation, 68(4):355 –
373, 2005.

[65] C.-W. Shu. Discontinuous Galerkin method for time-dependent problems: Survey and re-
cent developments. In X. Feng, O. Karakashian, and Y. Xing, editors, Recent Developments

in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations, vol-
ume 157 of The IMA Volumes in Mathematics and its Applications, pages 25–62. Springer
International Publishing, 2014.

[66] W. Strauss and L. Vazquez. Numerical solution of a nonlinear Klein-Gordon equation. Jour-

nal of Computational Physics, 28(2):271 – 278, 1978.
[67] A. Taleei and M. Dehghan. A pseudo-spectral method that uses an overlapping multido-

main technique for the numerical solution of sine-Gordon equation in one and two spatial
dimensions. Mathematical Methods in the Applied Sciences, 37(13):1909–1923, 2014.

[68] Q.-F. Wang. Numerical solution for series sine-Gordon equations using variational method
and finite element approximation. Applied Mathematics and Computation, 168(1):567–599,
2005.

[69] Y. Xu and C.-W. Shu. Local discontinuous Galerkin methods for high-order time-dependent

partial differential equations. Communications in Computational Physics, 7:1–46, 2010.



462 M. BACCOUCH

[70] Y. Xu and C.-W. Shu. Optimal error estimates of the semi-discrete local discontinuous
Galerkin methods for high order wave equations. SIAM Journal on Numerical Analysis,
50:79–104, 2012.

[71] C. Zheng. Numerical solution to the sine-Gordon equation defined on the whole real axis.

SIAM Journal on Scientific Computing, 29(6):2494–2506, 2007.

Department of Mathematics, University of Nebraska at Omaha, Omaha, NE 68182, USA
E-mail : mbaccouch@unomaha.edu


