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ANALYSIS OF POLLUTION-FREE APPROACHES FOR

MULTI-DIMENSIONAL HELMHOLTZ EQUATIONS

KUN WANG∗, YAU SHU WONG, AND JIZU HUANG

Abstract. Motivated by our recent work about pollution-free difference schemes for solving
Helmholtz equation with high wave numbers, this paper presents an analysis of error estimate for

the numerical solution on the annulus and hollow sphere domains. By applying the weighted-test-
function method and defining two special interpolation operators, we first derive the existence,
uniqueness, stability and the pollution-free error estimate for the one-dimensional problems gen-
erated from a method based on separation of variables. Utilizing the spherical harmonics and

approximations results, we then prove the pollution-free error estimate in L2-norm for multi-
dimensional Helmholtz problems.

Key words. Helmholtz equation, error estimate, finite difference method, polar and spherical

coordinates, pollution-free scheme.

1. Introduction

This paper is focused on the Helmholtz equation defined as follows:

−∆ũ− k2ũ = 0, in Rd\B1,(1)

(∂rũ+ jkũ)|∂B1 = g̃1,(2)

∂rũ− jkũ = o
(
||x||

1−d
2

)
, as ||x|| → ∞,(3)

where k is the wave number, B1 is a bounded domain in Rd, x = (x1, · · · , xd) (d =
1, 2, 3), g̃1 is a given function, ∂r denotes the radial derivative and j2 = −1.
Applying an absorbing boundary condition method, or the perfectly matched layers
(PML) method, the problem (1)-(3) may be reduced to the following equation (see
[7, 15, 16, 23, 26, 43, 44, 57]):

−∆ũ− k2ũ = 0, in Ω := B2\B1,(4)

(∂rũ+ jkũ)|∂B1 = g̃1,(5)

(∂rũ− jkũ)|∂B2 = g̃2,(6)

where B2 ∈ Rd (d = 1, 2, 3) is a sufficiently large ball containing B1 and g̃2 is a
given function.

It is well-known that solving the Helmholtz equation with high wave number-
s numerically is very difficult and challenging due to the high oscillation solu-
tions. Moreover, the resulted linear system is indefinite and ill-conditioned (see
[1, 12, 13, 14, 22, 28, 29, 30, 31, 32, 33, 34, 50]). Another difficulty is that the
“pollution effect” exists in almost all computational schemes applied to multi-
dimensional Helmholtz equation such that the accuracy of the numerical solution
becomes totally unacceptable for the cases with high wave numbers unless very
fine meshes are used in the computation. In the past several decades, many stud-
ies have been reported to eliminate or reduce the “pollution effect”. For example,
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Babus̆ka et al. [4, 47] considered the generalized finite element method to mini-
mize the “pollution effect”. Another popular technique is based on the h-p finite
element method (see [19, 32, 33, 54]), in which the “pollution effect” is reduced
by increasing the order of the polynomial basis function or decreasing the mesh
size h. For the finite difference methods, many higher order compact schemes were
developed [21, 42, 45, 46, 49]. Recently, Chen et al. [15, 16] proposed two methods,
in which the numerical dispersion is minimized by choosing optimal parameters.
Other computational techniques based on the spectral methods were investigated,
and the reader is referred to [6, 8, 17, 20, 27, 37, 39, 43, 44, 59]. However, it is
important to note that although pollution-free numerical schemes have been re-
ported in [24, 52, 53], there does not exist any analysis results about pollution-free
methods for solving the multi-dimensional problems.

To ensure the bound of the relative error for the numerical solution of the problem
(4)-(6), it is usually necessary to impose the following condition

kβ(kh)γ = constant.(7)

Here, h denotes the mesh size, and two constants β > 0, γ > 0 are real numbers. For
example, β =2, and γ =2 and 4, when the solution is computed by the standard
central finite difference scheme and the compact fourth order difference scheme,
respectively. Considering that the Helmholtz problem is numerically solved with a
fixed value of kh, and due to the relation given in (7), the numerical error will not
decrease even when the mesh size is reduced. This adverse behaviour is the direct
consequence of the “pollution effect”, and more detailed discussion is reported in
[31]. It has been cited by Babus̆ka and Sauter [5] that the “pollution effect” can
not be avoided on a general bounded domain for the finite element approximation
of two- (2D) and three-dimensional (3D) Helmholtz equations.

In this study, we focus on the pollution-free difference method. It should be
noted that the standard finite difference and the higher order compact methods are
constructed based on a truncated Taylor series expansion, and the truncation errors
depend on the wave numbers and thus causing the “pollution effect” unavoidable.
To eliminate the pollution, pollution-free difference schemes for the one-dimensional
Helmholtz equation have been proposed in [25, 36, 50, 53, 56], in which the deriva-
tion takes account of all terms in the Taylor series expansion. Compared with the
standard finite difference methods, the numerical error of the pollution-free scheme
depends only on the mesh size h but independent of the wave number k. Therefore,
the numerical error is decreasing as the mesh size is reduced [50, 56]. Consequent-
ly, the condition (7) can be relaxed to the common “rule of thumb” (i.e., 8 to 10
discrete mesh points for each wavelength), that is

kh = C1 ≤ π

4
.(8)

Compared to (7), relatively large value of kh could be employed even when the
wave number is very high. Numerical simulations reported in [52] also verify that
the pollution-free difference scheme can produce a stable numerical solution even
when kh > 1. According to the condition (7), the mesh size of the standard finite
difference or compact difference schemes must satisfy the condition

kh ≪ 1,(9)

for problems with high wave numbers. Therefore, a pollution-free scheme is much
more efficient than the standard and compact finite difference schemes. A detailed
development for 1D problems has been reported in [50, 56]. However, this approach
can not be extended directly to problems on a general domain in 2D and 3D.
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The main difficulty is due to the mixed-term uxxyy appearing in the Taylor series
which can not be eliminated. By using a method of separation of variables, we
extended the pollution-free approach to problems on annulus and hollow sphere
domains [52], circular cylindrical domains [24] and rectangle domains [51]. The
developed pollution-free difference schemes have been shown numerically to have
first-, second- and third-order accurate. The effectiveness for multi-dimensional
problems has been demonstrated by numerical simulations, and the goal of this
paper is to fill in the analysis of the error estimate which has not been reported
before.

We now focus on the theoretical analysis for the first-order pollution-free al-
gorithm proposed in [52] for the annulus and hollow sphere domains. Under the
assumption of (8), the main contribution of this study is to prove the following
error estimate

||ũ− Ũ ||L2(Ω) ≤ Ch,(10)

where Ũ is the approximation solution obtained by the pollution-free scheme and
C is a positive constant independent of h and k. Although only special domain
is considered here, to our best knowledge, this is the first attempt to derive the
pollution-free error for the finite difference method of multi-dimensional Helmholtz
equations. The numerical experiments in Section 4 confirm the correction of the
estimate (10).

The paper is organized as follows: In Section 2, we first transform the problem
(4)-(6) into a series of 1D problems, and some theoretical results for 2D and 3D
problems are presented. The proofs of the separated 1D problems are reported in
detail in Section 3, and the theoretical prediction is numerical confirmed in Section
4. Finally, conclusions are made in Section 5.

2. Error estimates in 2D and 3D

This section is divided into three parts: a multi-dimensional problem will be
transformed into a series of one-dimensional equations in Section 2.1; then we recall
the finite difference method proposed in [52] and state the existence, uniqueness,
stability and error estimates for the separated problems in Section 2.2; finally, the
detailed deduction of the pollution-free error estimates for 2D and 3D Helmholtz
equations with high wave numbers are shown in Section 2.3.

2.1. Transformation of the equation. Now consider the Helmholtz equation
in the polar and spherical coordinates. For more details on this topic, the reader is
referred to [11, 31, 41, 43, 44, 52, 55].

Assume that a and b are two real numbers satisfying b > a > 0, B1 and B2

are defined as B1 := {x ∈ R1
∣∣0 ≤ x < a} and B2 := {x ∈ R1

∣∣0 ≤ x < b}, and
B1 = {x ∈ Rd

∣∣|x| < a} and B2 = {x ∈ Rd
∣∣|x| < b} with d = 2 or 3, respectively.

Then, by applying a separation of variables, the solution of the Helmholtz equation
(4)-(6) can be expressed as a series solution given by (see [3, 31, 41])

ũ(x) = ũ(r, θ) =

∞∑
m=0

um(r)ejmθ,(11)

and

ũ(x) = ũ(r, θ, ϕ) =
∞∑

m=0

2m+1∑
l=1

uml(r)Ym,l(θ, ϕ),(12)
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in the polar and spherical coordinates, respectively. Here,

um(r) = (ũ, ejmθ) =

∫ 2π

0

ũ(r, θ)e−jmθdθ,

ulm(r) = (ũ, Ym,l(θ, ϕ)) =

∫ 2π

0

∫ π

0

ũ(r, θ, ϕ)Y m,l(θ, ϕ)dϕdθ,

with Y m,l(θ, ϕ) being the conjugate of Ym,l(θ, ϕ) and

Ym,1(θ, ϕ) = CmP1(cos θ),

Ym,2l(θ, ϕ) = Cm,lP
l
m(cos θ) cos(lϕ), l = 1, · · · ,m,

Ym,2l+1(θ, ϕ) = Cm,lP
l
m(cos θ) sin(lϕ), l = 1, · · · ,m,

and Pm(t) is the Legerdre polynomial of degree m with

Pm(t) =
1

2mm!

dm

dtm
[(t2 − 1)m],

and

P l
m(t) = (−1)l(1− t2)

1
2 l

dl

dtl
Pm(t) (1 ≤ l ≤ m),

Cm =

√
2m+ 1

4π
, Cm,l =

√
2m+ 1

2π

(m− l)!

(m+ l)!
.

With this approach, the solution of the original problem (4)-(6) can be computed
by solving a sequence (for each m in 2D and (m, l) in 3D) of the following one-
dimensional equations in the radial r direction:

− 1

rd−1

∂

∂r

(
rd−1 ∂u

∂r

)
+ dm

u

r2
− k2u = 0, r ∈ I := (a, b), d = 1, 2, 3,(13) (

u(1) + jku
)
|r=a = g1,(14) (

u(1) − jku
)
|r=b = g2,(15)

where dm = 0,m2,m(m + 1) in 1D, 2D and 3D, respectively. For the reason of
simplicity, we let u denote um or uml here, and g1, g2 are two constants resulted
from coordinate transforms, and u(n) = ∂nu

∂rn . Since it is much simpler for the case
d = 1, we mainly focus on problems for d = 2, 3.

Recall that we are particularly interested in the Helmholtz equation with large
wave numbers, and under the assumption that k is sufficiently large, we have the
following lemma:

Lemma 2.1. Suppose that u is the solution of the problem (13)-(15), and g1, g2
are two bounded numbers, then we have the following stability estimates

k1−s||u(s)||L2(I) ≤C0, s = 0, 1, 2,(16)

where C0 is a positive constant independent of k, u, u(n), but depends on g1, g2 and
the domain.

Proof. The lemma can be easily obtained by applying a similar process reported
in [10, 43], and the detail is omitted here.

By setting (see [52, 58])

u = r−
d−1
2 v,(17)
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equations (13)-(15) can be rewritten as

−v(2) − k2(r)v = 0, r ∈ I,(18) (
v(1) + (jk +

d− 1

2r
)v
)
|r=a = a

d−1
2 g1,(19) (

v(1) − (jk +
d− 1

2r
)v
)
|r=b = b

d−1
2 g2,(20)

with

k2(r) = k2 − 4dm + d2 − 4d+ 3

4r2
.(21)

When k2(r) ≤ 0, the equation (18) reduces to a classical reaction-diffusion prob-
lem, which has been widely investigated and can be efficiently solved under the
assumption of (8) (see, e.g., [38]). In the following, we will only consider the case
that k2 ≥ k2(r) > 0, which is indeed a Helmholtz equation.

2.2. Finite difference scheme. For the problem (18)-(20), pollution-free finite
difference methods have been proposed in [52]. For completeness, we briefly report
here. Let the domain I be covered by a uniform mesh with mesh size h = b−a

N (N ∈
Z+), and the grid points in the computational domain be defined as ri = a +
ih (i ∈ Z, 0 ≤ i ≤ N), Ii = (ri−1, ri+1). For the reason of simplicity, we let

k
(n)
i = [k(r)](n)|r=ri , v

(n)
i = [v(r)](n)|r=ri .

Thanks to (17), (18) and Lemma 2.1, it is valid that

||v(n)||L2(I) = O(kn−1), n ∈ Z.(22)

In a practical computation, a good numerical solution of ũ(x) in (11) or (12) can be
achieved by replacing the infinity in the summation with M such that M = O(k).
Assuming

h ≪ a,(23)

it holds

dm = O(k2) and |(k2i )(n)| = O(k2), n ∈ Z.(24)

Considering the Taylor’s expansion, it follows

vi+1 + vi−1 =2
[
vi +

h2

2!
v
(2)
i +

h4

4!
v
(4)
i +

h6

6!
v
(6)
i + · · ·+ h2n

(2n)!
v
(2n)
i + · · ·

]
.(25)

By using (22), we have

||h2nv(2n)||L2(Ii) = O(h),(26)

which means that all terms h2nv(2n) have the same order with respect to h under
the assumption (8). On the other hand, due to (18), we have

h2nv
(2n)
i = h2n

2n−2∑
m=0

(
2n− 2

2n− 2−m

)
(k2i )

(m)v
(2n−2−m)
i ,(27)

where
( n

m

)
= n!

m!(n−m)! . By applying (22) and (24), there holds

||h2n(k2)(m)v(2n−2−m)||L2(Ii) = O(hm+1),(28)
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which implies that the norm of h2nv
(2n)
i can be decomposed to a summation as

follows∣∣∣∣∣∣ 1

(2n)!
h2nv(2n)

∣∣∣∣∣∣
L2(Ii)

=
∣∣∣∣∣∣ h2n

(2n)!

2n−2∑
m=0

( 2n− 2
2n− 2−m

)
(k2)(m)v(2n−2−m)

∣∣∣∣∣∣
L2(Ii)

=
O(h)

(2n)!
+

O(h2)

(2n)!
+ · · ·+ O(h2n−1)

(2n)!
, ∀n ∈ Z.(29)

By combining (29) and collecting the term equivalent to O(hm), m = 1, 2, · · · , on
the right hand side of (25), we can rearrange it as

vi+1 + vi−1 = 2[D1
i vi +D2

i v
(1)
i +D3

i vi + · · · ],(30)

where the grouping of Dm
i = Dm(r)|r=ri ,m = 1, 2, · · · , are determined functions

satisfying

||D2m−1v||L2(Ii) = O(h2m−1), ||D2mv(1)||L2(Ii) = O(h2m).(31)

By taking account of only the term equivalent to O(h) on the right hand side of
(30), we have

vi+1 + vi−1 =2D1
i vi +RD1

i ,(32)

with RD1
i = RD1(r)|r=ri being the remainder term and

D1
i = cos(kih), satisfying 0 < D1

i < 1.(33)

On the other hand, there holds that

vi+1 =vi +
h2

2!
v
(2)
i + · · ·+ h(2n)

(2n)!
v
(2n)
i + · · ·

+ hv
(1)
i +

h3

3!
v
(3)
i + · · ·+ h(2n+1)

(2n+ 1)!
v
(2n+1)
i + · · · .(34)

Similar to (30), we can rewrite the above equation as

vi+1 =D1
i vi +D2

i v
(1)
i +D3

i vi + · · ·

+B1
i v

(1)
i +B2

i vi +B3
i v

(1)
i + · · · ,(35)

where Bm
i = Bm(r)|r=ri ,m = 1, 2, · · · are determined functions with

||B2m−1v(1)||L2(Ii) = O(h2m−1), ||B2mv||L2(Ii) = O(h2m).(36)

By collecting all terms equivalent to O(h) on the right hand side of (34), there
yields

vi+1 = D1
i vi +B1

i v
(1)
i +RL1

i ,(37)

with RL1
i = RL1(r)|r=ri being the remainder term and

B1
i =

sin(kih)

ki
> 0, satisfying |B1

i | = O(h).(38)

Setting i = 0 in (37) and using (19), we obtain

v1 = D1
0v0 +B1

0

[
−
(
jk +

d− 1

2a

)
v0 + a

d−1
2 g1

]
+RL1

0.(39)

Similarly, it holds

vN−1 = D1
NvN −B1

N

[(
jk +

d− 1

2b

)
vN + b

d−1
2 g1

]
+RR1

N ,(40)
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where RR1
N = RR1(r)|r=b is the remainder term. Let Vi denote the numerical

solution of the finite difference method, omitting the remainder terms in (32), (39)
and (40), respectively, we derive the following algorithm:

Algorithm 1:

− Vi+1 − Vi−1 + 2D1
i Vi = 0, 0 < i < N,(41)

V1 = D1
0V0 +B1

0

[
−
(
jk +

d− 1

2a

)
V0 + a

d−1
2 g1

]
,(42)

VN−1 = D1
NVN −B1

N

[(
jk +

d− 1

2b

)
VN + b

d−1
2 g2

]
.(43)

Let the vector space Sh = {V|V = {Vi}Ni=0}. For any mesh function V = {Vi|0 ≤
i ≤ N}, define that

δrVi− 1
2
=

Vi − Vi−1

h
, Vi ∈ V, 1 ≤ i ≤ N,

δ2rVi =
δrVi+1/2 − δrVi−1/2

h
, Vi ∈ V, 1 ≤ i ≤ N − 1,

(U,V) = h

[
1

2
U0V 0 +

N−1∑
i=1

UiV i +
1

2
UNV N

]
, U,V ∈ Sh,

||V||L2 =
√
(V,V), V ∈ Sh,

||δrV||L2 =

√√√√h
N∑
i=1

(δrVi− 1
2
)(δrV i− 1

2
) =

√√√√h
N∑
i=1

|δrVi− 1
2
|2, V ∈ Sh,

||δ2rV||L2 =

√√√√h
N−1∑
i=1

(δ2rVi)(δ2rV i) =

√√√√h
N−1∑
i=1

|δ2rVi|2, V ∈ Sh.

For the continuous function v(r), we define Πiv(r) = v(r)|r=ri = vi, Πv(r) =
{Πiv(r)}Ni=0 ∈ Sh and

||v||L2 =
√
(Πv(r),Πv(r)).

For Algorithm 1, we have the following results, which will be proved in Section
3.

Theorem 2.1 (Existence and Uniqueness). Let g1, g2 be two bounded num-
bers. Under the assumption of (8) and (23), Algorithm 1 generates a unique
discretized solution V = {Vi}Ni=0 ∈ Sh.

Theorem 2.2 (Stability). Let g1, g2 be two bounded numbers. Under the as-
sumption of (8) and (23), the discretized solution V = {Vi}Ni=0 ∈ Sh generated by
Algorithm 1 satisfies that

||δrV||L2 + k||V||L2 ≤C,(44)

||δ2rV||L2 ≤Ck.(45)
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For any V = {Vi}Ni=0 ∈ Sh, let us define new interpolation operators P ĩ (̃i = 1, 2)
as

P1V =
Vi+1 − cos(kih)Vi

sin(kih)
sin[ki(r − ri)] + Vi cos[ki(r − ri)], r ∈ [ri, ri+1],

P2V =ki
Vi+1 − cos(kih)Vi

cos(kih)
cos[ki(r − ri)]− kiVi sin[ki(r − ri)], r ∈ [ri, ri+1],

and the continuous functions Ṽ(r), Ṽ
(1)

(r) by

Ṽ(r) =P1V, r ∈ [a, b],

Ṽ
(1)

(r) =P2V, r ∈ [a, b].

The error estimates for Algorithm 1 is then given by the following Theorem.

Theorem 2.3 (Error estimate). Let g1, g2 be two bounded numbers, v and
V be the solution of the problem (18)-(20) and Algorithm 1, respectively. Setting

e(r) = v(r)− Ṽ(r), under the assumption of (8) and (23), there holds that

h||e(1)||L2(I) + ||e||L2(I) ≤ C(h||v(1)||L2(I) + ||v||L2(I)).(46)

2.3. New error estimates in 2D and 3D. Next, we will derive the error esti-
mate in 2D and 3D. Firstly, we recall the regularity of the solution for the problem
in multi-dimensions.

Lemma 2.2. [40] Suppose Ω ∈ Rd (d = 2, 3) be contained by a ball with the
radius R ≥ R0 > 0 with R0 being a constant. Then the solution of the problem
(4)-(6) satisfies

||ũ||H1(Ω) + k||ũ||L2(Ω) ≤ C,(47)

where H ĩ(Ω), ĩ = 0, 1 is the classical Hilbert space, and H0(Ω) = L2(Ω).
Setting S1 = [0, 2π) and S2 = [0, 2π)×[0, π), the equation (4)-(6) can be rewritten

as follows (see [43, 44])

−
( ∂2

∂r2
+

2

r

∂

∂r
+

1

r2
∆Sd−1

)
ũ− k2ũ = 0, in Ω := I× Sd−1,(48)

∂rũ+ jkũ = g̃1, on Sd−1
a ,(49)

∂rũ− jkũ = g̃2, on Sd−1
b ,(50)

where ∆S1 = ∂2

∂2θ and ∆S2 = 1
sin2 θ

∂2

∂ϕ2 + cos θ
sin θ

∂
∂θ + ∂2

∂θ2 .

For a function ṽ on S2, defining the gradient operator ∇⃗ on the unit sphere by

∇⃗S2 =
(

1
sin θ∂ϕṽ, ∂ϕṽ

)
S2 , there holds

−(∆S2 ũ, ṽ)S2 = (∇⃗S2 ũ, ∇⃗S2 ṽ)S2 .

Since ∇⃗S1 is a standard gradient operator, it is valid that

(∇⃗Sd−1 Ỹ , ∇⃗Sd−1 Ỹ )Sd−1 = dm,
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where Ỹ = ejmθ or Ym,l(θ, ϕ). In order to describe the error estimate, considering

(11) and (12), we define a nonisotropic space H̃s(I;Ht(Sd−1)) as follows:

H̃s(I;Ht(S1)) =
{
ũ ∈ L2(Ω)

∣∣∣ ∞∑
m=0

dtm||um(r)||2Hs(I) < +∞
}
,

H̃s(I;Ht(S2)) =
{
ũ ∈ L2(Ω)

∣∣∣ ∞∑
m=0

2m+1∑
l=1

dtm||uml(r)||2Hs(I) < +∞
}
,

and the norm on H̃s(I;Ht(Sd−1)) by

||ũ||H̃s(I;Ht(S1)) =
( ∞∑

m=0

dtm||um(r)||2Hs(I)

) 1
2

,

||ũ||H̃s(I;Ht(S2)) =
( ∞∑

m=0

2m+1∑
l=1

dtm||uml(r)||2Hs(I)

) 1
2

,

in 2D and 3D, respectively. Obviously, it holds

||ũ||H̃s(I;Ht(Sd−1)) ≤ C||ũ||Hs+t(Ω).(51)

In order to understand the analysis well in the following, we also need to intro-
duce some other spaces. For the detail, the reader is referred to [3, 18]. Define
the Sobolev space Ws

p(Sd−1) to be the space of functions f ∈ Lp(Sd−1) whose

distributional derivatives Ds
ĩ,j̃
f ∈ Lp(Sd−1), 1 ≤ ĩ < j̃ ≤ d, i.e.,

Ws
p = {f ∈ L2(Sd−1)

∣∣∣||f ||Lp(Sd−1) +
∑

1≤ĩ<j̃≤d

||Ds
ĩ,j̃
f ||Lp(Sd−1) < +∞}.

Ws
2(Sd−1) = Hs(Sd−1). Let SO(d) denote the group of rotations on Rd . For

1 ≤ ĩ < j̃ ≤ d and t̃ ∈ [−π, π], we denote Qĩ,j̃,t̃ as a rotation with the angle t̃ in the

(xĩ, xj̃)-plane, and define the sth difference operator ∆s
ĩ,j̃,t̃

by

∆s
ĩ,j̃,t̃

= (I − TQĩ,j̃,t̃
)s =

s∑
k=0

(−1)k
( s

k

)
TQĩ,j̃,t̃

,

where TQf(x) = f(Qx) for Q ∈ SO(d). For s ∈ Z, 1 ≤ p ≤ +∞ and α ∈ [0, 1), the
Lipschitz space Ws,α

p (Sd−1) is defined as

Ws,α
p (Sd−1) :=

{
f ∈ Ws

p(Sd−1)
∣∣ ||f ||Lp(Sd−1)

+ max
1≤ĩ<j̃≤d

sup
0<|t̃|≤1

||∆ĩ,j̃,t̃(D
s
ĩ,j̃
f)||Lp(Sd−1)

|t̃|α
< +∞

}
.

Denote by Πd
n the space of polynomials of total degree n in d variables, and by

Πn(Sd−1) = Πd
n|Sd−1 the space of all polynomials in Πd

n restricted on Sd−1. And
define the approximation

En,p(f) = inf
g∈Πd

n

||f − g||Lp(Sd−1), 1 ≤ p ≤ +∞.
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Let

Q2
M ũ(r, θ) =

M∑
m=0

um(r)ejmθ,(52)

Q3
M ũ(r, θ, ϕ) =

M∑
m=0

2m+1∑
l=1

uml(r)Ym,l(θ, ϕ),(53)

the following approximation propositions hold:

Lemma 2.3 [18]. If s ∈ N, α ∈ [0, 1), f ∈ Ws,α
p (Sd−1), and 1 ≤ p ≤ ∞, then

EM,p(f) ≤
C||f ||Ws,α

p (Sd−1)

Ms+α
.(54)

Lemma 2.4 [2, 3]. Assume f ∈ Ws
2(S1), Q2

Mf is defined in (52), it holds

||f −Q2
Mf ||L2(S1) ≤ CM−s||f ||Ws

2 (S1).(55)

Assume f ∈ Ws,α
p (S2), Q3

Mf is defined in (53), it holds

||f −Q3
Mf ||L2(S2) ≤ CEM,p(f).(56)

Let

Ũ(r) =

M∑
m=0

r−
1
2 Ṽ

m
ejmθ,(57)

Ũ(r) =
M∑

m=0

2m+1∑
l=1

r−1Ṽ
ml

Ym,l(θ, ϕ).(58)

From (17) and the definition of Ṽ, we know that (57)-(58) are the solutions gener-
ated by Algorithm 1. Then, we have the following results:

Theorem 2.4. Suppose that Ω is an annulus or hollow sphere domain, g̃1, g̃2 ∈
L2(∂Ω), ũ ∈ Hs(Ω) is the solution of the problem (4)-(6) and Ũ is defined in
(57)-(58). Under the assumption of (8) and (23), it holds

∥ũ− Ũ∥H ĩ(Ω) ≤ C

(
h1−ĩ +

ks−1+ĩ

Ms

)
, ĩ = 0, 1.(59)

Proof. We only prove the case of d = 3 here. The case of d = 2 is similar.
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When ĩ = 0, using Lemmas 2.3 and 2.4 with α = 0 and p = 2, Theorem 2.3, (51)
and the definitions above, we have

||ũ− Ũ||2L2(Ω) =||ũ− Ũ||2L2(I;L2(S2))

=||ũ−Q3
M ũ+Q3

M ũ− Ũ||2L2(I;L2(S2))

≤||ũ−Q3
M ũ||2L2(I;L2(S2)) + ||Q3

M ũ− Ũ||2L2(I;L2(S2))

≤
C||ũ||2L2(I;Ws

2 (S2))

M2s
+ C

M∑
m=0

2m+1∑
l=1

||eml||2L2(I)

≤
C||ũ||2L2(I;Hs(S2))

M2s
+ C

M∑
m=0

2m+1∑
l=1

(
h2
∣∣∣∣∣∣∂uml

∂r

∣∣∣∣∣∣2
L2(I)

+ ||uml||2L2(I)

)
≤
C||ũ||2Hs(Ω)

M2s
+ C(h2||ũ||2

H̃1(I;L2(S2)) + ||ũ||2L2(I;L2(S2))),

which implies the desired results by applying Lemma 2.2, (4) and (8).

When ĩ = 1, due to ||ũ − Ũ||2
H ĩ(Ω)

= ||ũ − Ũ||2L2(I;H1(S2)) + |ũ − Ũ|2H1(I;L2(S2)),

applying the similar process as above, we can get the desired result too. The proof
is completed.

Remark 1. Theorem 2.4 suggests that the error in L2-norm is first-order con-
vergence when the summation number M in (57) and (58) is larger than the wave
number k. And it also holds by using Lemma 2.2 that

||ũ− Ũ||H ĩ(Ω)

||ũ||H ĩ(Ω)

≤ C, ĩ = 0, 1,

which are confirmed by numerical experiments in [52].

3. Proof of the results for Algorithm 1

In this section, we will investigate the existence, uniqueness, stability and error
estimates of Algorithm 1, which have not been reported for the pollution-free
finite difference method before.

3.1. Existence and uniqueness. Firstly, we recall the following lemma which
will be frequently used.

Lemma 3.1 [48]. For any Vi, U i ∈ V, there holds that

−h
N−1∑
i=1

(δ2rVi)U i = h
N∑
i=1

(δrVi− 1
2
)(δrU i− 1

2
) + (δrV 1

2
)U0 − (δrVN− 1

2
)UN−1.

Proof of Theorem 2.1. We now prove the uniqueness of the algorithm. Assuming

Algorithm 1 generalizes two solution sequences V̂,
̂̂
V ∈ Sh, setting V = V̂− ̂̂

V ∈
Sh, then V satisfies

− Vi+1 − Vi−1 + 2D1
i Vi = 0, 0 < i < N,(60)

V1 = −B1
0

(
jk +

d− 1

2a

)
V0 +D1

0V0,(61)

VN−1 = −B1
N

(
jk +

d− 1

2b

)
VN +D1

NVN .(62)
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Note that (60) can be written as

− δ2rVi − ω1
i Vi = 0,(63)

where

ω1
i =

2(1−D1
i )

h2
:=

ω̄1
i

h2
(64)

satisfying ω1
i > 0 based on the assumption of (8). By multiplying (63) with hV i,

then summing-up the equation for i from 1 to N − 1 and applying Lemma 3.1, we
get

h
N∑
i=1

|δrVi− 1
2
|2 + (δrV 1

2
)V 0 − (δrVN− 1

2
)V N − h

N−1∑
i=1

ω1
i |Vi|2 = 0.

Using (61)-(62), we have

0 =||δrV||2L2 − h
N−1∑
i=1

ω1
i |Vi|2 +

D1
0 −

B1
0(d−1)
2a − 1

h
|V0|2

+
D1

N − B1
N (d−1)
2b − 1

h
|VN |2 − j

(B1
0k

h
|V0|2 +

B1
Nk

h
|VN |2

)
.

Considering (38), the imaginary part equaling 0 in the above equation implies

V0 = VN = 0.(65)

Using (65), it follows from (60) that
2D1

1 −1
−1 2D1

2 −1
. . .

−1 2D1
N−2 −1
−1 2D1

N−1




V1

V2

...
VN−2

VN−1

 =


0
0
...
0
0

 .

Due to (33), the matrix is nonsingular and the system has an unique solution, i.e.,
Vi = 0, i = 1, . . . , N − 1. The uniqueness is proved.

To prove the existence, noting that the following Gärding-type inequality holds:

Re
(
− h

N−1∑
i=1

((δ2rVi)V i − hω1
i ViV i)

)
+ 5C1k2||V||2L2 ≥ ||δrV||2L2 ,

and by the classical Fredholm alternative argument see [35], Algorithm 1 has a
nontrivial solution or it has at least one solution. Since the uniqueness is proved,
existence follows from the above argument.

3.2. Stability analysis. In this subsection, we will analyze the stability of the
algorithm.

Lemma 3.2. Let g1, g2 be two bounded numbers. Under the assumption of
(8) and (23), the discretized solutions at i = 0 and N satisfy that

|V0|+ |VN | ≤C
k
,(66)

|δrV 1
2
|+ |δrVN− 1

2
| ≤C.(67)
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Proof. Firstly, multiplying (41) by hV i, then taking the summation for i from 1
to N − 1 and using Lemma 3.1, it holds

||δrV||2L2 + (δrV 1
2
)V 0 − (δrVN− 1

2
)V N − h

N−1∑
i=1

ω1
i |Vi|2 = 0.

Applying (42)-(43), we have

||δrV||2L2 − h
N−1∑
i=1

ω1
i |Vi|2 +

D1
0 −

B1
0(d−1)
2a − 1

h
|V0|2 +

D1
N − B1

N (d−1)
2b − 1

h
|VN |2

− j
(B1

0k

h
|V0|2 +

B1
Nk

h
|VN |2

)
=− B1

0a
d−1
2 g1

h
V 0 −

B1
Nb

d−1
2 g2

h
V N .(68)

The real and imaginary parts of the above equation satisfy, respectively, that

B1
0k

h
|V0|2 +

B1
Nk

h
|VN |2

=Im
(B1

0a
d−1
2 g1

h
V 0

)
+ Im

(B1
Nb

d−1
2 g2

h
V N

)
,

(69)

||δrV||2L2 − h
N−1∑
i=1

ω1
i |Vi|2 +

D1
0 −

B1
0(d−1)
2a − 1

h
|V0|2 +

D1
N − B1

N (d−1)
2b − 1

h
|VN |2

=Re
(
− B1

0a
d−1
2 g1

h
V 0

)
+Re

(
− B1

Nb
d−1
2 g2

h
V N

)
.

(70)

Since ∣∣∣Im(− B1
0a

d−1
2 g1

h
V 0

)∣∣∣ ≤ B1
0k

2h
|V0|2 +

CB1
0 |g1|2

kh
,∣∣∣Im(− B1

Nb
d−1
2 g2

h
V N

)∣∣∣ ≤ B1
Nk

2h
|VN |2 + CB1

N |g2|2

kh
,

putting above two estimates into (69), and noting (8) and (38), it follows

k(|V0|2 + |VN |2) ≤ C(|g1|2 + |g2|2)
k

,

which implies (66). Applying (38), (42), (43) and (66), there holds that

|δrV 1
2
|2 ≤ [2a(D1

0 − 1) +B1
0(d− 1)]2 + [

√
2aB1

0k]
2

a2h2
|V0|2 +

(B1
0a

d−1)2

h2
|g1|2 ≤ C.

Similarly, we can prove |δrVN− 1
2
| ≤ C, which combining with the above inequality

implies (67). The proof is completed.

Proof of Theorem 2.2. Using (70), Lemma 3.2 and the Cauchy inequality,
we obtain

||δrV||2L2 ≤ h

N∑
i=0

ω1
i |Vi|2 + C.(71)
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Multiplying (41) by hrαi (δrV i− 1
2
) (where α ∈ R is a parameter which will be deter-

mined in the following), it follows

−hrαi (δ
2
rVi)(δrV i− 1

2
)− hω1

i r
α
i Vi(δrV i− 1

2
) = 0.(72)

It is easily to verify that

2Re
(
− hrαi (δ

2
rVi)(δrV i− 1

2
)
)
=− hrαi (δ

2
rVi)(δrV i− 1

2
)− hrαi (δ

2
rV i)(δrVi− 1

2
)

=h2rαi |δ2rVi|2 + rαi |δrVi− 1
2
|2 − rαi |δrVi+ 1

2
|2,

thus, it holds that

Re
(
− h

N−1∑
i=1

rαi (δ
2
rVi)(δrV i− 1

2
)
)
=
h2

2

N−1∑
i=1

rαi |δ2rVi|2 +
h

2

N−1∑
i=1

rαi − rαi−1

h
|δrVi− 1

2
|2

+
rα0
2
|δrV 1

2
|2 − rαN

2
|δrVN− 1

2
|2.(73)

Similarly, we have

Re
(
− h

N−1∑
i=1

ω1
i r

α
i Vi(δrV i− 1

2
)
)

=− h2

2

N−1∑
i=1

ω1
i r

α
i |δrVi− 1

2
|2 + h

2

N−1∑
i=1

ω1
i+1r

α
i+1 − ω1

i r
α
i

h
|Vi|2

− ω1
NrαN
2

|VN−1|2 +
ω1
1r

α
1

2
|V0|2.(74)

Then, multiplying (41) by hrαi δrV i+ 1
2
, it follows

−hrαi (δ
2
rVi)(δrV i+ 1

2
)− hω1

i r
α
i Vi(δrV i+ 1

2
) = 0.(75)

By a similar process in (73)-(74), we have

Re
(N−1∑

i=1

−hrαi (δ
2
rVi)(δrV i− 1

2
)
)

=− h2

2

N−1∑
i=1

rαi |δ2rVi|2 +
h

2

N−1∑
i=1

rαi − rαi−1

h
|δrVi− 1

2
|2

+
rα0
2
|δrV 1

2
|2 − rαN

2
|δrVN− 1

2
|2,(76)

and

Re
(
− h

N−1∑
i=1

ω1
i r

α
i Vi(δrV i+ 1

2
)
)

=
h2

2

N−1∑
i=1

ω1
i−1r

α
i−1|δrVi− 1

2
|2 + h

2

N−1∑
i=1

ω1
i r

α
i − ω1

i−1r
α
i−1

h
|Vi|2 −

ω1
N−1r

α
N−1

2
|VN |2

+
ω1
0r

α
0

2
|V1|2 −

h2

2
w1

0r
α
0 |δrV 1

2
|2 + h2

2
wN−1r

α
N−1|δrVN− 1

2
|2.(77)



426 K. WANG, Y.S. WONG, AND J. HUANG

Adding (72) and (75), taking the summation for i from 1 to N−1 in the resulted
equation, using (64), (73), (74), (76), (77) and Lemma 3.2, we get

h
N−1∑
i=1

D1
i r

α
i −D1

i−1r
α
i−1

h
|δrVi− 1

2
|2 + 1

h2

(
h

N−1∑
i=1

ω̄1
i+1r

α
i+1 − ω̄1

i−1r
α
i−1

h
|Vi|2

)
≤ C.

(78)

In order to ensure that the first term on the left hand side is nonnegative, it is
necessary to impose that the function D1(r)rα is a non-decreasing function, that is

[cos[k(r)h]rα](1) = αrα−1 cos[k(r)h]− rα−3 sin[k(r)h]h
4dm + d2 − 4d+ 3

2k(r)
≥ 0.

Under the assumption of (8), we can check that C2 := h4dm+d2−4d+3
2k(r) = O(1),

therefore,

[cos(k(r)h)rα](1) = rα−3{αr2 cos[k(r)h]− C2 sin[k(r)h]}.

By taking α ≥ max
a≤r≤b

{ C2 sin[k(r)h]
r2 cos[k(r)h]}, [cos(k(r)h)r

α](1) is nonnegative which suggests

that the first term on the left hand side is nonnegative.
Noting (64), it is easily to check that w̄1(r)rα and (w̄1(r)rα)(1) are both s-

mooth and increasing. Thus ∃ξi ∈ [ri−1, ri+1] such that
w̄1(ri−1)r

α
i−1−w̄1(ri+1)r

α
i+1

h

= (w̄1(r)rα)(1)|r=ξi ≥ (w̄1(r)rα)(1)|r=a := C3 > 0. Thus, after using (8), we get

1

h2

(
h

N−1∑
i=1

ω̄1
i+1r

α
i+1 − ω̄1

i−1r
α
i−1

h
|Vi|2

)
≥ Ck2

(
h

N−1∑
i=1

|Vi|2
)

= Ck2||V||2L2 −
1

2h
(|V0|2 + |VN |2).

Putting the above estimate into (78), and using Lemma 3.2, we have

||V||2L2 ≤ C
k2

,

which combining with (71) implies (44).
Finally, dividing (8) by ω1

i , multiplying the resulted equation by −hδ2rV i and
using Lemma 3.1 and (44), we can derive (45). The proof is completed.

3.3. Error estimates. This subsection is devoted to the error estimates for Al-
gorithm 1. It follows form (8) and (27) that

∣∣∣∣∣∣ 1

(2n)!
h2n
(

2n− 2
2n− 2−m

)
(k2)(m)v(2n−2−m)

∣∣∣∣∣∣
L2(Ii)

≤


Chm+1||v(1)||L2(Ii)

(2n)(2n−1)(2n−2−m)!(m)! , m is odd
Chm||v||L2(Ii)

(2n)(2n−1)(2n−2−m)!(m)! , m is even
.
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Thus, for any fixed m, we have∣∣∣∣∣∣ +∞∑
n=1

1

(2n)!
h2n
( 2n− 2

2n− 2−m

)
(k2)(m)v(2n−2−m)

∣∣∣∣∣∣
L2(Ii)

≤


+∞∑
n=1

Chm+1||v(1)||L2(Ii)
n2 , m is odd

+∞∑
n=1

Chm||v||L2(Ii)
n2 , m is even

≤
{

Chm+1||v(1)||L2(Ii), m is odd
Chm||v||L2(Ii), m is even

,

which combining Lemma 2.1 implies (31). Similarly, we can derive (36). Therefore,
the following Lemma holds:

Lemma 3.3. Under the assumption of (8) and (23), there hold that

||RD1||L2(Ii) ≤ Ch(h||v(1)||L2(Ii) + ||v||L2(Ii)),(79)

||RL1||L2(Ii) ≤ Ch(h||v(1)||L2(Ii) + ||v||L2(Ii)),(80)

||RR1||L2(Ii) ≤ Ch(h||v(1)||L2(Ii) + ||v||L2(Ii)).(81)

Lemma 3.4. For any smooth function v(r), there holds that

||v||2L2 ≤ C(h||v(1)||2L2(I) + ||v||2L2(I)).(82)

Proof. For any smooth function f(r), because it satisfies

(ri+1 − ri)f(ri) =

∫ ri+1

ri

f(r)dr +

∫ ri+1

ri

(r − ri)f
(1)(r)dr,

(ri+1 − ri)f(ri+1) =

∫ ri+1

ri

f(r)dr −
∫ ri+1

ri

(ri+1 − r)f (1)(r)dr.

Setting f(r) = v(r)v(r), and summing for i from 0 to N − 1 in the above two
equalities, it yields the results of Lemma 3.4.

Lemma 3.5. Suppose that g1, g2 are two bounded numbers. v is the solution
of the problem (18)-(20) and V = {Vi}Ni=0 ∈ Sh is the discretized solution generat-
ed by Algorithm 1. Set Ei = Πiv(r)− Vi, i = 0, · · · , N . Under the assumption of
(8) and (23), the errors at i = 0 and N satisfy

|E0|2 + |EN |2 ≤h

[
C
ϵ1
(h||v(1)||2L2(I) + ||v||2L2(I)) + h

N−1∑
i=1

ϵ1ω
1
i−1r

α
i−1|Ei|2

]
,(83)

|δrE 1
2
|2 + |δrEN− 1

2
|2 ≤C

h

[
C
ϵ2
(h||v(1)||2L2(I) + ||v||2L2(I)) + h

N−1∑
i=1

ϵ2ω
1
i−1r

α
i−1|Ei|2

]
,

(84)

where ϵĩ, ĩ = 1, 2 are two parameters generated from the Young inequality and in-
dependent on h and k.

Proof. Subtracting (41), (42) and (43) from (32), (39) and (40) respectively, we
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have

− Ei+1 − Ei−1 + 2D1
iEi = RD1

i , 0 < i < N,(85)

E1 = −B1
0

(
jk +

d− 1

2a

)
E0 +D1

0E0 +RL1
0,(86)

EN−1 = −B1
N

(
jk +

d− 1

2b

)
EN +D1

NEN +RR1
N .(87)

Multiplying (85) by hEi, then taking the summation for i from 1 to N − 1 and
using Lemma 3.1, (86) and (87), we have

||δrE||2L2 − h

N−1∑
i=1

ω1
i |Ei|2 +

D1
0 −

B1
0(d−1)
2a − 1

h
|E0|2 +

D1
N − B1

N (d−1)
2b − 1

h
|EN |2

− j
(B1

0k

h
|E0|2 +

B1
Nk

h
|EN |2

)
=

N−1∑
i=1

RD1
i

h
Ei −

RL1
0

h
E0 −

RR1
N

h
EN .(88)

The real and imaginary parts of the above equation satisfy, respectively, that

B1
0k

h
|E0|2 +

B1
Nk

h
|EN |2

=Im
(
−

N−1∑
i=1

RD1
i

h
Ei

)
+ Im

(RL1
0

h
E0

)
+ Im

(RR1
N

h
EN

)
,

(89)

||δrE||2L2 − h
N−1∑
i=1

ω1
i |Ei|2 +

D1
0 −

B1
0(d−1)
2a − 1

h
|E0|2 +

D1
N − B1

N (d−1)
2b − 1

h
|EN |2

=Re
(N−1∑

i=1

RD1
i

h
Ei

)
+Re

(
− RL1

0

h
E0

)
+Re

(
− RR1

n

h
EN

)
.

(90)

It is easily to check by using (64) that∣∣∣Im(RL1
0

h
E0

)∣∣∣ ≤B1
0k

2h
|E0|2 +

C
B1

0kh
|RL1

0|2,∣∣∣Im(RR1
N

h
EN

)∣∣∣ ≤B1
Nk

2h
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B1
Nkh

|RR1
N |2,

∣∣∣Im(− N−1∑
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RD1
i

h
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N−1∑
i=1

ϵ1ω
1
i−1r

α
i−1|Ei|2 +

C
ϵ1h2

||RD1||2L2 ,

with ϵ1 being a parameter. Putting the above estimates into (89), and using (38),
it follows

1

h
(|E0|2 + |EN |2)

≤C(|RL1
0|2 + |RR1

N |2)
h

+
C

ϵ1h2
||RD1||2L2 + h

N−1∑
i=1

ϵ1ω
1
i−1r

α
i−1|Ei|2.
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Therefore, using Lemma 3.4 and (79)-(81), we have

|E0|2 + |EN |2 ≤h

[
C
ϵ1
(h||v(1)||2L2(I) + ||v||2L2(I)) + h

N−1∑
i=1

ϵ1ω
1
i−1r

α
i−1|Ei|2

]
.(91)

Using (79)-(81) and (91), it is valid that

|δrE 1
2
|2 ≤ [2a(D1

0 − 1) +B1
0(d− 1)]2 + [

√
2aB1

0k]
2

a2h2
|E0|2 +

(B1
0a

d−1)2
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0|2

≤C
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[
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(h||v(1)||2L2(I) + ||v||2L2(I)) + h
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ϵ2ω
1
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α
i−1|Ei|2

]
.

Following the similar process, we can get (84). The proof is completed.

Lemma 3.6. Suppose that g1, g2 are two bounded numbers. v is the solution of
the problem (18)-(20) and V = {Vi}Ni=0 ∈ Sh is the discretized solution generated
by Algorithm 1. Set Ei = Πiv(r)−Vi, i = 0, · · · , N . Under the assumption of (8)
and (23), the error E = {Ei}Ni=0 ∈ Sh satisfies

h||δrE||L2 + ||E||L2 ≤ C(h||v(1)||L2(I) + ||v||L2(I)).(92)

Proof. Using Lemma 3.5 in (90), we obtain

||δrE||2L2 ≤ h
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1
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α
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Multiplying (85) by hrαi δrEi− 1
2
and hrαi δrEi+ 1

2
respectively, similarly to the process

of analyzing the stability, we have

h

N−1∑
i=1

D1
i r

α
i −D1

i−1r
α
i−1

h
|δrEi− 1

2
|2 + 1

h2

(
h

N∑
i=1

ω1
i+1r

α
i+1 − ω1

i−1r
α
i−1

h
|Ei|2

)

=− rα0 |δrE 1
2
|2 + rαN |δrEN− 1

2
|2 + ω1

NrαN
2

|EN |2 − ω1
1r

α
1

2
|E0|2

+
ω1
N−1r

α
N−1

2
|EN |2 − ω1

0r
α

2
|E1|2 +

h2

2
ω1
0r

α|δrE 1
2
|2 − h2

2
ω1
N−1r

α
N−1|δrEN− 1

2
|2

−
N−1∑
i=1

rαi
h
RD1

i (δrEi− 1
2
)−

N−1∑
i=1

rαi
h
RD1

i (δrEi+ 1
2
).

(94)
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It is easily to check that∣∣∣− N−1∑
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Similarly,∣∣∣ω1
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Substituting the above estimates into (94), we obtain
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ĩ=3

1

ϵĩ
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Consider the second term on the left hand side in the above inequality. Since
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ensure that the first term is nonnegative. Combining with (93), we have (92). The
proof is completed.

Proof of Theorem 2.3. Since

||e||2L2(I) ≤||v − P1v||2L2(I) + ||P1v − Ṽ||2L2(I)

≤C
N−1∑
i=1

(||v − P1v||2L2(Ii) + ||P1v − Ṽ||2L2(Ii)),

from (34), we have

v(r) =
vi+1 − cos(kih)vi

sin(kih)
sin[ki(r − ri)] + vi cos[ki(r − ri)]

+

[
1 +

sin[ki(r − ri)]

sin(kih)

]
RL1, r ∈ Ii,

which implies, by using (80), that

||v − P1v||2L2(Ii) = C||RL1||2L2(Ii) ≤ Ch2(h2||v(1)||2L2(Ii) + ||v||2L2(Ii)).

By the definition of P1, obviously it is continuous, which follows, by using Lemma
3.6, that

||P1v − Ṽ||2L2(Ii) =||P1v −P1V||2L2(Ii) ≤ C||E||2L2

≤C(h2||v(1)||2L2(Ii) + ||v||2L2(Ii)).

Therefore

||e||2L2(I) ≤ C
N−1∑
i=0

(h2||v(1)||2L2(Ii) + ||v||2L2(Ii)) ≤ C(h2||v(1)||2L2(I) + ||v||2L2(I)).

Using the definition of P2 and following the similar process above, we can prove
the estimate for ||e(1)||L2(I). The proof is completed.

Remark 2. Theorems 2.1-2.3 are also valid for the one dimensional problem (d = 1
in equations (4)-(6)). Compared to the assumption that kh → 0 when proving the
convergence order in [50], the condition here is improved (see (8)) Furthermore, the
higher order convergence as reported in [50] can be achieved for the 1D problem.

Remark 3. By using (34), the interpolation operator P ĩ (̃i = 1, 2) defined above
can also be extended to other cases with higher order with respect to h under the
assumption of (8).

4. Numerical experiments

We verify the convergence order in this section. Set the exact solution of (4) to
be ũ = ejkx1 and ũ = ũ0e

jkr cos θ with ũ0 being incident in the x3-direction on a
sphere (see Example 2.2 in [31]) when d = 2 and 3, respectively. By the coordinate
transformation, we have

ũ = ejkx1 = J0(kr) + 2

∞∑
m=1

jmJm(kr) cos(mϕ),
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with Jm(·) being the m−th degree Bessel function of the first kind, and

ũ = ũ0e
jkr cos θ = u0

∞∑
m=0

(2m+ 1)jmPm(cos θ)J̃m(kr),

with Pm(·) being the Lengendre polynomials and J̃m(·) being the spherical Bessel
functions of the first kind in 2D and 3D, respectively. The corresponding approx-
imation solutions are got according to (52) and (53). Let kh = 0.6, we collect
the numerical solution in Table 1, which is good agreement with the theoretical
prediction in Section 2. For more numerical results, the reader is referred to [52].

Table 1. Convergence order.

2D 3D
1/h Error Order Error Order
1/100 6.55e-005 1.15 7.65e-004 1.10
1/120 5.31e-005 1.17 6.26e-004 1.29
1/140 4.44e-005 1.17 5.21e-004 1.15
1/160 3.79e-005 1.18 4.46e-004 1.23
1/180 3.30e-005 1.20 3.86e-004 1.22
1/200 2.91e-005 1.19 3.40e-004 1.24

5. Conclusions

By using the weighted-test-function method in the finite difference scheme and
the spherical harmonics results in 2D and 3D, we established an error estimate
for the first-order pollution-free scheme given by [52], which is proposed to solve
the Helmholtz equation with high wave numbers in the annulus and hollow sphere
domains. The error estimate result reveals that the famous pollution effect can
be avoided in these cases. In the present approach, the numerical solutions of
the multi-dimensional Helmholtz equation are computed by solving a sequence of
one-dimensional problems. Although the number of linear solver is of the order of
the wave number, it is important to note that the linear system is a tri-diagonal
matrix. Hence, the system of linear equations can be solved effectively by a direct
method. Recall that the resulting linear system for a multi-dimensional Helmholtz
equation is large and indefinite. Not only it can not be solved efficiently by a direct
method, and most iterative methods also have difficulty in computing the resulting
indefinite system. It is important to point out that the success of the proposed
methodology is due to the problem can be computed by the separation of variables
using spherical harmonics. Depending upon the type of boundary conditions, the
approach can also be extended to certain multi-dimensional Helmholtz equations
in cartesian coordinates. Based on the limitations, we conclude that pollution-
free difference schemes can be applied only to certain multi-dimensional Helmholtz
equations.
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