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CONVERGENCE TO EQUILIBRIUM OF A DC ALGORITHM

FOR AN EPITAXIAL GROWTH MODEL

HAMZA KHALFI, MORGAN PIERRE, NOUR EDDINE ALAA, AND MOHAMMED
GUEDDA

Abstract. A linear numerical scheme for an epitaxial growth model is analyzed in this work. The

considered scheme is already established in the literature using a convexity splitting argument.
We show that it can be naturally derived from an optimization viewpoint using a DC (difference
of convex functions) programming framework. Moreover, we prove the convergence of the scheme
towards equilibrium by means of the Lojasiewicz-Simon inequality. The fully discrete version,

based on a Fourier collocation method, is also analyzed. Finally, numerical simulations are carried
out to accommodate our analyzis.
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1. Introduction

We are concerned in this paper with the dynamics of the following model of thin
film epitaxial growth:

(1)
∂h

∂t
= −∇ ·

(
∇h

1 + |∇h|2

)
− δ∆2h

where h : Ω× [0,∞) → R, is a height function of a thin film in a co-moving frame,

Ω = (0, L)
d
for d = 1, 2 and δ is a nonnegative constant.

The nonlinear term on the right-hand side, the Ehrlich-Schwoebel barrier defined
in [19, 17], is the destabilizing surface which was first proposed phenomenologically
in the field of molecular beam epitaxy in [8]. The effect of this last term is counter-
balanced by the classical linear Mullin regularising term. This last term describes
relaxation through surface diffusion. Even though equation (1) describes a physical
process far from equilibrium, it happens to be associated with a gradient flow with
respect to the L2 inner product of the free energy functional:

(2) J (h) =

∫
Ω

1

2

(
δ|∆h|2 − ln

(
1 + |∇h|2

))
.

The energy above is known to behave badly, this was mentioned in many ref-
erences [3, 11], due to the presence of the negative logarithmic term and in fact
it is poorly understood mathematically. This model takes its name from the fact
that the energy has no relative minima, which implies that there is no energetically
favourable value for |∇h|. Hence the naming without slope selection model.

Fourth order partial differential equations (PDEs) present in general many the-
oretical and numerical challenges. In the context of molecular beam epitaxy, the
considered model attracted the attention of many researchers. In fact, an analyt-
ical approach has been carried out in [4] and later on by Guedda et al. in [6] in
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order to understand the predicted pyramidal structures characterized by the ab-
sence of a preferred slope. The authors show the existence of similarity solutions
which predict the typical coarsening process in the limit of larger slope. The re-
sults obtained confirm that the typical mound lateral size and the interfacial width
grow with time like t

1
2 and t

1
4 respectively. In [13], authors studied the free energy

in order to understand the interfacial dynamics using energetic arguments and in
order to justify rigorously the scaling laws predicted by the model. The authors
show that for any δ > 0, J admits global minimizers hδ among the class of smooth
and periodic height profiles having a null mean value. Li and Liu showed the well
posedness and regularity of the solution to the problem (1). Moreover, they prove
bounds and error estimates for Galerkin spectral approximation [12].

Numerical investigations of the model without slope selection are extensively
studied in the literature. This is due to computational complexity and the long
simulation time needed to predict the scaling laws. Moreover, these laws are ex-
pected to break down the closer one gets to equilibrium. Many attempt to design
linear numerical schemes were made in order to overcome this difficulty. We cite
here the reference [3] and the work in [18] where a second-order linearised three-level
backward Euler scheme was proposed. Long time simulations for the coarsening
process were performed and physically interesting quantities namely the surface
roughness, the mound width, saturation time and the energy were computed in
order to recover the scaling laws. However this come at the expense of a high
computational cost. It could be interesting to focus on second order schemes in
the spirit of the recent work [11] where a second order operator splitting Fourier
method to tackle the numerical integration of Equation (1). Although linear, such
schemes require three step integrations which increase complexity and therefore are
neglected at the present time. Cheng and co-authors [1] proposed the first order
linear scheme we are considering in this paper. They proved the unconditional
stability and solvability of the fully discrete scheme and showed numerical simu-
lations using a collocation-type Fourier spectral differentiation. Related schemes
were proposed in [2, 9].

Our aim in this paper is to prove and numerically analyze the convergence to an
equilibrium of the time semidiscrete linear scheme established in [1]. Convergence
to a single equilibrium is not obvious because there is typically a continuum of
critical points for the functional J , due to the periodic boundary conditions. For
the continuous-in-time equation (1), it has been proved by Grasselli et al. [5] by
means of a Lojasiewicz-Simon inequality. Our proof is similar to the approach
in [15, 16], but the novelty is that the scheme here is linearly implicit and not
fully implicit. We will also consider the fully discrete scheme, where the space
discretization is the Fourier spectral collocation method from [1].

The layout of the paper is organized as follows: we start our manuscript by
stating the problem and recovering the expression of the linear scheme using a DC
programming framework (Section 2). In Section 3, we show the convergence of
the algorithm towards a critical value of the functional (2) by using a Lojasiewicz-
Simon inequality. We prove a similar result for the fully discrete scheme in Section 4.
Numerical simulations accommodated with some interpretations are presented in
Section 5. Finally, a summary and conclusion are drawn in the last section.
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2. Formulation of the DC algorithm

In the same framework as [13], we analyze the problem of minimizing J over the
class of smooth periodic height function:

(3) H (Ω) =

{
u ∈ H2

per (Ω) /

∫
Ω

u dx = 0

}
.

Throughout the paper, and for an integer k, Hk
per(Ω) denotes the usual Sobolev

space of functions which are L-periodic in the d-dimensions (d = 1, 2). It is a
Hilbert space based on the L2(Ω) space. The topological dual of Hk

per(Ω) is denoted

[Hk
per(Ω)]

′.
In the remainder of the paper we set A ≥ 1/8. We recall that δ > 0. We define

H(h) =
1

2

∫
Ω

(
δ |∆h|2 +A |∇h|2

)
dx,(4)

G(h) =
1

2

∫
Ω

(
A |∇h|2 + ln

(
1 + |∇h|2

))
dx.(5)

Even if J is not convex, it can be written as a difference of two convex functions
in H2

per (Ω). Namely, J = H − G, where the functions H and G are convex and
nonnegative. Indeed, it has been proved in [9, Proposition 2.1] that for A ≥ 1/8,
the function g : R2 → R defined by

g(v1, v2) = A(v21 + v22) + ln
(
1 + v21 + v22

)
is convex, and that the value A = 1/8 is optimal. This implies that G is also convex.
The couple (H,G) is called a DC decomposition of J .

We note that H and G are continuously differentiable on H2
per(Ω) and that

h ∈ H2
per(Ω) is a critical point of J if

J ′(h) := δ∆2h+ div

(
∇h

1 + |∇h|2

)
= 0

in [H2
per(Ω)]

′.
In the same spirit as [20], the DC algorithm can be stated as follows:


h0 ∈ H (Ω) ,

hn+1

λ
−A∆hn+1 + δ∆2hn+1 =

hn

λ
−A∆hn − div

(
∇hn

1 + |∇hn|2

)
.

(6)

Here, λ is a positive parameter which can be interpreted as an artificial time
step. The scheme above enforces the use of explicit time discretisation for the
nonlinearity while handling the linear terms implicitly. In addition, the originally
ill-posed problem is regularised by the additional laplacian term. It is obvious
that the scheme is linear and well posed. The existence and uniqueness of hn+1

are actually guaranteed because the operator ( 1λI −A ∆+ δ ∆2) is invertible from

H2
per(Ω) into [H

2
per(Ω)]

′, due to the standard Lax-Milgram theory. Since h0 ∈ H(Ω),
we have hn ∈ H(Ω) for every n.

3. Convergence to equilibrium for the linear DC algorithm

We first note that the functional space H (Ω) defined by (3) has the following
properties: the map u 7→ ||∆u||L2 is a norm on H (Ω) which is equivalent to the
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H2
per(Ω)-norm, and for all h ∈ H (Ω),

||h||L2 ≤ c1||∇h||L2 ,(7)

||∇h||L2 ≤ c2||∆h||L2 .(8)

The following result, which is proved in [13, Lemma 4.2], shows that the energy
is bounded from below.

Proposition 1. Let δ > 0 and ν =
δ

2 c22
. Then there exist sν ≥ 0 such that

(9) J (h) ≥ −|Ω|
2

ln (1 + sν) +
δ

4

∫
Ω

|∆h|2, ∀h ∈ H(Ω).

As in [1, 9], we prove that the convex splitting guarantees the stability of the
scheme.

Theorem 2. The sequence (J (hn))n is nonincreasing. Moreover, there exist a
critical point h of J and a subsequence of (hn)n converging to h weakly in H2

per (Ω).

Proof. The DC Algorithm (6) reads

(10)
1

λ
(hn+1 − hn)−A ∆hn+1 + δ∆2hn+1 = −A ∆hn −∇ ·

(
∇hn

1 + |∇hn|2

)
.

On multiplying by (hn+1 − hn), integrating on Ω and using the identity a ·(a−b) =
1
2

(
a2 − b2 + (a− b)2

)
, we obtain

1

λ

∫
Ω

|hn+1 − hn|2 +
A

2

∫
Ω

|∇hn+1|2 −
A

2

∫
Ω

|∇hn|2 +
A

2

∫
Ω

|∇hn+1 −∇hn|2

+
δ

2

∫
Ω

|∆hn+1|2 −
δ

2

∫
Ω

|∆hn|2 +
δ

2

∫
Ω

|∆hn+1 −∆hn|2

=

∫
Ω

A∇hn · ∇(hn+1 − hn) +
∇hn · ∇(hn+1 − hn)

1 + |∇hn|2
.(11)

Since G (see (5)) is convex and differentiable on H2
per(Ω), standard calculus shows

that (see e.g. [10])

G(h)−G(h̄) ≥ ⟨G′(h̄), h− h̄⟩ :=
∫
Ω

A∇h̄ · ∇(h− h̄) +
∇h̄ · ∇(h− h̄)

1 +
∣∣∇h̄

∣∣2 ,

for all h, h̄ ∈ H2
per(Ω). On choosing h̄ = hn, h = hn+1 and plugging this into (11),

we find (recall (4))

1

λ

∫
Ω

|hn+1 − hn|2 +
A

2

∫
Ω

|∇hn+1 −∇hn|2 +
δ

2

∫
Ω

|∆hn+1 −∆hn|2

+H(hn+1)−H(hn) ≤ G(hn+1)−G(hn),

that is

1

λ

∫
Ω

|hn+1 − hn|2 +
A

2

∫
Ω

|∇hn+1 −∇hn|2 +
δ

2

∫
Ω

|∆hn+1 −∆hn|2

≤ J (hn)− J (hn+1).(12)

Therefore, the sequence (J (hn))n is nonincreasing and bounded from below, so
it converges to some real number α. Since, by (9),

δ

4

∫
Ω

|∆hn|2 ≤ J (h1) +
|Ω|
4

ln(1 + sν),
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there exists a subsequence (hnk
)k and h such that

(13) hnk
⇀ h in H2

per(Ω).

It remains to see that h is a critical point. By adding terms in (12), and tending
to a limit, we obtain

(14) c

∞∑
n=1

∫
Ω

|hn+1 − hn|2 + |∇hn+1 −∇hn|2 + |∆hn+1 −∆hn|2 ≤ J (h1)− α.

where c = min( 1λ ,
A
2 ,

δ
2 ). In particular,

(15) ∥hn+1 − hn∥2H2 → 0,

and the left-hand side of (10) converges in [H2
per(Ω)]

′ to −A∆h+ δ∆2h (up to the
subsequence (hnk

)k). Finally, we note that the sequence

∇hn

1 + |∇hn|2

is bounded in L∞(Ω), so that, up to a subsequence, we have

∇hn

1 + |∇hn|2
→ ∇h

1 + |∇h|2
,

weakly in L2(Ω) and a.e. in Ω. Thus, the right-hand side of (10) converges (up to
a subsequence) to

−A∆h−∇ ·

(
∇h

1 + |∇h|2

)
,

which is therefore equal to −A∆h + δ∆2h. This shows that h is indeed a critical
point of J . �

We note that (14) is not sufficient to establish the convergence of the whole
sequence. Our purpose is to prove this result using the Lojasiewicz-Simon inequality
(Lemma 4).

In the following, we define the ω-limit set of the sequence (hn)n by
(16)
ω((hn)n) = {h ∈ H3

per(Ω) ∩H(Ω), ∃nk −→ ∞, hnk
−→ h strongly in H3

per(Ω)}.

We have:

Proposition 3. The set ω((hn)n) is a compact and connected subset of H3
per(Ω).

Proof. We already know that the sequence (hn) is bounded in H2
per(Ω). We will

show that the right-hand side of the DC algorithm (6) is bounded in L2(Ω). By
elliptic regularity, this will imply that the sequence (hn+1)n is bounded in H4

per(Ω).

Now, the first terms (hn) and (∆hn) in (6) are obviously bounded in L2(Ω). We
only need to control the nonlinearity, which can be written as

(17) div

(
∇hn

1 + |∇hn|2

)
=

∆hn

1 + |∇hn|2
− 2(

1 + |∇hn|2
)2 (D2(hn) ∇hn) · ∇hn,

where D2(hn) = (∂xixjhn)1≤i,j≤d is the hessian matrix of hn. In the right-hand

side above, the term ∆hn

1+|∇hn|2
is bounded in L2(Ω), since 1

1+|∇hn|2
is bounded (by
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1) in L∞(Ω) and ∆hn is bounded in L2(Ω). Moreover, by the Cauchy-Schwarz
inequality in Rd, the last term above satisfies the pointwise estimate

2(
1 + |∇hn|2

)2 |(D2(hn) ∇hn) · ∇hn| ≤
2|∇hn|2

1 + |∇hn|2
∥D2(hn)∥ ≤ 2∥D2(hn)∥,

where ∥D2(hn)∥ is the norm of the matrix D2(hn) relatively to the Euclidean norm

on Rd. Since D2(hn) is bounded in (L2(Ω))d
2

, this shows that the right-hand side
of (17) is bounded in (L2(Ω)), as claimed. Thus, (hn) is bounded in H4

per(Ω) and

therefore the ω-limit set is compact in H3
per(Ω).

Using (15), this compactness in H3
per(Ω) implies that ∥hn+1−hn∥H3 → 0. Then,

a standard contradiction argument shows that the set ω((hn)n) is also connected
in H3

per(Ω). �

In [5], Grasselli and his collaborators obtained a suitable Lojasiewicz-Simon in-
equality for the model without slope selection (1) in the case of Neumann boundary
conditions. Their inequality still holds in the case of periodic boundary conditions.
The proof is similar and even easier since the boundary is much more regular here
(see also the recent review [7]). Our proof of the main result is based on their
inequality adapted to our setting. It reads:

Lemma 4. Let h⋆ ∈ H3
per(Ω) ∩ H(Ω) be a critical point of the energy functional

J . Then there exist θ ∈]0, 1
2 [ and σ > 0 (which depend on h⋆) such that for all

h ∈ H3
per(Ω) ∩H(Ω),

(18) ∥h− h⋆∥H3 < σ =⇒ |J (h)− J (h⋆)|1−θ ≤ ∥J ′(h)∥(H3
per)

′ .

We are now in position to prove:

Theorem 5. The whole sequence (hn)n converges to a critical point h of J in
H3

per(Ω).

Proof. The proof of Theorem 2 shows that every h ∈ ω((hn)n) is a critical point of
J . Moreover, J (hn) is nonincreasing and tends to α, so that J is equal to α on
ω((hn)n).

If J (hn0) = α for some n0, then J (hn) = α for n ≥ n0, and by (12), the
sequence (hn)n≥n0 is constant, and the result is obvious. Thus, we may assume

that J (hn) > α for all n, and we will set J̃ (h) = J (h)− α. By (12), we have

(19) J̃ (hn)− J̃ (hn+1) = J (hn)− J (hn+1) ≥ c∥hn+1 − hn∥2H2 ,

for some generic constant c > 0.
For every h⋆ ∈ ω((hn)n), there exist θ ∈]0, 1/2[ and σ > 0 which may depend on

h⋆ such that the inequality (18) holds for every h ∈ Bσ(h
⋆), where

Bσ(h
⋆) := {h ∈ H3

per(Ω) ∩H(Ω), ∥h− h⋆∥H3 < σ}.

The union of balls {Bσ(h
⋆) : h⋆ ∈ ω((hn)n)} forms an open covering of ω((hn)n).

Due to the compactness of ω((hn)n) in H3
per(Ω), we can find a finite subcovering

{Bσi(h
⋆
i )}i=1,...,m such that the constants θi and σi in (18) are indexed by i. From

the definition of ω((hn)n), we know that there exists n0 large enough such that
hn ∈ U := ∪m

i=1Bσi(h
⋆
i ) for n ≥ n0. Taking θ = minmi=1{θi}, we deduce from (18)

that for all n ≥ n0,

(20) [J (hn)− α]1−θ ≤ ∥J ′(hn)∥(H3
per)

′ .
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On one hand, we have

[J̃ (hn)]
θ − [J̃ (hn+1)]

θ ≥ θ[J̃ (hn)]
θ−1 [J̃ (hn)− J̃ (hn+1)]

(19)

≥ c θ[J̃ (hn)]
θ−1 ∥hn+1 − hn∥2H2

≥ c θ[J̃ (hn)]
θ−1 ∥hn+1 − hn∥H2∥hn+1 − hn∥H1 ,(21)

where here and in the following, c denotes a generic constant independent of n. On
the other hand,

J ′(hn) = div

(
∇hn

1 + |∇hn|2

)
+ δ ∆2hn

= −hn+1 − hn

λ
+A ∆(hn+1 − hn)− δ∆2 (hn+1 − hn) .

Taking the dual norm of H3
per(Ω) in the expression above, we obtain

∥J ′(hn)∥(H3
per)

′ ≤ c∥hn+1 − hn∥H1 .

We used here that the dual norm (H3
per)

′ is equivalent to the H−3
per-norm which can

be defined by means of a spectral decomposition of the operator −∆ on H2
per(Ω).

By substitution in the inequality (21) and by using the (global) Lojasiewicz in-
equality (20), we find

[J̃ (hn)]
θ − [J̃ (hn+1)]

θ ≥ c ∥hn+1 − hn∥H2 .

From this last inequality, we deduce that the infinite sum
∑∞

n=n0
∥hn+1 − hn∥H2

converges. Thus (hn)n is a Cauchy sequence in H2
per(Ω), therefore it is convergent

and by compactness it converges in H3
per(Ω) as well. �

4. Convergence to equilibrium for the fully discrete linear scheme

For the space discretization, we use a Fourier collocation method, which is known
to preserve the convex splitting [1, 9]. We consider the two dimensional case d = 2
(the case d = 1 is similar). We use a uniform mesh size h = hx = hy = L/N where
the positive integer N = Nx = Ny is given. All the variables are evaluated at the
regular numerical grid (xi, yj) with xi = ih, yj = jh, 1 ≤ i, j ≤ N .

For a vector f = (fij,)1≤i,j≤N over the grid, its discrete Fourier expansion is
given by

fi,j =

N/2∑
k,l=−N/2+1

f̂k,l exp

(
2kπixi

L

)
exp

(
2lπiyj
L

)
,

where the Fourier coefficients are given by

f̂k,l =
1

N2

∑
1≤i,j≤N

fi,j exp

(
−2kπixi

L

)
exp

(
−2lπiyj

L

)
.
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Then the Fourier spectral approximations to the first and second order partial
derivatives are given by

(DNxf)i,j =

N/2∑
k,l=−N/2+1

(
2kπi

L

)
f̂k,l exp

(
2kπixi

L

)
exp

(
2lπiyj
L

)
,

(DNyf)i,j =

N/2∑
k,l=−N/2+1

(
2lπi

L

)
f̂k,l exp

(
2kπixi

L

)
exp

(
2lπiyj
L

)
,

(D2
Nx

f)i,j =

N/2∑
k,l=−N/2+1

(
−4π2k2

L2

)
f̂k,l exp

(
2kπixi

L

)
exp

(
2lπiyj
L

)
,

(D2
Ny

f)i,j =

N/2∑
k,l=−N/2+1

(
−4π2l2

L2

)
f̂k,l exp

(
2kπixi

L

)
exp

(
2lπiyj
L

)
.

The discrete Laplacian, gradient and divergence operators become

∆Nf = D2
Nx

f +D2
Ny

f, ∇Nf =

(
DNxf
DNyf

)
, ∇N ·

(
f1
f2

)
= DNxf1 +DNyf2,

at the pointwise level.

The fully discrete linear DC algorithm reads: let h0 = (h0
i,j)1≤i,j≤N ∈ RN2

be

defined on the 2d-grid and for n = 0, 1, . . . let hn+1 ∈ RN2

solve

(22)
hn+1

λ
−A∆Nhn+1 + δ∆2

Nhn+1 =
hn

λ
−A∆Nhn −∇N ·

(
∇Nhn

1 + |∇Nhn|2

)
,

where, as previously, λ and δ are positive constants, and A ≥ 1/8. This scheme
is unconditionally uniquely solvable, because the linear operator involving hn+1 is
invertible [1]. We note that the gradient is computed in the Fourier space, and the
division ∇Nhn by 1 + |∇Nhn|2 is performed pointwise in the physical space (see
Section 5).

Given any grid functions f and g, the discrete approximations to the L2 norm
and inner product are given as

∥f∥2 =
√
⟨f, f⟩, with ⟨f, g⟩ = h2

N∑
i=1

N∑
j=1

fi,jgi,j .

Detailed calculations show that the following discrete integration by parts formulae
are valid: ⟨

f,∇N ·
(
g1
g2

)⟩
= −

⟨
∇Nf,

(
g1
g2

)⟩
,

and

⟨f,∆Ng⟩ = −⟨∇Nf,∇Ng⟩, ⟨f,∆2
Ng⟩ = ⟨∆Nf,∆Ng⟩.

We define the fully discrete energy via

(23) JN (h) =
δ

2
∥∆Nh∥22 −

h2

2

N∑
i=1

N∑
j=1

ln
(
1 + |∇Nh|2i,j

)
,

for every vector h = (hi,j)1≤i,j≤N defined on the numerical grid.
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On defining the convex functions

HN (h) =
δ

2
∥∆Nh∥22 +

A

2
∥∇Nh∥22,

GN (h) =
A

2
∥∇Nh∥22 +

h2

2

N∑
i=1

N∑
j=1

ln
(
1 + |∇Nh|2i,j

)
,

we see that JN (h) = HN (h)−GN (h), so that (HN , GN ) is a DC decomposition of
JN . A vector h = (hi,j)1≤i,j≤N is a critical point of JN if

J ′
N (h) := ∆2

Nh+∇N ·
(

∇Nh

1 + |∇Nh|2

)
= 0.

On taking the scalar product of (22) by 1, we see that ⟨hn+1, 1⟩ = ⟨hn, 1⟩. By
induction, ⟨hn, 1⟩ = ⟨h0, 1⟩ for all n ≥ 0. By analogy with the continuous case, we
can work on the N2 − 1 dimensional space

ṘN2

:= {h ∈ RN2

: ⟨h, 1⟩ = 0} = {h ∈ RN2

: ĥ0,0 = 0}.

By arguing as in the continuous case, we can show that starting with h0 ∈ ṘN2

,
the whole sequence (hn) defined by the fully discrete linear DC algorithm (22)

converges to a single equilibrium h⋆ in RN2

, where h⋆ is a critical point of JN .
The computations are similar, thanks to the analogy between the fully discrete
scheme (22) and the time semidiscrete version (6).

The proof is easier, because all norms are equivalent in finite dimension. In

particular, since ∥∇N · ∥2 and ∥∆N · ∥2 are norms on ṘN2

, they are equivalent to
the discrete L2 norm ∥ ·∥2. Moreover, the Lojasiewicz-Simon inequality (Lemma 4)
is replaced by the Lojasiewicz inequality for real analytic functions [14], which
reads:

Lemma 6. Let h⋆ ∈ RN2

be a critical point of the discrete energy JN . Then there

exist θ ∈]0, 1/2[ and σ > 0 such that for all h ∈ RN2

,

∥h− h⋆∥2 < σ =⇒ |JN (h)− JN (h⋆)|1−θ ≤ ∥J ′
N (h)∥2.

Proof. For every (i, j), the function h 7→ ln(1 + |∇Nh|2i,j) is real analytic on RN2

by composition of the quadratic function h 7→ |∇Nh|2i,j and of the function v 7→
ln(1 + v) which is real analytic on (−1,+∞). The function JN defined by (23)
is a finite sum of such terms and of the quadratic function h 7→ (δ/2)∥∆Nh∥22.
Therefore, it is real analytic on RN2

and the classical Lojasiewicz inequality is
valid [7, 14]. �

5. Numerical results and simulations

To simulate the growth dynamics numerically, we proceed as follows for the
Fourier spectral algorithm (22).

• Step 1: we rewrite the algorithm as:

(24)
hn+1

λ
−A∆Nhn+1 + δ∆2

Nhn+1 =
hn

λ
− (A+ 1)∆Nhn +KN (∇Nhn)

where KN (∇Nh) = ∇N ·

(
|∇Nh|2

1 + |∇Nh|2
∇Nh

)
.
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• Step 2: we perform Fourier transform to get:

(25)
(
1 +Aλ |k|2 + δλ|k|4

)
ĥn+1
k =

(
1 + (A+ 1)λ |k|2

)
ĥn
k + λ (K̂N )k

for all |k| ≤ N/2, where ĥn+1
k and (K̂N )k are the Fourier modes of the

solution hn+1 and the nonlinear termKN (∇Nhn), respectively (we consider
here the 1D case for simplicity). The fixed integer N represents the number
of modes. We approximate the nonlinearity using a pseudo-spectral method
where we compute the products in the physical space and the resolution in
Fourier space.

• Step 3: we solve the problem by computing an inverse Fourier transform
in order to obtain the desired numerical solution at different times. The
parameter λ is taken as an artificial time step.

Using this numerical scheme, we resolve the problem for different scales of the
parameters δ in 1D and 2D. We are also interested in the variations of the energy
and the roughness of the height profile which is defined by

(26) Wn =

√
1

|Ω|

∫
Ω

∣∣hn − h̄n
∣∣2 dx

where h̄n denotes the mean value of hn. The quantity Wn is the standard deviation
from the mean profile.

5.1. 1D growth dynamics. Here we demonstrate the convergence of the pro-
posed algorithm numerically towards the steady state solution also found in [11]
and [12]. We take Ω = [0, 12], δ = 0.25, λ = 0.005, A = 1, N = 256 and we consider
the initial condition

(27) h0(x) = 0.1

(
sin

2πx

3
+ sinπx+ sin

4πx

3

)
.

Solutions of the model without slope selection are represented in Figure 1 at
different times. In particular, the initial rough-smooth-rough pattern is the same
as predicted in [12]. The illustration shows that the initial configuration undergoes
different patterns in a direction minimizing the energy which becomes negative after
the start of the coarsening of patterns. The results in Figures 1 and 2 were obtained
after long time computation. The stopping criteria was taken as ∥hn+1 − hn∥ ≤
10−15. Results are in good agreement with those in [11] and [12].

5.2. 2D growth dynamics. For the case of 2D simulations, we present in Figure 4
the results obtained with Ω = [0, 2π]×[0, 2π], δ = 0.001 , λ = 0.1, A = 0.5, N = 256
and we consider the initial condition:

(28) h0(x, y) = 0.1 (sin(3x) sin(2y) + sin(5x) sin(5y)) .

The isovalues of the solution hn is represented at different times. In particular, the
initial rough-smooth-rough pattern is more apparent in 2D as in 1D. The illustra-
tions show that the initial configuration consists of two modes, namely mode 3,2
and mode 5,5. The mode 5,5 disappears first, then the vanishing of the other mode
leads to the appearance of a new mode.

At time 82, we can see a quasi-steady state, which was reported to be the final
steady state in [11] and [12]. In our computation, we pushed all simulation up to
a precision of 10−15, we obtained a new final steady state which is identified by
a difference ∥hn+1 − hn∥ of order 10−15. It consists of only one mode which is a
critical point of the energy and corresponds to a minimum height profile. A similar
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Figure 1. Evolution of a 1D height profile starting from an initial
configuration (top left) for δ = 0.25.

Figure 2. 1D Evolution of the energy (left) and roughness (right)
for the model without slope selection.

steady state was obtained after a long time computation starting from a random
initial condition in [1].
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Figure 3. 2D Evolution of the energy (left) and the infinity norm
of hn+1−hn (right) for the model without slope selection for δ = 0.1
and λ = 0.001.

Figure 4. 2D Evolution of a height profile starting from an initial
configuration given by (28) (top left) for δ = 0.001 and λ = 0.1.

In Figure 3, we have used the initial value h0 (28) on Ω = [0, 2π] × [0, 2π], and
the parameters are δ = 0.1, λ = 0.001, A = 1 and N = 256. The energy, which
is represented versus time iterations, has various flat regions, due to coarsening
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Figure 5. Solutions at the time t = 10.1 starting from two shifted
initial conditions, the first is for (28) and the other for (29).

dynamics. We show the evolution of the norm of the difference ∥hn+1 − hn∥ in the
same plot but with a different scale. We clearly notice that each time the energy
has a flat region, the norm of the difference increases and modes fuse in order to
reach a further minimum until a precision of 10−15 is reached.

We finally consider the shifted initial condition

(29) h0(x, y) = 0.1 (sin(3(x+ 1)) sin(2(y + 2)) + sin(5(x+ 1)) sin(5(y + 2))) .

with the same parameters as in Figure 3. The dynamics is the same as for the initial
value (28), it is only shifted by the same translation through the vector (−1,−2) in
Ω, for all times. This is shown in Figure 5, where both solutions are represented at
the same time. This illustrates that the energy has a continuum of steady states, by
translation invariance. The specific steady state which is finally obtained depends
on the initial condition.

6. Summary and conclusion

We analyzed a numerical scheme based on a Fourier spectral method for an
epitaxial growth model without slope selection. The main idea of the method was
extracted from the decomposition of the free energy associated with the model into
the difference of two convex functions. The numerical algorithm stated treats the
fourth order linear term implicitly and handles the nonlinear term explicitly. We
theoretically and numerically demonstrated the convergence of our model to the
critical points of the free energy using a Lojasiewicz-Simon inequality. Numerical
simulations accommodate the theoretical results. Critical points which correspond
to the stationary solution of the model without slope selection are computed by
means of long time simulations of the coarsening process until convergence.
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