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SELF-CONSISTENT FIELD THEORY SIMULATIONS OF

WORMLIKE CHAINS ON CYLINDRICAL SURFACE

QIN LIANG, LU CHEN, HUI ZHANG, AND DONGLIANG ZHANG∗

Abstract. Experimental investigation has shown that semiflexible polymers can wrap orderly
around a cylinder. Recent Monte Carlo simulations also show that semiflexible polymers can

develop linear or helical or random phase structures, depending on the rigidity or length of the
polymer. Here, we use wormlike chain model and self-consistent field theory with Onsager interac-
tion to study the micro-phase structure of polymers with local rigidity. We first give the modified
diffusion equation for a wormlike chain on cylindrical surface, and then solve the equilibrium e-

quations of the self-consistent field. A time splitting scheme is developed to solve the modified
diffusion equation. However, only two kinds of nematic structures (N1 and N2) are detected in
our simulation. In N1, the polymers are mainly oriented perpendicular to the axis of the cylin-
der; while in N2, the polymers are mainly oriented parallel to the axis of the cylinder. N1 is a

metastable structure with free energy higher than N2.

Key words. wormlike chain model, modified diffusion equation, self-consistent field theory,
cylindrical surface, micro-phase structure.

1. Introduction

Filaments with special chemical structure can spontaneously form a helical con-
formation such as some synthetic polymers [22] and biological materials like ds-
DNA. And it has been shown that a filament with fully flexibility can also develop
a helical conformation when it is bound to a deformable cylindrical surface [1].
For semiflexible polymers confined on the cylindrical surface, helical conformation
could also be developed, for example, the arrangement of cellulose microfibrils in
the plant cell wall [23]. Moreover, due to the rigidity of the polymer, this system
is likely to form some liquid-crystal structures, such as nematic.

By using the Monte Carlo simulation, researchers [12, 17, 27] have studied the
polymer wrapping of nanotubes. In the work of Gurevitch [12], the cylindrical
surface-confinement was enforced by introducing the Lennard-Jones potential be-
tween the tube and the polymer particles. In additional to the bending potential
between consecutive bonds, interactions between particles are also of Lennard-Jones
type, which balances the attracting van der Waals force and the repelling force. All
simulations [12, 17, 27] have maintained the existence of helical structures, which
depends on the rigidity of the polymer and the radius of the tube. In these Monte
carlo simulation, only one [17] or three [12] molecules are considered. That is
because the computational cost depends on the number of polymers greatly. In
the Monte Carlo methods, it is quite time-consuming to simulate systems of large
molecule number and long contour length.

Self-consistent field theory (SCFT) is one of the common theories to study the
micro-phase structure of polymers. It has achieved great success in dealing with
flexible [7,11,15,20](Gaussian chain model) or semi-flexible [21,25] (wormlike chain
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model) polymers. SCFT simplifies the many-body interactions to some field inter-
actions [9], hence is able to handle multi-chain systems. In this work, we use the
SCFT models with the excluded-volume Onsager interaction to study the phase
behavior of wormlike chains when confined on cylindrical surface.

In the self-consistent field model that based on the wormlike chain, a persistence
length λ is used to describe the rigidity of polymers. When λ = ∞, the polymers
are definitely hard; when λ ≪ 1, the polymers are quite flexible. Therefore, the
wormlike model is able to cover systems of different rigidity. To simulate semiflexi-
ble systems with the self-consistent field theory (SCFT), it is of great importance to
write out and solve the modified diffusion equation (MDE) for the probability func-
tion of polymer chain statistics [9]. The MDEs in the cartesian coordinate system,
no matter it is for the Gaussian chain model dealing with the flexible polymers or
the wormlike chain model dealing with the semiflexible polymers, have both been
established decades ago [9, 10]. Recently, the general MDE for the wormlike chain
in curvilinear coordinate system, particularly the MDE on the surface of sphere and
cylinder, has been deduced [18]. And the formulated MDE on a spherical surface
has been solved to study the nematic defect states of rigid linear particles confined
on a spherical surface [19]. Jeff [4] and Yang et.al. [26] have studied the confor-
mations of a single long flexible polymer when confined in the cylinder or on the
cylindrical surface by solving the long-polymer version of the MDE.

In the former theoretical work [18], although the MDE is given for any curvilinear
coordinate, the derivative terms are still written in the Cartesian coordinates form.
In this work, we first give the general self-consistent field model for wormlike chains
in the Cartesian coordinates. Then in section 3, we give the specific form of the
MDE, with all terms written in the curvilinear coordinate system. Two examples,
MDE in the spherical polar coordinates and the circular cylinder coordinates are
presented. SCFT equations for the wormlike chains confined on cylindrical surface
are listed in section 4. Here we only consider the simplified situation that the
functions are irrespective of the position. In section 5, details of the numerical
methods are listed. The time splitting method and Fourier spectral method are
used to solve the MDE, which is the most complicated equation in the SCFT model.
Picard mixing and the Anderson mixing schemes are applied to the updating of
the field. Section 6 deals with the numerical results. Although we expect the
wormlike chains to develop a helix on the surface of the cylinder. However, only
perpendicularly or parallelly oriented nematic structures (N1 and N2) are detected
in our simulation. In N1 the polymers are mainly oriented perpendicular to the
axis of the cylinder; while in N2 the polymers are mainly oriented parallel to the
axis of the cylinder. N1 is a metastable structure with free energy higher than N2.
In this section, comparison of N1 and N2 with the isotropic state are given. When
the length of the polymers approximates zero, this cylindrical confined system will
reduce to the two dimensional flat-plane system.

2. The general self-consistent field model for wormlike chains

The self-consistent field theory model is a mean field theory which treats the
many-body interaction of the molecules as a field interaction. In the SCFT frame,
finding the equilibrium state of the polymer system is to find the saddle point of
the free energy, which is a functional of the field function W (r,u) and the mean
segment density distribution ρ(r,u). [6,8,14] If we consider a system of n interacting
semiflexible polymer chains, with each chain has a contour length L and persistence
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length λ, [9] then the free energy can be written as

βF (W,ρ) = ρ0

[
C

2

∫
dr

∫
du

∫
du′ρ(r,u)ρ(r,u′)|u× u′|

−
∫

dr

∫
duW (r,u)ρ(r,u)

]
− n ln

(
Q(W )

ρ0

)
.

(1)

Here ρ0 is the number density and C is the reduced molecular density. In three
dimensional space, ρ0 = n/V , with V being the volume of the system; the reduced
molecular density C = 2ρ0L

2D, with D being the diameter of polymers. In two
dimensional surface, ρ0 = n/A, with A being the area of the system; the reduced
molecular density C = ρ0L

2. In Eq.(1), the dimensionless density distribution
function ρ is normalized to the volume of the system, that is, in 3D, it satisfies

(2)

∫
dr

∫
duρ(r,u) = V.

Here r and u is the position and direction, respectively.
The Q in the last term of the free energy is the single chain partition function,

which can be calculated by the so called propagator q(r,u, s)

(3) Q =
1

V

∫
dr

∫
duq(r,u, s = 1).

Note in Eq.(2) and (3), V should be changed to A in the surface case. The propaga-
tor q is defined for a polymer segment of length Ls, which represents the probability
of finding the end located at a space point specified by r and pointing at a direction
specified by u. It satisfies a modified diffusion equation (MDE) [18].

∂

∂s
q(r,u, s) = {−W (r,u)− Lu · ∇r + L[(u · ∇r)u] · ∇u

+
L

2λ
∇2

u

}
q(r,u, s), s ∈ [0, 1],(4)

q(r,u, s = 0) = 1.

The first term of the right hand side is the field function. The second and the
third terms are the convection terms. The third term is introduced by the locality
of the coordinate system of u. The last term is the diffusion terms introduced by
the bending of polymers. When confined on surface, the last ∇2

u term should be
split into

L

2λ
∇2

u = −Lλ

2
κ2(r,u) +

L

2λ

∂2

∂φ2
,(5)

with φ being the on-plane angle that defines u. The κ2-term reflects the bending-
energy penalty along the surface normal direction and the second term reflects the
bending-energy penalty in the tangent plane. κ(r,u) is the surface curvature at
position r and along the direction u. It can be calculated by [5, 18]

(6) κ(r,u) = |[(u · ∇r)n(r)]× (u× n)|.

The vector n in the above equation is the unit normal vector of the surface.
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Minimizing the free energy in Eq.(1) with respect to ρ(r,u) and W (r,u) leads
to the self-consistent equations

C

∫
du′ρ(u′)|u× u′| −W (u) = 0,(7)

ρ(u) =
1

Q

∫ 1

0

dsq(u, s)q(−u, 1− s).(8)

Taking Eqs. (3),(4),(7) and (8), we then have a closed self-consistent set of equations
for the calculation of ρ(r,u). Here the normalization condition in Eq.(2) is satisfied
automatically by Eqs.(3) and (8).

3. The general expression of the MDE in orthogonal curvilinear coordi-
nates

For some special system, it is more convenient to use some special curvilinear
coordinates for the position r and use the corresponding local coordinates axes
(changing with r) for the direction u. In this case, different curvilinear coordinates
will results in different expressions of the MDE in Eq. (4), especially the gradient
terms. In this section, we give the general expression of the MDE in any curvilinear
coordinates. As for curvilinear coordinates, readers can refer to the book of Arfken
and Weber [2](Chapter two). At the end of this section, several examples, both in
the three dimension space or on the two dimension surface, are presented.

3.1. General expression. Suppose the position r is defined by some orthogonal
curvilinear coordinates ξ1, ξ2, ξ3 (i.e., Θ,Φ, r in spherical polar coordinate or ρ, φ, z
in circular cylinder coordinates), then we define the natural basis vectors as

hi =
∂r

∂ξi
, i = 1, 2, 3.

Note these vectors constitute a local basis that change their direction and/or mag-
nitude from point to point. Let hi = |hi| be the length of hi and then the local-
normalized-curvilinear-orthonormal-basis-vectors can be defined

ei =
hi

hi
, i = 1, 2, 3.

With these notifications, the gradient ∇r can be calculated [2]

∇r = e1
1

h1

∂

∂ξ1
+ e2

1

h2

∂

∂ξ2
+ e3

1

h3

∂

∂ξ3
.(9)

For fixed point r, the local basis vectors ei(r) are taken as the coordinate axis,
and the orientation u of segments at this point can be represented by a spherical
polar coordinates based on ei, (i = 1, 2, 3)[see FIGURE 1], that is,

u = sin θ cosφe1 + sin θ sinφe2 + cos θe3.(10)
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Figure 1. Schematics of the basis vectors for u.

Now the local-normalized-curvilinear-orthonormal-basis-vectors for u are

e′1 = cos θ cosφe1 + cos θ sinφe2 − sin θe3,

e′2 = −sinφe1 + cosφe2,(11)

e′3 = sin θ cosφe1 + sin θ sinφe2 + cos θe3,

Apply the similar equation of (9) to u, ∇u can be calculated as

∇u =
e′1
hθ

∂

∂θ
+

e′2
hφ

∂

∂φ
+

e′3
hr

∂

∂r
.(12)

As u is a unit vector with r ≡ |u| = 1, the ∂
∂r term vanishes. In the spherical polar

coordinates, hθ = r = 1, hφ = r sin θ = sin θ, then the above gradient term can be
simplified to

∇u =
e′1
1

∂

∂θ
+

e′2
sin θ

∂

∂φ
.(13)

Combining Eq. (9) and Eq. (10), we have

u · ∇r =
sin θ cosφ

h1

∂

∂ξ1
+

sin θ sinφ

h2

∂

∂ξ2
+

cos θ

h3

∂

∂ξ3
.(14)

Substitute eqns. (10), (14), (13) into the term [(u · ∇r)u] · ∇u and use the partial
derivative formula [2]

∂ei
∂ξj

= ej
1

hi

∂hj

∂ξi
, (i ̸= j)

∂ei
∂ξi

= −
∑
j ̸=i

ej
1

hj

∂hi

∂ξj
,(15)

we obtain the expression of the [(u · ∇r)u] · ∇u in the curvilinear coordinate form

[(u · ∇r)u] · ∇u

=
[ sin θ cos2 φ

h1h3

∂h1

∂ξ3
− cos θ cosφ

h1h3

∂h3

∂ξ1
+

sin θ sin2 φ

h2h3

∂h2

∂ξ3
− cos θ sinφ

h2h3

∂h3

∂ξ2

] ∂

∂θ

+
[
cos θ sinφ cosφ(

1

h2h3

∂h2

∂ξ3
− 1

h1h3

∂h1

∂ξ3
) +

cos2 θ

sin θ
(
sinφ

h1h3

∂h3

∂ξ1
− cosφ

h2h3

∂h3

∂ξ2
)(16)

− sin θ cosφ

h1h2

∂h1

∂ξ2
+

sin θ sinφ

h1h2

∂h2

∂ξ1

] ∂

∂φ
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For the confined-on-surface case, supposing u lie on the plane spanned by e1
and e2 [see FIGURE 1], the above term can be simplified by setting θ ≡ π/2 and
∂
∂θ ≡ 0, that is(

u · ∇r

)
u · ∇uq(r,u, s) =

1

h1h2
[sinφ

∂h2

∂ξ1
− cosφ

∂h1

∂ξ2
]
∂

∂φ
q.(17)

As for the last term in Eq.(4), since u is represented by a spherical polar coordinates
based on ei, the laplace term ∇2

u can be calculated as

∇2
u =

[ 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
.(18)

which is irrespective of the coordinates ξi.
Now the derivatives in Eq.(4) have been expressed in the curvilinear coordinates

form in eqns. (14), (16), (18).

3.2. Examples for 3D space. In the following, we give three examples in 3D s-
pace with r defined in different coordinates: (i). Descartes coordinates; (ii). Spher-
ical polar coordinates and (iii). Circular cylinder coordinates.
(i). Descartes coordinates

In descartes coordinates, ξ1 = x, ξ2 = y, ξ3 = z, and h1 = h2 = h3 = 1,
derivatives in eqns. (14), (16) are

u · ∇r = sin θ cosφ
∂

∂x
+ sin θ sinφ

∂

∂y
+ cos θ

∂

∂z
,

[(u · ∇r)u] · ∇u = 0.

(ii). Spherical polar coordinates.
In spherical polar coordinates, ξ1 = Θ, ξ2 = Φ, ξ3 = R. Θ,Φ, R are the polar

angle, the azimuth angle and the distance from the origin. The scale factors are
h1 = R, h2 = R sinΘ, h3 = 1, respectively. Derivatives in eqns. (14), (16) are

u · ∇r =
sin θ cosφ

R

∂

∂Θ
+

sin θ sinφ

R sinΘ

∂

∂Φ
+

cos θ

1

∂

∂R
,(

u · ∇r

)
u · ∇u =

sin θ

R

∂

∂θ
+

sin θ sinφ cosΘ

R sinΘ

∂

∂φ
.

(19)

(iii). Circular cylinder coordinates.
Here ξ1 = Φ, ξ2 = z, ξ3 = ρ and h1 = ρ, h2 = 1, h3 = 1. Derivatives in eqns.

(14), (16) are

u · ∇r =
sin θ cosφ

ρ

∂

∂Φ
+

sin θ sinφ

1

∂

∂z
+

cos θ

1

∂

∂ρ
,

(
u · ∇r

)
u · ∇u =

sin θ cos2 φ

ρ

∂

∂θ
− cosφ cos θ sinφ

ρ

∂

∂φ
.

(20)

Note the order of the coordinates can be modified as long as the e1, e2, e3 form a
right-handed coordinate system. For example, in the circular cylinder coordinates,
we can use ξ1 = ρ, ξ2 = Φ, ξ3 = z and h1 = 1, h2 = ρ, h3 = 1, then derivatives in
eqns. (14), (16) can be written as

u · ∇r =
sin θ cosφ

1

∂

∂ρ
+

sin θ sinφ

ρ

∂

∂Φ
+

cos θ

1

∂

∂z
,(

u · ∇r

)
u · ∇u =

sin θ sinφ

ρ

∂

∂φ
.

(21)

which are different from those displayed in Eq. (20).
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3.3. Examples for surface. Here we give two examples on surface with r confined
on the : (i). spherical surface of radius R and (ii). cylinder surface of radius ρ. The
derivatives for these cases can be achieved directly from the 3D issue by setting

θ ≡ π/2,
∂

∂θ
= 0. In addition, the curvature κ should be calculated.

(i). Spherical surface of radius R
For spherical surface of radius R, derivatives in Eq.(19) can be written

u · ∇r =
cosφ

R

∂

∂Θ
+

sinφ

R sinΘ

∂

∂Φ
,(

u · ∇r

)
u · ∇u =

sinφ cosΘ

R sinΘ

∂

∂φ
.

(22)

and the curvature

κ(r,u) = |[(u · ∇r)n(r)]× (u× n)|

=
∣∣∣(cosφ

R

∂

∂Θ
+

sinφ

R sinΘ

∂

∂Φ

)
e3 ×

[
(cosφe1 + sinφe2)× e3)

]∣∣∣
=

∣∣∣(cosφ
R

e1 +
sinφ

R sinΘ
sinΘe2

)
× (− cosφe2 + sinφe1))

∣∣∣
=

1

R
.

(ii). Circular cylinder surface of radius ρ
For circular cylinder surface of radius ρ, derivatives in eqns. (20) can be written

u · ∇r =
cosφ

ρ

∂

∂Φ
+

sinφ

1

∂

∂z
,(

u · ∇r

)
u · ∇u = 0,

(23)

and the curvature

κ(r,u) = |[(u · ∇r)n(r)]× (u× n)|

=
∣∣∣(cosφ

ρ

∂

∂Φ
+

sinφ

1

∂

∂z

)
e3 ×

[
(cosφe1 + sinφe2)× e3)

]∣∣∣
=
∣∣∣(cosφ

ρ
e1

)
× (− cosφe2 + sinφe1))

∣∣∣
=

cos2 φ

ρ
.

(24)

4. SCFT of the wormlike chains on circular cylindrical surface

In order to investigate the wrapping conformations of wormlike chains around
the circular cylindrical surface, we solve the corresponding SCFT equations in the
circular cylindrical coordinates. In this section, we listed the SCFT equations that
involved in our simulations.
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Figure 2. Schematics of the circular cylinder coordinates.

For this cylindrically confined system, the confinement includes two aspects.
At first, the position r of segments should be located on the cylinder surface.
Secondly, the direction u should be unit vector on the tangential plane of the
cylinder surface. To enforce these two confinement, it is convenient to use the
cylindrical coordinates. That is, the spatial variable r can be specified by two
variables Φ, z, with Φ ∈ [0, 2π], z ∈ [0,H]. For fixed position r, the local coordinate
bases of the cylindrical coordinate system are eΦ, ez, eρ, which is shown in Figure
2. Under this coordinate, u can be specified by an on-plane angle φ–the angle
between u and eΦ

(25) u = cosφeΦ + sinφez.

Thus any functions f(r,u) can be written as f(z,Φ;φ) and the propagator can
be expressed by these variables as q(z,Φ;φ; s).

Substitute the derivatives in Eq. (23-24) into the MDE of (4), we arrived at the
final equation of the propagator

(26)
∂q

∂s
= −Wq − Lλ

2

cos4φ

R2
q − L

R
cosφ

∂q

∂Φ
− Lsinφ

∂q

∂z
+

L

2λ

∂2q

∂φ2
.

In this simulation, we assume the distribution of the wormlike chain at any point
of cylindrical surface is the same, the derivatives with respect to Φ and z in the
modified diffusion equation vanish. Then we get

∂q

∂s
= −Wq − Lλ

2

cos4φ

R2
q +

L

2λ

∂2q

∂φ2
, φ ∈ [0, 2π], s ∈ [0, 1],

q(φ+ 2π; s) = q(φ; s).

(27)

The initial value of the propagator q(u, s) is 1, i.e.,

q(φ; 0) = 1.

The single chain partition function can be calculated through

(28) Q =

∫ 2π

0

dφq(r,u, s = 1).
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The equilibrium equations in Eqs. (7) and (8) also become

W (φ) = C

∫ 2π

0

ρ(φ′)| sin(φ− φ′)|dφ′,(29)

ρ(φ) =
1

Q

∫ 1

0

q(φ, s)q(φ+ π, 1− s)ds.(30)

Taking Eqs. (27),(28),(29) and (30), we then have a closed self-consistent set of
equations for the calculation of ρ(φ).

5. Numerical methods

In order to obtain the density distribution of the stable state, we have to solve
the equations (27-30), which comprise a series of highly nonlinear equations or high
order partial differential equations. Due to the strong nonlocality that emerges
from the connection of propagators, density, and fields, it is difficult to solve these
equations analytically. In this section, we present the numerical schemes for solving
these equations. At first, the whole procedure to get the equilibrium state of this
system is as follows:
Procedure A

step 1: given some initial guess of the field function W (φ).
step 2: solve the modified diffusion equation in Eq. (27) to get q(φ, s).
step 3: obtain Q through the integration in Eq. (28), and the density ρ(φ)

through Eq. (30).
step 4: update W (φ) through Eq. (29).
step 5: stop if W (φ) converges (see Eq. (43)), otherwise go back to step2.

Generally, efficiency of the numerical method in solving the SCFT equations
depends on three aspects:

1: initial guess of the field function W (φ);
2: numerical schemes to solve the modified diffusion equation in (27);
3: iterative method to update W (φ) .

5.1. Initial guess of W . As SCFT equations are a set of equations of multi-
solutions, different initial field might result in different solution, or have different
convergence rate. Hence suitable initial field is vital to the efficiency of the numeri-
cal method. For this simplified system (i.e., functions are irrespective of the position
r), we can use the isotropic state to get the initial guess of W (φ). According to
the normalization in Eq. (2),∫

dr

∫ 2π

0

duρ(r,u) = A,

we can get

(31) ρi(φ) =
1

2π
,

here the subscript i indicate isotropic. Substituting the above density into Eq. (29),
the field function of the isotropic state can be obtained

(32) Wi(φ) = C

∫ 2π

0

ρi(φ
′)| sin(φ− φ′)|dφ′ = C

∫ 2π

0

1

2π
| sin(φ′)|dφ′ =

2C

π
,

which is the field function of the isotropic state that can be used as the initial guess
of W .
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5.2. Numerical method for solving the MDE. Among the whole procedure
of this simulation, the most time consuming computation is the solving of the
propagator. In this work, we split the right-hand side of Eq. (27) into two parts
and treat the partial derivative term in the spectral space.

(33) O1q = −Wq − Lλ

2

cos4φ

R2
q,

(34) O2q =
L

2λ

∂2q

∂φ2
.

the first operator O1 is treated in the real space, and the second operator O2 is
treated in the spectral space. A second-order time splitting scheme is used. That
is, for time step h

(35) q(φ; s+ h) = e
h
2 O1ehO2e

h
2 O1q(φ; s).

Here the first operator, which is an ordinary differential operator, can be calculated
exactly in the real space

(36) e
h
2 O1q(φ; s) = e−

h
2 W (φ)−h

2 ·
Lλ
2

cos4φ

R2 q(φ; s).

Due to the gradient terms, the second operator should be treated in the spectral
space. We use Fourier spectral method [13]. The basic functions are

(37) γk(φ) = eikφ, k ∈ Z.

We can get

(38) O2(γk) = −Lk2

2λ
γk, k ∈ Z.

Expanding the propagator in terms of the basic functions

q(φ; s) =
∑
k

q̂k(s)γk(φ)

and solving the second operator in the spectral space

∂q(φ; s)

∂s
= O2(q).

We obtain

(39)
∂q̂k
∂s

= −Lk2

2λ
q̂k.

That is, for a time step h, we have

q̂k(s+ h) = e−
Lk2

2λ hq̂k(s).

Then we return to the real space and continue the calculation.
In the real space, we use N nodes for φ.

φj =
2π

N
j, j = 0, 1, ..., N − 1.

The basis functions are γk(k = −N
2 , ...,

N
2 ).
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5.3. Iterative method for the updating of W . To calculate the field through
Eq. (29), one can use some numerical integration to implement the integral. Ac-
tually, this calculation can be easily implemented by using the spectral version of
(29). That is, substituting the Fourier expansion of ρ(φ′)

(40) ρ(φ′) =
∑
k

ρ̂ke
ikφ′

into Eq. (29), we have

W (φ) = C

∫ 2π

0

ρ(φ′)| sin(φ− φ′)|dφ′

= C

∫ 2π

0

∑
k

ρ̂ke
ikφ′

| sin(φ− φ′)|dφ′

= C

∫ 2π

0

∑
k

ρ̂ke
ikφeik(φ

′−φ)| sin(φ′ − φ)|d(φ′ − φ)

= C
∑
k

ρ̂ke
ikφ

∫ 2π

0

eikφ
′
| sin(φ′)|d(φ′)

= C
∑
k

ρ̂ke
ikφ

{
0, for odd k

−4/(k2 − 1), for even k
.

(41)

Hence, supposing the Fourier expansion of W (φ) is

W (φ) =
∑
k

Ŵke
ikφ

we have

Ŵk =


0, for odd k,

− 4C

k2 − 1
ρ̂k, for even k.

(42)

To update the field W , the simplest scheme is to directly replace the old field
Wold with the new field Wnew, which is arrived by Eq. (29). But this scheme is
usually unstable. An alternative method is the Picard mixing method [7], which
use the linear mixing of the old and new field

αWnew + (1− α)Wold

as the renewed field function. Here α is usually set between (0, 0.1) to ensure the
stability of the iteration.

Recently, the Anderson mixing method [24] has been applied to SCFT sim-
ulations to update the field function. Anderson mixing method is a multi-step
method designed to solve the fixed-point problem: x = g(x). Here we list the
Anderson algorithm as follows. Note in the following, W is a vector with
W = (W (φ0),W (φ1), · · · ,W (φN1)). G(Wold) means the whole procedure by us-
ing the old field Wold to do step 2 and step 3 and obtain a renewed field through
Eq. (29).

Given initial guess W0 and m ≥ 1,
set W1 = G(W0).
for k = 1, 2, · · ·

set mk = min{m, k}.
set Fk = (fk−mk

, · · · , fk), where fi = G(Wi)−Wi.
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Determine α(k) = (α
(k)
0 , · · · , α(k)

mk)
T that solves

minα=(α0,·,αmk
)T ||Fkα||, s.t.

mk∑
i=0

αi = 1.

Set Wk+1 =
mk∑
i=0

αiG(Wk−mk+i).

Note here Fk is a N × (mk + 1) matrix. In our simulation, we use Picard iteration
when the error is large, and use Anderson mixing when the error reduces below
some threshold. In our simulation, we set the terminating criterion for W to be

(43) ||Wnew −Wold|| :=
1

N

√√√√N−1∑
k=0

(Wnew(φk)−Wold(φk))2 < ϵ = 10−5.

6. Results

In this section, results of our simulations are presented. Since former work were
done either by Monte Carlo simulation or by solving the simplified MDE for one
or quite few (i.e., three) molecules, we haven’t found any SCFT work for this
cylindrical surface confined system. On the other hand, we have to confess that
we don’t detect helical conformations, which have been detected in Monte Carlo
simulation. That might be due to the missing of the attracting interaction of the
Onsager model, which only concludes compelling interaction. As is maintained in
the work of Gurevitch [12] that the CH-π and the van der Waals interactions, which
are all attracting interactions, are important for polymer wrapping. If we add some
weakly attraction into the model, helix conformation might become stable. We
will consider this in the future work. Here we only compare our work with the
2D flat plane case, which has only one kind of nematic structure. Moreover, as
we are considering the simplified case, that is, the distribution is uniform in the
position-space, only isotropic or nematic state (the helix structure can be regarded
as one kind of nematic) can be found in our simulation.

At first, in order to compare the free energy of the simulated state with the
isotropic state, we give the theoretical free energy of the isotropic in the 2D flat
plane. Secondly, the theoretical isotropic-nematic transition for flat plane is pre-
sented. At last, results involving two nematic states (N1 and N2) and ”isotropic”
are given.

6.1. Free energy of the isotropic state. When L
R → 0, the isotropic state

(i.e., ρ(φ) = const) might be stable. In order to compare the free energy of the
simulated state with the one of the isotropic state, we give the analytical free energy
of isotropic state here. From Eq. (1), the free energy per polymer of this confined
system can be written as

βF (W,ρ)

n
=

[
C

2

∫
dφ

∫
dφ′ρ(φ)ρ(φ′)| sin(φ− φ′)|

−
∫

dφW (φ)ρ(φ)

]
− ln

(
Q(W )

ρ0

)
.

(44)

For field and density function that have achieved equilibrium (i.e., satisfying Eq.
(29)), the free energy can also be calculated through

E :=
βF (W,ρ)

n
= −1

2

∫ 2π

0

dφW (φ)ρ(φ)− ln

(
Q(W )

ρ0

)
.(45)
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When L → 0, from the SCFT equations (27-28) and the field for isotropic in (32),
the propagate q and single partition function Q can be calculated

q(φ, s) = e−Ws = e−
2Cs
π ,(46)

Q = 2πe−
2C
π .(47)

Substituting the density (31), the field (32) and the above Q into (44), the free
energy of the isotropic state can be arrived

EISO :=
βFiso

n
= −1

2

∫ 2π

0

dφ
2C

π

1

2π
− ln

(
2πe−

2C
π

ρ0

)
=

C

π
− ln(

2π

ρ0
).(48)

6.2. Isotropic-nematic transition on two-dimensional flat plane. For an
ideal two-dimensional flat semiflexible melts, there exists isotropic-nematic (I-N)
transition. For the 2D flat system, the theoretical transition point C∗ based on the
Onsager model is [3, 16]

(49) C∗(
L

λ
) =

3π( 2Lλ )2

4
[
exp(−2L

λ )− 1 + 2L
λ

] .
If we denote the free energy of the nematic state as EN , then when C > C∗, EN <
EISO; pwhen C < C∗, EN ≥ EISO. Theoretically, when L

R → 0, this cylindrically
confined system will reduce to the ideal two-dimensional system. This means if
we fix L

λ and let L
R → 0, we will encounter the I-N transition at C∗. However, for

systems of positive L/R, the perfect isotropic state is not an equilibrium state of the
current system (since function in (46) dose not satisfy the MDE (27)). Moreover,
due to the non-vanishing curvature of the cylinder surface, polymers have to bend
more than the ideal two-dimensional flat plane system, which results in a higher
free energy. Hence for systems of small C, free energy is slightly larger than the
free energy of isotropic state.

(a) N1 (b) N2

Figure 3. Schematics of nematic-1(N1) and nematic-2 (N2).

6.3. Two nematic states. From the SCFT equation (8), the density ρ(u) is
symmetric with ρ(u) = ρ(−u). In our system, this symmetry can be written as
ρ(φ) = ρ(φ + π). Moreover, from the definition of φ [see FIGURE 2], when the
maximum of ρ(φ) is arrived at 0 or π, the polymers are mainly oriented perpen-
dicular to the axis of the cylinder (see FIGURE 3(a)). We call it a nematic-1 (N1)
state. When the maximum of ρ(φ) is arrived at π/2 or 3π/2, the polymers are
mainly oriented parallel to the axis of the cylinder (see FIGURE 3(b)). Both N1
and N2 can be detected (stable or metastable) in our simulation. However, the
free energy of N1 is always larger than that of N2. This is because N2 has smaller
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bending energy. Hence N1 is only a local minimum point not a global minimum
point of the free energy.

In the following, we fix the length of the polymer L/R = 0.1, 0.4, 0.8, the persis-
tence length λ/L = 1, and give a serials of free energy of N1 and N2 in FIGURE 4,
FIGURE 5 and FIGURE 6. From the formula in (49), we see that the I-N transition
point C∗ ≈ 8.3, which is marked with a dark green dot in these figures. In order
to compare with the isotropic state of the ideal 2D flat plane, the free energy is
subtracted with the free energy of the isotropic state in (48). We call it the relative
energy. Moreover, we define the orientation order σ

σ =

∫ 2π

0

cos(2φ)ρ(φ)dφ.

σ satisfies −1 ≤ σ ≤ 1. It yields a 0 value in the isotropic state, a positive value
for N1 state and a negative value for N2 state. From the above definition, σ can
also be calculated by σ = 2πρ̂2, with ρ̂k being the k-th Fourier coefficient (see Eq.
(40)).

To get the initial guess of the field for N1 and N2 state, we use the Fourier
expansion of W and the relation in (42)

W = Ŵ0 + Ŵ2 cos(2φ) · · ·

=
2C

π
− 4C

3
ρ̂2 cos(2φ) · · ·

=
2C

π
− 4C

6π
σ cos(2φ) · · · = 2C

π

(
1− σ

3
cos(2φ) · · ·

)
.

(50)

Therefor, we use

WN1 =
2C

π

(
1− +1

3
cos(2φ)

)
WN2 =

2C

π

(
1− −1

3
cos(2φ)

)(51)

as the initial guess of W for N1 and N2 respectively.
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Figure 4. Results for L/R = 0.1, λ/R = 0.1. (A). Plot of relative
free energy of N1 and N2 with decreasing C. The deep green dot
here is the predicted I-N transition point in 2D flat plane. The
subplot in (A) shows the energy difference EN1 − EN2; (B). σ for
N1 and N2.
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Figure 5. Results for L/R = 0.4, λ/R = 0.4. (A). Plot of relative
free energy of N1 and N2 with decreasing C. The deep green dot
here is the predicted I-N transition point in 2D flat plane. The
subplot in (A) shows the energy difference EN1 − EN2; (B). σ for
N1 and N2.
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Figure 6. Results for L/R = 0.8, λ/R = 0.8. (A). Plot of relative
free energy of N1 and N2 with decreasing C. The deep green dot
here is the predicted I-N transition point in 2D flat plane. The
subplot in (A) shows the energy difference EN1 − EN2; (B). σ for
N1 and N2.

6.3.1. Fix L/R, λ/R and decrease C. When we fix L/R, λ/R, the nematic struc-
ture become more like a ”isotropic” state (i.e., σ = 0) if C is decreased, especially
in the small L/R case. As is mentioned above, when L/R → 0, this cylindrical-
ly confined system will reduce to the ideal two-dimensional system. As shown in
FIGURE 4, for short polymers (i.e., L/R = 0.1), the I-N transition point is almost
the same with the one in ideal 2D flat system (marked by a dark green square).
Moreover, difference between EN1 and EN2 is quite small (see the subplot in FIG-
URE 4(A)). And when C < C∗, EN2 − EISO ≈ 0. For small C, an N1 initial state
will evolve into a N2 state (see the overlap of σN1 and σN2 when C is small), which
means N1 is unstable here.

For long polymers, it is obvious that the relative energy EN − EISO > 0 when
C < C∗. This deviation from 0 is even bigger for larger L/R (see (A) of FIGURE
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5 and FIGURE 6). It can be seen that when C is big, the energy of N1 is always
larger than that of N2; when C is small, the N1 phase will also evolve into the N2
phase, which indicate the instability of N1.

6.3.2. Fix L/R = 0.1, C = 10 and decrease λ/R. Here we study the phase
behavior of this confined system by fixing L/R = 0.1, C = 10 and changing the
persistence length λ/R. Figures of the relative energy and the orientational or-
der parameter are presented in FIGURE 7. Profiles of the density ρ for several
persistence length are given in FIGURE 8. As is displayed in FIGURE 7, the per-
sistence length do have impact on the phase behavior of this confined system. This
is in accordance with the 2D flat situation. When λ/R approximate 0, the relative
energy increases to 0 and the order parameter approaches 0, which is the feature
of isotropic state. This can also be seen in FIGURE 8. In these simulations, the
energy of N1 is also higher than the energy of N2. This energy difference is bigger
for stiffer polymers.
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Figure 7. Results for L/R = 0.1, C = 10. (A). Plot of relative
free energy of N1 and N2 with decreasing λ/R. (B). σ for N1 and
N2.
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7. Conclusion

In this work, we give modified diffusion equation (MDE) of the wormlike chain
in the curvilinear coordinate. Here all terms in the MDE are expressed in the curvi-
linear coordinate. With the MDE in the circular cylinder coordinates, we solved
the SCFT equations on the circular cylinder surface to study the conformations of
semiflexible polymer confined on the cylinder surface. A time splitting scheme is
developed to solve the MDE. Different initial fields were designed to get different
states. We didn’t find the helical conformation but detected two kinds of nematic
structures (N1 and N2) in our simulation. In N1 the polymers are mainly orient-
ed perpendicular to the axis of the cylinder; while in N2 the polymers are mainly
oriented parallel to the axis of the cylinder. N1 is a metastable structure with free
energy higher than N2.
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