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NUMERICAL ANALYSIS OF AN ENERGY-CONSERVATION

SCHEME FOR TWO-DIMENSIONAL HAMILTONIAN WAVE

EQUATIONS WITH NEUMANN BOUNDARY CONDITIONS

CHANGYING LIU, WEI SHI, AND XINYUAN WU∗

Abstract. In this paper, an energy-conservation scheme is derived and analysed for solving
Hamiltonian wave equations subject to Neumann boundary conditions in two dimensions. The
energy-conservation scheme is based on the blend of spatial discretisation by a fourth-order finite
difference method and time integration by the Average Vector Field (AVF) approach. The spatial

discretisation via the fourth-order finite difference leads to a particular Hamiltonian system of
second-order ordinary differential equations. The conservative law of the discrete energy is estab-
lished, and the stability and convergence of the semi-discrete scheme are analysed. For the time
discretisation, the corresponding AVF formula is derived and applied to the particular Hamlitonian

ODEs to yield an efficient energy-conservation scheme. The numerical simulation is implement-
ed for various cases including a linear wave equation and two nonlinear sine-Gordon equations.
The numerical results demonstrate the spatial accuracy and the remarkable energy-conservation
behaviour of the proposed energy-conservation scheme in this paper.

Key words. Two-dimensional Hamiltonian wave equation, finite difference method, Neumann
boundary conditions, energy-conservation algorithm, average vector field formula.

1. Introduction

The theme of this paper is the numerical analysis of an energy-conservation
scheme for the following Hamiltonian wave equation in two-dimensional space:

(1)

{
utt − a2(uxx + uyy) = f(u), (x, y, t) ∈ Ω× (t0, T ],

u(x, y, t0) = φ(x, y), ut(x, y, t0) = ϕ(x, y), (x, y) ∈ Ω̄,

where the function f(u) is the negative derivative of a potential energy V (u), and
Ω = (xl, xr)× (yd, yu). The initial functions φ and ϕ are wave modes or kinks and
their velocity, respectively (see, e.g. [22, 23, 38]). Here, we suppose that the system
(1) is supplemented with the homogenous Neumann boundary conditions:
(2)
∂u

∂x

∣∣∣
x=xr,xl

= 0, yd ≤ y ≤ yu,
∂u

∂y

∣∣∣
y=yd,yu

= 0, xl ≤ x ≤ xr, ∀t ∈ [t0, T ].

It is noted that the conservation of the energy is an essential property of the Hamil-
tonian system (1)-(2), which can be expressed as follows:

(3) E(t) ≡ 1

2

∫
Ω

[
u2t + a2

(
u2x + u2y

)
+ 2V (u)

]
dxdy = E(t0).

Therefore, it is very important to design numerical schemes that can precisely
preserve a discrete energy. This class of schemes is called conservative schemes.
They often yield physically correct results and numerical stability [8].

In the literature, a considerable number of numerical schemes has been present-
ed for solving the two-dimensional Hamiltonian wave equations (1). For example,
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Bratsos [5] applied the method of lines to solve system (1). In [13], the authors
constructed a high-order compact alternating direction implicit scheme. Based on
the blend of spatial discretisation by different finite difference methods and time
integration by predictor-corrector schemes, the authors (see, e.g. [9, 12, 17]) inves-
tigated nonlinear Hamiltonian wave equations numerically. Dehghan et al. (see,
e.g. [14, 15, 34, 35]) proposed the meshless local Petrov-Galerkin (MLPG) method,
the meshless local radial point interpolation (LRPI) method, the dual reciprocity
boundary element (DRBE) method and the meshless local boundary integral e-
quation (LBIE) method for solving the two-dimensional sine-Gordon equations.
In [29, 30, 31], Liu et al. first formulated the system (1) as an abstract second-
order ODEs in a suitable infinite-dimensional function space and then proposed
and analysed a class of arbitrarily high-order time-stepping methods for solving
Hamiltonian system (1). Mei et al. [33] presented an extension of the finite-energy
condition for Runge–Kutta–Nyström-type integrators solving nonlinear wave equa-
tions. The other numerical approaches also were investigated, such as the finite
element method (see, e.g. [1, 2]), the perturbation method [24] and the spec-
tral method (see, e.g. [3, 28]). On the other hand, splitting methods (see, e.g.
[9, 11, 16, 17, 37]) have been developed to investigate the numerical solutions of
the evolutional PDEs in multi-dimensional case. Sheng et al. [38] provided highly
efficient splitting cosine schemes for the two-dimensional sine-Gordon equations by
using a linearly implicit sequential splitting or Strangs splitting. In a recent study
of Hamiltonian wave equations, using the finite difference method and the aver-
age vector field (AVF) method, the authors consider a class of energy-conservation
methods for one-dimensional Hamiltonian wave equations (see [26]). However, there
are very few studies to pay attention to designing and analysing high-order energy-
conserving schemes for the two-dimensional Hamiltonian wave equations subject
to Neumann boundary conditions. Hence, in this work, we devote to constructing
and analysing a novel and efficient energy-conservation scheme for the Hamilton-
ian wave equations with Neumann boundary conditions (1)-(2) in two dimensions.
According to the homogenous Neumann boundary conditions and the structure of
equation (1), we derive and analysis a kind of fourth-order finite difference oper-
ators to discrete the spatial derivatives of the system (1)-(2). In such a way, the
conserved PDEs can be converted into a particular Hamiltonian system of ODEs
expressed in the form Aw′′(t) + Bw(t) = f̃

(
w(t)

)
, and the Hamiltonian of the ob-

tained ODEs can be thought of as the approximate energy of the original continuous
system. This motivates us to consider the AVF approach to the discretisation of the
derived Hamiltonian ODEs’ system in time. Therefore, incorporating the fourth-
order finite difference discretisation in space with the AVF time integrator yields a
novel and efficient energy-conservation numerical scheme for the two-dimensional
Hamiltonian wave equations (1)-(2).

The paper is organised as follows. In Section 2, a particluar Hamiltonian ODEs’
system is obtained by applying the fourth-order finite difference operators to dis-
crete the spatial derivatives of the nonlinear system (1)-(2). Then the conservation
law, the stability and the convergence of the semi-discrete scheme are rigorously
analysed. Section 3 is devoted to describing in detail the idea of the AVF formula
for the derived Hamiltonian system of ODEs. In Section 4, numerical experiments
on a linear Klein-Gordon equation and two sine-Gordon equations are implemented
and the numerical results show the convergence order of the spatial discretisation
and the excellent conservative property of the proposed numerical scheme. Section
5 is concerned with conclusions.
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2. Energy-conservation spatial discretisation via a fourth-order finite d-
ifference method

In this section, we first present an energy-conservation finite difference scheme
for the two-dimensional Hamiltonian wave equations (1)-(2), which is of order four
for all the spatial grid points. Then the energy conservation law, the stability and
the convergence of the semi-discrete scheme are rigorously analysed.

2.1. Notations and auxiliary lemmas. Suppose M1 and M2 are two positive
integers. let h1 = xr−xl

M1
and h2 = yu−yd

M2
be the stepsizes of spatial direction and

discretise the region [xl, xr] × [yd, yu] with the spatial grid Ωh =
{
(xi, yj) | xi =

xl + ih1, yj = yd + jh2, 0 ≤ i ≤ M1, 0 ≤ j ≤ M2

}
. For any grid function

u = {uij | (xi, yj) ∈ Ωh}, v = {vij | (xi, yj) ∈ Ωh}, we use the following notations

δxui+ 1
2 ,j

=
ui+1,j − uij

h1
, δ2xuij =

ui+1,j − 2uij + ui−1,j

h21
,

∆xuij =
ui+1,j − ui−1,j

2h1
, ∆2

xuij =
ui+2,j − 2uij + ui−2,j

4h21
,

and two finite difference operators

(4) −Axuij =



7

3h1
δxu 1

2 ,j
− 1

6
δ2xu1,j , i = 0,

− 1

6h1
δxu 1

2 ,j
+

7

6
δ2xu1,j −

1

12
δ2xu2,j , i = 1,

4

3
δ2xuij −

1

3
∆2

xuij , 2 ≤ i ≤M1 − 2,

1

6h1
δxuM1− 1

2 ,j
+

7

6
δ2xuM1−1,j −

1

12
δ2xuM1−2,j , i =M1 − 1,

− 7

3h1
δxuM1− 1

2 ,j
− 1

6
δ2xuM1−1,j , i =M1,

and

(5) −Ayuij =



7

3h2
δyui, 12 − 1

6
δ2yui,1, j = 0,

− 1

6h2
δyui, 12 +

7

6
δ2yui,1 −

1

12
δ2yui,2, j = 1,

4

3
δ2yuij −

1

3
∆2

yuij , 2 ≤ j ≤M2 − 2,

1

6h2
δyui,M2− 1

2
+

7

6
δ2yui,M2−1 −

1

12
δ2yui,M2−2, j =M2 − 1,

− 7

3h2
δyui,M2− 1

2
− 1

6
δ2yui,M2−1, j =M2.

Furthermore, by defining the inner product

(6)

(
u, v
)
=h1h2

[1
4

(
u0,0v0,0 + uM1,0vM1,0 + u0,M2v0,M2 + uM1,M2vM1,M2

)
+

1

2

M1−1∑
i=1

(
ui,0vi,0 + ui,M2vi,M2

)
+

1

2

M2−1∑
j=1

(
u0,jv0,j + uM1,jvM1,j

)
+

M1−1∑
i=1

M2−1∑
j=1

uijvij

]
,
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the notations of the discrete l2-norm ∥u∥ =
√
(u, u) and other discrete norms

∥δxu∥2 = h1h2

M1−1∑
i=0

[1
2

(
δxui+ 1

2 ,0

)2
+

M2−1∑
j=1

(
δxui+ 1

2 ,j

)2
+

1

2

(
δxui+ 1

2 ,M2

)2]
,

∥∆xu∥2 = h1h2

M1−1∑
i=1

[1
2

(
∆xui,0

)2
+

M2−1∑
j=1

(
∆xui,j

)2
+

1

2

(
∆xui,M2

)2]
,

can be yielded. Likewise, the notations δyui,j+ 1
2
, δ2yuij , ∆yuij , ∆

2
yuij , ∥δyu∥2 and

∥∆yu∥2 can be defined as well.

Lemma 2.1. For any grid function u = {uij | (xi, yj) ∈ Ωh}, we define the norm
∥ · ∥∗ by

(7) ∥u∥2∗ =
4

3

(
∥δxu∥2 + ∥δyu∥2

)
− 1

3

(
∥∆xu∥2 + ∥∆yu∥2

)
,

and then, the following inequality holds

(8) |u|21 ≤ ∥u∥2∗,

where the H1 semi-norm is given by |u|21 = ∥δxu∥2 + ∥δyu∥2.

Proof. It follows from the definition of the operators ∆xuij ,∆yuij and the norms
∥∆xu∥, ∥∆xu∥ that

∥∆xu∥2 =
h1h2
4

M1−1∑
i=1

[1
2

(
δxui+ 1

2 ,0
+ δxui− 1

2 ,0

)2
+

M2−1∑
j=1

(
δxui+ 1

2 ,j
+ δxui− 1

2 ,j

)2
+

1

2

(
δxui+ 1

2 ,M2
+ δxui− 1

2 ,M2

)2]
≤h1h2

2

M1−1∑
i=0

[1
2

(
δxui+ 1

2 ,0

)2
+

M2−1∑
j=1

(
δxui+ 1

2 ,j

)2
+

1

2

(
δxui+ 1

2 ,M2

)2]
=∥δxu∥2,

and

∥∆yu∥2 =
h1h2
4

M2−1∑
j=1

[1
2

(
δyu0,j+ 1

2
+ δyu0,j− 1

2

)2
+

M1−1∑
i=1

(
δyui,j+ 1

2
+ δyui,j− 1

2

)2
+

1

2

(
δyuM1,j+

1
2
+ δyuM1,j− 1

2

)2]
≤h1h2

2

M2−1∑
j=0

[1
2

(
δyu0,j+ 1

2

)2
+

M1−1∑
i=1

(
δyui,j+ 1

2

)2
+

1

2

(
δyuM1,j+

1
2

)2]
=∥δyu∥2.

We then obtain

∥u∥2∗ =
4

3

(
∥δxu∥2 + ∥δyu∥2

)
− 1

3

(
∥∆xu∥2 + ∥∆yu∥2

)
≥ ∥δxu∥2 + ∥δyu∥2.

The lemma is confirmed. �

Lemma 2.2. The operators Ax and Ay are symmetric and positive semi-definite
with respect to the inner product (·, ·) defined by (6).
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Proof. For any grid functions u, v defined on Ωh, it follows from using the summa-
tion by parts and that

(
Axu, v

)
=
4

3
h1h2

M1−1∑
i=0

[1
2
δxui+ 1

2 ,0
δxvi+ 1

2 ,0
+

M2−1∑
j=1

δxui+ 1
2 ,j
δxvi+ 1

2 ,j

+
1

2
δxui+ 1

2 ,M2
δxvi+ 1

2 ,M2

]
− 1

3
h1h2

M1−1∑
i=1

[1
2
∆xui,0∆xvi,0

+

M2−1∑
j=1

∆xui,j∆xvi,j +
1

2
∆xui,M2∆xvi,M2

]
=
(
u,Axv

)
,

and

(
Axu, u

)
=
4

3
h1h2

M1−1∑
i=0

[1
2

(
δxui+ 1

2 ,0

)2
+

M2−1∑
j=1

(
δxui+ 1

2 ,j

)2
+

1

2

(
δxui+ 1

2 ,M2

)2]

− 1

3
h1h2

M1−1∑
i=1

[1
2

(
∆xui,0

)2
+

M2−1∑
j=1

(
∆xui,j

)2
+

1

2

(
∆xui,M2

)2]
=
4

3
∥δxu∥2 −

1

3
∥∆xu∥2 ≥ ∥δxu∥2 ≥ 0.

Likewise, it can be verified that(
Ayu, v

)
=
(
u,Ayv

)
and

(
Ayu, u

)
≥ 4

3
∥δyu∥2 −

1

3
∥∆yu∥2 ≥ ∥δyu∥2 ≥ 0.

Hence, the conclusions of the lemma are true. �

Using the five lemmas stated in the paper [25], we will conclude that the differ-
ence operators Ax and Ay are important to the construction of the fourth-order
discretisation for the second-order derivative in all the spatial grid points. Actually,
the following lemma is the promotion of the five lemmas stated in the paper [25].
It is easy to verify the conclusion of the lemma by using the Taylor expansion with
integral residual items.

Lemma 2.3. Suppose that ω(x, y) ∈ C6,6
(
[xl, yr]× [yd, yu]

)
satisfies the following

conditions

(9) ∂kxω(xl, y) = ∂kxω(xr, y) = 0, ∂kyω(x, yd) = ∂kyω(x, yu) = 0, k = 1, 3, 5.

We then have

(10) ∂2xω(xi, y) = −Axω(xi, y) +Ri(y), 0 ≤ i ≤M1,∀y ∈ [yd, yu],

and

(11) ∂2yω(x, yj) = −Ayω(x, yj) +Rj(x), 0 ≤ j ≤M2, ∀x ∈ [xl, yr],

where the residuals Ri(y) and Rj(x) satisfy the following approximations

Ri(y) = O(h41) and Rj(x) = O(h42).
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Proof. Following the five lemmas given in the paper [25], we obtain

∂2xω(xi, y) =



7

3h1
δxω(x 1

2
, y)− 1

6
δ2xω(x1, y) +R0(y), i = 0,

− 1

6h1
δxω(x 1

2
, y) +

7

6
δ2xω(x1, y)−

1

12
δ2xω(x2, y) +R1(y), i = 1,

4

3
δ2xω(xi, y)−

1

3
∆2

xω(xi, y) +Ri(y), 2 ≤ i ≤M1 − 2,

1

6h1
δxω(xM1− 1

2
, y) +

7

6
δ2xω(xM1−1, y)−

1

12
δ2xω(xM1−2, y)

+RM−1(y), i =M1 − 1,

− 7

3h1
δxω(xM1− 1

2
, y)− 1

6
δ2xω(xM1−1, y) +RM1(y), i =M1,

i.e.,
∂2xω(xi, y) = −Axω(xi, y) +Ri(y), 0 ≤ i ≤M1, ∀y ∈ [yd, yu],

and there exists a positive constant C1 such that

|Ri(y)| ≤ C1h
4
1.

Similarly, we also have

∂2yω(x, yj) = −Ayω(x, yj) +Rj(x), 0 ≤ j ≤M2, ∀x ∈ [xl, xr],

and there exists a positive constant C2 such that

|Rj(x)| ≤ C2h
4
2.

The conclusions of the lemma have been proved. �

2.2. Fourth-order spatial semidiscretisation, stability and convergence.
It can be obtained straightforwardly from the Hamiltonian wave equation (1) that

(12)

a2uxx = utt − a2uyy − f(u),

a2u(3)x = uttx − a2uxyy − f ′(u)ux,

a2u(4)x = uttxx − a2uxxyy − f ′′(u)u2x − f ′(u)uxx,

a2u(5)x = uttxxx − a2uxxxxyy − f ′′′(u)u3x − 3f ′′(u)uxxux − f ′(u)u(3)x .

Therefore, the boundary conditions (2) deliver
(13)

u(3)x |xl
= 0, u(3)x |xr = 0, u(5)x |xl

= 0, u(5)x |xr = 0, yd ≤ y ≤ yu, t0 < t ≤ T.

In a similar way, we also have
(14)

u(3)y |yd
= 0, u(3)y |yu = 0, u(5)y |yd

= 0, u(5)y |yu = 0, xl ≤ x ≤ xr, t0 < t ≤ T.

Under the assumption of u(x, y, t) ∈ C6,6,2
(
Ω̄ × [t0, T ]

)
, and from the equations

(13), (14) and the Lemma 2.3, we dispose the spatial derivatives of the Hamiltonian
systems (1)-(2) and arrive at the following fourth-order semi-discrete scheme

U ′′
ij(t) + a2

(
AxUij(t) +AyUij(t)

)
= f

(
Uij(t)

)
+Rij(t),(15)

0 ≤ i ≤M1, 0 ≤ j ≤M2, t0 ≤ t ≤ T,

where Uij(t) represent the exact solutions u(x, y, t) on the spatial grid Ωh × [t0, T ],
and the residuals Rij(t) satisfy

Rij(t) = O(h41 + h42), 0 ≤ i ≤M1, 0 ≤ j ≤M2, t0 ≤ t ≤ T.
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Omitting the residuals Rij(t) in (15) and using uij(t) ≈ U(xi, yj , t) result in the
following semi-discrete scheme

u′′ij(t) + a2
(
Axuij(t) +Ayuij(t)

)
= f

(
uij(t)

)
,(16)

0 ≤ i ≤M1, 0 ≤ j ≤M2, t0 ≤ t ≤ T.

Let u(t) = {uij(t) | (xi, yj) ∈ Ωh}. Then the equations in (16) can be rewritten in
a compact form as follows:

(17) u′′(t) + a2
(
Axu(t) +Ayu(t)

)
= f

(
u(t)

)
, t0 ≤ t ≤ T.

With the semi-discrete scheme (16), we have the following energy conservation
law.

Theorem 2.1. Suppose that u(t) = {uij(t) | (xi, yj) ∈ Ωh} is the solution of the
semi-discrete scheme (16) or (17). We then have the following discrete energy
conservation law:

(18) E(t) ≡ 1

2
∥u′(t)∥2 + a2

2
∥u(t)∥2∗ + Ṽ (u(t)) = E(t0),

where the potential function Ṽ
(
u(t)

)
is given by

(19)

Ṽ
(
u(t)

)
=h1h2

M1−1∑
i=1

M2−1∑
j=1

V
(
uij(t)

)
+
h1h2
4

[
V
(
u0,0(t)

)
+ V

(
uM1,0(t)

)
+ V

(
u0,M2(t)

)
+ V

(
uM1,M2(t)

)]
+
h1h2
2

M1−1∑
i=1

[
V
(
ui,0(t)

)
+ V

(
ui,M2(t)

)]
+
h1h2
2

M2−1∑
j=1

[
V
(
u0,j(t)

)
+ V

(
uM1,j(t)

)]
.

Proof. Taking the inner product of (17) with u′(t) and following careful calcula-
tions, we have

(20)
(
u′′(t), u′(t)

)
+a2

[(
Axu(t), u

′(t)
)
+
(
Ayu(t), u

′(t)
)]

−
(
f
(
u(t)

)
, u′(t)

)
= 0,

where
(21)(
u′′(t), u′(t)

)
=
1

2

d

dt

{
h1h2
4

[(
u′0,0(t)

)2
+
(
u′M1,0(t)

)2
+
(
u′0,M2

(t)
)2

+
(
u′M1,M2

(t)
)2]

+
h1h2
2

M1−1∑
i=1

[(
u′i,0(t)

)2
+
(
u′i,M2

(t)
)2]

+
h1h2
2

M2−1∑
j=1

[(
u′0,j(t)

)2
+
(
u′M1,j

)2]

+h1h2

M1−1∑
i=1

M2−1∑
j=1

(
u′ij(t)

)2 =
1

2

d

dt

(
u′(t), u′(t)

)
=

1

2

d

dt
∥u′(t)∥2,
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(22)

a2
[(

Axu(t), u
′(t)
)
+
(
Ayu(t), u

′(t)
)]

=
a2

2

d

dt

4

3
h1h2

M1−1∑
i=0

[1
2

(
δxui+ 1

2 ,0
(t)
)2

+

M2−1∑
j=1

(
δxui+ 1

2 ,j
(t)
)2

+
1

2

(
δxui+ 1

2 ,M2
(t)
)2]

− 1

3
h1h2

M1−1∑
i=1

[1
2

(
∆xui,0(t)

)2
+

M2−1∑
j=1

(
∆xui,j(t)

)2
+

1

2

(
∆xui,M2(t)

)2]

+
4

3
h1h2

M2−1∑
j=0

[1
2

(
δyu0,j+ 1

2
(t)
)2

+

M1−1∑
i=1

(
δyui,j+ 1

2
(t)
)2

+
1

2

(
δyuM1,j+

1
2
(t)
)2]

−1

3
h1h2

M2−1∑
j=1

[1
2

(
∆yu0,j(t)

)2
+

M1−1∑
i=1

(
∆yui,j(t)

)2
+

1

2

(
∆xuM1,j(t)

)2]
=
a2

2

d

dt

[
4

3

(
∥δxu(t)∥2 + ∥δyu(t)∥2

)
− 1

3

(
∥∆xu(t)∥2 + ∥∆yu(t)∥2

)]
=
a2

2

d

dt
∥u(t)∥2∗,

and

(23)

(
f
(
u(t)

)
, u′(t)

)
=− d

dt

{
h1h2
4

[
V
(
u0,0(t)

)
+ V

(
uM1,0(t)

)
+V

(
u0,M2(t)

)
+ V

(
uM1,M2(t)

)]
+
h1h2
2

M1−1∑
i=1

[
V
(
ui,0(t)

)
+ V

(
ui,M2(t)

)]
+
h1h2
2

M2−1∑
j=1

[
V
(
u0,j(t)

)
+ V

(
uM1,j(t)

)]

+h1h2

M1−1∑
i=1

M2−1∑
j=1

V
(
uij(t)

) , − d

dt
Ṽ
(
u(t)

)
.

Inserting (21)-(23) into (20) yields

(24)
d

dt

(1
2
∥u′(t)∥2 + a2

2
∥u(t)∥2∗ + Ṽ (u(t))

)
= 0.

Therefore, the energy conservation law is valid. �

Following the discrete energy conservation law (18) shown by Theorem 2.1, we
can obtain the following result on stability analysis.

Theorem 2.2. Assume that the potential function V (·) is positive and u(t) =
{uij(t) | (xi, yj) ∈ Ωh} is the solution of the semi-discrete scheme (16) or (17).
Then the semi-discrete scheme is stable under the discrete H1-norm, that is, there
exists a constant C3 such that

(25) ∥u(t)∥2H1 ≤ 2∥φ∥2 + C3E(t0),

where ∥u(t)∥2H1 = ∥u(t)∥2 + ∥δxu(t)∥2 + ∥δyu(t)∥2.
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Proof. According to the discrete energy conservation law (18) and Lemma 2.1, we
have

(26) ∥u′(t)∥2 ≤ 2E(t0) and ∥δxu(t)∥2 + ∥δyu(t)∥2 ≤ 2

a2
E(t0).

For any t ≥ t0, the Cauchy-Schwarz inequality yields

(27)

u2ij(t) ≤ 2u2ij(t0) + 2

(∫ t

t0

u′ij(ζ)dζ

)2

≤ 2u2ij(t0) + 2(t− t0)

∫ t

t0

u′2ij(ζ)dζ.

Therefore, it follows from (27) that

(28) ∥u(t)∥2 ≤ 2∥u(t0)∥2 + 2(t− t0)

∫ t

t0

∥u′(ζ)∥2dζ.

Combining the inequalities (26) and (28) conforms the conclusion of the theorem.
�

Remark 2.1. Since the potential function V (·) is only used through its gradient,
any V (·) + c can fit for the equations with a suitable constant c ≥ 0. Under this
assumption that V (·) is positive, together with the discrete energy conservation law,
we can prove the stability of the semi-discrete scheme.

In what follows, we assume that the function f(·) satisfies a Lipschitz condition
with respect to u, namely, there is a positive constant L, s.t.

(29) ∥f(u)− f(v)∥ ≤ L∥u− v∥, ∀u, v.

We now quote the well-known Gronwall inequality summarised below, which will
play an important role in the proof of the convergence for the semi-discrete scheme
(16) or (17).

Lemma 2.4. Suppose that f(t), g(t) are two nonnegative functions defined on
[t0, T ], and satisfy the following differential inequality

f ′(t) ≤ C4f(t) + g(t).

Then

f(t) ≤ eC4t
[
f(t0) +

∫ t

t0

e−C4sg(s)ds
]
, ∀t ∈ [t0, T ],

where C4 is a nonnegative constant.

Theorem 2.3. It is assumed that u(x, y, t) ∈ C6,6,2
(
Ω̄ × [t0, T ]

)
is the solution

of (1)-(2) and u(t) = {uij(t) | (xi, yj) ∈ Ωh} is the solution of the semi-discrete
scheme (16) or (17). Then, we have

(30) ∥e(t)∥H1 = O(h41 + h42), ∀t ∈ [t0, T ],

where eij(t) = Uij(t)− uij(t), 0 ≤ i ≤M1, 0 ≤ j ≤M2.

Proof. Subtracting (16) from (15), and noticing the initial conditions, we obtain
the error system e′′(t) + a2

(
Axe(t) +Aye(t)

)
= f

(
U(t)

)
− f

(
u(t)

)
+R(t), t0 ≤ t ≤ T,

e(t0) = 0, e′(t0) = 0,
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where R(t) =
{
Rij(t) | 0 ≤ i ≤ M1, 0 ≤ j ≤ M2

}
. Taking the inner product with

e′(t) yields (
e′′(t), e′(t)

)
+ a2

[(
Axe(t), e

′(t)
)
+
(
Aye(t), e

′(t)
)]

=
(
f
(
U(t)

)
− f

(
u(t)

)
, e′(t)

)
+
(
R(t), e′(t)

)
.

A careful calculation gives

1

2

d

dt

(
∥e′(t)∥2 + a2∥e(t)∥2∗

)
≤L∥e(t)∥ · ∥e′(t)∥+ ∥R(t)∥ · ∥e′(t)∥

≤C5

(
∥e′(t)∥2 + a2∥e(t)∥2∗

)
+

1

2
∥R(t)∥2,

i.e.,

d

dt

(
∥e′(t)∥2 + a2∥e(t)∥2∗

)
≤ 2C5

(
∥e′(t)∥2 + a2∥e(t)∥2∗

)
+ ∥R(t)∥2,

where C5 is a constant. Applying the Gronwall inequality to the above inequality
with the exact initial conditions, we obtain

∥e′(t)∥2 + a2∥e(t)∥2∗ ≤
∫ t

t0

exp
(
2C5(t− s)

)
∥R(s)∥2ds = O(h81 + h82).

The estimations of ∥e′(t)∥2 and ∥e(t)∥2∗ can be yielded

∥e′(t)∥2 = O(h81 + h82) and ∥e(t)∥2∗ = O(h81 + h82).

Similarly to the proof process of Theorem 2.2, we obtain

∥e(t)∥2 ≤ 2∥e(t0)∥2 + 2(t− t0)

∫ t

t0

∥e′(ζ)∥2dζ.

On noticing that e(t0) = 0, we have

∥e(t)∥2 = O(h81 + h82).

Using Lemma 2.1 to the estimation of ∥e(t)∥2∗ leads to

|e(t)|21 = ∥δxe(t)∥2 + ∥δye(t)∥2 = O(h81 + h82).

Therefore, the error estimation under the H1 semi-norm is obtained

∥e(t)∥2H1 = ∥e(t)∥2 + ∥δxe(t)∥2 + ∥δye(t)∥2 = O(h81 + h82), ∀t ∈ [t0, T ].

The conclusion of the theorem is confirmed. �

2.3. Corresponding Hamiltonian ODEs. Let wj(t) =
(
u0,j(t), u1,j(t), . . . ,

uM1,j(t)
)ᵀ

and f
(
wj(t)

)
=
(
f
(
u0,j(t)

)
, f
(
u1,j(t)

)
, . . . , f

(
uM1,j(t)

))ᵀ
, the semi-

discrete scheme (16) or (17) is identical to the following nonlinear ODEs

(31)

w′′(t) +
a2

12

(
IM2 ⊗DM1

h21
+
DM2 ⊗ IM1

h22

)
w(t) = f

(
w(t)

)
, t0 < t ≤ T,

w(t0) = φ̃ =
(
φ̃0, . . . , φ̃M2

)ᵀ
, w′(t0) = ψ̃ =

(
ψ̃0, . . . , ψ̃M2

)ᵀ
,
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where Id are d × d identity matrix with d = M1,M2, ⊗ is the Kronecker product,
w(t) =

(
w0(t), . . . , wM2(t)

)ᵀ
,

Dd =



30 −32 2
−16 31 −16 1
1 −16 30 −16 1

. . .
. . .

. . .
. . .

. . .

1 −16 30 −16 1
1 −16 31 −16

2 −32 30


d×d

,

and

f
(
w(t)

)
=
(
f
(
w0(t)

)
, . . . , f

(
wM2

(t)
))ᵀ

, φ̃j =
(
φ(x0, yj), . . . , φ(xM1

, yj)
)ᵀ
,

ψ̃j =
(
ψ(x0, yj), . . . , ψ(xM1 , yj)

)ᵀ
.

Multiplying the system (31) with the matrix A = h1h2AM2 ⊗AM1 , we obtain

(32)

{
Aw′′(t) +Bw(t) = f̃

(
w(t)

)
, t0 < t ≤ T,

w(t0) = φ̃, w′(t0) = ψ̃,

which is equivalent to (31), where Ad = diag
(
1
2 , 1, . . . , 1,

1
2

)
for d =M1 andM2, and

B = a2

12A
(

IM2
⊗DM1

h2
1

+
DM2

⊗IM1

h2
2

)
is a positive semi-definite matrix, and f̃

(
w(t)

)
=

Af
(
w(t)

)
is the negative gradient of the energy potential function Ṽ

(
w(t)

)
defined

by (19). The system (32) is a Hamiltonian system with the Hamiltonian

(33) H(w′(t), w(t)) =
1

2
w′(t)ᵀAw′(t) +

1

2
w(t)ᵀBw(t) + Ṽ

(
w(t)

)
.

Theorem 2.4. Assume that u(t) = {uij(t) | (xi, yj) ∈ Ωh} is the solution of the
semi-discrete scheme (16), or equivalently, the Hamiltonian system (32). Then we
have

H
(
w′(t), w(t)

)
= E(t), t0 ≤ t ≤ T.

Proof. Following the formula (33) and through careful calculations, we obtain

H
(
w′(t), w(t)

)
=

1

2
w′(t)ᵀAw′(t) +

1

2
w(t)ᵀBw(t) + Ṽ

(
w(t)

)
=

1

2
∥u′(t)∥2 + a2

2
∥u(t)∥2∗ + Ṽ

(
u(t)

)
= E(t).

The conclusion of the theorem is proved. �
3. Envergy-preserving time integrators: AVF formula

In this section, we concentrate on constructing energy-conservation time inte-
grators for the following nonlinear Hamiltonian system of ODEs

(34)

{
Aw′′(t) +Bw(t) = f̃

(
w(t)

)
, t0 < t ≤ T,

w(t0) = φ̃, w′(t0) = ψ̃.

Let q(t) = w(t), p(t) = Aq′(t). Then the system (34) can be expressed as the
following first-order Hamiltonian system of ODEs

(35)

{
p′(t) = −∇qH(p, q),

q′(t) = ∇pH(p, q),
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with the initial values p(t0) = Aψ̃, q(t0) = φ̃ and the Hamiltonian

H(p, q) =
1

2
pᵀA−1p+

1

2
qᵀBq + Ṽ (q),(36)

which is identical to the following Hamiltonian

H
(
w′(t), w(t)

)
=

1

2
w′(t)ᵀAw′(t) +

1

2
w(t)ᵀBw(t) + Ṽ

(
w(t)

)
.(37)

The energy conservation is one of the essential properties of the Hamiltonian system,
whose Hamiltonians can be regarded as the approximate energy of the original
PDEs. Therefore, it is of great importance to construct energy-conservation time
integrators (see, e.g. [4, 7, 10, 18, 19, 27, 32, 36, 39, 40]). For instance, we consider
the following Hamiltonian system

(38) ż = J−1∇H(z),

where J is a skew-symmetric matrix with the form

(39) J =

(
0 I
−I 0

)
and H is the Hamiltonian. McLachlan et al. derived the AVF formula in [32], i.e.,

(40) zn+1 = zn + τ

∫ 1

0

J−1∇H
(
(1− s)zn + szn+1

)
ds.

The Hamiltonian of the system (38) can be preserved exactly by the AVF formula
(40).

Applying the AVF formula (40) to Hamiltonian system (35) with a straightfor-
ward calculation, we obtain

(41)


qn+1 = qn + τA−1pn +

τ2

2
A−1

∫ 1

0

g
(
(1− s)qn + sqn+1

)
ds,

pn+1 = pn + τ

∫ 1

0

g
(
(1− s)qn + sqn+1

)
ds,

which can preserve the energy (or Hamiltonian) of the system (34) exactly, namely,

H(w′n+1, wn+1) = H(w′n, wn),

where g(w) = −Bw + f̃(w) and tn+1 = tn + τ with τ is the time stepsize. Let
qn = wn and pn = Aw′n. Then, the formula (41) is identical to

(42)


wn+1 =wn + τw′n +

τ2

2
A−1

∫ 1

0

g
(
(1− s)wn + swn+1

)
ds,

w′n+1 =w′n + τA−1

∫ 1

0

g
(
(1− s)wn + swn+1

)
ds.

Since g(w) = −Bw + f̃(w), we can simplify the integral appeared in the formula
(41) or (42) as

Ig =

∫ 1

0

g
(
(1−s)wn+swn+1

)
ds = −1

2
B
(
wn+wn+1

)
+

∫ 1

0

f̃
(
(1−s)wn+swn+1

)
ds,

where f̃(w) = Af(w) and f
(
w
)
=
(
f
(
w0

)
, . . . , f

(
wM2

))ᵀ
with f

(
wj

)
=
(
f
(
u0,j

)
,

f
(
u1,j

)
, . . . , f

(
uM1,j

))ᵀ
. Moreover, from the fact that the function f(u) satisfies
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f(u) = −dV (u)
du , we have∫ 1

0

f
(
(1− s)unij + sun+1

ij

)
ds = −

V (un+1
ij )− V (unij)

un+1
ij − unij

.

Here, it should be noted that, if un+1
ij = unij , 0 ≤ i ≤ M1, 0 ≤ j ≤ M2, then

V (un+1
ij )−V (un

ij)

un+1
ij −un

ij

is 0
0 , which can be understood as

V (un+1
ij )− V (unij)

un+1
ij − unij

=
dV (unij)

du
= −f(unij).

Therefore, the nonlinear integral

∫ 1

0

f̃
(
(1− s)wn + swn+1

)
ds can be expressed as:

(43)

∫ 1

0

f̃
(
(1− s)wn + swn+1

)
ds

=−A
V (wn+1)− V (wn)

wn+1 − wn

=−A

(
V (wn+1

0 )− V (wn
0 )

wn+1
0 − wn

0

,
V (wn+1

1 )− V (wn
1 )

wn+1
1 − wn

1

, . . . ,
V (wn+1

M2
)− V (wn

M2
)

wn+1
M2

− wn
M2

)ᵀ

with

V (wn+1
j )− V (wn

j )

wn+1
1 − wn

j

(44)

=

(
V (un+1

0,j )− V (un0,j)

un+1
0,j − un0,j

,
V (un+1

1,j )− V (un1,j)

un+1
1,j − un1,j

, . . . ,
V (un+1

M1,j
)− V (unM1,j

)

un+1
M1,j

− unM1,j

)ᵀ

According to the above analysis, we are now in a position to present the energy-
conservation time integrator for the oscillatory Hamiltonian ODEs’ system (34).

Theorem 3.1. The following modified AVF formula

(45)


wn+1 = wn + τw′n − τ2

4
A−1B(wn + wn+1)− τ2

2

V (wn+1)− V (wn)

wn+1 − wn
,

w′n+1 = w′n − τ

2
A−1B(wn + wn+1)− τ

V (wn+1)− V (wn)

wn+1 − wn
.

for the Hamiltonian system of ODEs (34) can preserve the energy (37) exactly:

H(w′n+1, wn+1) = H(w′n, wn).

Here, V (wn+1)−V (wn)
wn+1−wn is denoted by (43) and (44).

Remark 3.1. Actually, the modified AVF formula (45) is a kind of discrete gradi-
ent, which is called the mean value discrete gradient and is a second-order approxi-
mation to the gradient ∇Ṽ of the energy potential function (19) at the midpoint of
wn and wn+1 (see, e.g. [21, 41]).

Moreover, the symmetry of a method is also an essential property in long time
integration. The definition of symmetry is given below (see [40, 41]).

Definition 3.1. The adjoint method Φ∗
τ of a method Φτ is defined as the inverse

map of the original method with reversed time step −τ ; i.e., Φ∗
τ := Φ−1

−τ . A method
with Φ∗

τ = Φτ is called symmetric.
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According to the definition of symmetry, it can be verified that the modified
AVF formula (45) is unaltered by exchanging n + 1 ↔ n and τ ↔ −τ . Therefore,
the modified AVF formula (45) can be verified to be symmetric. In addition, the
modified AVF formula (45) can be interpreted as the second-order mean value
discrete gradient (see [21, 41]). Therefore, it is easy to clarify that the global
error accuracy of the modified AVF formula (45) is second-order. In the following
theorem, we show the symmetry and the global error accuracy of the modified AVF
formula (45) for solving the resulting semi-discrete scheme (34).

Theorem 3.2. The modified AVF formula (45) for the semi-discrete Hamiltonian
ODEs’ system (34) is symmetric with respect to the time variable and convergent
of order two.

Proof. The symmetry of the modified AVF formula (45) can be confirmed by ex-
changing n+1 ↔ n and τ ↔ −τ , and we skip the detailed proof process. Since the
modified AVF formula (45) is the second-order mean value discrete gradient (see
[21]), the modified AVF formula (45) is convergent of order two. �

From the above analysis, it is clear that we have derived an energy-conservation
fully discrete scheme for solving the two-dimensional Hamiltonian wave equations
(1)-(2) by discreting the spatial derivatives of the PDEs via the fourth-order finite
difference method and applying the AVF approach to the resulted Hamiltonian
system of ODEs. Since the convergence order of the modified AVF method is O(τ2),
the global error accuracy of the fully discrete scheme can get to O(τ2 + h41 + h42).

4. Numerical experiments

As stated in the introduction of this paper, the energy conservation law is an
essential property for the two-dimensional Hamiltonian wave equations (1)-(2). The
conserved quantities of the constructed numerical scheme can be used to evaluate
the stability of the numerical schemes. In what follows, we will apply the derived
energy-conservation scheme to three practical problems to verify the numerical
accuracy and the numerical behaviour of energy preservation. For comparison, the
time integrators we selected are:

• HBVM(5,1): the energy-preserving Hamiltonian Boundary Value Method of
order two given in [6, 7].

• SV: the symplectic Störmer-Verlet formula of order two given in [20];

As is known, iterative solutions are required for implicit schemes. We use fixed-
point iteration for the modified AVF formula (45) and the HBVM(5,1) method.
We set the error tolerance as 10−15 for each time-step iteration procedure and set
the maximum number of iterations to be 10.

4.1. Test problem: linear wave equation. In order to observe the accuracy
of the spatial discretisation, we consider the following linear wave equation in two
dimensions

(46) utt − (uxx + uyy) = (1 + 2π2)u,

over the region (x, y) ∈ [−1
2 ,

1
2 ]× [− 1

2 ,
1
2 ] with the initial conditions

(47) u(x, y, 0) = sin(πx) sin(πy), ut(x, y, 0) = − sin(πx) sin(πy).

The exact solution of the problem is

(48) u(x, y, t) = e−t sin(πx) sin(πy).
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Obviously, the problem satisfies the homogenous Neumann boundary conditions.
We compute the problem using the energy-conservation scheme proposed in this
paper with fixed time stepsize τ = 0.001 and several spatial steps (h1, h2) at time
T = 1. The numerical results in Table 1 demonstrate that the spatial discretisation
converges with order four under the l2-norm, H1-norm and l∞-norm.

Table 1. The convergence order in space of numerical solutions
at T = 1 with different spatial steps (h1, h2) and sufficiently small
time stepsize τ = 0.001 correspond to different norms.

(h1, h2)
l2-norm H1-norm l∞-norm

∥un − Un∥2 order ∥un − Un∥
H1 order ∥un − Un∥∞ order

( 1
10

, 1
10

) 0.000427480135620 * 0.001891443502178 * 0.000854960271242 *

( 1
20

, 1
20

) 0.000026875366806 3.9915 0.000119281389067 3.9870 0.000053750733614 3.9915

( 1
40

, 1
40

) 0.000001668099766 4.0100 0.000007409267309 4.0089 0.000003336199529 4.0100

( 1
80

, 1
80

) 0.000000089928878 4.2133 0.000000399517803 4.2130 0.000000179857733 4.2133

We then choose the stepsizes h1 = h2 = 0.025 and τ = 0.01 for solving the
problem and illustrate the conservative property of the new scheme in Fig. 1. The
logarithms of the discrete energy error |E(tn) − E(t0)| and the relative discrete
energy error |E(tn) − E(t0)|/E(t0) are plotted in Fig. 1 (a) and (b), respectively.
It can be observed that the energy obtained by the new scheme is well conserved.
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Figure 1. The logarithms of the discrete energy error (a) and the
relative discrete energy error (b).

4.2. Simulation of two-dimensional sine-Gordon equations. In this sub-
section, the proposed new energy-conservation scheme is applied to simulate the
two-dimensional sine-Gordon equation:

(49) utt − (uxx + uyy) = − sin(u), 0 < t ≤ T,

over the region Ω = [−a, a]×[−b, b]. The problem is equipped with the homogeneous
Neumann boundary conditions

(50) ux(±a, y, t) = uy(x,±b, t) = 0,

and the initial conditions

(51) u(x, y, 0) = f(x, y), ut(x, y, 0) = g(x, y).
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In general, the exact solution of the 2D sine-Gordon equation cannot be obtained
exactly. Therefore, the conservative property of the energy becomes significant
to examine the superiority of a numerical approach. Moreover, it has been known
that different initial conditions will lead to different numerical phenomena. In what
follows, we will use the new scheme to simulate two kinds of particular circular ring
solitons. The initial conditions and parameters are chosen similarly to those in
[5, 38].

Problem 1. (Circular ring soliton) We choose the initial conditions as:

(52) f(x, y) = 4 arctan
(
exp

(
3−

√
x2 + y2

))
, g(x, y) = 0,

over the two-dimensional domain (x, y) ∈ [−10, 10] × [−10, 10]. We simulate the
problem by using the spatial steps h1 = h2 = 0.2 and time step τ = 0.01. The
simulation results and the corresponding contours at times t = 0, 2, 4, 6, 8, 10 in
terms of sin(u/2) are plotted in Fig. 2 and Fig. 3, respectively. The conservative
behaviour of the new scheme is shown in Fig. 4 from which it can be observed
that the energy is well conserved. In comparison with the classical SV method and
the HBVM(5,1) method, the modified AVF method (45) has superior property of
energy conservation.

(a) T=0 (b) T=2 (c) T=4

(d) T=6 (e) T=8 (f) T=10

Figure 2. Circular ring solitons: the function of sin(u/2) for the
numerical solutions at times t = 0, 2, 4, 6, 8 and 10.
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Figure 3. Circular ring solitons: contours of sin(u/2) for the nu-
merical solutions at times t = 0, 2, 4, 6, 8 and 10.
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Figure 4. The logarithms of the discrete energy error (a) and the
relative discrete energy error (b).

Problem 2. (The collision of two circular solitons) Furthermore, we take the fol-
lowing initial conditions:
(53)

f(x, y) = 4 arctan
(
exp

(4−√(x+ 3)2 + (y + 7)2

0.436

))
, −10 ≤ x ≤ 10, −7 ≤ y ≤ 7,

g(x, y) = 4.13sech
(
exp

(4−√(x+ 3)2 + (y + 7)2

0.436

))
, −10 ≤ x ≤ 10, −7 ≤ y ≤ 7,
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and expand the solution across the sides x = −10 and y = −7 using the sym-
metry properties of the problem. We try to seek the solutions over the domain
(x, y) ∈ [−30, 10]× [−21, 7] with the spatial steps h1 = 0.4, h2 = 0.28 and time step
τ = 0.01. The simulating results and the corresponding contour maps in terms of
sin(u/2) at times t = 0, 2, 4, 6, 8, 10 are depicted in Fig.5 and Fig.6, respectively.
The numerical results show the collision between two expanding circular ring soli-
tons. The conservative behaviour of the discrete energy is demonstrated in Fig.
7. It again show that the modified AVF method (45) is more advantageous to the
classical SV method and the HBVM(5,1) method.

(a) T=0 (b) T=2 (c) T=4

(d) T=6 (e) T=8 (f) T=10

Figure 5. Circular of two ring solitons: the function of sin(u/2)
for the numerical solutions at times t = 0, 2, 4, 6, 8 and 10.

5. Conclusions

In this paper, incorporating the fourth-order finite difference method and the
AVF approach, we derived and analysed a novel energy-conservation scheme for
the two-dimensional Hamiltonian wave equations with the homogenous Neumann
boundary conditions. In this work, we first analysed some properties of the fourth-
order finite difference operators and proposed the spatial semi-discrete scheme. The
energy conservation law, the stability and the convergence of the finite difference
scheme were analysed in detail. Moreover, the semi-discrete scheme can be ex-
pressed as the particular Hamiltonian system of ODEs (34), and its Hamiltonian
(37) is equivalent to the discrete energy (18). For the time integration, the AVF
approach is applied to preserve the Hamiltonian of the system (34) obtained from
the spatial discretisation. The perfect combination of the fourth-order finite differ-
ence method and the AVF approach yields a novel and efficient numerical scheme
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Figure 6. Circular of two ring solitons: contours of sin(u/2) for
the numerical solutions at times t = 0, 2, 4, 6, 8, 10.
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Figure 7. The logarithms of the discrete energy error (a) and the
relative discrete energy error (b).

for the two-dimensional Hamiltonian wave equations. Three illustrative numerical
experiments were implemented and the numerical results show the convergence or-
der of the spatial semidiscretisation and the remarkable conservative behaviour of
the novel energy-conservation algorithm proposed in this paper.

References

[1] M. J. Ablowitz, B. M. Herbst, C. Schober, On the numerical solution of the sine-Gordon

equation, J. Comput. Phys. 126 (1996) 299–314.



338 C. LIU, W. SHI, AND X. WU

[2] J. Argyris, M. Haase, J.C. Heinrich, Finite element approximation to two-dimensional sine-
Gordon solitons, Comput. Methods Appl. Mech. Eng. 86 (1991) 1–26.

[3] Z. Asgari, S.M. Hosseini, Numerical solution of two-dimensional sine-Gordon and MBE mod-
els using Fourier spectral and high order explicit time stepping methods, Comput. Phys.
Commun. 184 (2013) 565–572.

[4] P. Betsch, Energy-consistent numerical integration of mechanical systems with mixed holo-

nomic and nonholonomic constraints, Comput. Methods Appl. Mech. Eng. 195 (2006) 7020–
7035.

[5] A. G. Bratsos, The solution of the two-dimensional sine-Gordon equation using the method
of lines, J. Comput. Appl. Math. 206 (2007) 251–277.

[6] L. Brugnano, G. Frasca Caccia, F. Iavernaro, Energy conservation issues in the numerical
solution of the semilinear wave equation. Appl. Math. Comput. 270 (2015) 842–870.

[7] L. Brugnano, F. Iavernaro, D. Trigiante, Hamiltonian boundary value methods (energy pre-
serving discrete line integral methods), JNAIAM J, Numer. Anal. Ind. Appl. Math. 5 (2010)

17–37.
[8] C. J. Budd, M. D. Piggot, Geometric integration and its applications, Handbook of numerical

analysis, XI, North-Holland, Ams- terdam, (2003) 35–139.

[9] J. -G. Caputo, N. Flytzanis, Y. Gaididei, Split mode method for the elliptic 2D sine-Gordon
equation: application to Josephson junction in overlap geometry, Int. J. Mod. Phys. C 9
(1998) 301–323.

[10] E. Celledoni, R.I. McLachlan, B. Owren, G.R.W. Quispel, Energy–Preserving Integrators

and the Structure of B–series, Found. Comput. Math. 10 (2010) 673–693.
[11] H. Cheng, P. Lin, Q. Sheng, R. Tan, Solving degenerate reaction-diffusion equations via

variable step Peaceman–Rachford splitting, SIAM J. Sci. Comput. 25 (2003) 1273–1292.
[12] P. L. Christiansen, P.S. Lomdahl, Numerical study of 2+1 dimensional sine-Gordon solitons,

Physica D 2 (1981) 482–494.
[13] M. R. Cui, High order compact alternating direction implicit method for the generalized

sine-Gordon equation, J. Comput. Appl. Math. 235 (2010) 837–849.
[14] M. Dehghan, A. Ghesmati, Numerical simulation of two-dimensional sine-Gordon solitons

via a local weak meshless technique based on the radial point interpolation method (RPIM),
Comput. Phys. Commun. 181 (2010) 772–786.

[15] M. Dehghan, D. Mirzaei, The dual reciprocity boundary element method (DRBEM) for
two-dimensional sine-Gordon equation, Comput. Methods Appl. Mech. Engrg. 197 (2008)

476–486.
[16] Z. Gegechkori, J. Rogava, M. Tsiklauri, High degree precision decomposition method for the

evolution problem with an operator under a split form, Math. Modell. Numer. Anal. 36 (2002)

693–704.
[17] Z. Gegechkori, J. Rogava, M. Tsiklauri, The fourth order accuracy decomposition scheme for

an evolution problem, Math. Modell. Numer. Anal. 38 (2004) 707–722.
[18] E. Hairer, Energy-preserving variant of collocation methods, JNAIAM J. Numer. Anal. Ind.

Appl. Math. 5 (2010) 73–84
[19] E. Hairer, C. Lubich, Long-time energy conservation of numerical methods for oscillatory

differential equations, SIAM J. Numer. Anal. 38 (2000) 414–441.
[20] E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration: Structure-Preserving

Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Berlin, Heidelberg (2006).
[21] A. Harten, PD. Lax. B. Leer, On upstream differencing and Godunov-type schemes for hy-

perbolic conservation laws, SIAM Rev. 38 (1983) 25:35–61.
[22] J. D. Josephson, Supercurrents through barries, Adv. Phys. 14 (1965) 419–451.

[23] A. Q. M. Khaliq, B. Abukhodair, Q. Sheng, A predictor-corrector scheme for the sine-Gordon
equation, Numer. Methods Partial Differ. Eqns. 16 (2000) 133–146.

[24] O. M. Kiselev, Perturbation of a solitarywave of the nonlinear Klein–Gordon equation, Siberi-

an Math. J. 41 (2000) 345–358.
[25] C. Liu, W. Shi, X. Wu, An efficient high-order explicit scheme for solving Hamiltonian non-

linear wave equations, Appl. Math. Comput. 246 (2014) 696–710.
[26] C. Liu, W. Shi, X. Wu, New energy-preserving algorithms for nonlinear Hamiltonian wave

equations equipped with Neumann boundary conditions, Appl. Math. Comput., in revision
(2017).

[27] K. Liu, W. Shi, X. Wu, An extended discrete gradient formula for oscillatory Hamiltonian
systems, J. Phys. A: Math. Theor. 46 (2013) 165203.



ENERGY-CONSERVATION SCHEME FOR HAMILTONIAN WAVE EQUATIONS 339

[28] W. J. Liu, J. B. Sun, B. Y. Wu, Space-time spectral method for the two-dimensional gener-
alized sine-Gordon equation, J. Math. Anal. Appl., 427 (2015) 787–804.

[29] C. Liu, A. Iserles, X.Wu, Symmetric and arbitrarily high-order Brikhoff–Hermite time integra-
tors and their long-time behavior for solving nonlinear Klein–Gordon equations, J. Comput.
Phys. 358 (2018) 1–30.

[30] C. Liu, X.Wu, Arbitrarily high-order time-stepping schemes based on the operator spectrum

theory for high-dimensional nonlinear Klein-Gordon equations, J. Comput. Phys. 340 (2017)
243–275.

[31] C. Liu, X. Wu, The boundness of the operator-valued functions for multidimensional nonlinear
wave equations with applications, Appl. Math. Lett. 74 (2017) 60–67.

[32] R. I. McLachlan, G. R. W. Quispel, N. Robidoux, Geometric integration using discrete gra-
dients, Phil. Trans. Roy. Soc. A 357 (1999) 1021–1045.

[33] L. Mei, C. Liu, X. Wu, An essential extension of the finite-energy condition for extend-
ed Runge–Kutta–Nyström integrators when applied to nonlinear wave equations, Commun.

Comput. Phys. 22 (2017) 742–764.
[34] D. Mirzaei, M. Dehghan, Implementation of meshless LBIE method to the 2D non-linear SG

problem, Internat. J. Numer. Methods Engrg. 79 (2009) 1662–1682.

[35] D. Mirzaei, M. Dehghan, Meshless local Petrov-Galerkin (MLPG) approximation to the two
dimensional sine-Gordon equation, J. Comput. Appl. Math. 233 (2010) 2737–2754.

[36] G.R.W. Quispel, D.I. McLaren, A new class of energy-preserving numerical integration meth-
ods, J. Phys. A 41 (045206) (2008) 7.

[37] Q. Sheng, Solving linear partial differential equations by exponential splitting, IMA J. Numer.
Anal. 9 (1989) 199–212.

[38] Q. Sheng, A. Q. M. Khaliq, D. A. Voss, Numerical simulation of two-dimensional sine-Gordon
solitons via a split cosine scheme, Math. Comput. Simulation 68 (2005) 355–373.

[39] B. Wang, X. Wu, A new high precision energy-preserving integrator for system of oscillatory
second-order differential equations, Phys. Lett. A. 376 (2012) 1185–1190.

[40] X. Wu, B. Wang, W. Shi, Efficient energy-preserving integrators for oscillatory Hamiltonian
systems, J. Comput. Phys. 235 (2013) 587–605.

[41] X. Wu, K. Liu, and W. Shi, Structure-Preserving Algorithms for Oscillatory Differential
Equations II (Springer-Verlag, Heidelberg, 2015).

School of Mathematics and Statistics, Nanjing University of Information Science & Technology,
Nanjing 210044, P.R.China

E-mail : chyliu88@gmail.com

College of Mathematical Sciences, Nanjing Tech University, Nanjing 211816, P.R.China
E-mail : shuier628@163.com

Department of Mathematics, Nanjing University, Nanjing University, Nanjing 210093, P.R.China,
School of Mathematical Sciences, Qufu Normal University, Qufu 273165, PR China

E-mail : xywu@nju.edu.cn


