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Abstract. In this paper we assess the performance of a selection of load balancing strategies for a

parallel, adaptive multigrid solver that has been developed for the implicit solution of phase-field
problems. The strategies considered include a number of standard approaches and a new technique
that we propose specifically for multigrid solvers. This technique takes account of the sequential
nature of the grid correction used in multiplicative multilevel algorithms such as multigrid. The

paper focuses on two phase-field example problems which model the rapid solidification of an
undercooled binary alloy: using isothermal and non-isothermal models respectively. We under-
take a systematic comparison of the different load-balancing strategies for a selection of different

adaptive mesh scenarios. We conclude that the optimal choice of load-balancing strategy depends
critically on the computation to communication ratio of the parallel multigrid solver, and that in
the computation-dominated limit our proposed technique is typically the most effective of those
considered.
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1. Introduction

In recent years parallel processing has been used extensively in solving partial
differential equations (PDEs) arising from engineering applications. In the numer-
ical solution of PDEs a standard approach is to introduce a grid and apply finite
difference [1, 2] or finite element methods [3] to discretize the governing equations
to generate a system of algebraic equations. The solution of this system of algebra-
ic equations gives the value of the unknowns at each degree of freedom. On very
fine meshes the number of unknowns may easily reach several hundreds of millions
([4, 5, 6]) and solving such system in a reasonable time is a significant challenge. To
reduce this computational time parallel processing is employed. In parallel comput-
ing the unknowns are typically divided into groups (generally corresponding to the
number of processors) and are assigned to processors. Then these processors solve
the equations associated with the unknowns in their assigned group simultaneously,
with interprocessor communication to ensure global solution.

The partition of the unknowns among processors invokes two main issues. Firstly,
balancing the workload is important to parallel programs for performance reasons.
In some cases the number of unknowns and/or their distribution may change over
time, due to adaptive mesh refinement (AMR) for example [6, 7, 8, 9, 10]. In
such situations the dynamic redistribution of the workload is necessary to maintain
an equal load balance [6, 10, 11, 12]. The other main issue of importance is the
communication between processors: ideally this should be minimized since it creates
additional overhead. It is not uncommon that there is trade off between good load-
balancing and minimized communication volume between processors. This trade
off becomes more difficult with AMR as the mesh is no longer uniform [11, 12].
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Moreover, the use of geometric muiltigrid creates another layer of difficulty due to
the multiplicative nature of the algorithm, which requires work to be undertaken
on each grid in a sequential manner. Consequently a load balancing strategy that
does not take into account work on each grid or communication between grids at
each level is necessarily not optimum [13, 14].

In this paper we introduce an adaptive parallel multigrid solver for a parabolic
system in two or three spatial dimensions. We then consider different dynamic
load balancing strategies and assess their impact on the performance of the solver
for two different phase-field models arising from solidification problems. Phase
field models of solidification are particularly demanding because they both track a
moving boundary with a phase field, where a very fine mesh is required locally, and
also evolve large scale diffusion fields such as temperature (where a much coarser
mesh maybe sufficient). The solver that we use is described in detail in [6, 10]. It is
based upon a cell centred finite difference scheme and fully implicit time stepping.
We employ nonlinear FAS multigrid [15] as the solution scheme for the resulting
nonlinear algebraic systems at each time step. The mesh generation and adaptivity
are carried out by PARAMESH [14], a software library which builds a hierarchy
of subgrids to cover the computational domain, with spatial resolution varying to
satisfy the demands of the application. Our primary objective in this manuscript is
to assess a selection of different load-balancing strategies applied to this family of
phase-field problems. The approaches considered are Morton ordering, which is the
default load-balancing approach used in PARAMESH [14], our own adaptation of
Morton ordering for multigrid (described in [6]), as well as two standard approaches,
which are recursive coordinate bisection (RCB) and graph partitioning, from the
software package Zoltan [16, 17].

In the following section a brief overview of the software tools (our implicit non-
linear multigrid solver, PARAMESH and Zoltan) will be given. Section 3 then
discusses the dynamic load-balancing problem encountered in this work and briefly
describes each of the load-balancing strategies considered in this study. The de-
scription of the time-dependent PDE problems that we solve and the background
to the numerical experiments, are presented in Section 4. Finally we present our
conclusions by reporting and discussing the results from a number of numerical
experiments to compare these strategies when applied to a range of phase-field
approximations with different characteristics.

2. Adaptive multigrid methods

The primary software tool used in this paper is called ’Campfire’. This package
was developed by Goodyear et al ([6, 9, 18]) and contains several features. These
features include spatial adaptivity, implicit and adaptive time stepping, dynamic
load-balancing and a nonlinear geometric multigrid solver. The spatial adaptivity
uses an external software library, PARAMESH [14].

PARAMESH generates meshes as the union of blocks of cells with different
physical cell sizes, which are related to each other in a hierarchical fashion using a
tree data structure. The blocks at the root of the tree have the physically largest
cells, while their children have smaller cells and are said to be refined. Each child
block is half as large as its parent block in each spatial dimension. The children of
a block are nested so that they fit within their parent block and cannot overlap one
another. In each block there are N ×N ×N (N is a positive integer) cells arranged
in a logically Cartesian fashion. Furthermore, blocks are wrapped by (typically) a
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single layer of guard cells which makes the block size (N + 2)× (N + 2)× (N + 2).
Each block is specified by a process number and the block number in that process.
Any two neighbouring blocks share a common border and function values associated
with the cells immediately across the border may be stored in guard cells.

For computing the discrete solution of the differential equations on the mesh in
parallel, blocks are distributed across MPI processes. In the course of a computation
blocks exchange values on their outer cells with their neighbouring blocks. For
multigrid algorithms, parent-children communication is also required for restriction
and interpolation. Interprocess communications are performed between blocks that
are located on different processes. Intuitively, a smaller block size allows more
flexibility to manage an equal workload on each MPI process, especially for a very
non-uniformly refined mesh. However, the choice of a smaller block size makes the
number of guard cells overwhelming and creates a significant overhead. A range
of block sizes will be considered within this paper as part of our assessment of the
different dynamic load balancing strategies.

Campfire is designed as a fully implicit time integrator and uses a nonlinear
multigrid solver, the Full Approximation Scheme (FAS)[15], which is implemented
with adaptive mesh refinement via the Multi-level Adaptive Technique (MLAT)
[15]. Let the system of discrete nonlinear algebraic equations which need to be
solved at each implicit time step take the form F(u) = 0, where u stores all the
grid values to be determined. Here, F represents a large nonlinear vector function,
however it is convenient to also express this as F(u) = A(u) − f for some known
right-hand side vector f (which is generally zero at the finest mesh level). The
main feature of FAS is that we approximate the solution itself at each multigrid
level (as opposed to approximating the error on coarser levels in traditional linear
multigrid). This is achieved via a nonlinear smoother followed by a coarse grid
correction. Algorithm 1 shows a recursive function that applies a V-cycle of FAS
on a sequence of uniformly coarser grids Ωh, Ω2h, Ω4h, etc. The nonlinear operators,
right-hand side terms and the grid solution corresponding to discretization on the
grid Ωh are denoted by Ah, fh and uh, respectively (superscripts represent the grid
space). The smoother (function SMOOTH in step 1) is typically based on a local
Newton step at each cell of the mesh in turn (repeated p1 times, where p1 in step
1 is the number of pre-smooths), whilst the coarse grid correction solves the same
nonlinear problem on the coarse grid but with a modified right-hand side (steps 5
to 9). The modified right-hand side is obtained by adding the difference between
the residual restricted from the finer grid Ωh (r2h in step 3) and the residual of the
restricted solution (w2h in step 4). This is used to generate an approximation to the
error which is interpolated back to the fine grid to create the coarse grid correction
(steps 10 to 12). By further sweeps of the smoother (function SMOOTH in step
13) we obtain the improved solution uh. Recursive application of this procedure
(with an approximate coarse grid solve on the very coarsest grid, step 7) leads to a
multigrid implementation.

The basic idea for MLAT is to work with a sequence of grids which are subject to
local nested refinement. As an example, Fig. 1 shows a two dimensional adaptive
mesh with four levels (note that only the blocks are represented in this figure, not
the N ×N meshes within each block). Starting with the block at the coarsest level
(level 1) which covers the whole domain, there are 4 blocks at each level 2, 3 and 4
which are child blocks of their parent block at the coarser level (block 3 has child
blocks 6, 7, 8, 9 and block 7 has child blocks 10, 11, 12, 13). The spatial variables at
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Algorithm 1 V-cycle nonlinear FAS multigrid method

The superscripts h and 2h denote fine and coarse grid (Ωh and Ω2h) values
respectively.

Function : uh = V-cycleFAS(h, uh, fh)
1: Apply p1 iterations of the pre-smoother on Ah(uh) = fh

uh = SMOOTH
(
h, uh, fh, p1

)
2: Compute the residual rh on Ωh

rh = fh −Ah(uh)

3: Restrict the residual rh from Ωh to Ω2h to obtain r2h

r2h = I2hh rh

4: Restrict the find grid approximation solution uh from Ωh to Ω2h to obtain w2h

w2h = I2hh uh

5: Compute the modified RHS

f2h = r2h +A2h(w2h)
6: if n < 0 then
7: Perform an ”exact” coarsest grid solve on A2h(u2h) = f2h

8: else
9: u2h = V-cycleFAS(2h, w2h, f2h )

10: Compute the error approximation e2h

e2h = u2h − w2h

11: Interpolate the error approximation e2h from Ω2h to Ωh to obtain eh

eh = Ih2he
2h

12: Perform correction

uh = uh + eh

13: Apply p2 iterations of the post-smoother on Ah(uh) = fh

uh = SMOOTH
(
h, uh, fh, p2

)

levels 3 and 4 represent finer grids covering subdomains near the corner, provided
with boundary values from their parent’s neighbouring blocks. In order to apply
the FAS algorithm in this case, where the finer grid covers a smaller subdomain
than its parent, the modification of the right-hand side of the coarse grid correction
(step 5 in algorithm 1) is only applied in the part of the coarse grid that is covered
by the fine grid. Similarly, the updated error from the coarse grid correction (steps
11 and 12) is interpolated only onto the refined region. Consequently the main steps
that need to be implemented as part of FAS/MLAT are: (i) the nonlinear smoother
on a block; (ii) transfer from coarse to fine and vice versa; (iii) a nonlinear solve
on the coarsest level. Significantly, the combination of these components requires
each mesh level to be considered in strict order. For example, the multigrid V-cycle
illustrated in Figure 2 shows that computations on grid 3 take place after those on
grid 4; and those on grid 2 after those on grid 3; etc.

The adaptivity and dynamic load-balancing steps in Campfire use subroutines
from PARAMESH. After the end of each time step we decide on whether the mesh
requires adapting (local refinement and/or coarsening). If so then the adaptivity
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Figure 1. Adaptive grid with four grid levels.
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Figure 2. Schematic showing the application of 3 V-cycles using 4 grids.

takes place in parallel, however the resulting mesh will typically be poorly load bal-
anced. Consequently, after each mesh adaption a load-balancing algorithm is used
to assign each block to a (possibly) new process. The list of blocks is partitioned
into approximately equal parts, based on the specific load balancing algorithm,
and then PARAMESH performs the data (blocks) migration according to this in-
formation. The default load-balancing algorithm available in PARAMESH uses
Morton ordering to number the blocks into an array which is partitioned linearly
[13]. However, this approach may not achieve an ideal load-balancing in a multigrid
setting due to the fact that the refinement levels of blocks are not considered in
this simple partitioning approach. In an attempt to reach a good load-balance on
each multigrid level, a modification of this approach was implemented in Campfire
[6, 9], described in section 3.2 below.

For comparison purposes, we also consider two widely used load-balancing s-
trategies from the library Zoltan, developed by Devine et al [16]. This is a toolkit
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of combinatorial algorithms for parallel, unstructured, and/or adaptive scientific
applications. Zoltan’s largest component is a suite of dynamic load-balancing and
partitioning algorithms that aim to increase an application’s parallel performance
by reducing processor idle time. Among the load-balancing algorithms from Zoltan,
recursive coordinate bisection (RCB) and graph partitioning (GP) are chosen and
employed in this work. For completeness, all the load-balancing strategies men-
tioned above will be described briefly in the next section.

3. Dynamic Load-Balancing

To achieve dynamic load-balancing following parallel mesh adaptivity, the par-
titioning and migration of data is necessary. In Campfire the smallest unit for data
partitioning and migration across processors is the block. As mentioned in the pre-
vious section, a block contains (N+2)3 cells. The choices of N are typically 8 ,16 or
32. It is clear that the larger the block size, a smaller total number of blocks are re-
quired for a specific mesh resolution. In the refinement steps the spatial adaptivity
generates different number of blocks on each process as the computation proceeds,
therefore the redistribution of blocks between processors is needed following mesh
adaptivity.

The goal of load balancing and partitioning is to divide data and work among
processes in a way that minimizes the overall application’s execution time. This
goal is most often achieved when work is distributed evenly to processes (eliminating
process idle time), while at the same time minimizing the volume of interprocessor
communications. Such a problem is known to be NP hard however, so heuristic
approaches have typically been employed over many years [12, 19, 20, 21]. For the
application considered here we have even more complexity since it is also preferable
to minimize the cost of data migration from the existing partition to the new one,
and, when a multigrid solver is used, it will also be advantageous to avoid partitions
which have a poor load balance on the finest meshes or which have poor parent-child
data locality. Note that the choice of load balancing strategy only affects the time
taken for each multigrid V-cycle; and so the computed solution and the number of
cycles required to converge at each time-step are independent of the load-balancing
strategy.

3.1. Morton Order (MO). The dynamic load-balancing implementation in the
PARAMESH library uses Morton order to number the blocks. The Morton order,
also called Z-order, is a mapping of multidimensional data to one dimension that
preserves locality of the data ([13]). The first step of mapping is to find the binary
coordinate values of blocks. For an object in an n-dimensional space, this creates
an n-tuple of binary coordinates for each block. Interleaving these binary coordi-
nates creates a binary Z-value for each block. For example, the binary coordinate
(001001, 100101) gives the Z-number 010010010011. More explicitly, Figure 3 shows
the binary Z-numbers of a set of 16 cells in a regular 4× 4 grid covering a 2D do-
main. In the figure, the top row represents the ordering and binary coordinates
along the x direction, while the leftmost column exhibits this information along y
direction. As seen from the figure, connecting the z-values in their numerical order
produces the recursively Z-shaped curve that motivates the alternative name of the
ordering. Figures 4 - 5 illustrate this algorithm for a set of locally refined blocks.
The former shows the block structure, while the latter illustrates this in the form
of a quad-tree, where each block has been ordered. The partition is achieved by
dividing the ordered list into approximately equal parts: four in this example.
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Figure 3. Z values of a regular 4 × 4 grid with the origin at the
upper left corner.

Figure 4. Sketch showing a 2-D Cartesian grid covered by blocks
of various levels, where blocks are enumerated from number 1 to
21.

As we shall see later, the Morton order maintains good data locality and the
volume of interprocessor communication is not large. However the partitioning
step does not consider load-balancing on each refinement level so it is likely that
the blocks of the same refinement level are not evenly distributed across all of the
processors. This may cause significant load imbalance for multigrid solves, which
require each mesh level to be visited in turn. Therefore a variant algorithm, that
is targeted at multigrid iterations is described in the next subsection.

3.2. Level Morton Order (LMO). In an attempt to achieve load-balancing in
multigrid iterations, Bollada et al [6] suggested a modified Morton partition so that
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Figure 5. Partition of blocks in Fig. 4 using Morton order. The
Morton order of a node is represented by the number next to it.
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Figure 6. Partition of blocks in Fig. 4 using Level Morton order.
The partition is different from that in Fig. 5. Note that the number
next to a node represents its Morton order.

load-balancing at each refinement level is considered. That is, after the list of blocks
with Morton order is generated, a loop which iterates over the refinement levels of
the meshes is implemented. In each iteration of the loop, the block numbers in the
ordered list belonging to the level are collected to form a sub-list whose members
are still Morton ordered. Then the sub-list is evenly partitioned among processors.
This strategy gives a near optimal allocation to cores at all multigrid levels. The
communication on any level is also close to optimal but communication between
levels is compromised. As seen from Figure 6, the partition of the blocks shown in
Figure 4 is different to the Morton ordered partition of Figure 5. The Level Morton
partitioning has an excellent distribution of blocks at each level, however it creates
more interprocessor parent-child communications (9 edges for Morton order versus
13 edges for Level Morton order).

3.3. Recursive Coordinate Bisection(RCB). The recursive coordinate bisec-
tion (RCB) algorithm [12] partitions a graph according to the coordinates of the
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Figure 7. Two consecutive coordinate bisections on the group of
2D blocks shown in Fig. 4

vertices in physical space. The algorithm divides a group of geometric objects into
two by a cut orthogonal to one of the coordinate axes so that half the work load
is in each of the sub-groups. The splitting direction is determined by computing
in which coordinate direction the set of objects is most elongated, based upon the
geometric locations of the objects. The splitting of each subgroup proceeds by re-
cursive application of the same division algorithm until the number of subgroups
equals the number of processes (which needs to be power of 2 in this original form
of the algorithm). Figure 7 demonstrates the RCB algorithm on the same group
of 2D blocks illustrated in Figure 4, where each number represents a single block,
whose center is at the location of the number. The group of blocks are divided
first by the dashed cut, then each subgroup is further partitioned into two smaller
subgroups by a dotted line. Note that the right-hand half is partitioned into two
5-point parts, while the left-hand half is divided into two parts with 6 points and 5
points respectively. In [17] a generalization of this approach has been implemented
that allows meshes to be partitioned into an arbitrary number of subdomains (not
just powers of 2).

3.4. Graph partitioning(GP). In graph partitioning the data objects (in our
case blocks of mesh) are represented as graph vertices, and pairwise data depen-
dencies as graph edges. The graph partitioning problem is then to partition the
vertices into equal-weighted sub-graphs, while minimizing the weight of edges with
endpoints in different subsets (known as the ”cut weight”). Zoltan includes inter-
faces to two external graph partitioning libraries: PT-Scotch [19] and ParMETIS
[20]. However in this work we use the native parallel hypergraph partitioner based
on the scheme by Borzdag et al. ([21]) to perform the graph partitioning.

In all of the graph partitioning experiments that we undertake the nodes of the
hypergraph are given an equal weight, to reflect the fact that all blocks contain
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an equal number of cells. The weights given to the edges need not necessarily be
identical however. In fact we examine two variants: the first gives equal weight to
all graph edges, whilst the second gives ten times the weight to parent-child edges
than to graph edges between neighbouring blocks at the same level. The latter
approach seeks to encourage parent-child co-location in the final partition.

4. Test Problems

In this section we describe the phase-field models, related to alloy solidification,
that we use in order to assess the different dynamic load-balancing algorithms in-
troduced in the previous section. These models takes the form of coupled nonlinear
PDEs, each of which is used to describe physical problems associated with metal-
lic alloy solidification: isothermal alloy solidification [9] and thermal-solute alloy
solidification [6].

In phase-field models, the sharp interface between phases is replaced by a diffuse
interface with very small thickness. This diffusion layer is described by the phase-
field parameter ϕ which is a function of space x and time t. This phase-field
parameter ϕ(x, t), varies from 0 (or -1) to 1 between the liquid phase and the solid
phase, respectively. The intermediate values between 0 (or -1) and 1 capture the
phase transition. It is the position and geometry of this phase transition region
that we seek to resolve to high accuracy through the use of grid adaptation as the
interface evolves. Convergence at each implicit time step is achieved through the
FAS multigrid algorithm described previously.

In each of the examples that follow the spatial discretization is based upon a
cell centred finite difference scheme for spatial derivatives, and BDF2 (e.g. [22])
is used in time. The grid transfer operators are based upon linear interpolation
and restriction with full weighting, and the coarse grid solve is approximated by
repeated application of the smoother on the coarsest grid.

4.1. 3D isothermal binary alloy solidification. In this example we use the
approach described in detail in [9] to simulate the isothermal growth of a dendrite
from an under-cooled binary alloy. The dimensionless governing equations include
the evolution of the phase field denoted by ϕ and dimensionless concentration field
of the alloy, denoted by U :

(1) A2ϕ̇ = ∇ · ∂

∂∇ϕ

(
1
2A

2∇ϕ · ∇ϕ
)
+ ϕ(1− ϕ2) + λ(1− ϕ2)2(∆ +Mc∞U),

(
1 + kE

2
− 1− kE

2
ϕ

)
∂U

∂t
= ∇ ·

(
D

1− ϕ

2
∇U +

1

2
[1 + (1− kE)U ]

∂ϕ

∂t

∇ϕ

|∇ϕ|

)
(2)

+
1

2
[1 + (1− kE)U ]

∂ϕ

∂t
.

In equation (1) A is an anisotropy function given by

(3) A = 1− 3ϵ+ 4ϵ

(
ϕ4
x + ϕ4

y + ϕ4
z

|∇ϕ|4

)
where ϵ governs the strength of the anisotropy and ϕx = ∂ϕ

∂x , etc. The parameters
∆ and Mc∞ in equation (1) are the under cooling and the scaled magnitude of the
liquidus slope, respectively. They are related by

(4) Mc∞ = 1 + (1− kE)∆,
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where kE is known as the equilibrium partition coefficient. In equation (2) D is the
dimensionless diffusivity. The non-dimensional concentration field U is related to
the concentration c via

(5) U =

(
2c/c∞

1 + kE − (1− kE)ϕ

)
1− kE

,

where c∞ is the solute concentration far from the interface.
Following discretization, the resulting algebraic equations are nonlinear and can

be written as a nonlinear vector function A(v), where v represents the vector of the
unknown cell-centred values at the end of current time step. For the FAS smoother
the values of variables are updated via pointwise Newton iterations in which a 2×2
linear system with the local Jacobian matrix is solved. In this implementation the
off diagonal terms of the Jacobian matrix are found to be insignificant, thus the
Newton update only requires inversion of a 2 × 2 diagonal matrix for each cell on
the current mesh level. This is very cheap to apply.

4.2. 3D non-isothermal binary alloy solidification. In this example we use
the phase-field model, discretization scheme and nonlinear solver described in de-
tail in [6]. In this thermal-solute model dendrite growth is driven by the alloy
concentration and temperature fields, which are governed by diffusion parameters
D and κ, respectively. The ratio of these two parameters yields the Lewis number,
denoted by Le = κ/D.

The dimensionless governing equations describe the evolution of the phase field
denoted by ϕ, concentration of the alloy denoted by c and the temperature field
denoted by T . We start with the equations involve ϕ and c, as shown in Eq. (6) -
(7):

ϕ̇ = −M(c)
δF

δϕ
,(6)

ċ = ∇ ·D(ϕ, c)∇δF

δc
,(7)

where the free energy functional F (ϕ, c, T ), over a volume V of free energy density
f , is given by

F =

∫
V

fdV.(8)

The mobility M in (6) interpolates the mobility of each pure metal (M0 and M1):

M = (1− c)M0 + cM1.(9)

The diffusivity D in (7) is given by

D =
[ϕDLiq + (1− ϕ)DSol]c(1− c)

RT
,(10)

with the constants DSol ≪ DLiq.
The evolution of the temperature field is given by

CpṪ = ∇ · (κ∇T +Dfc∇fc)−
(
1− T

∂

∂T

)
fϕ ϕ̇−

(
1− T

∂

∂T

)
fc ċ,(11)
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where

Cp = −T
∂2f

∂T 2
(12)

and we use the notation

fϕ ≡ ∂f

∂ϕ
, fc ≡

∂f

∂c
.(13)

This temperature equation follows the theory proposed by [23].
The free energy density f splits into two parts: the surface and bulk

f = fS + fB ,(14)

where the surface part controls the interface width and the anisotropy and is given
by

fS = W

(
1

2
A|∇ϕ|2 + ϕ2(1− ϕ)2

)
(15)

with anisotropy again defined by

(16) A = 1− 3ϵ+ 4ϵ

(
ϕ4
x + ϕ4

y + ϕ4
z

|∇ϕ|4

)
.

In (15), the energy of the double well barrier height is given in terms of the barrier
heights associated with each alloy component by interpolation:

W = (1− c)W0 + cW1.(17)

The bulk free energy is formed from given database functions and interpolation:

fB = g(ϕ)fLiq(c, T ) + (1− g(ϕ))fSol(c, T ),(18)

where the particular interpolation function chosen, g(ϕ) is

g(ϕ) = ϕ2(3− 2ϕ).(19)

The values for the free energies of the solid and liquid phases, fLiq(c, T ) and
fSol(c, T ), may be found in CALPHAD [24] or from SGTE v5.0 [25]. The values
for the undefined parameters are all constant.

As for the previous test problem the spatial variables are discretized via cell
centred finite differences and the time variable is discretized using BDF2 [22]. In
this case however a much more expensive smoother is required: at each smoothing
step a 24 × 24 block smoother is used, corresponding to the part of the Jacobian
associated with the 3 unknowns on a cube containing 8 cells including the current
cell.

5. Numerical Experiments and Comparisons

In this section we compare the performance of the different dynamic load bal-
ancing strategies for managing the block distribution arising from mesh adaptivity
described in section 2. All the tests are carried out on the same system (”ARC3”
at the University of Leeds) which is equipped with 252 standard nodes, each with
24 cores and 128GB memory. The compute nodes are connected with Infiniband
FDR of 56Gbit/s in a 2:1 blocking fat-tree topology, built up from non-blocking is-
lands of 24 nodes. Our experiments use multiples of 24 to investigate the scaling of
the performance of the solver in order to minimize communications between nodes,
which is more costly than communication within a node. Latency and bandwidth of
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internode communications depend upon whether the nodes are on the same island,
which is not generally the case.

For comparing the solver’s performance using different load-balancing strategies,
a set of restart files were generated. Then the simulations are all initiated from these
restart files and run for a fixed number of time steps. In the 3D simulations the
running times for completing 10, 20 or 40 (depending on cases) time steps are
recorded.

Besides the running times for completing the simulations, the corresponding
maximum number of blocks among processors at each multigrid level are recorded.
This information indicates the degree of load-balancing at each multigrid step. For
example, if a block assignment strategy results in large maximum number of blocks
in the finer multigrid levels, it is to be expected that the waiting time for the
other processors will be significant before moving onto the next multigrid level.
Communications between processors can also be a bottleneck so, to consider this
issue, we represent the volume of inter processor communications by counting the
maximum (among processes) number of edges between parent and children blocks
not on the same processor (x), plus the edges between neighbouring blocks at the
same refinement level which are on different processes (y).

5.1. 3D Phase isothermal field binary alloy solidification. For this test
problem three block sizes are considered in simulations (8 × 8 × 8, 16 × 16 × 16,
32× 32× 32). The parameters used for simulations are listed in Table 1 and these
lead to the creation of a dendrite shape which is developed as a start point for all
tests (see Figure 8). In order to make a fair comparison between runs the restart
files are checked so that the tip locations for these three cases are nearly the same in
each cases (i.e., for each block size). Furthermore, the minimum mesh size is fixed
at 0.78125. Thus the number of refinement levels, and hence the multigrid levels,
are different in the three cases. Also note that the time step sizes and running time
for each time step are different in each case, hence the number of time steps used
for comparing the performance in each case is different.

Table 1. Parameters for simulations: 3D Phase field isothermal
binary alloy solidification.

Parameters for 3D Phase field isothermal binary alloy solidification
Domain ∆ kE ϵ Mc∞
8003 -0.525 0.3 0.02 0.6325

In the first case, the first block size considered is 8 × 8 × 8. The maximum
refinement level is 8. The tip location at the start time step is 287.41 and the
initial time is 205.60. The performance tests run for 40 time steps. At the end of
each test run, the tip of the dendrite has moved to location 287.95. The starting
total number of blocks is 132089 and this increases to 132737 blocks at the end of
the run, where there were 9 grid adaptations carried out. The initial partitioning of
blocks in the restart file is obtained from Morton ordering however the partitioning
of blocks is carried out again by the new partitioning strategies before the first time
step is executed.

Table 2 presents the execution time of the solver using the different dynamic
load-balancing strategies, with block size 83. As seen from the table, recursive
coordinated bisection (RCB) is the best load-balancing approach when the number
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Figure 8. Isosurface ϕ = 0 at the start of each test.

of the tasks is small (≤ 48), while for a medium to large number of tasks Morton
ordering performs the best.

Table 2. Case I: Performance (i.e., execution time in seconds) for
40 time steps with block size 83.

3D Phase field isothermal binary alloy solidification
No.of processors 24 48 96 192 384 768
Load-balancing
MO 4116 2422 1373 803 564 491
LMO 4741 2724 1772 1249 1034 758
Weighted GP 4100 2338 1476 1000 770 645
Unweighed GP 4257 2422 1517 1107 833 700
RCB 3969 2263 1429 1037 791 663

The results in Table 2 can be understood through close inspection of the parti-
tions created after the final time step, as illustrated in Tables 3 - 4. As discussed in
Section 2, there are two main activities in the computational phase of the multigrid
algorithm: restriction/interpolation and smoothing. In restriction and interpola-
tion operations data must be transferred between processes if a parent and one or
more of its children are not in the same process. We represent the volume of this in-
terprocessor communication between parents and children by finding the number of
parent-child edges which cut across the processes (denoted as x in the introduction
to this section). On the other hand, for the smoothing step each block exchanges
data with its neighbours through the use of its guard cells. If some neighbouring
blocks are not on the same process, this data exchange happens between processes.
The volume of this communication is represented by the number of neighbouring
blocks which are on the different processes (defined as y in the introduction to this
section). The ”interprocessor communications” column of Table 3 (and subsequent
tables) denotes these values x+ y respectively.

When the number of cores/subdomains is 24, the load-balancing at every level is
best for Level Morton ordering. However, its volume of interprocessor communica-
tions is vastly greater than that of the other strategies. RCB results in the second
best load-balancing situation. Although the volume of communications arising from
the RCB ordering is larger than that of the remaining partitioning strategies, the
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Table 3. Case I: Maximum number of blocks at each multigrid
level, block size 83, 24 processors. Interprocessor communications
are represented as: parent-child cut edges + sibling or neighbour
cut edges at the same level.

3D Phase field binary alloy solidification
multigrid Level 1 2 3 4 5 6 7 8 interprocessor
Load-balancing communications

MO 1 7 57 159 334 697 1413 4871 54+2770
LMO 1 1 3 9 30 142 778 4543 12808+2680

Weighted GP 1 7 51 121 229 483 1153 5296 39+2973
Unweighted GP 1 8 58 125 129 266 1000 5129 309+3087

RCB 1 8 27 92 164 394 1126 4851 1450+2489

Table 4. Case I: Maximum number of blocks at each multigrid
level, block size 83. 768 processors. Interprocessor communications
are represented as: parent-child cut edges + sibling or neighbour
cut edges at the same level.

3D Phase field binary alloy solidification
multigrid Level 1 2 3 4 5 6 7 8 interprocessor
Load-balancing communications

MO 1 3 31 61 54 86 112 152 52+322
LMO 1 1 1 1 1 5 25 142 430+344

Weighted GP 1 4 32 60 56 123 139 167 37+385
Unweighted GP 1 4 32 64 77 105 136 168 71+408

RCB 1 2 27 46 56 68 110 163 228+316

performance gain from superior load-balancing at every multigrid level more than
compensates for this.

For a large number of tasks, such as 768 cores/domains, Morton ordering has
the advantage over other algorithms. Notice from Table 4 that the maximum
number of blocks at each multigrid level is relatively small, as is the interprocessor
communication (especially the parent-child communication used in grid transfer op-
erations). Although Level Morton results in perfect load-balancing, the associated
volume of interprocessor communications is too large and causes poor performance.
The above results show that for large numbers of cores the interprocessor commu-
nications dominate the performance of the multigrid solver, especially when the
smoother is relatively inexpensive.

In the second case the block size considered in simulations is 163. The tip
location in the restart file is 287.01 and the initial time is 203.26. In this case we
run for 20 time steps to compare the performance. At the end of each test run,
the tip location of the dendrite has moved to location 287.31. The initial number
of the blocks is 18929, and there were no grid adaptations during simulations. The
maximum number of the refinement levels is 7, which means that the finest mesh
is the same size as for the previous example. However the total number of degrees
of freedom is greater due to the fact that the larger block size leads to less sharp
refinement regions.
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Table 5. Case II:Performance (i.e., execution time in seconds) for
20 time steps, block size 163.

3D Phase field binary alloy solidification
No.of processors 24 48 96 192 384 768
Load-balancing
MO 3107 1766 959 597 379 280
LMO 3348 1665 1145 853 489 380
Weighted GP 3112 1773 983 668 447 311
Unweighed GP 3280 1809 1008 710 479 340
RCB 2926 1692 1064 723 491 374

Table 6. Case II: Maximum number of blocks at each multigrid
level, block size 163. 24 processors. Interprocessor communications
are represented as: parent-child cut edges + sibling or neighbour
cut edges at the same level.

3D Phase field binary alloy solidification.
multigrid Level 1 2 3 4 5 6 7 interprocessor
Load-balancing communications

MO 1 7 57 155 279 278 692 43+760
LMO 1 1 3 9 29 124 625 2058+795

Weighted GP 1 8 56 143 242 224 752 21+708
Unweighted GP 1 8 59 133 154 294 756 106+814

RCB 1 8 27 92 140 190 704 430+683

Compared with the 83 case, for a single block the amount of computations is
eight time larger and the communication four times larger, thus the computa-
tion/communication ratio increases. Furthermore, the total number of blocks is
decreased to 18929, about 1/7 of that in the 83 case. Nonetheless, from Table 5
we see a similar comparison to the 83 case. That is, RCB performance is the best
when the number of tasks is small (≤ 48) and Morton ordering outperforms the
others when the number of tasks is larger. The performance with Level Morton
ordering still suffers from the large amount of interprocessor communications (see
Tables 6 - 7). As for the 83 case, the good load balance (at all levels) of RCB is
most important for small core counts (where computation dominates), but lower
communication costs (especially at grid transfer) of MO are more important for
larger core counts.

In the third case the block size considered in this problem is 323. The tip location
at the start time step is 287.77 and the initial time is 195.78. The number of time
steps taken for performance comparison is 10. The tip location of the dendrite at
the end of the 10th time step has moved to 288.02. The maximum refinement level
is 6, so the finest mesh size is consistent with the prior examples. The starting total
number of blocks is 3073 and it increases to 3145 at the end of the run, where 2 grid
adaptations were carried out. In this case the computation/communication ratio
for a single block is again twice of that in the previous case. Consequently, load-
balancing is expected to dominate the performance more than the communication
costs do, even as the core count increases.
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Table 7. Case II: Maximum number of blocks at each multigrid
level, block size 163. 768 processors. Interprocessor communica-
tions are represented as: parent-child cut edges + sibling or neigh-
bour cut edges at the same level.

3D Phase field binary alloy solidification.
multigrid Level 1 2 3 4 5 6 7 interprocessor
Load-balancing communications

MO 1 1 15 16 22 22 23 37+88
LMO 1 1 1 1 1 4 20 74+88

Weighted GP 1 3 20 24 17 24 26 39+96
Unweighted GP 1 4 22 22 24 24 25 50+92

RCB 1 1 12 14 14 22 25 57+96

Table 8. Case III: Performance (i.e., execution time in seconds)
for 10 time steps, block size 323.

3D Phase field binary alloy solidification
No.of processors 24 48 96 192 384 768
Load-balancing
MO 5583 3069 1759 1087 752 357
LMO 4940 2688 1621 1065 794 612
Weighted GP 5073 2788 1677 937 545 330
Unweighed GP 5295 2971 1682 1004 599 348
RCB 4992 2696 1661 1042 699 476

Table 9. Case III: Maximum number of blocks among processors
at each multigrid level, block size 323. 24 processors. Interproces-
sor communications are represented as: parent-child cut edges +
sibling or neighbour cut edges at the same level.

3D Phase field binary alloy solidification.
multigrid Level 1 2 3 4 5 6 interprocessor
Load-balancing communications

MO 1 3 31 70 93 112 34+230
LMO 1 1 3 9 24 93 398+322

Weighted GP 1 4 32 72 80 122 14+199
Unweighted GP 1 6 40 88 114 124 37+244

RCB 1 4 27 52 52 116 120+207

The simulation results show a different outcome from the previous cases. From
Table 8 we see that Level Morton ordering wins for small to medium numbers
(≤ 96) of tasks, while the weighted graph partitioning is the best strategy for a
large number of cores/subdomains. Table 9 shows the load-balancing situation and
volume of communications when the number of tasks is 24. For small the number
of cores the superior load balance of Level Morton at each level out-weighs the
significantly greater communication requirements in this case.
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Table 10. Case III: Maximum number of blocks among processors
at each multigrid level, block size 323. 768 processors. Interpro-
cessor communications are represented as: parent-child cut edges
+ sibling or neighbour cut edges at the same level.

3D Phase field binary alloy solidification.
multigrid Level 1 2 3 4 5 6 interprocessor
Load-balancing communications

MO 1 1 4 4 4 4 28+24
LMO 1 1 1 1 1 3 22+33

Weighted GP 1 1 4 4 4 4 18+26
Unweighted GP 1 2 4 5 5 5 22+26

RCB 1 1 4 4 4 5 20+24

On the other hand, for a large number of cores the difference on the number of
blocks among algorithms is reduced. From Table 10, weighted graph partitioning
is seen to perform best due to the smallest volume of communications whilst also
having a moderately good load balance. Although Level Morton ordering exhibits
excellent load-balancing, the relatively large volume of communication again slows
down the solver’s performance.

5.2. 3D non-isothermal binary alloy solidification. The second test problem
(Case IV) simulates the dendrite growth of a non-isothermal alloy, as described in
Section 4.2. In this model three variables ϕ (phase), c (solute) and T (temperature)
are solved and updated as the time step evolves. Due to the more costly smoothing
outlined in Section 4.2, we expect that the load-balancing issue to contribute more
than the interprocessor communication to the performance of the multigrid solver.
The parameters used in this case are listed in Table 11 and the crystal shape, which
is used as a start point for our simulation is shown in Figure 9.

Table 11. Parameters for simulations: 3D non-isothermal binary
alloy solidification.

Parameters for 3D non-isothermal binary alloy solidification
Domain ϵ Le M0 M1

8003 0.02 100 0.009 0.00729

In this example we only present results for the 83 block case since the 163 cases
that we considered yield identical conclusions (we did not undertake experiments
for 323 blocks in this case). The initial condition corresponds to a tip location
along each coordinate axis at 157.82 and the experiments run the simulation for 10
time steps. At the end of the 10th step the tip location of the dendrite has moved
to location 157.90. The maximum number of the refinement levels is 7 and there
is no mesh refinement during the simulation. Hence the number of blocks is 7801
throughout and no mesh adaptation overhead issue is considered here. Therefore
the results provide a pure comparison of the load-balancing algorithms alone.

The results exhibited in Tables 12 - 14 show that Level Morton ordering pro-
vides the optimal block arrangement for all of the cases considered. This is partly
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Figure 9. Isosurface ϕ = 0.5 for initial condition used in the non-
isothermal phase-field case.

Table 12. Case IV: Performance (i.e., execution time in seconds)
for 10 time steps, block size 83.

3D non-isothermal binary alloy solidification.
No.of processors 24 48 96 192 384 768
Load-balancing
MO 8109 4358 2435 1969 1327 776
LMO 7006 3543 2132 1800 944 609
Weighted GP 11436 6072 3866 3259 2085 1150
Unweighed GP 11992 7115 4224 3337 2219 1145
RCB 10307 5801 3040 2924 1832 953

Table 13. Case IV: Maximum number of blocks among processors
at each multigrid level, block size 83. 24 processors. Interproces-
sor communications are represented as: parent-child cut edges +
sibling or neighbour cut edges at the same level.

3D non-isothermal binary alloy solidification.
multigrid Level 1 2 3 4 5 6 7 interprocessor
Load-balancing communications

MO 6 6 8 18 32 85 275 622+215
LMO 2 2 3 7 16 56 242 970+448

Weighted GP 24 24 60 127 120 136 312 17+425
Unweighted GP 25 32 59 109 98 162 309 53+441

RCB 25 32 36 76 60 102 293 233+413

explained by the load-balancing data in Tables 13 and 14, which show that Level
Morton ordering provides by far the best load balance at each level. As also ex-
pected, the volume of interprocessor communications is the largest for the Level
Morton ordering, however the much greater computation to communication ratio
in this example means that this weakness has less impact than previously. That is,
the load-balancing issue at each multigrid level is a more important impact factor
to the solver’s performance than interprocessor communications in this problem.
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Table 14. Case IV: Maximum number of blocks at each multigrid
level, block size 83. 768 processors. Interprocessor communications
are represented as: parent-child cut edges + sibling or neighbour
cut edges at the same level.

3D non-isothermal binary alloy solidification
multigrid Level 1 2 3 4 5 6 7 interprocessor
Load-balancing communications

MO 2 2 3 6 9 10 11 70+59
LMO 1 1 1 1 1 1 8 45+53

Weighted GP 11 8 8 9 9 10 11 20+52
Unweighted GP 10 8 8 9 10 10 11 33+51

RCB 10 6 8 8 10 10 11 34+50

Note that we have also applied a similar set of tests to a third phase-field problem
involving the multiphase modelling of eutectic growth in two space dimensions based
upon [26, 27]. This problem also involved very expensive smoother and therefore a
large computation to communication ratio. The conclusions derived were the same
as in this test case: that the improved load-balancing of the Level Morton scheme
out-weighed the inferior communication volume. In future work we will assess load
balancing strategies on yet more phase-field examples, such as the 6th order, three
dimensional functionalized Chan-Hilliard (FCH) equation described in [28]. This
applies a modification to the FAS algorithm to ensure mass conservation, which is
not yet included in our current work.

6. Conclusion

From the experimental results, we observe that the relative performance of the
different load-balancing algorithms depends strongly on the computational features
of the tested problems. These features are two fold: the computational cost of s-
moothing and the communication cost of smoothing and grid transfer operations
(interpolation/restriction). Smoothing consists of local Jacobi matrix inversion
and communications (guard cell information exchanging) between sibling block-
s, while interpolation/restriction requires communications between parent-child
blocks. Both components are O(n) operations (n as the degrees of freedom) but
their relative cost depends on the amount of work within the smoother (i.e., the
size of the local Jacobian). For all cases, Level Morton ordering causes the largest
volume of interprocessor communications, of which a large portion involves com-
munication between parent-child blocks. On the other hand, Morton ordering pre-
serves good locality and provides the block distribution with the smallest amount
of interprocessor communications.

According to the test results, the impact of the load-balancing algorithms on the
performance of the nonlinear multigrid solver may be summarized as follows. First-
ly, for simple smoothers where a larger proportion of time is spent in communication
between neighbouring blocks (due to the simpler smoother and smaller block size,
hence lower computation to communication ratio), Morton ordering is recommend-
ed: e.g. the isothermal problem with block sizes 83 and 163. As the block size (and
therefore the computation to communication ratio) increases, such as in case III
(323), either weighted graph partitioning (for 768 process) or RCB (for 24 processes)
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is the most competitive load-balancing strategy. In this case the computation time
contributes a significant part of the solution time, thus both load-balancing and
interprocess communications are important. Conversely, for problems with expen-
sive smoothers, such as used in 3D non-isothermal alloy solidification, our newly
proposed Level Morton strategy is recommended. In this situation load balance
is critical to the solver’s performance and Level Morton ordering provides nearly
perfect load balance at all multigrid levels.

In every case, there is trade off on the performance of the multigrid solver be-
tween load-balancing and processor communications. For computationally intensive
problems Level Morton ordering is a more suitable partitioning where good load-
balancing at each multigrid level is more desirable than optimal inter-processor
communications.
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