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A NEW COLLOCATION METHOD FOR SOLVING CERTAIN

HADAMARD FINITE-PART INTEGRAL EQUATION

HUI FENG, YAN GAO, LILI JU, AND XIAOPING ZHANG

Abstract. In this paper, we study a new nodal-type trapezoidal rule for approximating Hadamard
finite-part integrals, and its application to numerical solution of certain finite-part integral equa-
tion. We start with a nodal-type trapezoidal rule discussed in [21], and then establish its error

expansion analysis, from which a new nodal-type trapezoidal rule with higher order accuracy is
proposed and corresponding error analysis is also obtained. Based on the proposed rule, a new
collocation scheme is then constructed to solve certain finite-part integral equation, with the op-
timal error estimate being rigorously derived. Some numerical experiments are also performed to

verify the theoretical results.

Key words. Hadamard finite-part integral equation, quadrature rule, collocation method, error
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1. Introduction

We consider the following finite-part integral

(1) Lu(x) :=
∫ b

a

=
u(y)

|y − x|1+2s
dy, x ∈ (a, b),

where s ∈ (0, 1) is the singularity index. The integral (1) is divergent in the classic
Riemann sense, and should be understood in the Hadamard finite-part sense. There
are several equivalent definitions for this finite-part integral in the literatures [15],
and we here adopt the following definition:

(2) Lu(x) = lim
ϵ→0

(∫
Ωϵ(x)

u(y)

|y − x|1+2s
dy − ϵ−2su(x)

s

)
, x ∈ (a, b),

where x is the singular point and Ωϵ(x) = (a, b)\(x − ϵ, x + ϵ). A function u(y)
is said to be finite-part integrable with respect to the weight |y − x|−1−2s if the
limit on the right-hand side of (2) exists. Assuming u is absolutely integrable on
(a, b),then a sufficient condition for u(x) to be finite-part integrable is that u(x)
is α-Hölder continuous for some α ∈ (2s, 1) on (a, b) if s ∈ (0, 1/2), and u′(x) is
α-Hölder continuous for some α ∈ (2s− 1, 1) on (a, b) if s ∈ [1/2, 1).

Integrals of this kind appear in many practical problems related to aerodynamics,
wave propagation or fluid mechanics, mostly with relation to boundary element
methods and finite-part integral equations. Numerous work has been devoted in
developing the efficient numerical evaluation method, such as Gaussian (GS) rule
[6, 7], Newton-Cotes (NC) rule [9, 12, 14, 17, 20, 21], and some other rules [2, 3,
5]. Amongst them, NC rule is a popular one due to its ease of implementation
and flexibility of mesh. NC rule is constructed by replacing u by its Lagrange
interpolation in (1), and can be classified into two types: grid-type and nodal-
type. The way of distinguishing one type from another is the choice of the singular
point’s location. Grid-type takes the singular point being located in the interior of
a certain grid and nodal-type forces the singular point to be a certain nodal one.
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There are some other differences between these two type of rules. Amongst those,
a major one is that the two rules are based on different definitions of the finite-part
integrals (1) respectively. Since Lagrange interpolation is smooth in the interior
of every grid, we can use the definition (2) directly to design grid-type NC rules.
However, Lagrange interpolation is only continuous at the nodal points and the
definition (2) is invalid to produce nodal-type NC rules, especially for s ≥ 1/2, due
to the rigorous regularity requirement on u for the definition (2). To overcome such
problem, one often should adopt the following definitions [15]:

L−u(x) = lim
ϵ→0

(∫ x−ϵ

a

u(y)

(x− y)1+2s
dy + r−(x)

)
,

L+u(x) = lim
ϵ→0

(∫ b

x+ϵ

u(y)

(y − x)1+2s
dy + r+(x)

)
,(3)

where

r−(x) =


ϵ−2s

−2s u(x
−), s < 1/2,

−ϵ−1u(x−)− ln ϵu′(x−), s = 1/2,

ϵ−2s

−2s u(x
−)− ϵ1−2s

1−2s u
′(x−), s > 1/2,

r+(x) =


ϵ−2s

−2s u(x
+), s < 1/2,

−ϵ−1u(x+) + ln ϵu′(x+), s = 1/2,

ϵ−2s

−2s u(x
+) + ϵ1−2s

1−2s u
′(x+), s > 1/2,

and u(x−) and u(x+) denote the left and right limits of u at x respectively. Obvi-
ously, if u is smooth enough, then Lu(x) = L−u(x) + L+u(x).

It’s well-known that the accuracy of NC rule with kth order piecewise polynomial
interpolant for the usual Riemann integrals is O(hk+1) for odd k and O(hk+2) for
even k. However, the rule is less accurate for finite-part integral (1) due to the
hyper-singularity of the kernel. For example, general error analysis shows that the
accuracy of both types of rules are O(hk+1−2s) [4, 8, 9, 12, 14, 18]. A way of
obtaining higher order accuracy for grid-type rule is to study its superconvergence
property. This property implies that one can get higher order accuracy on the
condition that the singular point coincides with some a priori known point. A series
of outstanding works have been devoted to this field [11, 13, 16, 17, 18, 22, 23].

One goal of this paper is to study a higher order nodal-type rule for evaluation
of (1). We start with a nodal-type trapezoidal rule (k = 1) investigated in [21].
Instead of estimating the error directly, we turn to analyze its error expansion. Once
this expansion is established, a new nodal-type rule can be proposed by making a
slight modification on the original one. As discussed in [21], the accuracy of the
original rule is always O(h2−2s). Excitingly, the new rule behaves more accurate, it
reaches O(h4−2s) if the singular point is far away from the endpoints, and O(h3−2s)
if very close to the endpoints, which is at least one order higher than the original
rule.

A motivation to study the nodal-type NC rule is to solve the corresponding
Hadamard finite-part integral equation defined by

(4)

{
Lu(x) = f(x), x ∈ (a, b),

u(a) = ua, u(b) = ub.
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Since nodal-type NC rule takes the singular point to be the nodal one, it naturally
can be used to construct the collocation scheme for solving (4). One collocation
scheme has been investigated in [21] by using a very slight modified version of the
original nodal-type trapezoidal rule, where the scheme’s stiffness matrix is shown
to be a symmetric, strictly diagonally dominant M -matrix with Toeplitz structure.
With these properties of the stiffness matrix, the accuracy of the scheme is proved
to be O(h2−2s). A fast solver is available for implementing the scheme (due to
Toeplitz structure). This is very important, especially in some real problems, such
as electromagnetic cavity problems [1, 10, 19, 24].

Another goal of this paper is then to use the new nodal-type trapezoidal rule to
construct a new collocation scheme for solving (4). Fortunately, the stiffness matrix
of the new scheme is also shown to be a strictly diagonally dominant M -matrix,
from which the accuracy is proved to be O(h4−2s), which is twice order higher that
of the existing scheme in [21]. As we mentioned before, the accuracy of the new
rule is affected by the distance between the singular point and the end points, but
the accuracy of the scheme does not. In other word, the accuracy of the scheme
is better than that of the rule, and the reason why this happens will be explained
in our analysis. On the other hand, we note that at the time of acquiring higher
order accuracy we regretfully sacrifice the opportunity of using fast solver due to
the lack of Toeplitz structure.

The rest of the paper is organized as follows. In Section 2, we start with a nodal-
type trapezoidal rule, establish an error expansion analysis, and then propose our
ultimate rules for evaluating finite-part integral (1). Based on the new scheme,
a collocation scheme is then developed to approximate certain finite-part integral
equation (4), and its optimal error estimate is also derived in Sections 3. In Section
4, numerical experiments are reported to demonstrate the efficiency and accuracy
of the proposed collocation scheme. Finally concluding remarks are given in Section
5.

2. Nodal-type trapezoidal rules and error analysis

Consider the uniform partition a = x0 < x1 < · · · < xn < xn+1 = b of the

interval [a, b] with grid sizes h = (b − a)/(n + 1). Let Ihu(y) =
∑n+1

j=0 u(xj)φj(y)

be continuous piecewise-linear interpolation of u(y), where φj(y) is the standard
”hat” function with respect to the given partition.

2.1. Original rule. Replacing u(y) by Ihu(y) leads to the trapezoidal rule:

(5) L̂hu(xi) :=
n+1∑
j=0

ω̂iju(xj),

where

(6) ω̂ij = (1−δ0j)h−1

∫ xj

xj−1

y − xj−1

|y − xi|1+2s
dy+(1−δn+1,j)h

−1

∫ xj+1

xj

xj+1 − y

|y − xi|1+2s
dy.

We note that the coefficients (6) include finite-part integrals when |j − i| ≤ 1, and
we should adopt the definition (3) to compute them.

Remark 1. The error analysis of (5) has been given in [21]: assume u ∈ C2(a, b),
it holds ∣∣∣Lu(xi)− L̂hu(xi)

∣∣∣ ≤ { Ch| lnh|, s = 1/2,

Ch2−2s, otherwise,
i = 1, 2, · · · , n.
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From the above error estimate we see easily that the rule (5) gradually cease to be
in force when s is getting close to 1.

Let us now turn to do error expansion analysis of the rule (5), and the main
result is illustrated in the following theorem. It is the stepping stone of proposing
our ultimate rule.

Theorem 1. Suppose u ∈ C4(a, b), then for L̂hu(xi) defined by (5), we have

Lu(xi)− L̂hu(xi) =− h−1θ[u(xi−1)− 2u(xi) + u(xi+1)]

+
1

2!

n∑
j=1

ϕiju
′′(xj) +Ri, i = 1, 2, · · · , n,(7)

where θ =

∫ h

0

z−2s dz, and

(8) ϕij =



∫ xj

xj−1

(y − xj−1)(y − xj)

(xi − y)1+2s
dy, j = 1, · · · , i− 1,

2

∫ xi+1

xi

(y − xi)
1−2s dy, j = i,

∫ xj+1

xj

(y − xj)(y − xj+1)

(y − xi)1+2s
dy, j = i+ 1, · · · , n,

(9) |Ri| ≤ C
(
h4−2s + h3 + h3η−2s(xi)

)
with

(10) η(xi) = min{xi − a, b− xi}.

Proof. Define ej(y) = u(y) − Ihu(y), y ∈ (xj , xj+1), then the error of (5) can be
split into two parts:

(11) Lu(xi)− L̂hu(xi) = E1 + E2,
where

E1 =

∫ xi

xi−1

ei−1(y)

(xi − y)1+2s
dy +

∫ xi+1

xi

ei(y)

(y − xi)1+2s
dy,

E2 =
i−1∑
j=1

∫ xj

xj−1

ej−1(y)

(xi − y)1+2s
dy +

n∑
j=i+1

∫ xj+1

xj

ej(y)

(y − xi)1+2s
dy.

Now we estimate Ei, i = 1, 2 term by term. For E1, by noting the facts that

ei−1(y) = u(y)− u(xi)−
u(xi)− u(xi−1)

h
(y − xi),

ei(y) = u(y)− u(xi)−
u(xi+1)− u(xi)

h
(y − xi)

and

∫ xi+1

xi−1

(y − xi)
k

|y − xi|1+2s
dy = 0 for odd k, it can be reformulated as

(12) E1 =− h−1θ[u(xi−1)− 2u(xi) + u(xi+1)] +
1

2!
ϕiiu

′′(xi) +R1
i ,

where

R1
i =

∫ xi+1

xi−1

u(y)−
∑3

k=0
u(k)(xi)(y−xi)

k

k!

|y − xi|1+2s
dy.
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Since u ∈ C4(a, b), a fourth order Taylor expansion yields

(13)
∣∣R1

i

∣∣ ≤ C

∫ xi+1

xi−1

|y − xi|3−2s dy ≤ Ch4−2s.

As for E2, also fourth order Taylor expansions lead us to

ej−1(y) =
u′′(xj)

2!
(y − xj−1)(y − xj) +

u′′′(xj)

3!
(y − xj−1)(y − xj)(y − xj+1)

+O(h4), y ∈ (xj−1, xj), j = 1, · · · , i− 1,

ej(y) =
u′′(xj)

2!
(y − xj)(y − xj+1) +

u′′′(xj)

3!
(y − xj−1)(y − xj)(y − xj+1)

+O(h4), y ∈ (xj , xj+1), j = i+ 1, · · · , n.
Therefore, E2 can be expanded as

(14) E2 =
1

2!

n∑
j=1,j ̸=i

ϕiju
′′(xj) +

1

3!

n∑
j=1,j ̸=i

ψiju
′′′(xj) +R2

i ,

where

(15) ψij =


∫ xj

xj−1

(y − xj−1)(y − xj)(y − xj+1)

(xi − y)1+2s
dy, j < i,

∫ xj+1

xj

(y − xj−1)(y − xj)(y − xj+1)

(y − xi)1+2s
dy, j > i,

and

|R2
i | ≤ Ch4

(∫ xi−1

a

1

(xi − y)1+2s
dy +

∫ b

xi−1

1

(y − xi)1+2s
dy

)
≤ C(h4−2s + h4η−2s(xi)).

Without loss of generality, we assume that i ≥ n+1
2 , and then the second sum in

the right-hand side of (14) can be rearranged as

n∑
j=1,j ̸=i

ψiju
′′′(xj) =

n−i∑
m=1

ψi,i+m [u′′′(xi+m)− u′′′(xi−m)]+
i−1∑

m=n−i+1

ψi,i−mu
′′′(xi−m).

By appropriate variable’s transformation, ψij can be reformulated as

(16) ψi,i+m = sgn(m) · h3−2s

∫ 1

0

τ(τ2 − 1)

(τ + |m|)1+2s
dτ, m ̸= 0.

As a consequence, we have∣∣∣∣∣
n−i∑
m=1

ψi,i+m [u′′′(xi+m)− u′′′(xi−m)]

∣∣∣∣∣
≤Ch4−2s

n−i∑
m=1

m

∫ 1

0

1

(τ +m)1+2s
dτ

≤Ch4−2s
n−i∑
m=1

[∫ 1

0

1

(τ +m)2s
dτ +

∫ 1

0

τ

(τ +m)1+2s
dτ

]
≤C(h4−2s + h4η−2s(xi)),
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and ∣∣∣∣∣
i−1∑

m=n−i+1

ψi,i−mu
′′′(xi−m)

∣∣∣∣∣ ≤ Ch3−2s
i−1∑

m=n−i+1

∫ 1

0

1

(τ +m)1+2s
dτ

≤ Ch3(1 + η−2s(xi)).

Thus

(17)

∣∣∣∣∣∣
n∑

j=1,j ̸=i

ψiju
′′′(xj)

∣∣∣∣∣∣ ≤ C
(
h4−2s + h3 + h3η−2s(xi)

)
,

Putting (11), (12), (13), (14) and (17) together concludes the proof. �
2.2. Modified rule. Based on (7), we next propose a modified trapezoidal rule
as follows:
(18)

L̃hu(xi) = L̂hu(xi)−h−1θ[u(xi−1)−2u(xi)+u(xi+1)] :=

n+1∑
j=0

ω̃iju(xj), i = 1, 2, · · · , n,

where

(19) ω̃ij = ω̂ij +


2h−1θ, j = i,

−h−1θ, |j − i| = 1,

0, otherwise.

Remark 2. The explicit expression of ω̃ij has been given in [21] with the error
analysis of (18): assume u ∈ C2(a, b), it holds∣∣∣Lu(xi)− L̃hu(xi)

∣∣∣ ≤ Ch2−2s, i = 1, 2, · · · , n.

Alternatively, we here reformulate ω̃ij in a more compact way. Define

F (t) =

{
− ln t, s = 1/2,

t1−2s

(1−2s)(−2s) , otherwise,

then ω̃ij can be expressed as

(20)

ω̃i,i+m = h−2s


2F ′(1), m = 0,

−F (1) + F (2)− F ′(1), |m| = 1,

F (|m| − 1)− 2F (|m|) + F (|m|+ 1), |m| > 1,

ω̃i,0 = h−2s

{
0, i = 1,

F (i− 1)− F (i) + F ′(i), 2 ≤ i ≤ n,

ω̃i,n+1 = h−2s

{
0, i = n,

F (n− i)− F (n+ 1− i) + F ′(n+ 1− i), 1 ≤ i ≤ n− 1.

The following corollary is a natural consequence of Theorem 1, which also provide
an error expansion of the rule (18).

Corollary 1. Suppose u ∈ C4(a, b), then for L̃hu(xi) defined by (18), we have

(21) Lu(xi)− L̃hu(xi) =
1

2

n∑
j=1

ϕiju
′′(xj) +Ri, i = 1, 2, · · · , n,

where ϕij is defined by (8) and Ri is bounded by (9).



246 H. FENG, Y. GAO, L. JU, AND X. ZHANG

2.3. Ultimate rule. Once the error expansion of L̃hu(xi) is determined, we can
approximate u′′(xj) in (21) by its central difference approximation, and then obtain
our ultimate trapezoidal rule:

(22)

Lhu(xi) = L̃hu(xi) +
h−2

2

n∑
j=1

ϕij [u(xj−1)− 2u(xj) + u(xj+1)]

:=
n+1∑
j=0

ωiju(xj), i = 1, 2, · · · , n.

where ϕij is defined by (8). Before stating the error estimate of Lhu(xi), let us take
a closer look at ϕij .

Lemma 1. Let Φn×n be an n × n matrix with entries ϕij , i, j = 1, · · · , n defined
by (8), then it is a symmetric Toeplitz matrix and ϕii > 0 and ϕij < 0 for j ̸= i.
Moreover, {ϕi,i+m} constitutes an increasing sequence for m > 0.

Proof. By using appropriate variable’s transformation we get

(23) ϕi,i+m = h2−2s


1

1− s
, m = 0,∫ 1

0

τ(τ − 1)

(τ + |m|)1+2s
dτ, m ̸= 0,

from which we can easily determine the sign symbol of ϕij . Moreover,

ϕi,i+m+1 − ϕi,i+m

=h2−2s

∫ 1

0

[
1

(τ +m+ 1)1+2s
− 1

(τ +m)1+2s

]
τ(τ − 1) dτ > 0, m > 0,

which implies that {ϕi,i+m} constitutes an increasing sequence for m > 0, and the
proof is completed. �

Now we give the error estimate of (22).

Theorem 2. Assume that u ∈ C4(a, b), then for Lhu(xi) defined in (22), we have

(24) |Lu(xi)− Lhu(xi)| ≤ C(h4−2s + h3 + h3η−2s(xi)).

Proof. Subtracting (22) from (21) yields

Lu(xi)− Lhu(xi) =
1

2

n∑
j=1

ϕij

[
u′′(xj)−

u(xj−1)− 2u(xj) + u(xj+1)

h2

]
+Ri.

Since u ∈ C4(a, b), we have
∣∣∣u′′(xj)− u(xj−1)−2u(xj)+u(xj+1)

h2

∣∣∣ ≤ Ch2, and thus

(25) |Lu(xi)− Lhu(xi)| ≤ Ch2
n∑

j=1

|ϕij |+Ri.

By using the sign symbol of ϕij discussed in Lemma 1 and (23) , we get

n∑
j=1

|ϕij | = ϕii −
n∑

j=1,j ̸=i

ϕij ≤ Ch2−2s + Ch2−2s

(
i−1∑
m=1

+

n−i+1∑
m=1

)∫ 1

0

1

(τ +m)1+2s
dτ

≤ C(h2−2s + h2η−2s(xi)).

Combining it with (25) concludes the proof. �
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3. New collocation scheme for the integral equation

In this section, we will use the ultimate rule Lhu(xi) defined by (22) to con-
struct a collocation scheme for solving the finite-part integral equation (4), and
also establish an optimal error estimate for the scheme.

First, we can reformulate (22) at the interior grid points xi, i = 1, 2, · · · , n as
the matrix form

(26) Wn×(n+2)Un+2 ≈ Fn,

where Wn×(n+2) is an n × (n + 2) matrix with entries ωij for i = 1, 2, · · · , n and
j = 0, 1, · · · , n+ 1, and

Fn = (f(x1), f(x2), · · · , f(xn))T

denotes the exact value vector of the finite part integrals. From (22) we see that

the relationship between W̃n×(n+2) = (ω̃i,j) (ω̃i,j is defined in (19)) and Wn×(n+2)

can be represented as

(27) Wn×(n+2) = W̃n×(n+2) +Pn×(n+2), Pn×(n+2) =
h−2

2
Φn×nΛn×(n+2),

where Φn×n is defined in Lemma 1 and

Λn×(n+2) =


1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1

 .

By taking the approximately equal symbol as the equal one in (26) and using the
boundary conditions, a new collocation scheme for solving (4) is obtained:

(28) Wn×nU
h
n = Gn,

where Wn×n is submatrix of Wn×(n+2) by deleting the first and last columns, and
Gn are obtained from Fn by using the boundary values.

Lemma 2. −W̃n×n is a strictly diagonally dominant M-matrix with Toeplitz struc-
ture, and moreover,

(29) −
n∑

j=1

ω̃ij ≥ Cη(xi)
−2s.

Proof. From (6) and (19) we see that ω̃ij > 0 for all |j− i| > 1, since the integrands
in it are regular and φj(x) is positive. Moreover, through some direct calculations
and variable transformations, we can get

(30) ω̃i,i+m = h−2s


2

∫ 1

0

τ−1−2s dτ, m = 0,∫ 1

0

1− τ

(τ + 1)1+2s
dτ, m = ±1,

from which we can easily see that ω̃ii < 0 and ω̃i,i±1 > 0. To prove −W̃n×n is an
M-matrix, it remains us show it is also an strictly diagonally dominant. Obviously,
the quadrature rule (18) is exact for any linear function. So, by setting u ≡ 1 we
can get

(31) −
n∑

j=1

ω̃ij = −
∫ b

a

1

|y − xi|1+2s
dy + ω̃i0 + ω̃i,n+1.
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Since −
∫ b

a

1

|y − xi|1+2s
dy =

(xi − a)−2s + (b− xi)
−2s

2s
> 0 and ω̃i0 > 0, ω̃i,n+1 >

0, it means that the sum of each row of −W̃n×n is positive, and thus for i = 1, · · · , n
we get |ω̃ii| −

∑n
j=1,j ̸=i |ω̃ij | = −

∑n
j=1 ω̃ij > 0.

Now, it remains for us to prove (31). Let us here only consider the case s ̸= 1/2
since the other cases can be done similarly. From (20) and (31) we obtain
(32)

−
n∑

j=1

ω̃ij =


(x1−a)−2s

2s + (b−x1)
1−2s−(b−x2)

1−2s

2s(1−2s)h , i = 1,

(xi−a)1−2s−(xi−1−a)1−2s+(b−xi)
1−2s−(b−xi+1)

1−2s

2s(1−2s)h , i = 2, · · · , n− 1,

(xn−a)1−2s−(xn−1−a)1−2s

2s(1−2s)h + (b−xn)
−2s

2s , i = n

Furthermore, by using the inequalities

(1 + x)1−2s − 1 ≤ −Cx, s > 1/2,

(1 + x)1−2s − 1 ≥ Cx, s < 1/2,

for x ∈ [0, 1], we obtain

(xi − a)1−2s − (xi−1 − a)1−2s

(1− 2s)h
=

(xi−1 − a)1−2s

(1− 2s)h

[
(1 +

h

xi−1 − a
)1−2s − 1

]
≥ C(xi−1 − a)−2s,(33)

for i = 2, · · · , n, and similarly,

(34)
(b− xi)

1−2s − (b− xi+1)
1−2s

(1− 2s)h
≥ C(b− xi+1)

−2s.

for i = 1, · · · , n − 1. Combining (32), (33) and (34) together leads to (29), which
completes the proof. �

Lemma 3. −Wn×n is a strictly diagonally dominant M-matrix, and

(35) −
n∑

j=1

ωij ≥ Cη−2s(xi).

As a consequence, the linear system (28) has a unique solution.

Proof. We will first check the sign symbol of each element of Wn×(n+2). Let pij be
entries of Pn×(n+2) , from the definition of Pn×(n+2) and Lemma 1, it is easy to
check that pii < 0 and pi,i±1 > 0 for i = 1, 2, · · · , n. Combining these with Lemma
2 we see that ωii < 0, ωi,i±1 > 0 for i = 1, 2, · · · , n.

Now it remains for us to prove ωij > 0 for |j − i| > 1, and we only consider the
case that j > i + 1 since the case j < i − 1 can be done similarly. Through some
direct calculations, ωij can be reformulated as

ωij =ω̃ij +
h−2

2
ϕi,j−1

(36)

+

 −h−2

2 ϕij +
h−2

2 (ϕi,j+1 − ϕi,j), i = 1, · · · , n− 3, i+ 1 < j ≤ n− 1,
−h−2ϕij , i = 1, · · · , n− 2, j = n,
0, i = 1, · · · , n− 1, j = n+ 1.
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For i+ 1 < j ≤ n+ 1, we have

ω̃ij +
h−2

2
ϕi,j−1 =

h−2

2

∫ xj

xj−1

(y − xj−1)(y − xj−2)

(y − xi)1+2s
dy(37)

+ (1− δn+1,j)h
−1

∫ xj+1

xj

xj+1 − y

(y − xi)1+2s
dy > 0,

Putting (36), (37) and Lemma 1 together leads to ωij > 0 for |j − i| > 1. The
strictly diagonal dominance of −Wn×n can be validated by

(38) −
n∑

j=1

ωij = −
∫ b

a

1

|y − xi|1+2s
dy + ωi0 + ωi,n+1 > 0,

and thus the uniqueness of (28) follows immediately. Combination of all these
together leads to the fact that −Wn×n is an M-matrix.

From (27), (31) and (38) we can easily get

−
n∑

j=1

ωij = −
n∑

j=1

ω̃ij +
h−2

2
(ϕi1 + ϕin).

For i = 2, · · · , n− 1, since ϕi1 < 0, ϕin < 0, we obtain

−
n∑

j=1

ωij ≥ −
n∑

j=1

ω̃ij ≥ Cη(xi)
−2s.

In addition, since ϕ11 = h2−2s

1−s and ϕ1n < 0, we get

−
n∑

j=1

ω1j ≥ −
n∑

j=1

ω̃1j +
h−2

2
ϕ11 ≥ Cη(x1)

−2s,

and similarly we can also obtain

−
n∑

j=1

ωnj ≥ Cη(xn)
−2s.

Putting all these together yields (35). �

Theorem 3. Suppose the solution of (4) belongs to C4(a, b) and let Un be the exact
solution vector, then we have

(39) ∥Un −Uh
n∥∞ ≤ C(h4−2s + h3).

Proof. It is easy to see

Wn×n(Un −Uh
n) = Wn×nUn −Gn,

which implies

n∑
j=1

ωij [u(xj)− uj ] = Lu(xi)− Lhu(xi), i = 1, · · · , n.

It is straightforward that there exists some k, such that

u(xk)− uk = max
1≤i≤n

|u(xi)− ui| or u(xk)− uk = − max
1≤i≤n

|u(xi)− ui|,
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and we only consider the first case. Since −Wn×n is an M-matrix,

Lu(xk)− Lhu(xk) =

n∑
j=1,j ̸=k

ωkj [u(xj)− uj − (u(xk)− uk)] + (u(xk)− uk)

n∑
j=1

ωkj

≤ (u(xk)− uk)

n∑
j=1

ωkj ,

which leads to

∥Un −Uh
n∥∞ = u(xk)− uk ≤ 1

|
∑n

j=1 ωkj |
|Lu(xk)− Lhu(xk)|.

Combining it with (24) and (35) we have

∥Un −Uh
n∥∞ ≤ Cη(xk)

2s(h4−2s + h3η(xk)
−2s) ≤ C(h4−2s + h3),

and the proof is completed. �

4. Numerical experiments

In this section, we examine numerically the performance of the proposed collo-
cation scheme. In addition, to emphasize higher order accuracy of the new scheme,
we compare it with the collocation scheme studied in [21]. Actually, the later one

is based on the modified rule L̃hu(xi) defined in (18) and can be formulated as

(40) W̃n×nŨ
h
n = G̃n,

where W̃n×n is submatrix of W̃n×(n+2) by deleting the first and last columns, and

G̃n are obtained from Fn by using the boundary values.
As an example, we choose a = 0, b = 1, and u(y) = y2(1 − y2) in (4) and the

right-hand side term can be determined accordingly by using the definition (2).
We will investigate the truncation errors and the solution errors for both schemes.
For example, for our proposed scheme, the truncation error is the error of the
quadrature rule Lhu(xi), and the solution error is measured by

∥Un −Uh
n∥∞ = max

1≤i≤n
|u(xi)− ui|.

Numerical results for the modified rule L̃hu(xi) and the collocation scheme (40)
are presented in Tables 1 - 3, from which we observe that: (1) no matter where
the singular point xi is located at, the truncation errors behave at the same level
and are approximately O(h2−2s) for any s, which agrees well with the estimate in
Remark 2; (2) the solution error also approximately reach O(h2−2s) for any s.

Table 1. Numerical results on the modified rule L̃hu(xi) and the
collocation scheme (40) with s = 1/4.

n |L̃u(xn+1
2
)− L̃hu(xn+1

2
)| |L̃u(xn)− L̃hu(xn)| ∥Un − Ũh

n∥∞
Value Conv. Rate Value Conv. Rate Value Conv. Rate

127 2.901e-04 - 7.493e-04 - 2.747e-05 -

255 9.663e-05 1.586 2.625e-04 1.513 9.153e-06 1.586

511 3.268e-05 1.564 9.160e-05 1.519 3.099e-06 1.562

1023 1.118e-05 1.547 3.197e-05 1.518 1.062e-06 1.545

2047 3.860e-06 1.534 1.118e-05 1.516 3.671e-07 1.532
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Table 2. Numerical results on the modified rule L̃hu(xi) and the
collocation collocation scheme (40) with s = 1/2.

n |L̃u(xn+1
2
)− L̃hu(xn+1

2
)| |L̃u(xn)− L̃hu(xn)| ∥Un − Ũh

n∥∞
Value Conv. Rate Value Conv. Rate Value Conv. Rate

127 6.626e-03 - 1.393e-02 - 5.303e-04 -

255 3.293e-03 1.009 7.083e-03 0.976 2.626e-04 1.014

511 1.642e-03 1.004 3.568e-03 0.989 1.307e-04 1.006

1023 8.195e-04 1.002 1.790e-03 0.995 6.523e-05 1.003

2047 4.094e-04 1.001 8.964e-04 0.998 3.258e-05 1.001

Table 3. Numerical results on the modified rule L̃hu(xi) and the
collocation scheme (40) with s = 3/4.

n |L̃u(xn+1
2
)− L̃hu(xn+1

2
)| |L̃u(xn)− L̃hu(xn)| ∥Un − Ũh

n∥∞
Value Conv. Rate Value Conv. Rate Value Conv. Rate

127 1.676e-01 - 3.293e-01 - 7.183e-03 -

255 1.184e-01 0.501 2.381e-01 0.468 4.918e-03 0.547

511 8.373e-02 0.500 1.702e-01 0.484 3.403e-03 0.531

1023 5.920e-02 0.500 1.210e-01 0.492 2.370e-03 0.522

2047 4.186e-02 0.500 8.582e-02 0.496 1.658e-03 0.515

Numerical results for the ultimate rule Lhu(xi) and the proposed collocation
scheme (28) are given in Tables 4 - 6, from which we can clearly see that:

(1) when the singular point xi is located at the middle point of (a, b), i.e.,
i = n+1

2 , the truncation error is approximately O(h3) for s = 1/4 and

s = 1/2 , and O(h5/2) for s = 3/4. This agrees well with the estimate in
Theorem 2, because in this case the factor η(xi) =

b−a
2 becomes a constant.

(2) when the singular point xi is very close to one of the end-points of (a, b),
and here we choose i = n, the truncation error is approximately O(h3−2s)
for all s. This also agrees well with the estimate in Theorem 2 due to the
factor η(xn) = h in this case.

(3) the solution errors can approximately reach O(h3) when s ≤ 1/2 and
O(h4−2s) when s > 1/2. Comparing the errors in last three columns in
Tables 4 - 6 we find an interesting result: although the truncation errors
are effected by the factor η(xi), the minimum distance between the singular
point xi and the endpoints, the solution errors do not. All of these agree
well with the estimate in Theorem 3.

5. Concluding remarks

In this paper, we start with a nodal-type trapezoidal rule discussed in [21], and
establish its error expansion analysis. Then a new nodal-type quadrature rule
with higher order accuracy is proposed with subtle error analysis being obtained.
Based on this rule, a new collocation scheme is constructed to solve certain finite-
part integral equation, and optimal error estimate for the scheme is also rigorously
obtained. An interesting phenomenon for this collocation scheme is that although
its truncation error is affected by the factor η(xi), the solution error does not.
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Table 4. Numerical results on the ultimate rule Lhu(xi) and the
collocation scheme (28) with s = 1/4.

n |Lu(xn+1
2
)− Lhu(xn+1

2
)| |Lu(xn)− Lhu(xn)| ∥Un −Uh

n∥∞
Value Conv. Rate Value Conv. Rate Value Conv. Rate

127 1.155e-06 3.832e-06 1.529e-07

255 1.512e-07 2.933 7.505e-07 2.352 2.011e-08 2.926

511 1.952e-08 2.953 1.419e-07 2.403 2.606e-09 2.948

1023 2.496e-09 2.967 2.623e-08 2.435 3.341e-10 2.964

2047 3.170e-10 2.977 4.781e-09 2.456 4.252e-11 2.974

Table 5. Numerical results on the ultimate rule Lhu(xi) and the
collocation scheme (28) with s = 1/2.

n |Lu(xn+1
2
)− Lhu(xn+1

2
)| |Lu(xn)− Lhu(xn)| ∥Un −Uh

n∥∞
Value Conv. Rate Value Conv. Rate Value Conv. Rate

127 4.234e-06 2.533e-05 5.822e-07

255 6.115e-07 2.792 6.721e-06 1.914 8.540e-08 2.769

511 8.674e-08 2.818 1.734e-06 1.954 1.227e-08 2.799

1023 1.213e-08 2.838 4.409e-07 1.976 1.735e-09 2.822

2047 1.678e-09 2.854 1.112e-07 1.987 2.422e-10 2.841

Table 6. Numerical results on the ultimate rule Lhu(xi) and the
collocation scheme (28) with s = 3/4.

n |Lu(xn+1
2
)− Lhu(xn+1

2
)| |Lu(xn)− Lhu(xn)| ∥Un −Uh

n∥∞
Value Conv. Rate Value Conv. Rate Value Conv. Rate

127 3.330e-05 1.800e-04 2.526e-06

255 6.025e-06 2.466 6.875e-05 1.389 4.629e-07 2.448

511 1.082e-06 2.477 2.522e-05 1.447 8.395e-08 2.463

1023 1.935e-07 2.484 9.079e-06 1.474 1.512e-08 2.474

2047 3.448e-08 2.489 3.239e-06 1.487 2.707e-09 2.481

Analysis in Theorem 3 show that the nice property (35) of the stiffness matrix can
amend the influence of the truncation error on the solution error. Finally, numerical
experiments are also performed to verify the theoretical results.

Acknowledgments

This work was partially supported by the National Key Research and Develop-
ment Program of China under grant number 2017YFC0403301, by the National
Natural Science Fund of China under grant number 11671313, and by the Doctoral
Fund of Ministry of Education of China under grant number 20130141110026.

References

[1] G. Bao, W. Sun, A fast algorithm for the electromagnetic scattering from a cavity, SIAM J.
Sci. Comput., 27 (2005) 553-574.



COLLOCATION METHOD FOR HADAMARD FINITE-PART INTEGRAL EQUATION 253

[2] U. Choi, S. Kim, B. Yun, Improvement of the asymptotic behavior of the Euler-Maclaurin for-
mula for Cauchy principal value and Hadamard finite-part integrals, Int. J. Numer. Methods

Engrg., 61 (2004) 496-513.
[3] K. Diethelm, Modified compound quadrature rules for strongly singular integrals, Computing,

52 (1994) 337-354.
[4] K. Diethelm, Asymptotically sharp error bounds for a quadrature rule for Cauchy principal

value integrals based on piecewise linear interpolation, Approx. Theory Appl., 11 (1995)
78-89.

[5] T. Hasegawa, Uniform approximations to finite Hilbert transform and its derivative, J. Com-
put. Appl. Math., 163 (2004) 127-138.

[6] C. Hui, D. Shia, Evaluations of hypersingular integrals using Gaussian quadrature, Int. J.
Numer. Methods Engrg., 44 (1999) 205-214.

[7] N. Ioakimidis, On the uniform convergence of Gaussian quadrature rules for Cauchy principal

value integrals and their derivatives, Math. Comp., 44 (1985) 191-198.
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