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A SECOND-ORDER CRANK-NICOLSON METHOD FOR

TIME-FRACTIONAL PDES

MAX GUNZBURGER AND JILU WANG

Abstract. Based on convolution quadrature in time and continuous piecewise linear finite element
approximation in space, a Crank-Nicolson type method is proposed for solving a partial differential
equation involving a fractional time derivative. The method achieves second-order convergence in
time without being corrected at the initial steps. Optimal-order error estimates are derived under

regularity assumptions on the source and initial data but without having to assume regularity of
the solution.
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1. Introduction

Let Ω ⊂ Rd, d ∈ {1, 2, 3}, denote a convex polygonal/polyhedral domain with
boundary ∂Ω, and consider the problem

∂tu(x, t)−∆∂1−α
t u(x, t) = f(x, t) (x, t) ∈ Ω× R+,

∂1−α
t u(x, t) = 0 (x, t) ∈ ∂Ω× R+,

u(x, 0) = v(x) x ∈ Ω,

(1)

where f(x, t) denotes a given source function and v(x) given initial condition. The
operator ∆ : D(∆) → L2(Ω) denotes the Laplacian, defined on the domain D(∆) =
{ϕ ∈ H1

0 (Ω) : ∆ϕ ∈ L2(Ω)}, and ∂1−α
t u denotes the left-sided Caputo fractional

time derivative of order 1− α ∈ (0, 1), defined by (c.f. [11, pp. 91])

∂1−α
t u(x, t) :=

1

Γ(α)

∫ t

0

(t− s)α−1 ∂u(x, s)

∂s
ds,(2)

where Γ(s) :=
∫∞
0

ts−1e−tdt denotes the Euler gamma function. We refer interested
readers to [15, 21] for the regularity of solutions to (1) and its applications.

A number of numerical methods have been developed in the literature for solving
PDE problems involving a fractional time derivative [3, 7, 12, 13, 14, 16, 19], among
which the use of convolution quadrature (CQ) [12, 13] becomes more and more
popular due to its excellent stability property and ease of implementation.

One of the main difficulties encountered when solving fractional evolution PDEs
such as (1) is the low regularity of the solution in time (even with smooth initial da-
ta), which causes severe reduction of the convergence rates of high-order numerical
schemes. In [3], Cuesta et al. overcame this difficulty by correcting the numer-
ical scheme at the starting time step, which yielded second-order convergence of
the numerical solutions based on certain regularity assumptions on the source and
initial data. This idea was extended to the case 0 < α < 1 in [7] and [9], where
second-order BDF and Crank-Nicolson type methods were proposed, respectively,
for solving an equivalent formulation of (1). The schemes generally yield first-order
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convergence of the numerical solutions, but can be restored to second-order by cor-
recting the schemes at several starting time steps. Of course, if a non-uniform mesh
is used for time discretization, then the second-order convergence can be achieved
without correction at the starting steps [16].

The models considered in [3, 7, 9, 16] are closely connected to (1), but they have
different smoothing properties. As a result, the numerical schemes proposed in these
previous works can not be applied directly to problem (1). In this paper, we develop
a Crank-Nicolson scheme for problem (1) based on CQ in time and a continuous
piecewise linear finite element method (FEM) in space. Inspired by [9], we combine
the backward Euler CQ with a θ-type method for approximating ∆∂1−α

t u, and
use the standard backward Euler method for approximating ∂tu. Unlike [9], which
approximates the equation at t = tn − ατ

2 , our method approximates the equation
at t = tn − τ

2 . The numerical method proposed in this paper is the only existing
second-order method for (1) that does not require correction at the starting time
steps.

For given initial data v ∈ L2(Ω) and source f ∈ W 2,1(0, T ;L2(Ω)), we prove the
following error estimate:

∥uh(tn)− Un
h ∥ ≤ Cτ2

(
t−1
n ∥f(0)∥+ ∥f ′(0)∥+

∫ tn

0

∥f ′′(s)∥ds
)
,(3)

where uh and Un
h denote the semidiscrete and fully discrete Galerkin finite element

solutions, respectively. Here and below, for simplicity, we denote uh(t) and f(t) by
uh(x, t) and f(x, t), respectively. The theoretical analysis is based on integral rep-
resentations of uh and Un

h obtained by means of Laplace transform and generating
function, a technique originating in [12, 13] and which proved to be powerful in
[3, 8, 10, 9, 14, 17]. Numerical examples are presented to illustrate the convergence
rate of the proposed method.

The rest of the paper is organized as follows. In Section 2, we present the fully
discrete Crank-Nicolson Galerkin FEM for time-fractional PDE (1) and then state
our main theoretical results. In Section 3, we prove optimal convergence rate for
the approximate solution in time by using its integral representation and estimates
of the resolvent operator. Numerical results are given in Section 4 to illustrate
the theoretical analyses. Throughout this paper, we denote by C, with/without a
subscript, a generic constant independent of h, n, and τ , which could be different
at different occurrences.

2. The main results

In this section, we present the numerical method for approximating the solutions
of (1) and state the main result of this paper.

2.1. Semidiscrete Galerkin FEM. We first only consider the case of discretiza-
tion in space. 2

Let Th be a quasi-uniform triangulation of the domain Ω into d-dimensional
simplexes, denoted by πh, with a mesh size h (0 < h < h0). A continuous piecewise
linear finite element space Xh over the triangulation Th is defined by

Xh = {χh ∈ H1
0 (Ω) : χh|πh

is a linear function, ∀πh ∈ Th}.

Over the finite element space Xh, we define the L2 projection Ph : L2(Ω) → Xh by

(Phφ, χh) = (φ, χh) ∀χh ∈ Xh
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and define the discrete Laplacian ∆h : Xh → Xh by

(∆hφh, ϕh) = −(∇φh,∇ϕh) ∀φh, ϕh ∈ Xh.

It is well-known that the L2 projection satisfies the following standard error esti-
mates ([20])

∥Phφ∥ ≤ C∥φ∥ ∀φ ∈ L2(Ω)(4)

∥Phφ− φ∥ ≤ Ch2∥φ∥H2(Ω) ∀φ ∈ H2(Ω) ∩H1
0 (Ω)(5)

and the discrete Laplacian operator ∆h satisfies the resolvent estimate (cf. [20,
Chapter 6] and [1, Example 3.7.5 and Theorem 3.7.11])

∥(z −∆h)
−1∥ ≤ C|z|−1(6)

for any z ∈ Σθ := {z ∈ C\{0} : | arg z| ≤ θ} with θ ∈ (π/2, π). Then there exists a
constant C, which depends only on θ and α, such that

∥(zα −∆h)
−1∥ ≤ C|z|−α ∀z ∈ Σθ.(7)

With the above notations, the spatially semidiscrete Galerkin FEM for problem
(1) is to find uh(t) ∈ vh +Xh such that

(∂tuh, χh) + (∇∂1−α
t uh,∇χh) = (f, χh) ∀χh ∈ Xh(8)

with the initial condition uh(0) := vh = Phv ∈ Xh. Through the discrete Laplacian
∆h, we can rewrite the semidiscrete Galerkin FEM (8) in the following equivalent
form:

∂tuh(t)−∆h∂
1−α
t uh(t) = fh(t) ∀t > 0(9)

with uh(0) = vh and fh(t) = Phf(t). It was shown in [6, setting qh = q in Lemma
3.2] that the semidiscrete scheme (9) has second-order convergence in space. In this
paper, we focus on the error estimates for the time discretization of (9).

2.2. The Crank-Nicolson scheme. We now turn to time discretization of (9).
Because the Caputo fractional derivative satisfies

∂1−α
t uh(x, t) = ∂1−α

t (uh(x, t)− uh(x, 0)),

the equation (9) can be equivalently written as

∂t(uh(t)− vh)−∆h∂
1−α
t (uh(t)− vh) = fh(t).(10)

Let {tn = nτ}Nn=0 denote a uniform partition of the time interval [0, T ], with a
step size τ = T/N , and un = u(x, tn). We approximate the fractional derivative
∂1−α
t (uh(tn)− vh) by the backward Euler CQ (cf. [14, 18] and [9, (2.4)]):

∂̄1−α
τ (un

h − vh) :=
1

τ1−α

n∑
j=1

bn−j(u
j
h − vh), n = 1, 2, . . . , N,(11)

where the coefficients bj , j = 0, 1, 2, . . . , are determined by the power series expan-
sion

(1− ξ)1−α =
∞∑
j=0

bjξ
j ∀ ξ ∈ C such that |ξ| < 1.

For any sequence {gn}∞n=0 ∈ ℓ2(L2(Ω)), we denote the generating function of the
sequence by

g̃(ξ) =

∞∑
n=0

gnξn for ξ ∈ D,(12)
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that is an L2(Ω)-valued analytic function in the unit disk D and the limit

g̃(eiθ) = lim
r→1−

g̃(reiθ)

exists in L2(0, 2π;L2(Ω)). Then, we have

(13)

∞∑
n=0

(∂̄1−α
τ gn)ξn =

∞∑
n=0

1

τ1−α

n∑
j=0

bn−jg
jξn

= ( 1−ξ
τ )1−α

∞∑
j=0

gjξj = ( 1−ξ
τ )1−αg̃(ξ).

Besides, we define the standard backward Euler difference operator

∂̄τu
n
h :=

un
h − un−1

h

τ
, n = 1, 2, . . . , N.(14)

If the solution uh is smooth in time, then the backward Euler CQ has truncation
error O(τ), namely, ∂̄1−α

τ (un
h − vh) − ∂1−α

t uh(tn) = O(τ) at the nodes tn, n =
1, 2, . . . , N . Recently, it was observed in [2, 4, 9] that such an approximation is
O(τ2) at the shifted point t = tn − 1−α

2 τ , i.e.,

∂̄1−α
τ (un

h − vh) = ∂1−α
t uh(tn − 1−α

2 τ) +O(τ2),

which implies

∂1−α
t uh(tn − τ

2 )

= (1− α
2 )∂

1−α
t uh(tn − 1−α

2 τ) + α
2 ∂

1−α
t uh(tn−1 − 1−α

2 τ) +O(τ2)

= (1− α
2 )∂̄

1−α
τ (un

h − vh) +
α
2 ∂̄

1−α
τ (un−1

h − vh) +O(τ2).

The above result inspires us to propose the following time-stepping scheme: find
Un
h ∈ Xh such that

∂̄τ (U
n
h − vh)− (1− α

2 )∆h∂̄
1−α
τ (Un

h − vh)− α
2∆h∂̄

1−α
τ (Un−1

h − vh)

= 1
2 (f

n
h + fn−1

h )(15)

for n = 1, 2, . . . , N , with U0
h = vh and fn

h = fh(tn).
For the above Crank-Nicolson scheme, we prove the following convergence result.

Theorem 2.1. For f ∈ W 2,1(0, T ;L2(Ω)), the solutions of (9) and (15) satisfy
the estimate

∥uh(tn)− Un
h ∥ ≤ Cτ2

(
t−1
n ∥f(0)∥+ ∥f ′(0)∥+

∫ tn

0

∥f ′′(s)∥ds
)
,(16)

where the constant C is independent of h, τ , n, v, and f (but may depend on T ).

Remark 2.1. In (1), the boundary condition ∂1−α
t u(x, t) = 0 is equivalent to

u(x, t)− v(x) = 0 on ∂Ω× R+, where v(x) is the initial value.

Remark 2.2. For initial data v ∈ L2(Ω) and source f ∈ L1(0, T ;L2(Ω)), the
problem (1) admits a mild solution u ∈ C([0, T ];L2(Ω)) [5, Appendix A]. When the
Caputo derivative of order α ∈ (0, 1) is used in (1) with f = 0, uh(tn) = Un

h = vh
for n = 0, 1, . . . , N , and thus the error estimate above does not depend on the
regularity of the initial data. This is different from the case α ∈ (1, 2) considered
in [3, 14] and also different from the case of using Riemann-Liouville derivative in
(1).
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3. Proof of Theorem 2.1

In this section, we establish the error estimates of the Crank-Nicolson scheme
(15). The theoretical analysis is based on an integral representation of the solutions,
which will be first presented in the following subsection.

3.1. Solution representations. In this subsection, we derive the integral repre-
sentations of the semidiscrete solution ωh(t) := uh(t) − vh and the fully discrete
solution Wn

h := Un
h − vh, respectively.

Clearly, it follows from (10) that the function ωh satisfies

∂tωh(t)−∆h∂
1−α
t ωh(t) = fh(t)

with ωh(0) = 0. By applying the Laplace transform, we have

zω̂h(z)− z1−α∆hω̂h(z) = f̂h(z),

where z is a complex number and ω̂h(z) denotes the Laplace transform of ωh(t),

i.e., ω̂h(z) =
∫ +∞
0

e−ztωh(t)dt. Taking the inverse Laplace transform, the function
ωh(t) can be represented as

ωh(t) =
1

2πi

∫
Γθ,κ

eztzα−1(zα −∆h)
−1f̂h(z)dz

=
1

2πi

∫
Γθ,κ

eztK(z)f̂h(z)dz,(17)

with the kernel function defined by K(z) = zα−1(zα −∆h)
−1. Here, Γθ,κ denotes

a contour on the complex plane defined by

Γθ,κ = {z ∈ C : |z| = κ, | arg z| ≤ θ} ∪ {z ∈ C : z = ρe±iθ, ρ ≥ κ}.(18)

The angle θ above can be any angle such that π/2 < θ < min(π, π/α) so that, for all
z to the right of Γθ,κ in the complex plane, zα ∈ Σαθ := {z ∈ C\{0} : | arg zα| ≤ αθ}
with αθ < π.

In the following, by means of the discrete analogues of Laplace transform and
generating function, we derive an integral representation of the fully discrete solu-
tion Wn

h over a truncated contour Γτ
θ,κ defined by

Γτ
θ,κ := {z ∈ Γθ,κ : |Im(z)| ≤ π/τ}.(19)

Proposition 3.1. Let K(z) := zα−1(zα −∆h)
−1 and Gn

h := fn
h − f0

h. Then, the
fully discrete solution Wn

h can be represented by

Wn
h =

1

2πi

∫
Γτ
θ,κ

eztn
(
µ(e−zτ )βτ (e

−zτ )−1K(βτ (e
−zτ ))f0

h

+K(βτ (e
−zτ ))γ(e−zτ )G̃h(e

−zτ )τ

)
dz(20)

with integration over the truncated contour Γτ
θ,κ defined in (19) (oriented with in-

creasing imaginary parts), and the parameters κ and θ satisfying the conditions of
Lemma 3.1 below. In the representation (20), the functions βτ (ξ), µ(ξ), and γ(ξ)
are given by

βτ (ξ) =
1− ξ

τ(1− α
2 + α

2 ξ)
1/α

, µ(ξ) =
ξ

(1− α
2 + α

2 ξ)
2/α

, γ(ξ) =
1
2 + 1

2ξ

(1− α
2 + α

2 ξ)
1/α

,

(21)

respectively.
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Proof. The scheme (15) shows that the fully discrete solution Wn
h satisfies

∂̄τW
n
h − (1− α

2 )∆h∂̄
1−α
τ Wn

h − α
2 ∂̄

1−α
τ Wn

h = 1
2 (f

n
h + fn−1

h )(22)

for n = 1, 2, . . . , N , with W 0
h = 0. Without loss of generality, we can assume

fn
h = f0

h (i.e., Gn
h = 0) for n > N = T/τ . Otherwise, we can define fn

h := f0
h for

n > N . It is seen from (22) that such definition does not affect the value of Wn
h

for n = 1, 2, . . . , N . Then, by multiplying (22) by ξn on both sides and summing
up the results for n = 1, 2, . . . , we get

∞∑
n=1

ξn∂̄τW
n
h −

∞∑
n=1

[
(1− α

2 )∆h∂̄
1−α
τ Wn

h + α
2∆h∂̄

1−α
τ Wn−1

h

]
ξn

=
∞∑

n=1

1
2 (f

n
h + fn−1

h )ξn.(23)

Noting that W 0
h = 0, by the discrete convolution rule, we have

∞∑
n=1

ξn∂̄τW
n
h = τ−1(1− ξ)W̃h(ξ),

∞∑
n=1

[
(1− α

2 )∆h∂̄
1−α
τ Wn

h + α
2∆h∂̄

1−α
τ Wn−1

h

]
ξn

= (1− α
2 + α

2 ξ)τ
−(1−α)(1− ξ)1−α∆hW̃h(ξ),

and
∞∑

n=1

1
2 (f

n
h + fn−1

h )ξn =
∞∑

n=1

1
2 (G

n
h +Gn−1

h )ξn +
n∑

n=1

f0
hξ

n

= ( 12 + 1
2ξ)G̃h(ξ) + f0

hξ(1− ξ)−1.

Since |ξ| < 1, βτ (ξ)
α ∈ Σθ′ for some θ′ ∈ (π/2, π) (cf. [8, proof of Theorem 6.1]).

By the resolvent estimate (7), substituting the above results into (23) leads to

W̃h(ξ) = (βτ (ξ)
α −∆h)

−1

(
τ1−αξ

(1− ξ)2−α(1− α
2 + α

2 ξ)
f0
h

+
τ1−α( 12 + 1

2ξ)

(1− ξ)1−α(1− α
2 + α

2 ξ)
G̃h(ξ)

)
=

1

τ
µ(ξ)βτ (ξ)

−1K(βτ (ξ))f
0
h +K(βτ (ξ))γ(ξ)G̃h(ξ).(24)

We note that W̃h(ξ) is analytic with respect to ξ in a neighborhood of the origin.
Hence, using Cauchy’s integral formula, we derive

Wn
h =

1

2πi

∫
|ξ|=ρ

ξ−n−1W̃h(ξ)dξ =
τ

2πi

∫
Γτ
ρ

eztnW̃h(e
−zτ )dz

for ρ ∈ (0, 1), where the second equality is obtained by the change of variables
ξ = e−zτ , and Γτ

ρ denotes the segment of a vertical line defined by

Γτ
ρ := {z = − ln(ρ)/τ + iy : y ∈ R and |y| ≤ π/τ}.(25)

Lemma 3.1 below shows that the operator (βτ (e
−zτ )α −∆h)

−1 is analytic with
respect to z in the region Σ ∈ C enclosed by the curves Γτ

ρ , Γτ
θ,κ, and the two

lines R ± iπ/τ (oriented from left to right). Consequently, it is easily seen that

eztnW̃h(e
−zτ ) is analytic with respect to z ∈ Σ. Furthermore, it is straightforward
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to prove that the values of eztnW̃h(e
−zτ ) on the two lines R± iπ/τ coincide. Thus,

by using Cauchy’s theorem, we get

Wn
h =

τ

2πi

∫
Γτ
ρ

eztnW̃h(e
−zτ )dz

=
τ

2πi

∫
Γτ
θ,κ

eztnW̃h(e
−zτ )dz +

τ

2πi

∫
R+ iπ

τ

eztnW̃h(e
−zτ )dz

− τ

2πi

∫
R− iπ

τ

eztnW̃h(e
−zτ )dz

=
τ

2πi

∫
Γτ
θ,κ

eztnW̃h(e
−zτ )dz,(26)

with which, the desired result (20) follows immediately. �

In (17) and (20), the integral representations of the semidiscrete solution and
the fully discrete numerical solution have been derived, respectively. Before we
prove the error estimates of the numerical scheme (15), we introduce several useful
lemmas in the following.

Lemma 3.1. ([9, Lemma 3.3]) For α ∈ (0, 1), let ϕ ∈ (απ/2, π) be fixed. Then
there exists a constant κ0 > 0 (independent of τ) such that for κ ∈ (0, κ0] and
θ ∈ (π/2, π/2 + κ0], we have

βτ (e
−zτ )α ∈ Σϕ ∀z ∈ Γτ

θ,κ ∪ Σπ/2/{0}.(27)

Moreover, the operator (βτ (e
−zτ )α−∆h)

−1 is analytic with respect to z in the region
enclosed by the curves Γτ

ρ, Γ
τ
θ,κ and R± iπ/τ and satisfies

∥(βτ (e
−zτ )α −∆h)

−1∥ ≤ C|βτ (e
−zτ )|−α ∀z ∈ Γτ

θ,κ,(28)

where the constant C is independent of τ (but may depend on ϕ).

Lemma 3.2. Let α ∈ (0, 1) be given, and βτ (ξ), µ(ξ), γ(ξ) be defined as in (21).
Then there exists a constant κ1 > 0 (independent of τ) such that for κ ∈ (0, κ1]
and θ ∈ (π/2, π/2 + κ1], we have for any z ∈ Γτ

θ,κ,

|µ(e−zτ )| ≤ C(29)

|γ(e−zτ )| ≤ C(30)

|µ(e−zτ )− 1| ≤ Cτ2|z|2(31)

|γ(e−zτ )− 1| ≤ Cτ2|z|2(32)

and

C0|z| ≤ |βτ (e
−zτ )| ≤ C1|z|(33)

|βτ (e
−zτ )− z| ≤ Cτ2|z|3(34)

|βτ (e
−zτ )α − zα| ≤ Cτ2|z|2+α,(35)

where the constants C0, C1 and C are independent of τ , θ and κ (but may depend
on κ1).

Proof. The proof of the estimates (33)-(35) can be found in [9, Lemma 3.4]. By
using Taylor expansion, the estimates (29)-(32) can be easily obtained. �
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3.2. Error analysis of the numerical scheme. In the homogeneous case f ≡ 0,
we have uh(tn) = Un

h = vh for n = 0, 1, . . . , N , and thus Theorem 2.1 follows
immediately. Therefore, it remains to consider the inhomogeneous case f ̸= 0 with
zero initial v = 0. Using Taylor expansion, we have

fh(t) = fh(0) + tf ′
h(0) + t ∗ f ′′

h ,(36)

where ∗ denotes the convolution. By linearity, it suffices to consider the three cases
fh = fh(0), tf

′
h(0) and t ∗ f ′′

h , separately.
We begin with error estimates for the case fh(t) = fh(0) =: f0

h .

Lemma 3.3. Let v = 0, and uh(t) and Un
h denote the solutions of (9) and (15)

with the source term fh(t) = f0
h and fn

h = f0
h, respectively. For f0

h ∈ L2(Ω), we
have

∥uh(tn)− Un
h ∥ ≤ Cτ2t−1

n ∥f0
h∥,(37)

where the constant C is independent of τ .

Proof. Let κ0 and κ1 be the constants defined in Lemma 3.1 and Lemma 3.2,
respectively. By choosing κ = min(κ0, κ1) and θ = π

2 + κ, (17) and (20) yield

uh(tn) =
1

2πi

∫
Γθ,κ

eztnzα−2(zα −∆h)
−1f0

hdz (here we use f̂0
h(z) =

1
z f

0
h)(38)

Un
h =

1

2πi

∫
Γτ
θ,κ

eztnµ(e−zτ )βτ (e
−zτ )α−2(βτ (e

−zτ )α −∆h)
−1f0

hdz.(39)

Therefore, we have

uh(tn)− Un
h

=
1

2πi

∫
Γτ
θ,κ

eztn [zα−2(zα −∆h)
−1 − µ(e−zτ )βτ (e

−zτ )α−2(βτ (e
−zτ )α −∆h)

−1]f0
hdz

+
1

2πi

∫
Γθ,κ/Γτ

θ,κ

eztnzα−2(zα −∆h)
−1f0

hdz

=: I1 + I2.

Clearly, the analysis of I1 is based on the error bound of the kernel zα−2(zα −
∆h)

−1 to µ(e−zτ )βτ (e
−zτ )α−2(βτ (e

−zτ )α −∆h)
−1 along the contour Γτ

θ,κ. Hence,
we first prove the following result:

∥zα−2(zα −∆h)
−1 − µ(e−zτ )βτ (e

−zτ )α−2(βτ (e
−zτ )α −∆h)

−1∥ ≤ Cτ2(40)

for any z ∈ Γτ
θ,κ. By the triangle inequality, we have

∥zα−2(zα −∆h)
−1 − µ(e−zτ )βτ (e

−zτ )α−2(βτ (e
−zτ )α −∆h)

−1∥
≤ |µ(e−zτ )− 1|∥zα−2(zα −∆h)

−1∥
+ |µ(e−zτ )|∥zα−2(zα −∆h)

−1 − βτ (e
−zτ )α−2(βτ (e

−zτ )α −∆h)
−1∥

=: A1 +A2.

With Lemma 3.2 and the resolvent estimate (7), it shows

A1 ≤ Cτ2|z|2|z|α−2|z|−α ≤ Cτ2.
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Since

|βτ (e
−zτ )α−2 − zα−2|

≤ |z2βτ (e
−zτ )α − βτ (e

−zτ )2zα||βτ (e
−zτ )|−2|z|−2

≤
(
|z2(βτ (e

−zτ )α − zα)|+ |(z2 − βτ (e
−zτ )2)zα|

)
|βτ (e

−zτ )|−2|z|−2

≤ Cτ2|z|α

and ∥(zα − ∆h)
−1 − (βτ (e

−zτ )α − ∆h)
−1∥ ≤ Cτ2|z|2−α (cf. [9, the estimate of

(3.20)]), we have

A2 ≤ |βτ (e
−zτ )α−2 − zα−2|∥(zα −∆h)

−1∥
+ |βτ (e

−zτ )α−2|∥(zα −∆h)
−1 − (βτ (e

−zτ )α −∆h)
−1∥

≤ Cτ2.

Combining the estimates of A1 and A2 yields (40).
With (40) and choosing κ = 1/tn, we derive

∥I1∥ ≤ Cτ2∥f0
h∥

(∫ π
τ sin θ

κ

ertn cos θdr +

∫ θ

−θ

eκtn| cosφ|κdφ

)
≤ Cτ2∥f0

h∥(t−1
n + κ)

≤ Cτ2t−1
n ∥f0

h∥.

Furthermore, since ∥zα−2(zα −∆h)
−1∥ ≤ C|z|α−2|z|−α ≤ C|z|−2, we get

∥I2∥ ≤ C∥f0
h∥

∫ ∞

π
τ sin θ

ertn cos θr−2dr

≤ Cτ2∥f0
h∥

∫ ∞

0

ertn cos θdr (here we use r ≥ π
τ sin θ )

≤ Cτ2t−1
n ∥f0

h∥.

This completes the proof of Lemma 3.3. �

Next, we consider the error estimates for the source term of the form fh(t) =
tf ′

h(0).

Lemma 3.4. Let v = 0, and uh(t) and Un
h denote the solutions of (9) and (15) with

the source term fh = tf ′
h(0) and fn

h = tnf
′
h(0), respectively. For f ′

h(0) ∈ L2(Ω), we
have

∥uh(tn)− Un
h ∥ ≤ Cτ2∥f ′

h(0)∥,(41)

where the constant C is independent of τ .

Proof. Again, let κ0 and κ1 be the constants defined in Lemma 3.1 and Lemma
3.2, respectively. By choosing κ = min(κ0, κ1) and θ = π

2 + κ, it follows from (17)
and (20) that

uh(tn) =
1

2πi

∫
Γθ,κ

eztnzα−3(zα −∆h)
−1f ′

h(0)dz (here use f̂h(z) =
1
z2 f

′
h(0))

(42)

Un
h =

1

2πi

∫
Γτ
θ,κ

eztn
τ2e−zτ

(1− e−zτ )2
βτ (e

−zτ )α−1(βτ (e
−zτ )α −∆h)

−1γ(e−zτ )f ′
h(0)dz.

(43)
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Then, we have

uh(tn)− Un
h

=
1

2πi

∫
Γτ
θ,κ

eztn
(
zα−3(zα −∆h)

−1

− τ2e−zτ

(1− e−zτ )2
βτ (e

−zτ )α−1(βτ (e
−zτ )α −∆h)

−1γ(e−zτ )

)
f ′
h(0)dz

+
1

2πi

∫
Γθ,κ/Γτ

θ,κ

eztnzα−3(zα −∆h)
−1f ′

h(0)dz

=: J1 + J2.

Similarly as the proof of Lemma 3.3, we shall show below the error estimates of
the kernels:∥∥∥∥zα−3(zα −∆h)

−1 − τ2e−zτ

(1− e−zτ )2
βτ (e

−zτ )α−1(βτ (e
−zτ )α −∆h)

−1γ(e−zτ )

∥∥∥∥
≤ cτ2|z|−1(44)

for any z ∈ Γτ
θ,κ. By the triangle inequality, we have∥∥∥∥zα−3(zα −∆h)

−1 − τ2e−zτ

(1− e−zτ )2
βτ (e

−zτ )α−1(βτ (e
−zτ )α −∆h)

−1γ(e−zτ )

∥∥∥∥
≤ |zα−1 − βτ (e

−zτ )α−1||z|−2∥(zα −∆h)
−1∥

+ |βτ (e
−zτ )|α−1|z|−2∥(zα −∆h)

−1 − (βτ (e
−zτ )α −∆h)

−1∥
+ |βτ (e

−zτ )|α−1|z|−2∥(βτ (e
−zτ )α −∆h)

−1∥|1− γ(e−zτ )|

+ |βτ (e
−zτ )|α−1∥(βτ (e

−zτ )α −∆h)
−1∥|γ(e−zτ )|

∣∣∣∣z−2 − τ2e−zτ

(1− e−zτ )2

∣∣∣∣
=: D1 +D2 +D3 +D4.

Now, we analyse Di, 1 ≤ i ≤ 4, respectively. Since

|βτ (e
−zτ )α−1 − zα−1|

≤ |zβτ (e
−zτ )α − βτ (e

−zτ )zα||βτ (e
−zτ )|−1|z|−1

≤
(
|z||βτ (e

−zτ )α − zα|+ |z − βτ (e
−zτ )||z|α

)
|βτ (e

−zτ )|−1|z|−1

≤ Cτ2|z|α+1,

it turns out

D1 ≤ Cτ2|z|α+1|z|−2|z|α ≤ Cτ2|z|−1.

By the resolvent estimate (7), Lemmas 3.1 and 3.2, we further have

D2 ≤ C|z|α−1|z|−2τ2|z|2−α ≤ Cτ2|z|−1,

D3 ≤ C|z|α−1|z|−2|z|−ατ2|z|2 ≤ Cτ2|z|−1.

To obtain the estimate of D4, we note that |(1− e−zτ )2ezτ τ−2 − z2| ≤ Cτ2|z|4 (cf.
[9, Lemma 3.11]) and |(1 − e−zτ )2ezτ τ−2z2| ≥ c|z|4 (straightforward to prove by
applying the same method as used in (C.1) in [5]), which imply∣∣∣∣z−2 − τ2e−zτ

(1− e−zτ )2

∣∣∣∣ ≤ Cτ2.
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Using Lemma 3.2, we have

D4 ≤ C|βτ (e
−zτ )|α−1|βτ (e

−zτ )|−ατ2 ≤ Cτ2|z|−1.

Combining the estimates of Di, 1 ≤ i ≤ 4, results in (44).
With the estimate (44) and choosing κ = 1/tn, we have

∥J1∥ ≤ Cτ2∥f ′
h(0)∥

(∫ π
τ sin θ

κ

ertn cos θr−1dr +

∫ θ

−θ

eκtn| cosφ|dφ

)
≤ Cτ2∥f ′

h(0)∥.

By the resolvent estimate (7), it follows that

∥J2∥ ≤ C∥f ′
h(0)∥

∫ ∞

π
τ sin θ

ertn cos θr−3dr

≤ Cτ2∥f ′
h(0)∥

∫ ∞

π
τ sin θ

ertn cos θr−1dr (here we use r ≥ π
τ sin θ )

≤ Cτ2∥f ′
h(0)∥.

The proof of Lemma 3.4 is complete. �

Finally, we present the error estimates for the source term of the form fh(t) =
t ∗ f ′′

h .

Lemma 3.5. Let v = 0, and uh(t) and Un
h denote the solutions of (9) and (15)

with the source term fh(t) = t ∗ f ′′
h and fn

h = t ∗ f ′′
h , respectively. For fh ∈

W 2,1(0, T ;L2(Ω)), we have

∥uh(tn)− Un
h ∥ ≤ Cτ2

∫ tn

0

∥f ′′
h (s)∥ds,(45)

where the constant C is independent of τ .

Proof. In this part, we still choose κ = min(κ0, κ1) and θ = π
2 +κ. Similarly as the

analysis in [9], we introduce an operator E(t) defined by

E(t) = 1

2πi

∫
Γθ,κ

eztzα−1(zα −∆h)
−1dz.(46)

With such an operator and using the Laplace transform of the convolution quad-
rature, it follows from (17) that the semidiscrete Galerkin solution uh(tn) can be
represented by

uh(tn) = (E ∗ fh)(tn) = (E ∗ (t ∗ f ′′
h ))(tn) = ((E ∗ t) ∗ f ′′

h )(tn).(47)

By using the Laplace transform of the convolution quadrature again, it is seen from
(46) that

(E ∗ t)(t) = 1

2πi

∫
Γθ,κ

eztzα−3(zα −∆h)
−1dz.(48)

To establish the error estimate (45) for the source term t ∗ f ′′
h , we shall below

derive a similar representation of the fully discrete solution Un
h as uh(tn) in (47).

Since βτ (ξ)
α−1(βτ (ξ)

α−∆h)
−1γ(ξ) is analytic with respect to ξ in a neighborhoood

of the origin, it can be represented by a generating function, i.e.,

βτ (ξ)
α−1(βτ (ξ)

α −∆h)
−1γ(ξ) =

∞∑
n=0

En
τ ξ

n.(49)
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Applying the similar method as used in Proposition 3.1 (by Cauchy’s integral for-
mula and Cauchy’s theorem), it is easy to see that

En
τ =

τ

2πi

∫
Γτ
θ,κ

eztnβτ (e
−zτ )α−1(βτ (e

−zτ )α −∆h)
−1γ(e−zτ )dz.

Since v = 0 and by (24), we obtain

Ũh(ξ) = (βτ (ξ)
α −∆h)

−1 τ1−α( 12 + 1
2ξ)

(1− ξ)1−α(1− α
2 + α

2 ξ)
f̃h(ξ)

= βτ (ξ)
α−1(βτ (ξ)

α −∆h)
−1γ(ξ)f̃h(ξ)

=

( ∞∑
n=0

En
τ ξ

n

)( ∞∑
n=0

fh(tn)ξ
n

)

=

∞∑
n=0

Un
h ξ

n,(50)

where we have used (49) and the definition of generating function, i.e., f̃h(ξ) =∑∞
n=0 fh(tn)ξ

n. The above last equality further implies

Un
h =

n∑
j=0

En−j
τ fh(tj).

Let Eτ (t) =
∑∞

n=0 En
τ δtn−ϵ(t) with δtn−ϵ denoting the Dirac delta function concen-

trated at tn − ϵ and ϵ an arbitrary small constant. Then, we have

Un
h = lim

ϵ→0
(Eτ ∗ fh)(tn) = lim

ϵ→0
(Eτ ∗ (t ∗ f ′′

h ))(tn) = lim
ϵ→0

((Eτ ∗ t) ∗ f ′′
h )(tn).(51)

From (47) and (51), it suffices to analyse the error estimates of (E − Eτ ) ∗ t. By
using the definition of Eτ (t), it clearly shows limϵ→0(Eτ ∗ t)(tn) =

∑n
j=0 En−j

τ tj .

Hence, with (49), we get the following generating function
∞∑

n=0

lim
ϵ→0

(Eτ ∗ t)(tn)ξn =
∞∑

n=0

n∑
j=0

En−j
τ tjξ

n =

( ∞∑
n=0

En
τ ξ

n

)( ∞∑
n=0

tnξ
n

)
= βτ (ξ)

α−1(βτ (ξ)
α −∆h)

−1γ(ξ)
τξ

(1− ξ)2
.

Again, using the similar method given in Proposition 3.1 (by Cauchy’s integral
formula and Cauchy’s theorem), it shows that

lim
ϵ→0

(Eτ ∗ t)(tn)

=
1

2πi

∫
Γτ
θ,κ

eztn
τ2e−zτ

(1− e−zτ )2
βτ (e

−zτ )α−1(βτ (e
−zτ )α −∆h)

−1γ(e−zτ )dz.(52)

Applying the same technique as used in Lemma 3.4, we obtain∥∥∥ lim
ϵ→0

((E − Eτ ) ∗ t)(tn)
∥∥∥ ≤ Cτ2.(53)

Next, we prove that the same result still holds for any t ∈ (tn−1, tn), i.e.,∥∥∥ lim
ϵ→0

((E − Eτ ) ∗ t)(t)
∥∥∥ ≤ Cτ2 ∀t ∈ (tn−1, tn).(54)

To this end, we take the Taylor expansion of E(t) at t = tn:

(E ∗ t)(t) = (E ∗ t)(tn) + (t− tn)(E ∗ 1)(tn) +
∫ t

tn

(t− s)E(s)ds.
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Such expansion also holds for (Eτ ∗ t)(t). Thus, to derive the estimate (54), we first
prove the following result ∥∥∥ lim

ϵ→0
((E − Eτ ) ∗ 1)(tn)

∥∥∥ ≤ Cτ.(55)

By using the definition of the operator E(t) in (46), we arrive at

(E ∗ 1)(t) = 1

2πi

∫
Γθ,κ

eztzα−2(zα −∆h)
−1dz.

Recalling the definition of Eτ (t) =
∑∞

n=0 En
τ δtn−ϵ(t), we have

∞∑
n=0

lim
ϵ→0

(Eτ ∗ 1)(tn)ξn =
∞∑

n=0

n∑
j=0

En−j
τ ξn =

( ∞∑
n=0

En
τ ξ

n

)( ∞∑
n=0

ξn
)

= βτ (ξ)
α−1(βτ (ξ)

α −∆h)
−1γ(ξ)

1

1− ξ
,

which implies

lim
ϵ→0

(Eτ ∗ 1)(tn) =
1

2πi

∫
Γτ
θ,κ

eztn
τ

1− e−zτ
βτ (e

−zτ )α−1(βτ (e
−zτ )α −∆h)

−1γ(e−zτ )dz.

To prove (55), we shall show below the error bound of the kernels zα−2(zα−∆h)
−1

to τ
1−e−zτ βτ (e

−zτ )α−1(βτ (e
−zτ )α −∆h)

−1γ(e−zτ ). The proof is analogous to that

of (44). By the triangle inequality, we have∥∥∥∥zα−2(zα −∆h)
−1 − τ

1− e−zτ
βτ (e

−zτ )α−1(βτ (e
−zτ )α −∆h)

−1γ(e−zτ )

∥∥∥∥
≤ |z|−1∥(zα −∆h)

−1∥|zα−1 − βτ (e
−zτ )α−1|

+ |z|−1|βτ (e
−zτ )|α−1∥(zα −∆h)

−1 − (βτ (e
−zτ )α −∆h)

−1∥
+ |z|−1|βτ (e

−zτ )|α−1∥(βτ (e
−zτ )α −∆h)

−1∥|1− γ(e−zτ )|

+ |βτ (e
−zτ )|α−1∥(βτ (e

−zτ )α −∆h)
−1∥|γ(e−zτ )|

∣∣∣∣z−1 − τ

1− e−zτ

∣∣∣∣
≤ Cτ2 + Cτ |z|−1,

where we have used |z−1 − τ(1− e−zτ )−1| ≤ Cτ . With such estimate, we derive∥∥∥ lim
ϵ→0

((E − Eτ ) ∗ 1)(tn)
∥∥∥

≤ C

∫
Γτ
θ,κ

eztn(τ2 + τ |z|−1)dz + C

∫
Γθ,κ\Γτ

θ,κ

eztn |z|−2dz

≤ C

(∫ π
τ sin θ

κ

ertn cos θ(τ2 + τr−1)dr +

∫ θ

−θ

eκtn| cosφ|(τ2κ+ τ)dφ

)
+ C

∫ ∞

π
τ sin θ

ertn cos θr−2dr

≤ C

(∫ π
τ sin θ

κ

ertn cos θτr−1dr + C(τ2κ+ τ)

)
(here we use τ ≤ π

r sin θ )

+ Cτ

∫ ∞

π
τ sin θ

ertn cos θr−1dr (here we use r ≥ π
τ sin θ )

≤ Cτ,
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which is (55). Finally, since ∥zα−1(zα −∆h)
−1∥ ≤ C|z|−1, it implies

∥E(t)∥ ≤ C

∫ ∞

κ

ert cos θr−1dr + C

∫ θ

−θ

eκtn| cosφdφ ≤ C,

and therefore, ∥∥∥∥ ∫ t

tn

(t− s)E(s)ds
∥∥∥∥ ≤ C

∫ tn

t

(s− t)ds ≤ Cτ2.

With ∥En
τ ∥ ≤ Cτ (straightforward to prove), we further get∥∥∥∥∫ t

tn

(t− s)Eτ (s)ds
∥∥∥∥ ≤ τ∥En

τ ∥ ≤ Cτ2.

Combining the above results yields the estimate (54). Together with (47) and (51),
the proof of Lemma 3.5 is complete. �

By using the estimate (4) and Lemmas 3.3-3.5, Theorem 2.1 follows immediately.

4. Numerical examples

In this section, we present a numerical example to illustrate the performance of
the fully discrete Crank-Nicolson scheme (15) for solving (1) in the one-dimensional
spacial domain Ω = (0, 1) up to time T = 1, with two pairs of given v and f , i.e.,

(a) v = sin(πx), f = 2et sin(πx)

(b) v = x(1− x), f = 5(1 + t1.5)x(1− x),

where the functions f in both (a) and (b) satisfy the regularity assumptions of
Theorem 2.1.

Table 1. The L2 error ∥uh(tn)− Un
h ∥ for Example (a).

α\τk 2−3 2−4 2−5 2−6 order
α = 0.25 1.626e-04 3.959e-05 9.736e-06 2.389e-06 2.030
α = 0.50 9.948e-05 2.364e-05 5.732e-06 1.396e-06 2.052
α = 0.75 8.069e-05 1.949e-05 4.760e-06 1.163e-06 2.039

Table 2. The L2 error ∥uh(tn)− Un
h ∥ for Example (b).

α\τk 2−3 2−4 2−5 2−6 order
α = 0.25 1.057e-04 2.694e-05 6.822e-06 1.705e-06 1.985
α = 0.50 8.240e-05 2.099e-05 5.306e-06 1.325e-06 1.986
α = 0.75 6.159e-05 1.574e-05 3.972e-06 9.895e-07 1.986

The problem (1) is discretized by using continuous piecewise linear finite element
in space. Since the exact solution is unknown, we solve (1) by using a much finer
mesh size h = 2−8 and a smaller time step τ = 2−9 to compute the reference
solution uh(t). Here, we only focus on the time discretization of (1) and measure
the L2 error ∥uh(tn) − Un

h ∥ for different α ∈ (0, 1). From Theorem 2.1, we might
expect ∥uh(tn) − Un

h ∥ to be O(τ2). Thus, we choose the time step τk = 2−k,
k = 3, 4, 5, 6, and take a sufficiently small mesh size h = 2−8 to avoid the effect of
spatial discretization error. The numerical results for Examples (a) and (b) at the
time t = 1 are given in Tables 1 and 2, which illustrate second-order accuracy in
time.
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[2] B. Baeumer, M. Kovács, and H. Sankaranarayanan. Higher order Grünwald approximations of
fractional derivatives and fractional powers of operators. Trans. Amer. Math. Soc., 367:813–

834, 2015.
[3] E. Cuesta, C. Lubich, and C. Palencia. Convolution quadrature time discretization of frac-

tional diffusion-wave equations. Math. Comp., 75(254):673–696, 2006.

[4] Y. Dimitrov. Numerical approximations for fractional differential equations. J. Fract. Calc.
Appl., 5(suppl. 3S):Paper no. 22, 45, 2014.

[5] M. Gunzburger, B. Li, and J. Wang. Convergence of finite element solutions of stochastic par-
tial integro-differential equations driven by the space-time white noise. arXiv:1711.01998v1,

2017.
[6] M. Gunzburger and J. Wang. Error analysis of fully discrete finite element approximations

to an optimal control problem governed by a time-fractional PDE. submitted, 2017.
[7] B. Jin, R. Lazarov, and Z. Zhou. Two fully discrete schemes for fractional diffusion and

diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput., 38(1):A146–A170,
2016.

[8] B. Jin, B. Li, and Z. Zhou. Discrete Maximal Regularity of Time-Stepping Schemes for
Fractional Evolution Equations. Numer. Math., 2017, DOI: 10.1007/s00211-017-0904-8.

[9] B. Jin, B. Li, and Z. Zhou. An Analysis of the Crank-Nicolson Method for Subdiffusion. IMA
J. Numer. Anal., 2017, DOI: 10.1093/imanum/drx019.

[10] B. Jin, B. Li, and Z. Zhou. Correction of high-order BDF convolution quadrature for fractional
evolution equations. SIAM J. Sci. Comput., 2017, in press.

[11] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo. Theory and Application of Fractional
Differential Equations. Elsecier Science B.V., Amsterdam, 2006.

[12] C. Lubich. Discretized fractional calculus. SIAM J. Math. Anal., 17(3):704–719, 1986.

[13] C. Lubich. Convolution quadrature and discretized operational calculus. I. Numer. Math.,
52(2):129–145, 1988.

[14] C. Lubich, I. H. Sloan, and V. Thomée. Nonsmooth data error estimates for approximations
of an evolution equation with a positive-type memory term. Math. Comp., 65(213):1–17,

1996.
[15] W. McLean. Regularity of solutions to a time-fractional diffusion equation. ANZIAM J.,

52:123–138, 2010.
[16] W. McLean and K. Mustapha. A second-order accurate numerical method for a fractional

wave equation. Numer. Math., 105(3):481–510, 2007.
[17] W. McLean and K. Mustapha. Time-stepping error bounds for fractional diffusion problems

with non-smooth initial data. J. Comput. Phys., 293:201–217, 2015.
[18] J. M. Sanz-Serna. A numerical method for a partial integro-differential equation. SIAM J.

Numer. Anal., 25(2):319–327, 1988.
[19] Z.-Z. Sun and X. Wu. A fully discrete scheme for a diffusion wave system. Appl. Numer.

Math., 56(2):193–209, 2006.
[20] V. Thomée. Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag,

Berlin, 2nd edition, 2006.
[21] L. Vázquez, M. P. Velasco, J. L. Vázquez-Poletti, I. M. Llorente, D. Usero, and S. Jiménez.
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