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A NEW A POSTERIORI ERROR ESTIMATE FOR THE

INTERIOR PENALTY DISCONTINUOUS GALERKIN METHOD

WEI YANG, LULING CAO, YUNQING HUANG, AND JINTAO CUI∗

Abstract. In this paper, we develop the adaptive interior penalty discontinuous Galerkin method
based on a new a posteriori error estimate for the second-order elliptic boundary-value problems.
The new a posteriori error estimate is motivated from the smoothing iteration of the m-time
Gauss-Seidel iterative method, and it is used to construct the adaptive finite element method.

The efficiency and robustness of the proposed adaptive method is demonstrated by extensive
numerical experiments.
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1. Introduction.

The finite element method (FEM) is one of the most important computational
tools in the field of science and engineering. The discontinuous Galerkin (DG)
method is an innovation, improvement and development of the FEM. Since the
DG method has advantages in parallel computing of the adaptive finite element
method (AFEM), it has been favored by researchers and gradually become one of
the important numerical methods in solving all kinds of partial differential equa-
tions. The DG method and theory have achieved fruitful results in recent years.
The interior penalty discontinuous Galerkin (IPDG) method belongs to the family
of symmetric DG methods. It has locally conservation, stability and high-order
accuracy which can easily handle complex geometries, irregular meshes with hang-
ing nodes and approximations with polynomials of different degrees in different
elements. In 1982, Arnold [2] introduced the first IPDG method for heat equa-
tions, and now this method has already been applied in engineering increasingly,
especially in the computational electromagnetics. For example, it’s used in solving
Maxwell’s equations in cold plasma and dispersive media [17, 18], indefinite time-
harmonic Maxwell’s equations [16], compressible Navier-Stokes equations [15] and
Helmholtz equations with spatially varying wavenumber [11], etc. The construc-
tion of a reliable and efficient error estimator is essential to the success of adaptive
algorithms. In general, engineering calculations are mainly based on the first or
second order finite element methods, and engineers hope to have a better precision
for these low-order finite elements. However, most of the time the exact solutions
are unknown, and the errors can not be calculated directly. In such cases, many
researchers pay their attention to a posteriori error estimates, and the real errors
can be better approximated by post-processing techniques with the obtained finite
element solutions. The a posteriori error estimate and the AFEM were first intro-
duced by [4]. Since the late 1980s, the residual type a posteriori error estimate [8],
the recovery type a posteriori error estimate [26], the a posteriori error estimate
based on the hierarchic basis [6, 7], a new a posteriori error estimate for AFEM
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[19] and a series of works on the a posteriori error estimation [1, 5, 24, 25] have
been put forward one after another.

With the rapid development of the DG theory, the a posteriori error estimation
theory based on DG methods arises. There are a large number of numerical and
theoretical literatures on AFEM, and many scholars also put forward to different
kinds of a posteriori error estimates for various problems. Since 2000, much research
work on the a posteriori error estimation has been developed including the resid-
ual a posteriori error estimate for the DG approximation of second-order elliptic
problems [20], and the a posteriori error estimations and mesh adaptivity strategies
for DG methods applied to diffusion problems [22]. The IPDG method has many
good properties, which render it ideal to be used with the local mesh refinement and
the independent selection of the polynomial degree in each element. Those distinct
advantages make the computation of finite elements more efficient and flexible. At
the same time, owing to the degrees of freedom for each unit are less than other
DG methods, the IPDG formulation is relatively easier to be paralleled. In this
paper we aim to propose a new a posteriori error estimate for the IPDG method
by handling the numerical solution in a simple way. It is shown to be a simple and
efficient way to improve the approximation accuracy of the numerical solution with
less computational cost.

In this paper, we consider the IPDGmethod for a second-order elliptic boundary-
value problem. We present a new a posteriori error estimator with m-time Gauss-
Seidel iterations in an energy norm (cf. G-norm below) and use it to construct the
AFEM. In particular, on the current triangulation Th, we solve the equation to
obtain theDG solution uh, then globally refine Th to obtain an auxiliary mesh Th/2.
On the fine mesh, we use a simple smoother such as the Gauss-Seidel iterations with
uh as the initial value. After m-time iterations, we obtain an approximation uh/2,m
of the DG solution uh/2 on the fine mesh Th/2. We then take ∥uh/2,m − uh∥G as
the a posteriori error estimator to guide the mesh refinement on Th. In practice,
it only needs a small number of smoothing steps to obtain an efficient a posteriori
error estimator, hence the computational cost is relatively small.

The rest of the paper is organized as follows. In section 2, we propose a new
a posteriori error estimator and then describe the AFEM algorithm with it for
second-order elliptic boundary-value problem. We present some numerical results
to show the efficiency of the new a posteriori error estimator and the performance
of the corresponding AFEM algorithm in section 3.

2. The New A Posteriori Error Estimate.

2.1. The Interior Penalty Discontinuous Galerkin Method. In this work,
we consider the following second-order elliptic boundary-value problem:

−∇ · (a∇u) + bu = f in Ω,(1)

u = g on ∂Ω,(2)

where Ω is a bounded domain of R2, ∂Ω is the Lipschitz boundary. For the sake of
simplicity and easy presentation, we consider the homogeneous boundary condition,
i.e., g = 0 and Ω is assumed to be a convex polygonal domain. The coefficient matrix
a = (aij) is symmetric and uniformly positive definite, aij ∈ L∞(Ω), b ∈ L∞(Ω)
and f is a given function in L2(Ω).
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We rewrite the model problem (1) and (2) into first order mixed equations as
follows:

σ = a∇u, −∇ · σ + bu = f, in Ω; u = 0, on ∂Ω.

For any triangle K ⊂ Ω, the first order mixed variational form reads: Find u ∈
H1(K), σ ∈ H(div;K) such that∫

K

a−1σ · τdx = −
∫
K

u∇ · τdx+

∫
∂K

uτ · nds ∀ τ ∈ H(div;K),(3) ∫
K

σ · ∇vdx+

∫
K

buvdx =

∫
K

fvdx+

∫
∂K

vσ · nds ∀ v ∈ H1(K),(4)

where H(div;K) := {v ∈ [L2(K)]2,divv ∈ L2(K)} and n is the outward normal
unit vector of ∂K. Let Th = ∪{K} be a shape-regular triangulation of region
Ω, h = max{hK : K ∈ Th} is the partition diameter, hK is the diameter of cell
K, Γh = ∪{e ⊂ ∂K : K ∈ Th} denotes the collection of all triangles edges and
Γ0
h = Γh \ ∂Ω is interior edges of these triangles. The discontinuous linear finite

element space Sh is defined by

Sh := {v ∈ L2(Ω) : v|K ∈ P1(K),∀ K ∈ Th},

and the discontinuous finite element vector space is Vh := [Sh]
2 = {τ ∈ [L2(Ω)]2 :

τ |K ∈ [P1(K)]2, ∀ K ∈ Th}.
According to the mixed variational form, the elliptic boundary-value problem is

approximately solved by finding (uh,σh) ∈ Sh × Vh, such that∫
K

a−1σh · τhdx = −
∫
K

uh∇ · τhdx+

∫
∂K

ûhτh · nds ∀ τh ∈ Vh,(5) ∫
K

σh · ∇vhdx+

∫
K

buhvhdx =

∫
K

fvhdx+

∫
∂K

vhσ̂h · nds ∀ vh ∈ Sh,(6)

where ûh = ûh(uh,σh), σ̂h = σ̂h(uh,σh) are numerical fluxes. They are approxi-
mations of u and σ = a∇u at element boundaries. It’s necessary to introduce the
jump [[·]] and the average {·} to handle the discontinuity of finite element functions
crossing unit interfaces. Let v ∈ H1(Th) := {v ∈ L2(Ω) : v|K ∈ H1(K), ∀ K ∈ Th},
e = ∂K1 ∩ ∂K2 denote the interface of adjacent triangles K1,K2 and vi = v|∂Ki

denote the trace of v on the boundary of element Ki. ni = n|∂Ki is the outward
normal unit vector on ∂Ki. For v ∈ H1(Th), the jump [[v]] and the average {v} are
defined as follows:

[[v]] = v1n1 + v2n2, {v} =
1

2
(v1 + v2), e ∈ Γ0

h.

For vector function τ ∈ [H1(Th)]2,

[[τ ]] = τ1 · n1 + τ2 · n2, {τ} =
1

2
(τ1 + τ2), e ∈ Γ0

h.

If e ⊂ ∂Ω, then let [[v]] = vn, {v} = v, [[τ ]] = τ · n, {τ} = τ .
We take ûh = {uh} on Γ0

h, ûh|∂Ω = 0, σ̂h = {a∇huh} − µ[[uh]] on Γh, where
µ = λh−1

e (the penalty parameter λ is taken to be sufficiently large), he = diam(e),
e ∈ Γh. The IPDG formulation [3] is defined as follows:

Bh(uh, vh) =

∫
Ω

fvhdx, ∀ vh ∈ Sh,(7)
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where

Bh(uh, vh) :=

∫
Ω

a∇huh · ∇hvhdx+

∫
Ω

buhvhdx

−
∫
Γh

([[uh]] · {a∇hvh}+ {a∇huh} · [[vh]])ds+
∫
Γh

µ[[uh]] · [[vh]]ds,

∇h = ∇ is the discrete gradient operator.
Let Ah denote the coefficient matrix of discrete equations for the IPDG scheme

(7), i.e., then

(8) Bh(uh, vh) = (Ahu,v), ∀ uh, vh ∈ Sh,

where u,v ∈ RN are vectors corresponding to uh, vh. We assume that {ψi : i =
1, 2, . . . N} is the standard linear Lagrange basis in Sh, matrix Ah and vector Fh

are defined as follows:

Ahij := Bh(ψj , ψi), Fhi := f(ψi), i, j = 1, 2, . . . N,

The IPDG equations for (1) and (2) can be written as AhU = Fh. Obviously, Ah

is symmetrical positive definite matrix since uh =
∑N
i=1 uiψi and U = (ui).

We define the G-norm in Ω as follows:

∥v∥G :=(
∑
K∈Th

∥a 1
2∇v∥2L2(K) +

∑
K∈Th

∥b 1
2 v∥2L2(K)

+
∑
e∈Γh

µ∥[[v]]∥2L2(e) +
∑
e∈Γh

1

µ
∥{a∇v}∥2L2(e))

1
2 .

Next we show the continuity and coerciveness of Bh(uh, vh). We use the Cauchy-
Schwarz inequality to give the estimates about the fourth term of Bh(uh, vh), such
that

|
∑
e∈Γh

∫
e

{a∇uh} · [[vh]]ds| = |
∑
e∈Γh

∫
e

√
1

µ
{a∇uh} ·

√
µ[[vh]]ds|

≤ (
∑
e∈Γh

1

µ
∥{a∇uh}∥2L2(e))

1
2 (

∑
e∈Γh

µ∥[[vh]]∥2L2(e))
1
2

≤ ∥uh∥G · ∥vh∥G.

(9)

Since,

Bh(vh, vh) =
∑
K∈Th

∫
K

a∇vh · ∇vhdx+
∑
K∈Th

∫
K

bv2hdx

−
∑
e∈Γh

∫
e

([[vh]] · {a∇vh}+ {a∇vh} · [[vh]])ds+
∑
e∈Γh

∫
e

µ[[vh]]
2ds

=
∑
K∈Th

∥a 1
2∇vh∥2L2(K) +

∑
K∈Th

∥b 1
2 vh∥2L2(K) − 2

∑
e∈Γh

∫
e

[[vh]] · {a∇uh}ds

+
∑
e∈Γh

µ∥[[vh]]∥2L2(e)

=∥vh∥2G − 2
∑
e∈Γh

∫
e

[[vh]] · {a∇vh}ds−
∑
e∈Γh

1

µ
∥{a∇vh}∥2L2(e).
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Using the Cauchy-Schwarz inequality, we have∑
e∈Γh

∫
e

[[vh]] · {a∇vh}ds =
∑
e∈Γh

∫
e

√
µ[[vh]] ·

√
1

µ
{a∇vh}ds

≤ 1

2
(
∑
e∈Γh

µ

2
∥[[vh]]∥2L2(e) +

∑
e∈Γh

2

µ
∥{a∇vh}∥2L2(e))

=
∑
e∈Γh

µ

4
∥[[vh]]∥2L2(e) +

∑
e∈Γh

1

µ
∥{a∇vh}∥2L2(e).

Therefore,

Bh(vh, vh) ≥∥vh∥2G − 2(
∑
e∈Γh

µ

4
∥[[vh]]∥2L2(e) +

∑
e∈Γh

1

µ
∥{a∇vh}∥2L2(e))

−
∑
e∈Γh

1

µ
∥{a∇vh}∥2L2(e)

=∥vh∥2G − 1

2

∑
e∈Γh

µ∥[[vh]]∥2L2(e) − 3
∑
e∈Γh

1

µ
∥{a∇vh}∥2L2(e).

Note that hK = O(he) and using the local trace inequality [12], we have

3
∑
e∈Γh

1

µ
∥{a∇vh}∥2L2(e) ≤

C

µ

∑
K∈Th

h−1
K ∥a 1

2∇vh∥2L2(K) ≤
C

λ

∑
K∈Th

∥a 1
2∇vh∥2L2(K).

Therefore,

Bh(vh, vh) ≥ ∥vh∥2G −max{1
2
,
C

λ
}∥vh∥2G,

where the penalty parameter λ is taken to be sufficiently large, we have C
λ < 1

2 ,
then

(10) Bh(vh, vh) ≥
1

2
∥vh∥2G.

According to the Lax-Milgram theorem, the IPDG formulation (7) is well-posed.

2.2. The A Posteriori Error Estimator. Refine the triangle mesh Th globally
to get Th/2, then Sh ⊂ Sh/2. Let uh and uh/2 be the finite element solutions of Th
and Th/2. Since ∥u−uh∥G

∥u−uh/2∥G
→ 2, we have the formulas [10] as follows:

∥u− uh∥G
∥uh/2 − uh∥G

≤
∥u− uh/2∥G + ∥uh/2 − uh∥G

∥uh/2 − uh∥G
=

1
2∥u− uh∥G
∥uh/2 − uh∥G

+ 1,

(11)
∥u− uh∥G

∥uh/2 − uh∥G
≤ 2;

∥u− uh∥G
∥uh/2 − uh∥G

≥ ∥u− uh∥G
∥u− uh/2∥G + ∥u− uh∥G

=
∥u− uh∥G

1
2∥u− uh∥G + ∥u− uh∥G

,

(12)
∥u− uh∥G

∥uh/2 − uh∥G
≥ 2

3
;

Therefore,

(13)
2

3
≤ ∥u− uh∥G

∥uh/2 − uh∥G
≤ 2.
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In conclusion, when uh/2 is known, we could take ∥uh/2 − uh∥G as the a pos-
teriori error estimator. Since the uh/2 can be approximated by uh/2,m after m-
time Gauss-Seidel iterations, we can replace the error estimator ∥uh/2 −uh∥G with
∥uh/2,m − uh∥G. By this means, the computation cost can be reduced greatly.

Given the finite element solution uh on current triangulation Th, we can get the
a posteriori error estimator by the following steps.
Step 1. Refine the current mesh Th globally to get the fine mesh Th/2.
Step 2. Build the finite element space Sh/2 on the fine mesh Th/2, and get the

corresponding stiffness matrix Ah/2 and load vector Fh/2.
Step 3. Taking the given finite element solution uh as initial solution, solve the
linear algebraic equations

Ah/2U = Fh/2.

by Gauss-Seidel iterative methods. After m-time iterations, we can get the approx-
imation Um = (umi ) of uh/2. Then we take

uh/2,m =

Nh/2∑
i=1

umi ψi,

where Nh/2 is the number of basis {ψi} in Sh/2.
Step 4. For each K ∈ Th, calculate

ηK,m = ∥uh − uh/2,m∥G,K .
Finally we take ηh,m = (

∑
K∈Th

η2K,m)1/2 as the a posteriori error estimator.

2.3. Condition Numbers and the Smoothing Property. In this section we
first consider the condition number of the IPDG scheme on adaptively refined
meshes {Tl : l ∈ N}. A triangulation family {Tl : l ∈ N} is said to be non-
degenerate [21] if there exists a constant ρ > 0 such that for all l ∈ N and for all
K ∈ Tl, there is a ball of radius ρ · diam(K) contained in K. Assume the basis
{ψi : i = 1, 2, . . . N} in Sh is a local basis, and

max
1≤i≤N

cardinality{K ∈ Th, supp(ψi) ∩K ̸= ∅} ≤ C.(14)

Then we can establish the following lemma, following the ideas in [19].

Lemma 2.1. Suppose that the mesh Th is non-degenerate. Let Ah denote the
matrix corresponding to the inner product Bh(·, ·), i.e., Ahij = Bh(ψi, ψj), where
ψi (i = 1, 2, . . . N) are the standard linear Lagrange basis functions. Then the max-
imum eigenvalue λmax of Ah is bounded by

λmax ≤ C.(15)

Proof. Since v =
∑N
i=1 viψi, we have

Bh(v, v) = V TAhV,

where V = (vi). Since Bh(·, ·) is bilinear, from the inverse estimate and (14), we
have

Bh(v, v) ≤ C∥v∥2G = C
∑
K∈Th

∥v∥2G,K ≤ C
∑
K∈Th

∥v∥20,∞,K

≤C
∑
K∈Th

∑
supp(ψi)∩K ̸=∅

v2i ≤ CV TV.
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Therefore, we can get (15). �

For solving the linear equations AU = F , a basic linear iterative method can be
written as follows:

Uk+1 = Uk +B(F −AUk), k = 0, 1, 2 . . . ,(16)

with initial value is U0 ∈ Rn. Take the (16) as the Richardson iterative scheme,
i.e., B = ω

ρ(A)I, where ρ(A) is the spectral radius of matrix A, then

Uk+1 = Uk +
ω

ρ(A)
(F −AUk), k = 0, 1, 2 . . . .(17)

Take ω = 1, S = I − A
ρ(A) , then (17) can be rewritten as

Uk+1 = (I − A

ρ(A)
)Uk +

1

ρ(A)
F,(18)

We then can establish the following theorem on the property of smoother S.

Theorem 2.1. For the smoother S, we have

∥SmV ∥A ≤ Cm−1/2∥V ∥0, ∀ V ∈ Rn,(19)

where ∥V ∥0 = (V, V )1/2 is the l2 norm in Rn, and the A-norm is defined as follows:

∥V ∥A := (AV, V )1/2.

Note that the A-norm corresponds to the linear system we wish to solve.

Proof. Since A is an symmetric positive definite matrix, we have Aϕi = λiϕi with
λmin ≤ λ1 ≤ λ2 ≤ . . . ≤ λmax, (ϕi, ϕj) = δij . ∀ V ∈ Rn, we can write it as

V =
n∑
i=1

viϕi,

Therefore,

SmV = (I − 1

ρ(A)
A)mV =

n∑
i=1

(1− λi
λmax

)mviϕi,

and

∥SmV ∥2A =λmax(
n∑
i=1

(1− λi
λmax

)2m
λi

λmax
v2i )

≤λmax{ sup
0≤x≤1

(1− x)2mx}
n∑
i=1

v2i .

(20)

Since

sup
0≤x≤1

(1− x)2mx ≤ 1

2m+ 1
,

from (15) we have

λmax ≤ C.

Then, from the above inequalities, we obtain

∥SmV ∥2A ≤ Cm−1∥V ∥20.

�
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In the following discussion, we investigate the smoothing property of Gauss-
Seidel smoother on uniformly refined meshes. We solve the Poisson equation with

the exact solution u = r
2
3 sin( 23θ), r =

√
x2 + y2 on a L-shaped domain. We first

obtain the IPDG solution uh on Th, see the mesh in Figure 1(A), then we get Th/2
by globally refining Th. Set uh as the initial value, and solve the problem (3.1) by
executing m smoothing steps on the Th/2, see Figure 1(B). The result is plotted in
Figure 1(C). It can be observed that the smoothing operator S admits the similar
property on the locally refined meshes. It’s obvious that we can get an approxima-

(a) (b)

(c)

Figure 1. (A) initial mesh; (B) globally refined mesh; (C) Gauss-
Seidel convergence history.

tion uh/2,m for uh/2 at any accuracy with a larger m. And we know that the error
between uh/2 and uh/2,m is reduced quickly at the beginning of several iterative
steps, then we need to do only a few smoothing steps to obtain an approximation
uh/2,m for our a posteriori error estimator. It is observed from our numerical ex-
periments in section 3 that m = 5 performs well enough.

3. Adaptive Algorithms and Numerical Examples.

Firstly, we introduce the AFEM with local mesh refinement which can be de-
scribed as follow steps (see Figure 2):

SOLVE → ESTIMATE → MARK → REFINE

Next we give some numerical examples to investigate and verify the effectiveness
of the a posteriori error estimator based on the IPDG method in comparison with
different iterative times, especially, we choose the times of iterations are m = 5,
m = 8 and m = 10.
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Figure 2. Adaptive algorithm.

(a) (b)

(c)

Figure 3. (A) initial mesh; (B) refined mesh after 10 refinements;
(C) final mesh.

Investigate the model problem

−∆u = f, in Ω,

u = g, on ∂Ω,



A POSTERIORI ERROR ESTIMATE FOR IPDG METHOD 219

where Ω ⊂ R2 is bounded domain with a Lipschitz boundary ∂Ω. For each K ∈ Th,
let

ηK = ∥uh/2 − uh∥G,K , ηh = ∥uh/2 − uh∥G.
Define the a posteriori error estimator in K as follows:

ηK,m = ∥uh/2,m − uh∥G,K , ηh,m = ∥uh/2,m − uh∥G.

In order to verify the accuracy of η·,m, we will use the indices θK , θh which are
defined as follows:

θK =
ηK,m

∥u− uh∥G,K
, θh =

ηh,m
∥u− uh∥G

.

In all the numerical experiments, we use the bisection methods [23] to refine the
local mesh and use Gauss-Seidel iteration as smoother. Considering ηh,m as the
error estimator, we use Matlab package iFEM [9] to perform the numerical tests.

Example 1. In this example, we solve the model problem (3.1) in L-shaped
domain Ω = {−1 ≤ x, y ≤ 1} \ {0 ≤ x ≤ 1,−1 ≤ y ≤ 0}, where f = 0. In this

case, the exact solution is u = r
2
3 sin( 23θ) where r =

√
x2 + y2. In this problem, we

consider the 5, 8, 10 iterative steps respectively (see Figure 4). It can be observed
that the effect of 5 iterative steps is better. The initial mesh, 10-time-refined mesh
and final mesh are depicted in Figure 3. The index θh and errors of 5, 8, 10 iterations
are shown in Figure 5. We can see ∥u − uh∥G = O(N−1/2), and the index θh is
stable at some values.

(a) (b)

(c)

Figure 4. The convergence history of AFEM. (A) m = 5; (B)
m = 8; (C) m = 10.
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(a) (b)

Figure 5. (A) The index θh for m = 5. (B) Errors ||u−uh/2,m||G
for m = 5, 8, 10.

Example 2. In this example, we solve the model problem (3.1) in Ω = [0, 1]×
[0, 1]. The exact solution is

u =
1

1 + e−100(
√
x2+y2−0.75)

.

The numerical tests are carried out by 5, 8, 10 iterations respectively (see Figure
7). From the figures, we observe that 5 iteration steps perform better. The initial
mesh, 10-time-refined mesh and the final mesh are depicted in Figure 6. The index
θh and errors of 5, 8, 10 iterations are shown in Figure 8.

(a) (b)

(c)

Figure 6. (A) initial mesh; (B) refined mesh after 10 refinements;
(C) final mesh.
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(a) (b)

(c)

Figure 7. The convergence history of AFEM. (A) m = 5; (B)
m = 8; (C) m = 10.

(a) (b)

Figure 8. (A) The index θh for m = 5; (B) Errors ||u−uh/2,m||G
for m = 5, 8, 10.

Example 3. We solve the model problem (3.1) in Ω = [−1, 1] × [−1, 1], and
take the exact solution to be

u =
1

x2 + y2 + 0.01
.

The results are shown in Figures 9, 10, and 11.
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(a) (b)

(c)

Figure 9. (A) initial mesh; (B) refined mesh after 10 refinements;
(C) final mesh.

(a) (b)

(c)

Figure 10. The convergence history of AFEM. (A) m = 5; (B)
m = 8; (C) m = 10.
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[21] A. Plaza, S. Falcn, J. P. Suárez and P. Abad. A local refinement algorithm for the longest-edge

trisection of triangle meshes. Math. Comput. Simul., 82(12):2971–2981, 2012.
[22] B. Rivière and M. F. Wheeler. A posteriori error estimates and mesh adaptation strategy

for discontinuous Galerkin methods applied to diffusion problems. Universtity of Texas at
Austin Usa, 2000.

[23] M. C. Rivara. Mesh refinement processes based on the generalized bisection of simplices.
SIAM J. Numer. Anal., 21:604–613, 1984.

[24] R. Verfürth. A Review of a Posteriori Error Estimation and Adaptive Mesh-refinment Tech-

niques. Wiley/Teubner, Stuttgart, 1996.
[25] N. N. Yan. Superconvergence Analysis and a Posteriori Error Estimation in Finite Element

Methods. Science Press, Beijing, 2008.
[26] O. C. Zienkiewicz and J. Z. Zhu. The supercovergent patch recovery and a posteriori estimates.

Int. J. Numer. Methods Eng., 33:1331–1382, 1992.

Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan
University, Xiangtan 411105, P.R.China

E-mail : yangweixtu@126.com

Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan
University, Xiangtan 411105, P.R.China

E-mail : lulingcao@163.com

Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan
University, Xiangtan 411105, P.R.China

E-mail : huangyq@xtu.edu.cn

Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom,
Hong Kong

The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P.R.China
E-mail : jintao.cui@polyu.edu.hk


