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AN ITERATIVE APPROACH FOR CONSTRUCTING IMMERSED

FINITE ELEMENT SPACES AND APPLICATIONS TO

INTERFACE PROBLEMS

CHENG WANG, PENGTAO SUN, AND ZHILIN LI

Abstract. In this paper, an iterative approach for constructing immersed finite element spaces
is developed for various interface conditions of interface problems involving multiple primary vari-

ables. Combining such iteratively constructed immersed finite element spaces with the distributed

Lagrange multiplier/fictitious domain (DLM/FD) method, we further present a new discretization
method that can uniformly solve general interface problems with multiple primary variables and/or

with different governing equations on either side of the interface, including fluid-structure interac-

tion problems. The strengths of the proposed method are shown in the numerical experiments for
Stokes- and Stokes/elliptic interface problems with different types of interface conditions, where,

the optimal or nearly optimal convergence rates are obtained for the velocity variable in H1, L2

and L∞ norms, and at least 1.5-th order convergence for the pressure variable in L2 norm within
few number of iterations. In addition, numerical experiments show that such iterative process

uniformly converges and the number of iteration is independent of mesh ratios and jump ratios.

Key words. Immersed finite element (IFE) method, fictitious domain method, Lagrange multi-

plier, iterative process, interface problems, fluid-structure interactions (FSI).

1. Introduction

Physical phenomena in a domain consisting of multiple materials or fluids with
an interface are often modeled by differential equations with discontinuous coeffi-
cients which are often called interface problems. Solutions to interface problems are
often required to satisfy jump conditions across the material interfaces in addition
to the pertinent differential equations and the related boundary conditions. In gen-
eral, interface problems require the governing differential equations at the common
interface to share not only the common value of primary variable (Dirichlet-type
interface condition) but also the common flux (Neumann-type interface condition).

Due to its simplicity in mesh generation (one single uniform mesh usually works
well), the body-unfitted mesh method becomes more promising in solving inter-
face problems with moving interfaces possessing sophisticated and irregular shapes.
Among the existing body-unfitted mesh methods, for example, the extended fi-
nite element method (XFEM), also known as a generalized finite element method
(GFEM) in which enrichment functions are added near the interface [32]; unfitted
discontinuous Galerkin methods with penalties [27]; unfitted finite element method
based on the Nitsche’s method in [15] and etc., the immersed finite element (IFE)
method, which was originally proposed in [20, 21] for solving elliptic interface prob-
lems, turns out to be the most accurate and efficient because it can avoid the
smearing of the sharp interface without introducing any local mesh enrichment,
and maintains second-order accuracy by incorporating the known jump conditions
at the interface into the finite element space.
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Since its beginning, the IFE method has been mostly applied to the elliptic
interface problem [21, 23, 16, 17, 1, 18, 19] due to the simplicities of both govern-
ing equation and interface conditions. However, the IFE method still suffers from
applying to the Stokes interface problem because of its sophisticated governing e-
quations (an intrinsic saddle-point structure) and complicated interface conditions
in contrast with the elliptic interface problem, making the stable mixed finite ele-
ment (Stokes-pair) very difficult to be defined and analyzed in the immersed finite
element space. So far, only a mixed IFE Q1/Q0 is designed for the following Stokes
interface problem (1)-(8) [2], however, the discontinuous Galerkin method has to
be relied on in order to stabilize the mixed IFE Q1/Q0 since Q1/Q0 is not a stable
Stokes-pair.

−∇ · (β1∇u1) +∇p1 = f1, in Ω1,(1)

∇ · u1 = 0, in Ω1,(2)

−∇ · (β2∇u2) +∇p2 = f2, in Ω2,(3)

∇ · u2 = 0, in Ω2,(4)

u1 = u2, on Γ,(5)

(β1∇u1 − p1I)n1 + (β2∇u2 − p2I)n2 = w, on Γ,(6)

u1 = 0, on ∂Ω1\Γ,(7)

u2 = 0, on ∂Ω2\Γ,(8)

where, Ω = Ω1 ∪ Ω2 ⊂ Rd as shown in Figure 1, and the immersed interface
Γ = ∂Ω2 is generally a closed curve that divides the domain Ω into an interior
region Ω2 and an exterior region Ω1, and splits an arbitrary function φ ∈ L2(Ω) to
be φ|Ωi = φi (i = 1, 2), where the subscripts 1 and 2 indicate the restrictions to the
corresponding subdomain, n1 and n2 stand for the unit outward normal vectors

on ∂Ω1 and ∂Ω2, respectively. We assume fi ∈
(
L2(Ωi)

)d
, w ∈

(
H1/2(Γ)

)d
. The

coefficient β(x) and the source term f(x) may exhibit discontinuities across Γ, but
have smooth restrictions β1(x), f1(x) in Ω1 and β2(x), f2(x) in Ω2. In addition,
the following regularity properties are held for the Stokes interface problem (1)-(8)
if the interface Γ is of class C2 [31]

u ∈X := (Hs(Ω))d ∩ (H2(Ω1 ∪ Ω2))d, p ∈ Y := L2(Ω) ∩H1(Ω1 ∪ Ω2),(9)

where, 1 < s < 1.5.

Figure 1. Graphical depiction of the domain with an immersed interface.
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On the other hand, because IFE method needs to define the immersed finite
element space by introducing interface conditions into the definition of piecewise
polynomial basis functions in the interface elements which are cut through by the
interface Γ, it requires that the primary variables which are involved in all interface
conditions have to be defined in both sides of the interface, which is, however, im-
possible for interface problems whose governing equations thus primary variables
on either side of the interface are different from each other, for example, the follow-
ing Stokes/elliptic interface problem which is also considered as a linearized steady
state fluid-structure interaction (FSI) problem, defined as

−∇ · (β1∇u1) +∇p1 = f1, in Ω1,(10)

∇ · u1 = 0, in Ω1,(11)

−∇ · (β2∇u2) = f2, in Ω2,(12)

u1 = u2, on Γ,(13)

(β1∇u1 − p1I)n1 + β2∇u2n2 = w, on Γ,(14)

u1 = 0, on ∂Ω1\Γ,(15)

u2 = 0, on ∂Ω2\Γ,(16)

where, the vector variable u is defined in the entire domain Ω but the pressure p
is only defined in Ω1 for Stokes equations, inducing different flux forms on either
side of Γ, as shown in (14). Therefore, the standard IFE P1 space that is originally
designed for the elliptic interface problem cannot be directly defined for the above
Stokes/elliptic interface problem. Moreover, the IFE method cannot be directly
applied to FSI problem either because the fluid equation and the structure equation
are completely distinct from each other in the sense of different variables, different
stress forms and even different coordinate descriptions [12, 10, 28]. By the way,

with the assumption fi ∈
(
L2(Ωi)

)d
, w ∈

(
H1/2(Γ)

)d
, a similar regularity result

of velocity u with that of Stokes interface problem, together with the regularity of
pressure p that is defined in Ω1 only, can be assumed for the Stokes/elliptic interface
problem (10)-(16) [29, Chapter 2] as follows

u ∈X, p ∈ H1(Ω1).(17)

It is worthy to refer to a Cartesian finite difference-based augmented immersed
interface method (AIIM) that is proposed in [24] for Navier–Stokes interface prob-
lem and in [22] for Stokes/Darcy interface problem, where, Navier–Stokes- and
Stokes/Darcy interface problems are reformulated to several elliptic interface prob-
lems in regard to pressure and velocity variables, respectively. Simultaneously, some
augmented variables are introduced along the interface to regain the original inter-
face conditions. Thus, the standard immersed interface method that is originally
designed for the elliptic interface problem [20] now can be applied to Stokes-involved
interface problems with a comparable approximation accuracy.

In this paper, we also intend to utilize the standard IFE P1 space that is origi-
nally designed for the elliptic interface problem [23, 21] to solve more complicated
interface problems involving multiple primary variables and/or different equations
on either side of the interface, e.g., the Stokes interface problem (1)-(8) and the
Stokes/elliptic interface problem (10)-(16), or more generally, FSI problems. Our
idea is simpler than that of [24, 22], we keep the originally involved Stokes equa-
tions unchanged, and make the velocity u look like a “unique” primary variable by
moving the pressure p to the right hand side of the jump flux interface condition (6)
or (14), where, the pressure p is treated as a “known” variable that is updated in an
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iterative process by solving the Stokes-involved interface problem for the pressure
as well as the velocity via a specifically designed discretization method. Hence, the
jump flux interface condition is iteratively updated as well along with the obtained
pressure p by holding the same form as that of the elliptic interface problem in each
iteration. Thus, the standard IFE P1 space can be applied to the Stokes-involved
interface problem by an iterative approach without introducing any artificial vari-
ables, if the aforementioned specific discretization method can be developed to solve
interface problems with multiple primary variables on the body-unfitted mesh.

To that end, we employ a body-unfitted mesh method which is popularly adopt-
ed for solving FSI problems, the so-called distributed Lagrange multiplier/fictitious
domain (DLM/FD) method [13, 14, 37, 36, 30, 7, 3, 6, 35], and appropriately inte-
grate the IFE space into the DLM/FD finite element method, then finally develop
a combined distributed Lagrange multiplier/fictitious domain–immersed finite ele-
ment (DLM/FD-IFE) method, by which and the aforementioned iterative approach,
the IFE space can thus be employed in a unified framework for the first time to
solve FSI and other general interface problems that may bear different governing
equations on either side of the interface.

The rest of this paper is organized as follows. In Section 2 we describe the
iterative construction approach of immersed finite element spaces, as examples, for
Stokes- and Stokes/elliptic interface problems since different interface conditions
are involved. In Section 3, we shown how the newly defined iteratively constructed
IFE spaces are integrated into the DLM/FD finite element method for Stokes- and
Stokes/elliptic interface problems. Numerical experiments are carried out in Section
4 for both interface problems to illustrate an anticipated approximation accuracy
and the efficiency of the proposed iterative approach.

2. An iterative approach for constructing IFE spaces

As an example, in this section we demonstrate how an iterative approach is
developed for the purpose of constructing IFE spaces to deal with different interface
conditions existing in Stokes interface problem (1)-(8) and Stokes/elliptic problem
(10)-(16), respectively. Similar ideas can be extended to more general interface
problems such as FSI.

2.1. The IFE space for interface conditions of Stokes interface problem.
We address in Section 1 that it is difficult to construct the immersed finite element
space for Stokes interface problem that satisfies the interface conditions (5) and
(6) since both unknowns, velocity u and pressure p, are involved in the jump flux
condition (6). Such immersed finite element shape functions for both u and p
are highly nontrivial and sometimes impossible without introducing extra interface
conditions. Recently, an IFE Q1/Q0 space is defined in [2] for Stokes interface
problem in an extremely sophisticated fashion and with extra interface conditions,
in which a 16 × 16 linear system needs to be solved in each interface element to
determine IFE Q1/Q0 shape functions. And, such IFE Q1/Q0 element is not even
a stable Stokes-pair yet and the discontinuous Galerkin technique has to be applied
together in order to stabilize the computation for Stokes interface problem.

To simplify the definition of IFE space for interface conditions (5) and (6), we
attempt to employ the existing IFE space that is originally designed for the elliptic
interface problem to discretize the velocity u only, at the same time, assuming
that the pressure p is known and does not need to be discretized in the IFE space
but still needs to be discretized in the standard finite element space. Numerically,
the pressure p is computed by an iterative scheme under a prescribed initial value.
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Thus, the pressure p existing in the jump flux interface condition (6) can be moved
to the right hand side of (6) as known, and only the velocity u is remained on the
left hand side of (6) playing as the ”unique” primary variable. A regular IFE P1

space for u is thus able to be constructed as we do for the elliptic interface problem
[23, 21]. In the following, provided that the value of pressure p is given, we describe
how an IFE space is defined for the velocity u of Stokes interface problem in a
triangular interface element, as shown in Figure 2.

Figure 2. A typical interface element and a neighbouring element [18].

Let Th(Ω) be a partition of Ω, independent of the location of the interface Γ,
and TH(Ω2) be a partition of Ω2. Further, let T inth ⊂ Th(Ω) be the collection of
interface elements which are cut through by the interface Γ. Associated with Th(Ω)
and TH(Ω2), we define continuous piecewise linear finite element spaces Qh and
V2,H , which are the subset of Q = L2(Ω) and V2 = (H1(Ω2))d, respectively.

For a given pressure function p ∈ Qh, we determine a piecewise linear function

φ(x) = (φ1(x), φ2(x))
T

, x = (x1, x2), in a triangular interface element T ∈ T inth

by letting

φi(x) =

{
φ+
i = a+

i + b+i x1 + c+i x2, ∀x ∈ T+,
φ−i = a−i + b−i x1 + c−i x2, ∀x ∈ T−,(18)

where, we assume T+ ⊂ Ω1, T
− ⊂ Ω2. For each i = 1, 2, six coefficients a±i , b

±
i , c

±
i

in (18) are chosen to satisfy the following six conditions

φi(A) = ui(A), φi(B) = ui(B), φi(C) = ui(C),(19)

φ+
i (D) = φ−i (D), φ+

i (E) = φ−i (E),(20)

β1
∂φ+

i

∂n
− β2

∂φ−i
∂n

=

(
p(A)− p(B) + p(C)

2

)
ni − wi,(21)

where, w = (w1, w2)T is the jump flux, n = (n1, n2)T is the unit outward normal
vector pointing to T+ from T−, and ui(A), ui(B), ui(C) (i = 1, 2) are nodal values
of velocity u = (u1, u2). (21) is obtained by moving p to the right hand side of (6),
and, thanks to the definition of piecewise linear function p ∈ Qh based on three
vertices A, B and C in the immersed element T , we choose p(A) as the piecewise

constant value of p ∈ T+, and p(B)+p(C)
2 as the piecewise constant value of p ∈ T−.

Then, (21) eventually becomes the jump flux condition serving the velocity u, only.
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Thus, provided that a pressure function p ∈ Qh is known, an immersed finite
element space V p

h can be defined as the set of all piecewise linear functions that
satisfy
φ
∣∣
T

is the standard piecewise linear function if T ∈ Th(Ω)\T inth ,

φ
∣∣
T

is the immersed piecewise linear function defined in (18)− (21) if T ∈ T inth ,
φ is continuous at all nodal points,
φ = 0 on ∂Ω.

For a velocity function u(x) defined in Ω, we define Iphu ∈ V
p
h as the interpolation

function such that Iphu(xi) = u(xi) for all nodal points xi ∈ Th(Ω).

Remark 2.1. Thanks to the proved error estimate of interpolation function [23]
that is defined in the IFE space for the elliptic interface problem, where the approx-
imation property of the IFE space is analyzed, we anticipate that the approximation
capability of the above V p

h shall be better than the regular P1 continuous finite ele-
ment space if the pressure is sufficiently smooth in each subdomain.

2.2. The IFE space for interface conditions of Stokes/elliptic interface
problem. To the authors’ best knowledge, the IFE space that satisfies interface
conditions (13) and (14) has not been studied yet for the Stokes/elliptic interface
problem in the literature. Now with the similar idea of constructing the IFE space
for the Stokes interface problem, we are able to define an IFE space for velocity
u which satisfies the interface conditions (13) and (14) when the pressure p is
provided, iteratively. Note that the main difference between this type of interface
conditions and the interface conditions of Stokes interface problem (5) and (6) is
that the pressure only exists in Ω1 but is undefined in Ω2.

For a given pressure function p ∈ Q1,h = Qh|Ω1
, we still define a piecewise linear

function φ(x) = (φ1(x), φ1(x))
T

in the interface element T ∈ T inth satisfying (18),
as shown in Figure 2, and six coefficients are chosen such that

φi(A) = ui(A), φi(B) = ui(B), φi(C) = ui(C),(22)

φ+
i (D) = φ−i (D), φ+

i (E) = φ−i (E),(23)

β1
∂φ+

i

∂n
− β2

∂φ−i
∂n

=

{
−wi + p(A)ni, if A ∈ Ω1

−wi − p(B)+p(C)
2 ni, if A 6∈ Ω1

(24)

where, we assume the unit outward normal vector n = (n1, n2)T points to T+ ⊂ Ω1

from T− ⊂ Ω2. (24) is obtained by moving p to the right hand side of (14), and,
since the piecewise linear function p ∈ Q1,h is defined with its nodal values on three

vertices A, B and C, we pick either p(A) or p(B)+p(C)
2 as the piecewise constant

value of p ∈ Ω1 by determining which vertex (or vertices) belong(s) to Ω1. Then,
(24) eventually becomes the jump flux condition serving the velocity u, only.

Thus, provided that a pressure function p is known, an IFE space W p
h can be

defined as the set of all piecewise linear functions that satisfy
φ
∣∣
T

is the linear piecewise function if T ∈ Th(Ω)\T inth ,

φ
∣∣
T

is the immersed piecewise linear function defined in (22)− (24) if T ∈ T inth ,
φ is continuous at all nodal points,
φ = 0 on ∂Ω.

To end this section, we underline that an iterative approach for constructing the
immersed finite element space needs to be developed for Stokes- and Stokes/elliptic
interface problems, respectively, in order to complete the definition of the IFE
spaces V p

h and W p
h . In summary, the general idea of the iterative construction
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approach is that, in each iteration, we only choose one primary variable to be
remained on the left hand side of jump flux interface condition, and move other
involved primary variables to the right hand side by taking the numerical results
of those variables from the last iteration step as their values. Moreover, in order
to obtain numerical results of those updated variables, we shall integrate such
iteration process with a specifically developed finite element discretization method
based upon the newly defined IFE space to solve the involved interface problem for
all primary variables. Such specific finite element discretization method is crucial
to be capable of solving the interface problem with different governing equations
on either side of the interface, and will be discussed in the next section. We remark
here that ideas of such new approach of constructing IFE spaces can be similarly
applied to other kinds of interface conditions than examples shown in this section.

3. The combined distributed Lagrange multiplier/fictitious domain -
immersed finite element method

In this section, we integrate the iteratively constructed IFE space with the
DLM/FD method that has been long adopted but just recently analyzed for in-
terface problems including FSI [36, 8, 4, 6, 35, 26, 33, 34], and present a unified ap-
proach, the combined distributed Lagrange multiplier/fictitious domain–immersed
finite element (DLM/FD-IFE) method, that can deal with various interface prob-
lems with different interface conditions. In what follows, we utilize the Stokes- and
Stokes/elliptic interface problem as examples to show how to apply the proposed
method to general interface problems.

3.1. Application to Stokes interface problem. Introduce V =
(
H1

0 (Ω)
)d
, Q =

L2(Ω) and Λ = [(H1(Ω2))d]∗ that is the dual space of V2 = (H1(Ω2))d. Let 〈·, ·〉Ω2

denote the duality pairing between Λ and V2.
Then the standard weak form of (1)-(8) can be defined as follows. Find (u, p) ∈

V ×Q with u|Ω1 = u1, u|Ω2 = u2, p|Ω1 = p1, p|Ω2 = p2 such that

(β∇u,∇v)Ω − (p,∇ · v)Ω = (f ,v)Ω + (w,v)Γ, ∀v ∈ V ,(25)

(∇ · u, q)Ω = 0, ∀q ∈ Q.(26)

And, the weak form of the DLM/FD method for (1)-(8) can be defined as follows
[26]. Find (ũ, u2, p̃, λ) ∈ V × V2 ×Q×Λ such that

(β̃∇ũ,∇v)Ω − (p̃,∇ · v)Ω + 〈λ,v|Ω2〉Ω2
= (f̃ ,v)Ω,(27)

(∇ · ũ, q)Ω = 0,(28) (
(β2 − β̃)∇u2,∇v2

)
Ω2

− 〈λ,v2〉Ω2

=
(
f2 − f̃2,v2

)
Ω2

+ (w,v2)Γ,(29)

〈ξ, ũ|Ω2
− u2〉Ω2

= 0,(30)

∀(v, v2, q, ξ) ∈ V × V2 ×Q×Λ,

where, β̃ is a smooth extension of β1 to Ω2 thus is defined in the entire domain Ω,
i.e., β̃|Ω1

= β1, β̃|Ω2
= β̃2. Corresponding to the extension function β̃, f̃2 is also

a smooth extension of f1 to Ω2, denoted by f̃ such that f̃ |Ω1 = f1, f̃ |Ω2 = f̃2.

Then f̃ ∈ (L2(Ω))d, β̃ ∈ L∞(Ω). In general, β̃2 6= β2, f̃2 6= f2. As a consequence,
the solution (ũ, p̃) ∈ V × Q satisfy ũ|Ω1

= u1, ũ|Ω2
= ũ2, p̃|Ω1

= p1, p̃|Ω2
= p̃2,

and ũ|∂Ω = 0, and ũ|Γ = u1|Γ = u2|Γ. Due to the equivalence between the
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DLM/FD weak form (27)-(30) and the standard weak form (25)-(26) [26], the
following regularity results hold for the solution (ũ, p̃) as well

ũ ∈X, p̃ ∈ Y .(31)

In addition, we require the following condition in order to obtain the well-posedness
of the DLM/FD method (27)-(30) [26]

∞ > β̄ ≥ β2 > β̃ ≥ β > 0, β2 − β̃ ≥ β > 0,(32)

where, β and β̄ are positive constants.
As shown in [8, 26], we can associate to any ξ ∈ Λ an element of ψ ∈ V2 which

is the solution of the following variational equation

(ψ,v)V2 = 〈ξ,v〉Ω2
, ∀v ∈ V2,(33)

where (·, ·)V2
represents the H1-inner product in V2, defined as

(ψ,v)V2 = (ψ,v)Ω2 + (∇ψ,∇v)Ω2 .(34)

It is easy to show that there exists a unique ψ ∈ V2 satisfying (33). In addition,
the following equality can be easily obtained [8]

‖ξ‖Λ = ‖ψ‖V2
.(35)

Thus, (30) is equivalent with the following equation by letting v = ũ|Ω2
− u2 in

(33)

(ψ, ũ|Ω2 − u2)V2 = 0, ∀ψ ∈ V2.(36)

The well-posedness of the above DLM/FD weak form (27)-(30), which is actual-
ly a nested saddle-point problem induced by both Stokes equations and DLM/FD
method in regard to Stokes variables (velocity and pressure) and Lagrange multi-
pliers, are proved in [26] by verifying that the inf-sup condition is held for a sophis-
ticated bilinear form of (27)-(30) and using the Babuška–Brezzi’s theory [5, 9].

According to the equivalence of (30) and (36), and employing the newly defined
IFE space V ph

h to discretize the velocity uh that is defined in the entire domain Ω,
provided that the pressure ph is iteratively given, we can define the DLM/FD-IFE
method for (27)-(30) as follows. Find (uh, u2,H , ph, φH) ∈ V ph

h ×V2,H×Qh×V2,H

such that(
β̃∇uh,∇vh

)
Ω
− (ph,∇ · vh)Ω + dh(ph, ph) + 〈φH ,vh|Ω2

〉V2
=
(
f̃ ,vh

)
Ω
,

(37)

(∇ · uh, qh)Ω = 0,(38) (
(β2 − β̃)∇u2,H ,∇v2,H

)
Ω2

− 〈φH ,v2,H〉V2
=
(
f2 − f̃2,v2,H

)
Ω2

+ (w,v2,H)Γ ,(39)

〈ψH ,uh|Ω2 − u2,H〉V2
= 0,(40)

∀(vh, v2,H , qh, ψH) ∈ V ph
h × V2,H ×Qh × V2,H ,

where, since the unstable P1-P1 mixed element is used in the above scheme for
the convenience of constructing the standard IFE P1 space for the velocity uh
[21, 23], we introduce the following Galerkin/Least-squares (GLS)-type pressure-
stabilization term [25] in (37) to stabilize the above saddle-point problem that is
transformed from the original interface problem by the DLM/FD method

dh(p, q) = Cδ
h2

‖β̃‖∞,Ω
(∇p,∇q)Ω ,(41)
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where, Cδ is a constant that needs to be tuned in the computation.
Following an analogous mixed finite element error analysis demonstrated in [26],

we can have the following a priori error estimate hold for (37)-(40)

‖ũ− uh‖V + ‖u2 − u2,H‖V2
+ ‖p̃− ph‖Q + ‖φ− φH‖V2

≤C

(
inf

vh∈V
ph
h

‖ũ− vh‖V + inf
v2,H∈V2,H

‖u2 − v2,H‖V2
+ inf
qh∈Qh

‖p̃− qh‖Q

+H(‖p̃‖H1(Ω2) + ‖u2‖V2 + ‖(β̃/β2)f2 − f̃‖(L2(Ω2))d)
)
,(42)

where, the finite element space of velocity, Vh, is replaced by the iteratively con-
structed IFE space V ph

h .
To obtain the approximation solution of the above DLM/FD-IFE method, we

need to iteratively solve (37)-(40) with a prescribed initial value of pressure, p
(0)
h .

The following iterative process is employed.

Algorithm 3.1. First, an initial value for the pressure, p
(0)
h , is appropriately cho-

sen. Then for m = 1, 2, · · · , the following steps are conducted in each step:

(1) Define the IFE space V
p
(m−1)
h

h ;

(2) Solve (37)-(40) for
(
u

(m)
h , u

(m)
2,H , p

(m)
h

)
∈ V p

(m−1)
h

h × V2,H ×Qh;

(3) When m ≥ 2, determine if the following iterative errors reach the given
tolerance ε:

‖u(m)
h − u(m−1)

h ‖0,Ω + ‖u(m)
2,H − u

(m−1)
2,H ‖0,Ω2

+ ‖p(m)
h − p(m−1)

h ‖0,Ω ≤ ε.
If yes, then stop the iteration; otherwise, let m⇐ m+ 1, go to Step (1).

Remark 3.2. Instead of P1 continuous finite element space, we employ the itera-
tively constructed IFE space V ph

h for the approximation of velocity ũ in (37)-(40),
which is reflected in the first term of the right hand side of (42), i.e., the interpo-
lation error estimate of the velocity ũ. Due to the regularity results (31) showing
that ũ ∈ Hs(Ω) (1 < s < 1.5), the a priori interpolation error of ũ in the stan-
dard finite element P1 space Vh supposes to be inf

vh∈Vh

‖ũ−vh‖V ≤ Chs−1‖ũ‖Hs(Ω),

i.e., one half order convergence rate at most if using the standard finite element
P1 space Vh. Now with the iteratively constructed IFE space V ph

h , we anticipate
an improved convergence order for inf

vh∈V
ph
h

‖ũ−vh‖V up to optimal: the first order

in H1 norm. According to (42), this further delivers the optimal error estimates
for discretization errors of the velocity, ‖ũ−uh‖V , with the first order, and of the
pressure, ‖p̃− ph‖Q, with the second order, as validated in Section 4.1. A (nearly)
optimal error estimate in L2 norm (the second order convergence rate) for velocity
is also illustrated in Section 4, which is correct due to the Aubin–Nitsche duality
argument as a standard finite element theory.

Remark 3.3. In practice, because P1-P1 element is used to discretize the nested
saddle-point system derived by the above DLM/FD-IFE method, the approximation
accuracy of pressure ph is affected by the performance of the stabilization term
dh(p, q) shown in (41) that is influenced by the choice of the stabilization parameter
Cδ, i.e., the optimal convergence of pressure depends on an appropriately chosen
Cδ.

Remark 3.4. Such iteratively constructed immersed finite element space can be
integrated into other discretization schemes. For example, based on the weak form
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(25)-(26), we can directly develop an immersed finite element method for Stokes
interface problem (1)-(8) without combining with the DLM/FD method, which is,
however, impossible for the Stokes/elliptic interface problem as shown in the next
section.

Remark 3.5. The iterative process shown in Algorithm 3.1 is expected to be con-
vergent within a few steps if the jump of pressure across the interface Γ in the
immersed elements is relatively small, resulting in a nearly unchanged condition
(21) after several iterations. A good initial value p0

h is also important to accelerate
the convergence of the iteration.

3.2. Application to Stokes/elliptic problem. In this section, we develop the
DLM/FD-IFE method for a type of linearized steady state FSI problem that is
essentially the Stokes/elliptic interface problem as defined in (10)-(16).

The standard weak form of (10)-(16) can be defined as follows. Find (u, p) ∈
V × L2(Ω1) with u|Ω1 = u1, u|Ω2 = u2, p|Ω1 = p1, such that

(β∇u,∇v)Ω − (p,∇ · v)Ω1 = (f ,v)Ω + (w,v)Γ, ∀v ∈ V ,(43)

(∇ · u, q)Ω1
= 0, ∀q ∈ L2(Ω1).(44)

One weak form of the DLM/FD method for (10)-(16) is to find (ũ, u2, p̃, λ) ∈
V × V2 ×Q×Λ such that [33]

(β̃∇ũ,∇v)Ω − (p̃,∇ · v)Ω + 〈λ,v|Ω2〉Ω2
= (f̃ ,v)Ω,(45)

(∇ · ũ, q)Ω − (∇ · ũ2, q)Ω2
= 0,(46)

(
(β2 − β̃)∇u2,∇v2

)
Ω2

+ (p|Ω2
,∇·,v2)Ω2

− 〈λ,v2〉Ω2
=
(
f2 − f̃ |Ω2

,v2

)
Ω2

+ (w,v2)Γ,

(47)

〈ξ, ũ|Ω2
− u2〉Ω2

= 0,(48)

∀(v, v2, q, ξ) ∈ V × V2 ×Q×Λ,

where, we do the same smooth extension for β1 and f1 to obtain β̃ ∈ L∞(Ω)

and f̃ ∈ (L2(Ω))d, respectively. And, the solution (ũ, p̃) ∈ V × Q satisfy ũ|Ω1
=

u1, ũ|Ω2
= ũ2, p̃|Ω1

= p1, p̃|Ω2
= p̃2, and ũ|∂Ω = 0, and ũ|Γ = u1|Γ = u2|Γ.

The equivalence between the DLM/FD weak form (45)-(48) and the standard weak
form (43)-(44) [33] results that (ũ, p̃) hold the same regularity results as shown in
(31). For the same reason as shown in Section 3.1, (48) is equivalent with (36).

Note that the DLM/FD method for Stoke/elliptic interface problem (45)-(48)
also forms a nested saddle-point problem that includes two subproblems of saddle-
point type: the inside one from Stokes equations, and the outside one from the
DLM/FD method itself regarding Lagrange multiplier and Stokes unknowns (ve-
locity and pressure). Please refer to [33] for the well-posedness of (45)-(48), where, a
monolithic bilinear form is proved to hold the inf-sup condition upon the Babuška–
Brezzi’s theory [5, 9].

Similarly, the combined DLM/FD-IFE method for Stokes/elliptic interface prob-
lem (10)-(16) can be defined as follows [33]. Find (uh, u2,H , ph, φH) ∈ W ph

h ×
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V2,H ×Qh × V2,H such that(
β̃∇uh,∇vh

)
Ω
− (ph,∇ · vh)Ω + dh(ph, ph) + (φH ,vh|Ω2)V2

=
(
f̃ ,vh

)
Ω
,(49)

(∇ · uh, qh)Ω − (∇ · u2,H , qh)Ω2
= 0,(50) (

(β2 − β̃)∇u2,H ,∇v2,H

)
Ω2

+ (ph|Ω2 ,∇ · v2,H)Ω2
− (φH ,v2,H)V2

=
(
f2 − f̃ |Ω2

,v2,H

)
Ω2

+ (w,v2,H)Γ ,(51)

(ψH ,uh|Ω2
− u2,H)V2

= 0,(52)

∀ (vh, v2,H , qh, ψH) ∈W ph
h × V2,H ×Qh × V2,H ,

where, the pressure-stabilization term, dh(p, q), is still needed to stabilize the P1-P1

element for the above saddle-point system.
An analogous mixed finite element error analysis [33] can be carried out for (49)-

(52), and the following a priori error estimate can be derived based on the developed
IFE space W ph

h .

‖ũ− uh‖V + ‖u2 − u2,H‖V2 + ‖p̃− ph‖Q + ‖φ− φH‖V2

≤ C( inf
vh∈W

ph
h

‖ũ− vh‖V + inf
v2,H∈V2,H

‖u2 − v2,H‖V2
+ inf
qh∈Qh

‖p̃− qh‖Q

+ H(‖p̃‖H1(Ω2) + ‖ũ‖(Hr(Ω1∪Ω2))d + ‖(β̃/β2)f2 − f̃‖(L2(Ω2))d)
)
,(53)

where, the finite element space of velocity, Vh, is replaced by the iteratively con-
structed IFE space W ph

h .
To apply the newly defined immersed finite element space, W ph

h , to the above
DLM/FD-IFE method (49)-(52) with an iteratively obtained pressure ph, an it-
erative process that is similar with Algorithm 3.1 is needed to solve (49)-(52), as
shown below.

Algorithm 3.6. First, an initial value for the pressure, p
(0)
h , is appropriately cho-

sen. Then, for m = 1, 2, · · · , the following steps are iterated until convergence:

First, an initial value for the pressure, p
(0)
h , is appropriately chosen. Then for

m = 1, 2, · · · , the following steps are conducted in each step:

(1) Define the IFE space W
p
(m−1)
h

h ;

(2) Solve (49)-(52) for
(
u

(m)
h , u

(m)
2,H , p

(m)
h

)
∈W p

(m−1)
h

h × V2,H ×Qh;

(3) When m ≥ 2, determine if the following iterative errors reach the given
tolerance ε:

‖u(m)
h − u(m−1)

h ‖0,Ω + ‖u(m)
2,H − u

(m−1)
2,H ‖0,Ω2

+ ‖p(m)
h − p(m−1)

h ‖0,Ω ≤ ε.
If yes, then stop the iteration; otherwise, let m⇐ m+ 1, go to Step (1).

Remark 3.7. For the Stokes/elliptic problem, the pressure, p, is only defined in
Ω1. However, in the DLM/FD-IFE method (49)-(52), the approximation to the
pressure, i.e., ph, is defined in the global domain Ω due to the introduction of the
distributed Lagrange multiplier. This makes it possible for us to construct the IFE
space for the velocity by the iterative approach.

Remark 3.8. Similar with the DLM/FD-IFE method for the Stokes interface prob-
lem (37)-(40), due to the iteratively constructed IFE space W ph

h , we may gain
the first order convergence for ‖ũ − uh‖V and the second order convergence for
‖p̃− ph‖Q, if the P1-P1 mixed element with pressure stabilizations works optimally
for solving (49)-(52).
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4. Numerical experiments

In this section, we conduct some numerical experiments to validate the per-
formance of the developed DLM/FD-IFE method for Stokes- and Stokes/elliptic
interface problems with jump conditions across the interface.

Note that (21) and (24) are inhomogeneous jump conditions, in order to enforce
them in each nodal basis function of the velocity in finite elements, we need to

employ the velocity value, u
(m)
h =

(
u

(m)
h,1 , u

(m)
h,2

)T
obtained in the last iteration

(the m-th step), as illustrated below. For example, considering the Stokes interface

problems, we define the nodal basis function φB for u
(m)
h,1 and ψB for u

(m)
h,2 associated

with the node B of the triangular interface element T shown in Fig. 2 by letting
φB satisfy

φB(A) = 0, φB(B) = 1, φB(C) = 0,(54)

φ+
B(D) = φ−B(D), φ+

B(E) = φ−B(E),(55) (
β1
∂φ+

B

∂n
− β2

∂φ−B
∂n

)
= SB,1

((
p(A)− p(B) + p(C)

2

)
n1 − w1

)
,(56)

and letting ψB satisfy

ψB(A) = 0, ψB(B) = 1, ψB(C) = 0,(57)

ψ+
B(D) = ψ−B(D), ψ+

B(E) = ψ−B(E),(58) (
β1
∂ψ+

B

∂n
− β2

∂ψ−B
∂n

)
= SB,2

((
p(A)− p(B) + p(C)

2

)
n2 − w2

)
,(59)

where,

SB,i =
sign

(
u

(m)
h,i (B)

)
∣∣∣u(m)
h,i (A)

∣∣∣+
∣∣∣u(m)
h,i (B)

∣∣∣+
∣∣∣u(m)
h,i (C)

∣∣∣ .(60)

The above definitions of nodal basis functions can be similarly applied to other
element nodes A and C by following φi(j) = δij in (54) and ψi(j) = δij in (57) for
i, j = A,B,C, as well as to Stokes-elliptic problems.

It is easy to see that if∣∣∣u(m)
h,i (A)

∣∣∣+
∣∣∣u(m)
h,i (B)

∣∣∣+
∣∣∣u(m)
h,i (C)

∣∣∣ 6= 0,(61)

then

SA,iu
(m)
h,i

(A) + SB,iu
(m)
h,i

(B) + SC,iu
(m)
h,i

(C) = 1, (i = 1, 2).(62)

(62) implies that the numerical solution u
(m)
h in each interface element T , which

is the linear combination of its nodal basis functions at each node of element T
defined in (54)-(59), satisfies the conditions (19)-(21) and (22)-(24), further the

flux jump condition (6), except for the case that the values of u
(m)
h at each node of

the interface element T are all zero. In such an extreme case, instead of using the
IFE nodal basis functions as defined above, we may adopt the standard continuous
piecewise linear finite element basis functions in this interface element T to avoid
the zero denominator in (60), thus the jump condition (21) and (24) may not exactly
hold for this extreme case. However, we want to point out that such extreme case
does not happen either in our numerical experiments or in the realistic FSI problem,
where the velocity values in the interface elements along with a moving interface
are always nonzero. On the other hand, we also plan to study a remedy for this
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extreme case in our next paper even it rarely happens, where, an immersed finite
element space will be introduce for the pressure as well in the discretization scheme
in order to construct nodal basis functions of velocity to satisfy the jump condition
(21) and (24) even though the nodal values of velocity at all vertices are zero.

In the sequence, we consider the domain Ω = (0, 1)2 cut by the circular interface
(x−0.3)2 +(y−0.3)2 = 0.01 that separates Ω into two regions Ω1 = {(x, y)T : (x−
0.3)2 + (y − 0.3)2 > 0.01} and Ω2 = {(x, y)T : (x − 0.3)2 + (y − 0.3)2 < 0.01}, in
which we define the following two examples of interface problems.

4.1. Example 1: Stokes interface problems. The following functions u =
(u1, u2)T and p are chosen as the real solutions of (1)-(8) by properly defining the
right hand side functions f1, f2 and the jump flux function w:

u1 =


(y−0.3)((x−0.3)2+(y−0.3)2−0.01)

β1
, if (x, y)T ∈ Ω1

(y−0.3)((x−0.3)2+(y−0.3)2−0.01)
β2

, if (x, y)T ∈ Ω2

(63)

u2 =


−(x−0.3)((x−0.3)2+(y−0.3)2−0.01)

β1
, if (x, y)T ∈ Ω1

−(x−0.3)((x−0.3)2+(y−0.3)2−0.01)
β2

, if (x, y)T ∈ Ω2

(64)

and

p =
1

10

(
x3 − y3

)
, ∀(x, y)T ∈ Ω.(65)

We solve (1)-(8) by virtue of the DLM/FD finite element method (37)-(40) to
attain the numerical solutions uh = (uh, vh)T and ph in the entire domain Ω, where
the initial pressure is taken as zero. In order to implement the Algorithm (3.1), two
partitions Th(Ω) and TH(Ω2) are used, see e.g. Figure 3. We remark that Th(Ω)
and TH(Ω2) are constructed independently.

Figure 3. meshes: (a) Th(Ω); (b) TH(Ω2) with h = 1/8; (c)
TH(Ω2) with h = 1/16; (d) TH(Ω2) with h = 1/32.

Numerical approximation errors are reported in Tables 1 and 3 with the increas-
ing jump of diffusion coefficients and different mesh ratios h/H. After conducting
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a linear fitting over the approximation errors of different norms given in each ta-
ble, we get numerical convergence rates as shown in those tables. We observe that
when the jump ratio is small, say, β2/β1 = 10, there are not much difference on
convergence errors and rates for the velocity in H1, L2 and L∞ norms and the
pressure in L2 norm with different mesh ratios h/H from 1/2 to 2. However, when
the jump ratio turns to large, the convergence errors and rates of all variables in
different norms present large differences, and, the convergence rate of velocity in L2

norm particularly approaches to the optimal (second order), as shown in cases of
β2/β1 = 100 and 10000. In addition, we found out the mesh ratio h/H = 1/2 seems
to produce a more satisfactory convergence result that matches with the predicted
theoretical result for all jump ratios β2/β1, i.e., the first order optimal convergence
rate for velocity in H1 norm and the second order rate for pressure in L2 norm for
all jump ratios. Hence, we need to appropriately choose the mesh ratio in practice
in order to make Lagrange multipliers work better.

Note the numerical results illustrated in Tables 4 and 5, the convergence errors of
velocity in L∞ norm present an optimal (second order) convergence rate for larger
jump ratios under the mesh ratio h/H = 1/2, which is similar with the convergence
rates of L2 norm. This is not illustrated yet in the a priori error estimate result, an
unusual result for the nonconforming IFE method that is used in this paper, because
the original nonconforming IFE space does not have an optimal convergence rate
in L∞ norm due to the consistent error caused by the discontinuities of the test
functions [not in H1(Ω) space] [11]. Now our numerical experiments show that the
newly developed DLM/FD-IFE method has O(h2) convergence for the velocity in
L∞ norm, which needs further theoretical investigation in our future work. Figures
4-6 illustrate the convergence rate of each case via a log-log plot.

Table 1. Results of Example 1, β2/β1 = 10.

h H ||u− uh||1 ||u− uh||0 ||v − vh||1 ||v − vh||0 ||p− ph||0
1/16 1/8 1.4894e-02 2.2684e-04 1.4890e-02 2.2660e-04 6.1723e-03
1/32 1/16 7.3822e-03 6.0820e-05 7.3829e-03 6.0910e-05 1.4468e-03
1/64 1/32 3.6983e-03 2.9734e-05 3.6990e-03 2.9772e-05 2.8335e-04

rate 1.00 1.47 1.00 1.46 2.22

h H ||u− uh||1 ||u− uh||0 ||v − vh||1 ||v − vh||0 ||p− ph||0
1/16 1/16 1.4900e-02 2.2454e-04 1.4901e-02 2.2460e-04 6.1026e-03
1/32 1/32 7.3995e-03 6.0315e-05 7.3959e-03 6.0289e-05 1.4262e-03
1/64 1/64 3.7030e-03 2.9245e-05 3.7032e-03 2.9283e-05 2.6893e-04

rate 1.00 1.47 1.00 1.47 2.25

h H ||u− uh||1 ||u− uh||0 ||v − vh||1 ||v − vh||0 ||p− ph||0
1/16 1/32 1.4925e-02 2.2253e-04 1.4925e-02 2.2255e-04 6.1574e-03
1/32 1/64 7.4113e-03 5.9864e-05 7.4110e-03 5.9883e-05 1.4187e-03
1/64 1/128 3.7142e-03 2.8415e-05 3.7144e-03 2.8447e-05 2.8551e-04

rate 1.00 1.48 1.00 1.48 2.22

Another numerical phenomenon that is worthy to be pointed out is that the
number of iteration in Algorithm 3.1 uniformly preserves a constant value, e.g.,
the iterative errors of Example 1 always converge down to the tolerance ε = 10−6

within 2 steps no matter what kind of mesh ratios and jump ratios are used.

4.2. Example 2: Stokes/elliptic interface problems. The following functions
u = (u1, u2)T and p are chosen as the real solutions of (10) and (16) by properly



AN ITERATIVE APPROACH FOR CONSTRUCTING IFE SPACES 181

Table 2. Results of Example 1, β2/β1 = 100.

h H ||u− uh||1 ||u− uh||0 ||v − vh||1 ||v − vh||0 ||p− ph||0
1/16 1/8 1.4913e-02 2.2767e-04 1.4913e-02 2.2744e-04 5.9470e-03
1/32 1/16 7.3878e-03 5.7882e-05 7.3887e-03 5.7870e-05 1.3487e-03
1/64 1/32 3.6839e-03 1.5561e-05 3.6849e-03 1.5609e-05 4.3442e-04

rate 1.01 1.94 1.01 1.93 1.89

h H ||u− uh||1 ||u− uh||0 ||v − vh||1 ||v − vh||0 ||p− ph||0
1/16 1/16 1.4988e-02 2.3016e-04 1.4982e-02 2.2957e-04 5.9668e-03
1/32 1/32 7.4533e-03 6.3633e-05 7.4537e-03 6.3718e-05 1.4314e-03
1/64 1/64 3.7194e-03 1.8742e-05 3.7202e-03 1.8868e-05 5.2417e-04

rate 1.01 1.81 1.00 1.80 1.75

h H ||u− uh||1 ||u− uh||0 ||v − vh||1 ||v − vh||0 ||p− ph||0
1/16 1/32 1.5145e-02 2.4292e-04 1.5155e-02 2.4396e-04 6.5127e-03
1/32 1/64 7.4966e-03 6.8739e-05 7.4973e-03 6.8789e-05 1.4037e-03
1/64 1/128 3.7510e-03 2.1750e-05 3.7517e-03 2.1800e-05 5.9651e-04

rate 1.01 1.74 1.01 1.74 1.72

Table 3. Results of Example 1, β2/β1 = 10000.

h H ||u− uh||1 ||u− uh||0 ||v − vh||1 ||v − vh||0 ||p− ph||0
1/16 1/8 1.4918e-02 2.2842e-04 1.4920e-02 2.2831e-04 5.9306e-03
1/32 1/16 7.3913e-03 5.8920e-05 7.3923e-03 5.8907e-05 1.3436e-03
1/64 1/32 3.6864e-03 1.6766e-05 3.6873e-03 1.6837e-05 4.7432e-04

rate 1.01 1.88 1.01 1.88 1.82

h H ||u− uh||1 ||u− uh||0 ||v − vh||1 ||v − vh||0 ||p− ph||0
1/16 1/16 1.5224e-02 2.5075e-04 1.5205e-02 2.4972e-04 6.7370e-03
1/32 1/32 7.4959e-03 6.9755e-05 7.5079e-03 7.1019e-05 1.5797e-03
1/64 1/64 3.7711e-03 2.5219e-05 3.7780e-03 2.5817e-05 6.5525e-04

rate 1.01 1.66 1.00 1.64 1.68

h H ||u− uh||1 ||u− uh||0 ||v − vh||1 ||v − vh||0 ||p− ph||0
1/16 1/32 1.5365e-02 2.7168e-04 1.5368e-02 2.7189e-04 7.3529e-03
1/32 1/64 7.5716e-03 7.8890e-05 7.5719e-03 7.8910e-05 1.5869e-03
1/64 1/128 3.8333e-03 3.1365e-05 3.8339e-03 3.1416e-05 7.8793e-04

rate 1.00 1.56 1.00 1.56 1.61

Table 4. ||ũ− uh||∞ of Example 1, β2/β1 = 100.

h H ||u− uh||∞ ||v − vh||∞
1/16 1/8 1.0627e-03 1.0627e-03
1/32 1/16 2.6416e-04 2.6416e-04
1/64 1/32 6.7324e-05 6.7324e-05

rate 1.99 1.99

defining the right hand side functions f1, f2 and the jump flux function w:

u1 =


(y−0.3)((x−0.3)2+(y−0.3)2−0.01)

β1
, if (x, y)T ∈ Ω1

(y−0.3)((x−0.3)2+(y−0.3)2−0.01)
β2

, if (x, y)T ∈ Ω2

(66)

u2 =


−(x−0.3)((x−0.3)2+(y−0.3)2−0.01)

β1
, if (x, y)T ∈ Ω1

−(x−0.3)((x−0.3)2+(y−0.3)2−0.01)
β2

, if (x, y)T ∈ Ω2

(67)
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Table 5. ||ũ− uh||∞ of Example 1, β2/β1 = 10000.

h H ||u− uh||∞ ||v − vh||∞
1/16 1/8 1.0627e-03 1.0627e-03
1/32 1/16 2.6416e-04 2.6416e-04
1/64 1/32 8.2646e-05 8.0519e-05

rate 1.84 1.86

Table 6. Results of Example 2, β2/β1 = 10.

h H ||u− uh||1 ||u− uh||0 ||v − vh||1 ||v − vh||0 ||p− ph||0
1/16 1/8 1.6193e-02 2.3147e-04 1.6191e-02 2.3136e-04 2.2083e-01
1/32 1/16 7.7074e-03 6.0737e-05 7.7081e-03 6.0816e-05 7.6777e-02
1/64 1/32 3.7637e-03 2.9484e-05 3.7644e-03 2.9500e-05 2.4746e-02

rate 1.05 1.49 1.05 1.49 1.58

h H ||u− uh||1 ||u− uh||0 ||v − vh||1 ||v − vh||0 ||p− ph||0
1/16 1/16 1.6202e-02 2.2932e-04 1.6203e-02 2.2937e-04 2.2157e-01
1/32 1/32 7.7248e-03 6.0191e-05 7.7222e-03 6.0161e-05 7.6903e-02
1/64 1/64 3.7692e-03 2.8903e-05 3.7692e-03 2.8943e-05 2.4859e-02

rate 1.05 1.49 1.05 1.49 1.58

h H ||u− uh||1 ||u− uh||0 ||v − vh||1 ||v − vh||0 ||p− ph||0
1/16 1/32 1.6225e-02 2.2770e-04 1.6225e-02 2.2769e-04 2.2246e-01
1/32 1/64 7.7362e-03 5.9699e-05 7.7359e-03 5.9719e-05 7.6786e-02
1/64 1/128 3.7803e-03 2.8072e-05 3.7805e-03 2.8107e-05 2.4751e-02

rate 1.05 1.51 1.05 1.51 1.58

Table 7. Results of Example 2, β2/β1 = 100.

h H ||u− uh||1 ||u− uh||0 ||v − vh||1 ||v − vh||0 ||p− ph||0
1/16 1/8 1.6213e-02 2.3265e-04 1.6212e-02 2.3245e-04 2.2033e-01
1/32 1/16 7.7133e-03 5.7760e-05 7.7142e-03 5.7647e-05 7.6585e-02
1/64 1/32 3.7498e-03 1.5066e-05 3.7510e-03 1.5123e-05 2.4597e-02

rate 1.06 1.97 1.06 1.97 1.58

h H ||u− uh||1 ||u− uh||0 ||v − vh||1 ||v − vh||0 ||p− ph||0
1/16 1/16 1.6288e-02 2.3548e-04 1.6286e-02 2.3503e-04 2.2324e-01
1/32 1/32 7.7785e-03 6.3861e-05 7.7793e-03 6.3863e-05 7.6634e-02
1/64 1/64 3.7854e-03 1.8306e-05 3.7863e-03 1.8445e-05 2.4529e-02

rate 1.05 1.84 1.05 1.84 1.59

h H ||u− uh||1 ||u− uh||0 ||v − vh||1 ||v − vh||0 ||p− ph||0
1/16 1/32 1.6446e-02 2.4853e-04 1.6452e-02 2.4902e-04 2.2579e-01
1/32 1/64 7.8196e-03 6.8734e-05 7.8202e-03 6.8806e-05 7.6546e-02
1/64 1/128 3.8166e-03 2.1399e-05 3.8173e-03 2.1453e-05 2.4477e-02

rate 1.05 1.77 1.05 1.77 1.60

and

p =
1

10

(
x3 − y3

) (
(x− 0.3)2 + (y − 0.3)2 − 0.01

)
, ∀(x, y)T ∈ Ω1.(68)
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Figure 4. Log-log convergence plots of Example 1 (β2/β1 = 10,
h/H = 1/2).

As shown in Tables 6-10, by applying the developed DLM/FD-IFE method to
the aforementioned Stokes/elliptic interface model problem, we obtain similar nu-
merical results with those of Example 1, i.e., the mesh ratio h/H = 1/2 produces
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Figure 5. Log-log convergence plots of Example 1 (β2/β1 = 100,
h/H = 1/2).

the best convergence for the velocity and the pressure, and when the jump ratio
turns to large (β2/β1 = 100, 10000), it also results in the optimal error estimates
for ‖ũ− uh‖H1(Ω) with the first order, and for ‖ũ− uh‖L2(Ω) and ‖ũ− uh‖L∞(Ω)
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Figure 6. Log-log convergence plots of Example 1 (β2/β1 =
10000, h/H = 1/2).

with the second order, except for ‖p̃− ph‖L2(Ω) which shows the 1.5-th order con-
vergence rate that is half order lower than that of Example 1. Figures 7-9 illustrate
the convergence rate of each case via a log-log plot.
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Table 8. Results of Example 2, β2/β1 = 10000.

h H ||u− uh||1 ||u− uh||0 ||v − vh||1 ||v − vh||0 ||p− ph||0
1/16 1/8 1.6218e-02 2.3368e-04 1.6220e-02 2.3360e-04 2.2034e-01
1/32 1/16 7.7168e-03 5.8808e-05 7.7179e-03 5.8696e-05 7.6594e-02
1/64 1/32 3.7524e-03 1.6317e-05 3.7536e-03 1.6400e-05 2.4572e-02

rate 1.06 1.92 1.06 1.92 1.58

h H ||u− uh||1 ||u− uh||0 ||v − vh||1 ||v − vh||0 ||p− ph||0
1/16 1/16 1.6545e-02 2.5997e-04 1.6530e-02 2.5900e-04 2.2834e-01
1/32 1/32 7.8219e-03 7.0301e-05 7.8311e-03 7.1221e-05 7.6500e-02
1/64 1/64 3.8367e-03 2.5087e-05 3.8436e-03 2.5680e-05 2.4492e-02

rate 1.05 1.69 1.05 1.67 1.61

h H ||u− uh||1 ||u− uh||0 ||v − vh||1 ||v − vh||0 ||p− ph||0
1/16 1/32 1.6671e-02 2.7873e-04 1.6673e-02 2.7891e-04 2.2291e-01
1/32 1/64 7.8937e-03 7.9160e-05 7.8940e-03 7.9187e-05 7.6365e-02
1/64 1/128 3.8981e-03 3.1208e-05 3.8987e-03 3.1261e-05 2.4474e-02

rate 1.05 1.58 1.05 1.58 1.59

Table 9. ||ũ− ũh||∞ of Example 2, β2/β1 = 100.

h H ||u− uh||∞ ||v − vh||∞
1/16 1/8 1.2167e-03 1.2167e-03
1/32 1/16 3.1165e-04 3.1165e-04
1/64 1/32 7.7848e-05 7.7848e-05

rate 1.98 1.98

Table 10. ||ũ− ũh||∞ of Example 2, β2/β1 = 10000.

h H ||u− uh||∞ ||v − vh||∞
1/16 1/8 1.2166e-03 1.2167e-03
1/32 1/16 3.1165e-04 3.1165e-04
1/64 1/32 8.4471e-05 8.1778e-05

rate 1.93 1.94

In addition, same with Example 1, the number of iteration that is counted for
Example 2 following Algorithm 3.6 is also uniform, preserving 2 iterations to reach
the convergence tolerance ε = 10−6, which is independent of mesh ratios and jump
ratio.

5. Conclusion

By utilizing the original immersed finite element (IFE) space in the immersed
elements, and designing an iterative construction approach based upon the jump
flux interface condition which involves multiple primary variables, in this paper we
develop a combined distributed Lagrange multiplier/fictitious domain–immersed
finite element (DLM/FD-IFE) method to solve various interface problems with
different interface conditions, including fluid-structure interaction problems which
represent a large class of interface problems whose governing equations are different
on either side of the interface. For the first time, we make the traditional IFE
method which was originally designed for the elliptic interface problem now work
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Figure 7. Log-log convergence plots of Example 2 (β2/β2 = 10,
h/H = 1/2).

for more general interface problems without considering governing equations on
both sides of the interface have to be identical.
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Figure 8. Log-log convergence plots of Example 2 (β2/β1 = 100,
h/H = 1/2).

Stokes- and Stokes/elliptic interface problems are taken as examples in this pa-
per to illustrate the strength of the developed DLM/FD-IFE method, where, the
optimal convergence rates are obtained for the velocity in norms of H1 (the first
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Figure 9. Log-log convergence plots of Example 2 (β2/β1 =
10000, h/H = 1/2).

order), L2 (the second order) and L∞ (the second order), and the 1.5-th up to
the second order convergence for the pressure in L2 norm under the mesh ratio
h/H = 1/2 for large jump ratios β2/β1 = 100 and 10000. In these Stokes-involved
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interface problems, the discretized pressure is taken as an iterative variable to itera-
tively construct the IFE space, and the number of iteration remains uniform which
is independent of mesh ratios and jump ratios.
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