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A SPACE-TIME PARALLEL METHOD FOR THE OPTIC FLOW

ESTIMATION IN LARGE DISPLACEMENTS AND VARYING

ILLUMINATION CASE

DIANE GILLIOCQ-HIRTZ AND ZAKARIA BELHACHMI

Abstract. We consider a unified variational PDEs model to solve the optic flow problem for

large displacements and varying illumination. Although, the energy functional is nonconvex and
severely nonlinear, we show that the model offers a well suited framework to extend the efficient

methods we used for small displacements. In particular, we resort to an adaptive control of the

diffusion and the illumination coefficients which allows us to preserve the edges and to obtain
a sparse vector field. We develop a combined space-time parallel programming strategy based

on a Schwarz domain decomposition method to speed up the computations and to handle high

resolution images, and the parareal algorithm, to enhance the speedup and to achieve a lowest-
energy local minimum. This full parallel method gives raise to several iterative schemes and allows

us to obtain a good balance between several objectives, e.g. accuracy, cost reduction, time saving

and achieving the “best” local minimum. We present several numerical simulations to validate
the different algorithms and to compare their performances.

Key words. Optic flow estimation, large dislacements, variable illumination, adaptive finite

elements, parallel and parareal computations, domain decomposition.

1. Introduction

The optic flow problem is a central research topic in computer vision since the
last few decades. It is used in many fields, e.g. robotic for obstacle detection, in
video compression and also in medical imaging. In the small displacements case,
several approaches have been used, e.g. statistical methods, learning techniques,
PDEs, etc ( [2], [10], [27], [28]), see [22], [9] and the references therein. Despite the
fact that these methods have been extended to the large displacements case, a lot
of challenging questions remain, in both modelling and computational grounds. In
fact, for small displacements (i.e. successive frames in the sequence are close), the
constraint expressing the conservation of the pixel’s intensity is usually linearized
in a single step, which leads essentially to solve a linear system of PDEs. This
is no longer true for large displacements and the problem requires, in the varia-
tional framework, to work with highly nonlinear and nonconvex energy functionals
possessing possibly a lot of minima. Minimizing such functionals inevitably raises
many difficulties (existence of -local- minimizers, regularity of solutions, well suit-
able optimization algorithms, cost of computations, etc). Moreover, phenomena like
occlusions, change in the illumination within the scene, etc, should prevent from us-
ing techniques with too much smoothing effects (the solutions develop singularities
which are important features to describe the motion).

In this article, we extend the approach considered in [18] for small displacements
to the challenging problem of large displacements and varying illumination. It is a
variational method which relies on the framework introduced in the seminal works
of [24] and [20] and widely pursued by the community of mathematical image
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analysis, e.g. without being exhaustive [2, 8, 28], (see also [9] and the references
therein). In this common framework, one minimizes an energy functional which
consists of a data term that expresses the fundamental constraint of the optic flow
estimation, namely the constancy of the pixel’s intensity, and a regularization term
among a family of well known regulaziers (e.g. Tychonov, TV, . . . ). In all cases, this
last part represents a diffusion term with prescribed diffusion coefficient/function.

In the article, we adopt the approach of control of the diffusion introduced in [6]
which takes a spatially variable diffusion function, adjusted locally and adaptively
to decrease the amount of diffusion near the singularities (high gradients areas).

To take into account the varying illumination, several approaches were suggested,
e.g. constancy of the magnitude of the gradient of the images [8]. Gennert et al [15]
suggested a “law” for such variations which relaxes the constancy of the intensity.
In this work, we extend this method to construct a varying illumination function
from the simple initial “law” suggested in [15]. Using the control approach, we
obtain both a diffusion and a change of illumination with sophisticated profiles,
i.e. piecewise smooth with non trivial jump sets (those giving some relevant infor-
mations on occlusions areas, shadow, . . . ). Mathematically speaking, the method
is convergent, in the Γ-convergence sense, to (special) bounded variation functions
solutions [7].

We show that variational methods and the finite element discretisation offer
a powerful and complete framework to solve the optic flow problem in the large
displacement case. In fact, this setting allows us to decrease significantly the cost
of computation by using coarse elements in the homogeneous regions where the
flow field is smooth and refined meshes near the edges. Thus, we distinguish the
geometry of the vector field (the optic flow), hence the meshes associated to it, and
the meshes associated to the images in the sequence (constrained by the resolution
and generally very fine and isotropic even if the motion is not), so that even for
high resolution images, we may end up with meshes with only few elements and a
sparse optic flow.

In order to increase the efficiency of the method with respect to additional con-
straints like fast computations and the high resolution sequences, it is necessary to
use advanced tools of high performance computing, particularly the parallel pro-
gramming. In fact, we have two main objectives in using parallel programming
approaches: on one hand the (usual) goal of obtaining a significant time saving,
and, in another hand, the aim of handling high resolution images. In addition, as
the problem is nonconvex, we aim at computing a lowest -energy minimum. This
last objective motivate our use of a parallel in time method (parareal algorithm)
which may be considered as a time multi-grid method [13], and allows us to reach
such lowest-energy solution for a given accuracy. This fact may be proven in special
and simple problems (as for a standard multi-grid algorithms) but in our case it
is a numerical evidence rather than a rigorous proof which is still open question.
Another reason for the use of the parareal approach in our problem is the ability
to use a different numerical scheme at the fine time scale than the one used at the
coarse grid, or even the use of different physics between the two scales, i.e. a simpli-
fied version of the system of equations at one level, . . . This gives a supplementary
flexible way to discretize such complex systems.

We study and compare three parallel computing methods: an MPI parallel
method, in space, using a Schwarz domain decomposition technique which is clearly
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a well suited method to handle high resolution frames and for which tools of par-
allel implementation have reached a high level of maturity. Such a method is im-
plemented under the openGL freeware FreeFem++ [11], [21] and its MPI facilities.
The aim here is twofold: managing large sequences of frames with high resolution
and obtaining high speedup. We show that the method in this case is nearly scal-
able. In fact, we perform a detailed task analysis to exhibit the “non scalable”
actions for further improvements of the method.

The second parallel method, the so-called parareal algorithm [23], consists of two
time-grids (a fine and coarse scale) and mainly allows one to use a sequential coarse
scheme and a parallel solver at the fine grid. The speedup within this method is
limited ( [14]). We build several iterative schemes and compare them to select the
one which fulfils as best as possible the aims of achieving a desired accuracy with a
good local minimum (compared to the one given by a sequential algorithm), time
saving, . . . .

The space-time parallel method couples the two previous ones and turns out to
be an efficient strategy to solve variational problems with severe nonlinearities and
nonconvex energies. It is then important to notice that the article aims to show
that the parallel computing is not used only to decrease the computational efforts
(mainly the computations time) but to design efficient schemes to solve the problem
as well.

The article is organized as follows: In Section 1, we state the problem under a
variational form. We describe the iterative fixed point scheme to solve the asso-
ciated nonlinear PDEs system. In Section 2, we study the corresponding discrete
problem. We develop the anisotropic and adaptive method of the control of the
diffusion matrix which is essential in our approach to preserve the edges of the flow
field. We finish the section with some numerical results in the sequential frame-
work to show the accuracy of the model in determining the optic flow for large
displacements and varying illumination with preserving the edges. This furnishes
also the “reference” solutions to compare with the results of the parallel methods of
the next sections, since there is no ground-truth available. Section 3 is devoted to
the first parallel method, namely the overlapping Schwarz domain decomposition
method. We describe in detail this parallel approach and its implementation for
the considered problem. Numerical simulations are performed for the speedup, the
convergence and the accuracy. In particular, a detailed study of the time of com-
putations is given. In Section 4, we consider a parallel in time method (parareal
method), the principle as well as the implementation are presented and some nu-
merical results are given. Finally, in Section 5, we combine the two parallel methods
for a fully parallel approach and we perform some numerical simulations to show
the efficiency of this coupling which conjugate computation efficiency and accurate
solving of the optic flow problem.

2. The model problem

2.1. Variational formulation. We define a function 𝐼 from an image domain
Ω ⊂ R2 to R representing the intensity of a pixel (𝑥, 𝑦) at an instant 𝑡 by

I: Ω × [0, 𝑇 ] → R

(𝑥, 𝑦), 𝑡 ↦→ 𝐼(𝑥, 𝑦, 𝑡).

According to the work of Barron [4], we slightly smooth the sequence thanks to a
convolution with a Gaussian kernel 𝐾𝜎 of standard deviation 𝜎. The new function
is noted
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𝑓(𝑥, 𝑦, 𝑡) = (𝐾𝜎 ⋆ 𝐼)(𝑥, 𝑦, 𝑡).

The estimation of the optical flow consists in finding the vector field u = (𝑢1, 𝑢2),
called the optic flow, describing the motion of each pixel between two frames of
a given sequence. Most methods for the determination of u are based on the
assumption that the intensity of a pixel is constant between two successive frames.
More precisely, the optic flow defines trajectories 𝜒(𝑡,x) along which this constancy
assumption holds, ⎧⎨⎩ �̇� = u,

u̇ = 0,
𝜒(0) = x

and
𝑑(𝑓 ∘ 𝜒)

𝑑𝑡
= 0,

which is familiarly written in the computer vision community

(1) 𝑓(𝑥 + 𝑢1, 𝑦 + 𝑢2, 𝑡 + 1) = 𝑓(𝑥, 𝑦, 𝑡).

In the small displacements case (the frames are very close), this equation is
linearized with a Taylor expansion and reads

(2) 𝑓𝑥𝑢1 + 𝑓𝑦𝑢2 + 𝑓𝑡 = 0,

where the unknown is the vector field (𝑢1, 𝑢2) and 𝜑𝑥, respectively 𝜑𝑦 denotes
the partial derivatives with respect to 𝑥, respectively 𝑦. With only one equation
to determine two unknowns, this problem is ill-posed. It is called the aperture
problem. Several methods have been considered among which the seminal approach
of Lucas and Kanade [24] and its variational form due to Horn and Schunck [20],
which consists in minimizing, over the Sobolev space 𝐻1(Ω)2, the energy functional

(3) ℰ(u) =

∫︁
Ω

𝐾𝜌 ⋆ (𝑓𝑥𝑢1 + 𝑓𝑦𝑢2 + 𝑓𝑡)
2 + 𝛼(|∇𝑢1 |2 + |∇𝑢2 |2)𝑑𝑥𝑑𝑦,

where 𝐾𝜌 is a gaussian kernel of standard deviation 𝜌 and 𝛼 is a nonnegative
constant.

Remark 2.1. (1) The convolution with the gaussian kernel 𝐾𝜌 acts like a con-
volution with the function 1𝒱(𝑥,𝑦) and gives a larger weight to the pixels very
close to (𝑥, 𝑦).

(2) The main shortcoming of this model is that it produces continuous solutions
and do not preserves the edges which are essential in image processing. Fol-
lowing [7], we will consider a variable coefficient 𝛼 which is chosen locally
in order to decrease the diffusion near the singularities (the edges).

In the case of large displacements the frames are distant so that effects like oc-
clusions arise (objects which appear/disappear in the scene), which mainly imply
that the constancy assumption could not be linearized without loss of important
informations. Consequently, the data term in the energy functional becomes a least
square fitting of the difference 𝑓(𝑥+𝑢1, 𝑦+𝑢2, 𝑡+1)−𝑓(𝑥, 𝑦, 𝑡). Another constancy
assumption, implicitly hidden in (1), is the brigthness invariance which means that
eventual changes in the illumination are neglected and are taken constant. When
this assumption become too stringent, many authors relax it for example by adding
a specific constraint (conservation of the modulus of the gradient of 𝑓) [8], or, for
colored images, by working with variables which are less sensitive to such illumina-
tion changes [25]. Another approach suggested by Gennert and Negahdaripour [15]
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amounts to model this change with a new unknown. More precisely, the conserva-
tion law (1) is modified as follows

(4) 𝑓(𝑥 + 𝑢1, 𝑦 + 𝑢2, 𝑡 + 1) = 𝑀(𝑥, 𝑦, 𝑡)𝑓(𝑥, 𝑦, 𝑡) + 𝑇 (𝑥, 𝑦, 𝑡),

that is to say the varying illumination is taken as a linear transformation of the
intensity. For small displacement and in many physical situations this assumption is
reasonable and coherent with the laws of the optic. However, for large displacements
it might be too restrictive. In our model, we include (4) in the energy functional but
as we apply the method of ( [7]) to modify the diffusion coefficients, the modelling of
the illumination changes is more involved as we will show. For simplicity, we set 𝑇 =
0, thus the model for the estimation of the optical flow in large displacements and
with varying illumination consists in finding a minimum of the non-linear functional

(5) ℰ(u,𝑀) =

∫︁
Ω

(𝑓(𝑥 + 𝑢1, 𝑦 + 𝑢2, 𝑡 + 1) −𝑀𝑓(𝑥, 𝑦, 𝑡))2𝑑𝑥𝑑𝑦⏟  ⏞  
non-linear data term

+

∫︁
Ω

𝛼1(𝑥, 𝑦)|∇𝑢1|2+𝛼2(𝑥, 𝑦)|∇𝑢2|2) + 𝜆(𝑥, 𝑦)|∇𝑀 |2𝑑𝑥𝑑𝑦⏟  ⏞  
linear regularization term

.

It should be noted that the energy functional is defined over the space 𝐻1(Ω)3,
however our adaptive approach to control the diffusion yields solutions which are
functions of bounded variations (i.e. in the larger space BV, see [7] for details). In
particular, they have a jump set (edges). Hence, we have 𝛼1, 𝛼2, and 𝜆 which are
real functions, such that there exist two constants 𝑎0, 𝑎1

0 < 𝑎0 ≤ 𝛼1(𝑥, 𝑦), 𝛼2(𝑥, 𝑦), 𝜆(𝑥, 𝑦) ≤ 𝑎1.

The Euler-Lagrange system related to the minimisation of the functional ℰ is as
follows

(6)

⎧⎪⎪⎨⎪⎪⎩
−div(𝛼1(x)∇𝑢1) + 𝐿(𝑓, 𝑈)(x)𝑓𝑥(𝑥 + 𝑢1, 𝑦 + 𝑢2, 𝑡 + 1) = 0, in Ω
−div(𝛼2(x)∇𝑢2) + 𝐿(𝑓, 𝑈)(x)𝑓𝑦(𝑥 + 𝑢1, 𝑦 + 𝑢2, 𝑡 + 1) = 0, in Ω
−div(𝜆(x)∇𝑀) − 𝐿(𝑓, 𝑈)(x)𝑓(𝑥, 𝑦, 𝑡) = 0, in Ω
𝜕𝑢1

𝜕𝑛 = 𝜕𝑢2

𝜕𝑛 = 𝜕𝑀
𝜕𝑛 = 0, on 𝜕Ω

where 𝐿(𝑓, 𝑈) = 𝑓(𝑥 + 𝑢1, 𝑦 + 𝑢2, 𝑡 + 1) −𝑀𝑓(𝑥, 𝑦, 𝑡).

2.2. Iterative scheme and linearization. To solve the PDEs system (6), which
is strongly nonlinear, we use a fixed point method. Note that the non-convexity
of the energy and the existence of (possibly) a lot of local minima, as well as the
non explicit form of the nonlinearity (which depends on the data 𝑓), prevent from
strong convergence results of the iterative scheme. In fact, to solve the system, we
proceed in two steps, a semi-implicit linearization step, the iterative scheme is then
still nonlinear, but the remaining nonlinear term concerns the transition from the
iteration 𝑘 to 𝑘 + 1, thus we can use the linearization methods used in the small
displacements case. More precisely, we have the fixed point algorithm

(7)⎧⎪⎪⎪⎨⎪⎪⎪⎩
−div(𝛼1(x)∇𝑢𝑘+1

1 ) + (𝐿(𝑓, 𝑈))𝑘+1(x)𝑓𝑥(𝑥 + 𝑢𝑘
1 , 𝑦 + 𝑢𝑘

2 , 𝑡 + 1) = 0 in Ω

−div(𝛼2(x)∇𝑢𝑘+1
2 ) + 𝐿(𝑓, 𝑈))𝑘+1𝑓𝑦(𝑥 + 𝑢𝑘

1 , 𝑦 + 𝑢𝑘
2 , 𝑡 + 1) = 0 in Ω

−div(𝜆(x)∇𝑀𝑘+1) − 𝐿(𝑓, 𝑈))𝑘+1𝑓(𝑥, 𝑦, 𝑡) = 0, in Ω
𝜕𝑢𝑘+1

1

𝜕𝑛 =
𝜕𝑢𝑘+1

2

𝜕𝑛 = 𝜕𝑀𝑘+1

𝜕𝑛 = 0, on 𝜕Ω
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Then, we set

𝑢𝑘+1
1 = 𝑢𝑘

1 + 𝛿𝑢1

𝑢𝑘+1
2 = 𝑢𝑘

2 + 𝛿𝑢2

𝑀𝑘+1 = 𝑀𝑘 + 𝛿𝑀.

We denote for simplicity

𝑓𝑘
𝑥 = 𝑓𝑥(𝑥+𝑢𝑘

1 , 𝑦+𝑢𝑘
2 , 𝑡+1), 𝑓𝑘

𝑦 = 𝑓(𝑥+𝑢𝑘
1 , 𝑦+𝑢𝑘

2 , 𝑡+1), 𝑓𝑘 = 𝑓(𝑥+𝑢𝑘
1 , 𝑦+𝑢𝑘

2 , 𝑡+1)

Next, we use a Taylor expansion, and obtain the linear system corresponding to
the minimization of the functional (5)⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

− div(𝛼1(x)∇𝛿𝑢1) + (𝑓𝑘
𝑥 𝛿𝑢1 + 𝑓𝑘

𝑦 𝛿𝑢2 − 𝑓(x, 𝑡)𝛿𝑀)𝑓𝑘
𝑥

= div(𝛼1(x)∇𝑢𝑘
1)− (𝐿(𝑓, 𝑈))𝑘𝑓𝑘

𝑥 inΩ
−div(𝛼2(x)∇𝛿𝑢2) + (𝑓𝑘

𝑥 𝛿𝑢1 + 𝑓𝑘
𝑦 𝛿𝑢2 − 𝑓(x, 𝑡)𝛿𝑀)𝑓𝑘

𝑦

= div(𝛼2(x)∇𝑢𝑘
2)− (𝐿(𝑓, 𝑈))𝑘𝑓𝑘

𝑦 inΩ

− div(𝜆(x)∇𝛿𝑀)− (𝑓𝑘
𝑥 𝛿𝑢1 + 𝑓𝑘

𝑦 𝛿𝑢2 − 𝑓(x, 𝑡)𝛿𝑀)𝑓(x, 𝑡)

= div(𝜆(x)∇𝑀𝑘) + (𝐿(𝑓, 𝑈))𝑘𝑓(x, 𝑡) inΩ
𝜕𝛿𝑢1
𝜕𝑛

= 𝜕𝛿𝑢2
𝜕𝑛

= 𝜕𝛿𝑀
𝜕𝑛

= 0, on 𝜕Ω

It is more convenient to use a vectorial notation, we set

𝛿U =

⎛⎝ 𝛿𝑢1

𝛿𝑢2

𝛿𝑀

⎞⎠ , A𝑘 =

⎛⎝ 𝐴𝑘
1,1 𝐴𝑘

1,2 𝐴𝑘
1,3

𝐴𝑘
1,2 𝐴𝑘

2,2 𝐴𝑘
2,3

𝐴𝑘
1,3 𝐴𝑘

2,3 𝐴𝑘
3,3

⎞⎠ ,

where

𝐴𝑘
1,1 = 𝑓2

𝑥(𝑥 + 𝑢𝑘
1 , 𝑦 + 𝑢𝑘

2 , 𝑡 + 1)
𝐴𝑘

2,2 = 𝑓2
𝑦 (𝑥 + 𝑢𝑘

1 , 𝑦 + 𝑢𝑘
2 , 𝑡 + 1)

𝐴𝑘
3,3 = 𝑓2(𝑥, 𝑦, 𝑡)

𝐴𝑘
1,2 = 𝑓𝑦(𝑥 + 𝑢𝑘

1 , 𝑦 + 𝑢𝑘
2 , 𝑡 + 1)𝑓𝑥(𝑥 + 𝑢𝑘

1 , 𝑦 + 𝑢𝑘
2 , 𝑡 + 1)

𝐴𝑘
1,3 = −𝑓(𝑥, 𝑦, 𝑡)𝑓𝑥(𝑥 + 𝑢𝑘

1 , 𝑦 + 𝑢𝑘
2 , 𝑡 + 1)

𝐴𝑘
2,3 = −𝑓(𝑥, 𝑦, 𝑡)𝑓𝑦(𝑥 + 𝑢𝑘

1 , 𝑦 + 𝑢𝑘
2 , 𝑡 + 1),

and

F𝑘 =

⎛⎝ −(𝑓(𝑥 + 𝑢𝑘
1 , 𝑦 + 𝑢𝑘

2 , 𝑡 + 1) −𝑀𝑘𝑓(𝑥, 𝑦, 𝑡))𝑓𝑥(𝑥 + 𝑢𝑘
1 , 𝑦 + 𝑢𝑘

2 , 𝑡 + 1)
−(𝑓(𝑥 + 𝑢𝑘

1 , 𝑦 + 𝑢𝑘
2 , 𝑡 + 1) −𝑀𝑘𝑓(𝑥, 𝑦, 𝑡))𝑓𝑦(𝑥 + 𝑢𝑘

1 , 𝑦 + 𝑢𝑘
2 , 𝑡 + 1)

(𝑓(𝑥 + 𝑢𝑘
1 , 𝑦 + 𝑢𝑘

2 , 𝑡 + 1) −𝑀𝑘𝑓(𝑥, 𝑦, 𝑡))𝑓(𝑥, 𝑦, 𝑡).

⎞⎠ .

Now, given 𝑢𝑘, we compute 𝑢𝑘+1 by solving

(8)

{︂
−div(Λ(x)∇𝛿U) + A𝑘𝛿U = div(Λ(x)∇U𝑘) + F𝑘, in Ω
𝜕𝛿U
𝜕𝑛 = 0, on 𝜕Ω

Note that in this Neumann boundary value problem (8), the matrix A𝑘 may de-
generates in 𝜔 ⊂ Ω, a connected component subset of Ω. For the well-posedness,
we write the datum F𝑘, under the form F𝑘 = A𝑘h + g, where h is such that
(A𝑘)

1
2h ∈ 𝐿2(Ω), suppg ⊂ Ω and

∫︀
𝜔
g 𝑑𝑥 = 0. Then we have (see [6] for details)

Proposition 2.1. Problem (8) admits a weak solution 𝛿U in 𝐻1(Ω)3.
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Proof. The existence of a weak solution 𝛿U follows from the Lax-Milgram Lemma.
The only point to check is the continuity of the linear form, and precisely the part
v ↦→

∫︀
Ω
F𝑘 · v 𝑑x. We have

|
∫︁
Ω

F𝑘 · 𝛿U 𝑑x|≤
∫︁
Ω

|A𝑘h · 𝛿U| 𝑑x + |
∫︁
Ω

g 𝛿U 𝑑x|

≤
(︂∫︁

Ω

|ℎ|2 𝑑x
)︂ 1

2
(︂∫︁

Ω

|𝐴𝑘𝛿U|2 𝑑x
)︂ 1

2

+ 𝐶

(︂∫︁
𝜔

|grad 𝛿U|2 𝑑x
)︂ 1

2
(︂∫︁

𝜔

|g|2 𝑑x
)︂ 1

2

≤𝐶‖𝛿U‖𝐻1(Ω)3 ,

where 𝐶 is the Poincaré-Wirtinger inequality applied in 𝐻1(𝜔,R2)3 ∖ R2 and the
smooth set 𝜔 is such that suppg ⊂ 𝜔 ⊂ Ω. �

We emphasize that the transition from the iteration 𝑘 to 𝑘 + 1 corresponds to
the method that we have developed for the small displacements case. It consists in
solving the linear problem (8) with respect to 𝛿U. However, within this method,
the diffusion matrix Λ is modified in an adaptive algorithm to slow the diffusion
near the edges (see [6]- [18]). Thus, Thus, we have to modify slightly the right-
hand side by setting Λ(𝑥) = Λ0𝐼𝑑, with Λ0 is constant and 𝐼𝑑 is the identity matrix.
Therefore, we set the Λ(𝑥) = Λ0 𝐼𝑑, at the right-hand side, Λ0 being a constant (and
𝐼𝑑 is the identity matrix).

3. The discrete problem

3.1. finite elements formulation. Let 𝒯ℎ be a regular triangular mesh, we define
the space of approximation of the solution

𝒱ℎ = {Vℎ ∈ (𝐶(Ω))3, Vℎ|𝐾∈ (𝑃1(𝐾))3}
where ℎ represents the maximal diameter of the cells 𝐾, 𝐶(Ω) is the space of

continuous functions on Ω and 𝑃1(𝐾) is the set of the polynomial functions of
degree less than or equal to 1 in 𝐾.

For simplicity we drop the index 𝑘 in the sequel. We define the bilinear form

𝑎Λ(𝛿UΛ,V) =

∫︁
Ω

Λ(x)∇𝛿UΛ∇V𝑑x +

∫︁
Ω

V𝑡A𝛿UΛ𝑑x

and the linear form

𝐿(V) =

∫︁
Ω

FV + Λ0∇U∇V𝑑x.

The variational formulation leads to find the weak solution 𝛿UΛ,ℎ ∈ 𝒱ℎ such
that

(9) 𝑎Λ,ℎ(𝛿UΛ,ℎ,Vℎ) = 𝐿ℎ(Vℎ) ∀Vℎ ∈ 𝒱ℎ,

where 𝑎Λ,ℎ and 𝐿ℎ(V) are the discrete counterparts of 𝑎Λ and 𝐿(V) respectively.
In the discrete bilinear form A is replaced by a finite element approximation Aℎ.

Similarly to the continuous case, we have

Proposition 3.1. Problem (9) admits a solution 𝛿Uℎ in 𝒱ℎ.
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Note that in the practice we solve the problem (9) by adding 𝜖𝐼𝑑, (𝐼𝑑 identity
matrix) to Λ which ensures the uniqueness of the solution.

In what follows we will assume the diffusion matrix Λ piecewise constant in the
sens that each coefficient 𝛼𝑖, 𝑖 = 1, 2 satisfies

𝛼𝑖(𝑥) = 𝛼𝑖,𝐾 (constant), ∀𝐾 ∈ 𝒯ℎ

3.2. Control of the diffusion matrix and the adaptive algorithm. Based
on the method of Belhachmi and Hecht [6], we implement an adaptive control of
the diffusion matrix Λ. In this article, we keep the parameter 𝜆 constant such
that 𝜆(𝑥, 𝑦) = 𝜆0. The control of this parameter is considered in [16]. Since the
displacements are large, instead of considering the same regularization process for
𝑢1 and 𝑢2 as in [6], we are going to adapt the parameter 𝛼1 related to 𝑢1 and the
one related to 𝑢2 independently to enforce the anisotropy of the method. Denoting
𝐹1,ℎ and 𝐹2,ℎ a finite elements approximation of the two first components of F and
𝐴𝑖,𝑗,ℎ an approximation of 𝐴𝑖,𝑗 , we define the error indicators by

(10) 𝜂1𝐾 = (𝛼1,𝐾)−
1
2ℎ𝐾 ‖𝐹1,ℎ + 𝛼1,𝐾∆𝑢1,ℎ + (𝐴1,1,ℎ𝑢1,ℎ) + (𝐴1,2,ℎ𝑢2,ℎ)‖𝐿2(𝐾)

+
1

2

∑︁
𝑒∈ℰ𝐾

(𝛼1,𝑒)
− 1

2ℎ
1
2
𝑒 ‖[𝛼1,𝐾∇𝑢1,ℎ · n𝑒]𝑒‖𝐿2(𝑒)

and

(11) 𝜂2𝐾 = (𝛼2,𝐾)−
1
2ℎ𝐾

⃦⃦
𝐹2,ℎ + 𝛼2

𝐾∆𝑢2,ℎ + (𝐴1,2,ℎ𝑢1,ℎ) + (𝐴2,2,ℎ𝑢2,ℎ)
⃦⃦
𝐿2(𝐾)

+
1

2

∑︁
𝑒∈ℰ𝐾

(𝛼2,𝑒)
− 1

2ℎ
1
2
𝑒 ‖[𝛼2,𝐾∇𝑢2,ℎ · n𝑒]𝑒‖𝐿2(𝑒)

where ℰ𝐾 represents the set of all edges 𝑒 of 𝐾, the diameter of 𝐾 is noted ℎ𝐾

and the diameter of an edge 𝑒 is ℎ𝑒. n𝑒 represents the unit normal vector on 𝑒.
𝛼𝑖,𝑒 is the maximum between the values of 𝛼𝑖,𝐾 , 𝑖 = 1, 2 at the two neighbouring
elements sharing the edge 𝑒 (recall that Λ(𝑥) is piecewise constant). We denote by
[.]𝑒, the jump through the edge 𝑒. These residual error indicators are equivalent
to the 𝐻1-norm the finite element discretization error [26]. In our method, we
use the error indicators in order to apply on one hand a geometric adaptation
(mesh adaption). This allows us to obtain tight location of the singularities -edges,
corners-) [7]. Next, we perform a functional adaptation to decrease the diffusion
in this area thus to prevent the smoothing of the edges. In fact, the value of these
indicators is large on the discontinuities of the scene since the value of ∇𝑢1,ℎ, and
∇𝑢2,ℎ are large. Thus, the local choice of 𝛼1 et 𝛼2 is then given for ℓ = 1, 2 by

(12) (𝛼ℓ,𝐾)𝑛+1 = max

⎛⎝ (𝛼ℓ,𝐾)𝑛

1 + 𝜅max
(︁

𝜂ℓ
𝐾

‖𝜂ℓ‖∞
− 𝜁, 0

)︁ , 𝛼𝑠

⎞⎠ .

where 𝜅 is an arbitrary control parameter and 𝛼𝑠 is a threshold. This formula
means that, if the relative error is greater than 𝜁 ∈ [0, 1] we reduce the value of
𝛼𝑖,𝐾 . On the other hand, if it is less than 𝜁 the denominator is equal to one and
so 𝛼𝑖,𝐾 is unchanged.

The analysis of this method is performed in [7], in particular it is shown that it
preserves the edges.
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We present below the different steps of the algorithm implemented with the
software FreeFem++.

(1) Initialisation: U0 = 0, 𝑖 = 0.
(2) Compute 𝑓(x + U𝑖) and A𝑖.
(3) Resolution of the problem (8) for the iteration 𝑖.
(4) Local choice of the parameter 𝛼 and mesh adaptation.
(5) Update the solution: U𝑖+1 = U𝑖 + 𝑑U𝑖.
(6) 𝑖 = 𝑖 + 1, go back to step 2.

The algorithm stops when the 𝐿2 error between U𝑖 and U𝑖+1 is less than 10−2.

4. The sequential case

We give in this section some numerical results in the sequential case. We em-
phasize that the following results provide us with a reference solution to evaluate
the parallel methods of the next sections, but yet constitute a novelty for the optic
flow estimation in a large displacements and varying illumination case.

4.1. Evaluation of the model. For the evaluation of the model for large dis-
placement, we use some sequences provided by the Middleburry website at www.

vision.middleburry.edu/flow/. As the visualisation of a dense vector field could
be difficult, we also use the color map proposed by Middleburry (see figure 1). In-
stead of representing a vector with an arrow, we assign a color to each vector with
respect to its norm and its orientation.

Figure 1. Vector field and its corresponding color map.

To work with such large displacement sequences, we use the frames 7 and 14 of
each corresponding test. Note that there is no ground truth available in Middle-
burry plateform. The test cases considered in this article and their specifications
are presented in the table 1.

These sequences highlight the principal issues of the optical flow in large dis-
placements such as the varying illumination effects and the large occlusion areas.
We present on the figure 2 the results obtained with our algorithm with and without
the adaptive method presented in the section 3.2. The use of a local control of the
regularization parameters 𝛼1, 𝛼2, allows us to obtain sharp edges and thus, gives
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Table 1. Particularity of the different test cases used.

Test case Specificity

RubberWhale Synthetic images with a lot of de-
tails

DogDance
Real photographs with large oc-
clusions

Walking

a better approximation of the optical flow as a piecewise smooth solution with a
jump set.

Figure 2. Optical flow obtained with (right) and without (mid-
dle) adaptation of 𝛼.

We have also applied a mesh adaptation and we present on the figure 3 the
adapted meshes after 10 iterations. They are well refined around the edges and are
coarser on the homogeneous areas. This is one strong point of the method which
allows us to reduce significantly the number of degrees of freedom. As one can see
in Figure 4, the number of degrees of freedom decreases from the second iteration
and consequently reduces notably the time of computations as shown in the table
2.

4.1.1. Convergence issue. The functional (5) is not a convex function and is
severely nonlinear. The nonlinearity depends on the data 𝑓 , thus without addi-
tional assumptions, we are not able to prove the convergence of the fixed point
algorithm. Nevertheless, as usual in such cases, we stop the algorithm when the 𝐿2
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Figure 3. Adapted meshes.
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Figure 4. Evolution of the number of degrees of freedom with
respect to the adaptation iterations.

error between the solutions of two successive iterations is small.

In Figure 5, we give the evolution of the error
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Table 2. Computation times with and without mesh adaptation.

Test Case Without mesh adaptation With mesh adaptation
RubberWhale 650s 232s

Walking 1022s 339s
DogDance 978s 336s

𝑒𝑟𝑟 =
⃦⃦
𝑈𝑛+1 − 𝑈𝑛

⃦⃦
𝐿2 .

Figure 5. Evolution of the error
⃦⃦
𝑈𝑛+1 − 𝑈𝑛

⃦⃦
𝐿2 .

As one may check in Figure 5, numerical evidences show a convergence of the
method (to a local minimum). In all cases, we observed a convergence process
until a given iteration (here in the Rubberwhale example iteration 15), then the
global error start to increase but if we stop the mesh adaptation the convergence
is continued. The reason for this is that the mesh adaptation adjust the mesh to
the optic flow 𝑢, so the bilinear interpolation (i.e. 𝑓(x,U)) increases as the mesh
for the image itself is the initial one and is dependent only on 𝑓 . Nevertheless, we
have seen in Figure 4 that the mesh adaptation detect the singular sets after one
or two iterations, and thus we can stop it earlier.

We emphasize that real-time computations is not an objective of this work at
this stage (and anyway seems difficult to achieve in the framework of variational
methods for such functionals). Nevertheless, since our approach allows us to reduce
significantly the degrees of freedom, we see in Figure 5 and Figure 4 how coarsening
the mesh in the homogeneous areas and refining it near the edges preserve the
accuracy and permit a substancial gain in time even for the sequential approach.
We develop in the following section a framework for high performance computing
by the parallelization methods.

5. Parallel (in space) method using a domain decomposition

Solving the optical flow problem in the large displacements case can be a time
consuming, especially for high resolution sequences. In this section we are going
to consider first an overlapping Schwarz domain decomposition technique. Other
domain decomposition techniques may be used. We implement the method with
the openGL freeware Freefem++ and we will use its MPI [11] facilities.
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5.1. Domain decomposition method. The domain decomposition consists of
splitting the whole image into several subdomains. The estimation of the optical
flow on each subdomain is then computed in parallel by several Central Processing
Unit (noted CPU) (see figure 6).

CPU 0 CPU 1

CPU 2CPU 3

Figure 6. Decomposition of an image for four CPU.

As it is shown in the figure 7, we denote Ω𝑖 the part of the image corresponding
to the CPU𝑖 and 𝒥𝑖 the set of all indexes 𝑗 which are neighboors of 𝑖. Then, we
define

Σ𝑖,𝑗 = Ω𝑖 ∩ Ω𝑗 and Γ𝑖,𝑗 = 𝜕Σ𝑖,𝑗∖𝜕Ω𝑗 .

Ω0 Ω1

Ω2 Ω3

Σ2,0

Σ2,3

Γ0,2

Γ2,0

Γ2,3Γ3,2

Figure 7. Example of notations for CPU 𝑖 = 2.

Within this method, to find an estimation U𝑖 of the optical flow in the domain
Ω𝑖 we have to solve the problem (at each global iteration 𝑘):⎧⎪⎪⎪⎨⎪⎪⎪⎩

−div(Λ𝑘∇𝑑U𝑘
𝑖 ) + 𝐴𝑘𝑑U𝑘

𝑖 = div(Λ0∇𝑑U𝑘
𝑖 ) + F𝑘 in Ω𝑖

𝜕𝑑U𝑘
𝑖

𝜕𝑛
= 0 on 𝜕Ω𝑖∖Γ𝑖,𝑗 , ∀𝑗 ∈ 𝒥𝑖(13)

𝑑U𝑘
𝑖 = 𝑑U𝑘−1

𝑗 on Γ𝑖,𝑗 , ∀𝑗 ∈ 𝒥𝑖.

As it is known in the domain decomposition literature, the overlapping Schwarz
algorithm is convergent (each sequence (U𝑘

𝑖 ) converges to its corresponding solution



LARGE DISPLACEMENTS OPTIC FLOW 129

U|Ω𝑖
) and the speed of this convergence depends on the size of the overlap. The

larger the overlap is, the faster the convergence will be. However, a large overlapping
zones implies also an increasing computations time. In our tests, we have found
(by trial and error) that a five pixel overlap is a good balance between this two
objectives.

In order to combine the adaptive strategy of the regularization parameter with
the domain decomposition method, we consider each subdomain as a single image
and apply the adaptive algorithm on each part. It means that we compute the
error indicator on each part of the splitted image independently and we perform a
local choice of the diffusion coefficients, and the mesh adaptation at the subdomain
level. This choice implies that the unstructured submeshes don’t match on the
overlapping interfaces which add a supplementary interpolation evaluation. At the
end, to store and to draw the solution, we perform a last interpolation on the initial
regular mesh to obtain a motion vector for each pixel of the image. This is a bit
time consuming and may be improved.

5.2. Numerical results. On the figure 8, we present the solution obtained after
four iterations of the additive Schwarz algorithm. We have split the initial sequence
in four parts. We can see that the interfaces between each subdomains are correctly
merged. One can also see that the local adaptation of 𝛼 and the mesh adaptation
give sharper edges on the image.

Figure 8. Solution with the domain decomposition method for 4
subdomains after 4 iterations of the Schwarz algorithm.

We give the adapted mesh obtained with this method in the figure 9. We can
see that again, the mesh has been refined on the edges.

Figure 9. Final adapted mesh of the RubberWhale test case after
4 iterations of adaptation.

Finally, we present in the figure 10 the computation times for different decompo-
sition of the image. We have detailed the time needed for the principal parts of the
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algorithm. We can see that the interpolation evaluations and the communication
between the processors increase the time of computations whereas the factorization
and the mass matrix assembly decrease in the same proportion as the number of
CPUs increase. Besides, if we denote 𝜆 the width of an interface and 𝐿 its length,
we may check that both the communication and interpolation time remain bounded
by a factor 4𝐿𝜆 for any decomposition with 2𝑖, 𝑖 ≥ 1 subdomains, which means that
the method is nearly scalable in the sens that the perfect scalability is only limited
by the bounded time dedicated to communication and the interpolation (this last
task may be significantly reduced and so is the mesh adaptation process). We refer
the reader to [18] for comparison with the case of small displacement (where the
interpolation is almost not required).

To end this section, we notice that we have performed the simulations in an
academic parallel environment to serve as a proof-of-the-concept but it is ready to
implement in high performance computing context.

1 part 2 parts 4 parts 8 parts 16 parts
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Figure 10. Detailed computation times for the domain decompo-
sition method after four iterations of the Schwarz method.

6. Parallel in time approach: parareal method

6.1. principle of the method. The parareal method was introduced in 2001 by
J.-L. Lions, Y. Maday, and G. Turinici [23] (see also ( [14] and [13]). This is a
parallel in time method that consists in coupling a coarse and a fine solvers where
the computations of the fine solver are performed in parallel. Both the parareal
and the coupling with a domain decomposition method were considered in the few
last years, see [5, 12, 19] and the references therein. For optic flow problems, only
the small displacements case were considered [18].

Several implementations of the parareal algorithm were compared (Aubanel [1]),
including the distributed algorithm presented as the most effective. In this article
we have used the classical approach to implement the parareal method. The novelty
of our approach relies on the use of the algorithm as a tool for modelling in the
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sens that we consider three type of schemes which differ by the system of equations
chosen in the fine solver. The convergence analysis is beyond the scope of the article
as well as a rigorous proof that the algorithm, as numerical evidences suggest it,
allows us for a given accuracy to compute a solution of lowest energy compared to
the one given by the sequential algorithm. Such an analysis is necessary and will
be considered in a further work.

For simplicity we consider the “unstationnary” optic flow system (𝜏 is a pseudo
time)

(14)
𝜕U

𝜕𝜏
− div(Λ(x)∇U) + (f(x + U) −𝑀 f(x))f̃(x + U) = 0,

with an initial and the boundary conditions and where we set

f̃(x + U) =

⎛⎝ 𝑓𝑥(𝑥 + 𝑢1, 𝑦 + 𝑢2, 𝑡 + 1)
𝑓𝑦(𝑥 + 𝑢1, 𝑦 + 𝑢2, 𝑡 + 1)

𝑓(𝑥, 𝑦, 𝑡)

⎞⎠ .

First, we consider 0 = 𝑇0 < 𝑇1 < · · · < 𝑇𝑁 = 𝑇 a subdivision of the time interval
[0, 𝑇 ]. Then, we define a coarse solver 𝒢 of time step ∆𝑇 = 𝑇

𝑁 where 𝑁 is the total
number of coarse time steps. The solver 𝒢 solves the following coarse problem on
the whole interval [0, 𝑇 ]{︂

U𝑔
𝑛+1 = 𝒢(U𝑔

𝑛), 𝑛 = 0, . . . , 𝑁
U𝑔

0 = U𝑔(𝑇0 = 0) = 0.

We also define a fine solver ℱ of time step ∆𝜏 = Δ𝑇
𝑀 where 𝑀 is the total

number of fine time steps and we solve the fine problem in parallel on each interval
[𝑇𝑛, 𝑇𝑛+1] starting from the corresponding coarse solution U𝑔

𝑛{︃
U𝑓

𝑛,𝑚+1 = ℱ(U𝑓
𝑛,𝑚), 𝑚 = 0, . . . ,𝑀

U𝑓
𝑛,0 = U𝑔

𝑛.

According to G. Bal, and Y. Maday [3] scheme, we then update the values by
using the prediction-correction formula

U𝑔
𝑛+1 = 𝒢(U𝑓

𝑛,𝑀 ) −U𝑔
𝑛+1 + U𝑓

𝑛,𝑀 .

After having sequentially solved the coarse problem, the global iterative pro-
cess starts including the resolution of the fine problem in parallel on each interval
[𝑇𝑛, 𝑇𝑛+1] and the update part. We call these iterations the global iterations of the
parareal algorithm.

In the figure 11, we present the 𝐿2 error between the sequential and the parareal
method for 4 CPU. We use 4 coarse time steps and 10 fine time steps. We give
one graph per global iteration. We can see that 3 global iterations of the method
are enough to obtain a good 𝐿2-convergence, and 4 iterations are sufficient to
obtain an almost exact similitude between the sequential and parareal solutions.
By almost exact similarity we mean that the jump set of the optic flow is computed
with the same accuracy (in fact, the energy value of the parareal solution is a
bit smaller). Hence, 𝑁 is the maximum number of global iterations. We notice
that a quantitative comparison with previous works on the parareal algorithm have
not been yet performed because of the complex nature of our functional setting
(nonlinearity and non convexity) but should be conducted in the futur.
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Figure 11. Evolution of the L2 error between the parareal
method and the corresponding sequential algorithm for each global
iteration.

6.2. Strategies of discretization. The choice of the solver 𝒢 and ℱ is an impor-
tant part of the process. In this article, we implement and compare three different
solvers combinations. For all of them, we consider the same coarse solver obtained
with the semi-implicit discretisation (7). We emphasize that the parallel in time
strategy is not only intended to speedup the computations but is a part of design-
ing an iterative method where the problems solved at the two grids (coarse and
fine) may differ with the objective of keeping high accuracy, in the sens of finding
a local minimum with the lowest possible energy, and a realistic cost compared to
the sequential solver.

Denoting 𝛿U𝑔
𝑛 = U𝑔

𝑛+1 − U𝑔
𝑛, 𝑛 ≥ 0, we have the system of equations (on the

unknown 𝛿U),

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝛿U𝑔
𝑛

Δ𝑇 − div(Λ(x)∇𝛿U𝑔
𝑛) + A𝑔

𝑛𝛿U
𝑔
𝑛 = div(Λ0∇U𝑔

𝑛) + F𝑔
𝑛, in Ω

𝜕U𝑔
𝑛

𝜕𝑛 = 0, on 𝜕Ω

U𝑔
𝑛,0 = U0, in Ω

6.2.1. Semi-implicit discretization for the fine solver. In a first time, we
consider the same semi-implicit solver for the fine resolution, which reads: find
𝛿U𝑓

𝑛,𝑚, 𝑚 ≥ 0 solution of
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝛿U𝑓
𝑛,𝑚

Δ𝑇 − div(Λ(x)∇𝛿U𝑓
𝑛,𝑚) + A𝑓

𝑛,𝑚𝛿U𝑓
𝑛,𝑚 = div(Λ0∇U𝑓

𝑛,𝑚) + F𝑓
𝑛,𝑚, in Ω

𝜕U𝑓
𝑛,𝑚

𝜕𝑛 = 0, on 𝜕Ω

U𝑓
𝑛,0 = U𝑔

𝑛, in Ω

In the following, we note this method, the GDSI method.

6.2.2. Semi-implicit linear scheme for the fine solver. The second method
used in this article consists of using a semi-implicit linear scheme where the non-
linearity is fully explicit. In this way, the system (7), with the previous notations,

and starting from U𝑓
𝑛,0 = U𝑔

𝑛, is now given by 𝑚 ≥ 0,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

U𝑓
𝑛,𝑚+1−U𝑓

𝑛,𝑚

Δ𝑡 − div(Λ(x)∇U𝑓
𝑛,𝑚+1) = F𝑛,𝑚 in Ω

𝜕U𝑓
𝑛,𝑚+1

𝜕𝑛 = 0, on 𝜕Ω

U𝑓
𝑛,0 = U𝑔

𝑛, in Ω

where

F𝑛,𝑚 =

⎛⎝ −(𝑓(𝑥 + 𝑢𝑘
1 , 𝑦 + 𝑢𝑘

2 , 𝑡 + 1) −𝑀𝑘𝑓(𝑥, 𝑦, 𝑡))𝑓𝑥(𝑥 + 𝑢𝑘
1 , 𝑦 + 𝑢𝑘

2 , 𝑡 + 1)
−(𝑓(𝑥 + 𝑢𝑘

1 , 𝑦 + 𝑢𝑘
2 , 𝑡 + 1) −𝑀𝑘𝑓(𝑥, 𝑦, 𝑡))𝑓𝑦(𝑥 + 𝑢𝑘

1 , 𝑦 + 𝑢𝑘
2 , 𝑡 + 1)

(𝑓(𝑥 + 𝑢𝑘
1 , 𝑦 + 𝑢𝑘

2 , 𝑡 + 1) −𝑀𝑘𝑓(𝑥, 𝑦, 𝑡))𝑓(𝑥, 𝑦, 𝑡)

⎞⎠ .

We call this method GDEx. This scheme shows how the parareal method allows
us to use a ”simplified” physics at a given scale (here the finer one).

6.2.3. Using a small displacement model for the fine solver. Finally, we
consider that the fine solver is fine enough to use the model of the optical flow
problem in small dispacements [18], [16] given in the stationary case by

⎧⎨⎩
−div(Λ(x)∇U) + AU = F in Ω(15)

𝜕U

𝜕𝑛
= 0 on 𝜕Ω

where

U =

⎡⎣𝑢1

𝑢2

𝑚𝑡

⎤⎦ , A =

⎡⎣ 𝑓𝑥(𝑥, 𝑦, 𝑡)2 𝑓𝑥(𝑥, 𝑦, 𝑡)𝑓𝑦(𝑥, 𝑦, 𝑡) −𝑓𝑥(𝑥, 𝑦, 𝑡)𝑓(𝑥, 𝑦, 𝑡)
𝑓𝑦(𝑥, 𝑦, 𝑡)𝑓𝑥(𝑥, 𝑦, 𝑡) 𝑓𝑦(𝑥, 𝑦, 𝑡)2 −𝑓𝑦(𝑥, 𝑦, 𝑡)𝑓(𝑥, 𝑦, 𝑡)
−𝑓(𝑥, 𝑦, 𝑡)𝑓𝑥(𝑥, 𝑦, 𝑡) −𝑓(𝑥, 𝑦, 𝑡)𝑓𝑦(𝑥, 𝑦, 𝑡) 𝑓(𝑥, 𝑦, 𝑡)2

⎤⎦
and

F =

⎡⎣−𝑓𝑥(𝑥, 𝑦, 𝑡)𝑓𝑡(𝑥, 𝑦, 𝑡)
−𝑓𝑦(𝑥, 𝑦, 𝑡)𝑓𝑡(𝑥, 𝑦, 𝑡)
𝑓(𝑥, 𝑦, 𝑡)𝑓𝑡(𝑥, 𝑦, 𝑡).

⎤⎦ .

The fine solver of this third method called GDPD is given by
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Table 3. Comparison of the computation time between the GDSI
and GDEx algorithms and an equivalent sequential algorithm
(Seq).

Method Time (s)
Seq 1955

GDSI 1774
GDEx 1534
GDPD 1300

(16)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

U𝑚+1−U𝑚

Δ𝑡 − div(Λ(x)∇U𝑚+1) + AU𝑚+1 = F𝑚, in Ω

𝜕U𝑓
𝑛,𝑚+1

𝜕𝑛 = 0, on 𝜕Ω

U𝑓
𝑛,0 = U𝑔

𝑛, in Ω

This scheme is rather different than the two previous ones. In fact, the coeffi-
cients A and the nonlinearity F in this scheme are evaluated at all the time instants
(𝑇𝑖)𝑖 of the parareal subdivision while the first schemes use only image deformations
at the fixed time instants 𝑇0 = 𝑡 and 𝑇𝑁 = 𝑡+ 1. Therefore, the equation obtained
at the fine scale now is different from the others. A closer look to this scheme
reveals that the Large displacements model (𝑀) is now decomposed into a given
number of small displacements (𝑆𝑖)𝑖 and finding a minimum of (𝑀) is obtained
by following a path which passes by the minima of (𝑆𝑖)𝑖. Since the local energies
(of (𝑆𝑖)) are strictly convex each minimum of an 𝑆𝑖 is unique, the aim is to get
this way a better chance to select a good local minimum among those of the global
energy (of (𝑀)). Numerical results tend to confirm this point, however we have no
mathematical proof of this fact.

In this parareal method, we also want to use the adaptive control of the reg-
ularization 𝛼𝑖 and the mesh adaptation since we have seen that it is essential to
preserve the edges. We apply these adaptations, explained in section 2, during the
coarse resolution. Thus, it is performed once and serves to detect the singularities
and prevents over-smoothing near the edges without increasing the cost of compu-
tations. The new mesh and the new function 𝛼𝑖(x) are communicated between all
processors in the same time that the values U𝑔

𝑛.

6.3. Numerical results. In order to evaluate the strategies GDSI, GDEx and
GDPD we again use the test case RubberWhale from Middleburry. Comparing the
computation times (see table 3) with an equivalent sequential algorithm, we can
see that both parareal methods allow to save time.

The GDEx and GDPD methods are faster compared to the GDSI method but on
the figure 12, we can see that even if the solution for these methods presents some
sharp edges, the global solution with the GDSI method is more accurate. Thus, we
will keep the GDSI method in the following.

7. A space-time parallel method

7.1. Strategy. The speeudup of the parareal method si limited in the sens that
it does not permit high performane computing and the scalability. The speedup is
smaller than domain decomposition (see [18] and [17] for details). However, with its
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Figure 12. Estimation of optical flow for large displacement Rub-
berWhale test case. Left: GDSI method. Right: GDEx method.
Bottom: GDPD method.

ability of using different schemes and physics between the fine and the coarse solver,
it remains a relevant choice to solve complex systems (nonlinear, non-convex, . . . ).

Instead of assigning a single processor to a subdomain of the image, we now
attribute a group of CPU. The repartition of the different processors in each group
is done thanks to the formula

groupe(CPU𝑖) =
CPU𝑖

nbPart
.

In this way we can apply the parareal method presented in the section 6 in each
subdomain of the image. The interfaces between these parts are treated with the
domain decomposition method presented in the section 5.1.

7.2. Numerical results. On the figure 13, we present the solution obtained with
the coupling between the parareal method (GDSI) and the domain decomposition
method. We can see that the solution keeps the regularity of the parareal method
and the sharp edges given by the domain decomposition method.

Figure 13. Optical flow obtained with the coupling between the
parareal and the domain decomposition method.
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More, on the figure 14, we show that this coupling allows to strongly reduce the
computation time of the GDSI method.
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Figure 14. Computation times of the coupling between the
parareal and the domain decomposition method for different num-
bers of subdomains.

Conclusion

In this article, we have introduced a novel approach to solve the optic flow prob-
lem in large displacements and varying illumination case based on the extension
of the variational framework of the small displacements. A first expectation is to
describe accurately the motion in a given scene by preserving relevant features,
such as the edges, in the computed solution. Secondly, to find discrete strategies
fulfilling several objectives, among which cost reduction and time saving compu-
tational environnement. The problem is then very challenging and encompasses
several difficulties, non convexity, strong nonlinearity, etc. We have seen that the
use of a variational formulation and a finite element method yields satisfactory re-
sults within an elegant framework. The use of unstructured meshes and adaptive
control of the parameters, allow us to fit more accurately the “geometry of the
motion field” and to obtain a sparse optic flow as well as a more realistic varying
illumination modelling than the linear case.

In a second step, we have implemented two parallel methods, an overlapping
Schwarz domain decomposition method and the parareal method. The two ap-
proaches appear complementary, in the sens that the domain decomposition is not
only efficient to parallelize the solver but also to treat high resolution images. It is
also “nearly scalable” and allows a satisfactory speedup. The parareal method, even
not the top-of-the-art algorithm in this article ( [1]), is very suitable to modelize
the large displacements as a “sum” of small displacements and also it permits to
use different physics at the different scales which is a promising feature for solving
minimization problems of complex energy functionals.

From the computational point of view, each parallel method reduces the cost
and the time of the resolution and their combination results in a very efficient and
flexible fully parallel method. We have implemented these ideas in an academic
computational environnement as a proof-of-the concept and showed that a more
involved high performance computing will increases the time saving. We think that
the methods presented here have also great potential for solving other variational
problems where the energy functional is not convex and severely nonlinear.



LARGE DISPLACEMENTS OPTIC FLOW 137

References

[1] E. Aubanel. Scheduling of tasks in the parareal algorithm. Parallel Computing, 37:172–182,
2011.

[2] G. Aubert, R. Deriche, and P. Kornprobst. Computing optical flow via variational techniques.

SIAM Journal on Applied Mathematics, 60:156–182, 1999.
[3] G. Bal and Y. Maday. A ”parareal” time discretization for non-linear PDE’s with application

to the pricing of an american put. In Recent Developments in Domain Decomposition Meth-

ods, volume 23 of Lecture Notes in Computational Science and Engineering, pages 189–202.
Springer Berlin Heidelberg, 2002.

[4] J.L. Barron, D.J. Fleet, and S.S. Beauchemin. Performance of optical flow techniques. Inter-
national Journal of Computer Vision, 12:43–77, 1994.
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