
INTERNATIONAL JOURNAL OF c© 2019 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 16, Number 1, Pages 97–115

PATTERN FORMATION IN ROSENZWEIG–MACARTHUR

MODEL WITH PREY–TAXIS

YUANYUAN ZHANG AND LI XIA

Abstract. In this paper we study the existence and stability of nonconstant positive steady states

to a reaction–advection–diffusion system with Rosenzweig–MacArthur kinetics. This system can

be used to model the spatial–temporal distributions of predator and prey species . We investigate
the effect of prey–taxis on the formation of nonconstant positive steady states in 1D. Stability and

instability of these nonconstant steady states are also obtained. We also perform some numerical

studies to support the theoretical findings. It is also shown that the Rosenzweig–MacArthur
prey–taxis model admits very rich and complicated spatial–temporal dynamics.
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1. Introduction and preliminary results

Recently there has been great interest in the mathematical modeling and analy-
sis of spatial–temporal population distributions of interacting species in biology and
ecology. In the world of living things, one of the characteristic features of organ-
isms is their ability to sense the stimulating signals in the environment and adjust
movements accordingly. In predator–prey interactions, prey–taxis is the directed
movement of predator species along the gradient of high prey population density.
Prey–taxis is called positive or prey–attractive if predators move towards and for-
age the high density prey, while it is called negative or prey–repulsive if predators
move against and retreat from preys’ habitat. This is very similar as chemotaxis in
which cellular bacteria move in response to chemical stimulus in their environment
[11, 13, 15, 21].

We consider a reaction–advection–diffusion system of u = u(x, t) and v = v(x, t)
in the following form

(1)


ut = d1∆u+ u(a(1− u

h )− bv
u+c ), x ∈ Ω, t > 0,

vt = ∇ · (d2∇v − χφ(u, v)∇u) + v( eu
u+c − d), x ∈ Ω, t > 0,

∂nu = ∂nv = 0 x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

where Ω ⊂ RN , N ≥ 1, is a bounded domain with smooth boundary ∂Ω; ∆ =∑N
i=1

∂2

∂x2
i

and ∇ = ( ∂
∂x1

, ... ∂
∂xi,

..., ∂
∂xN

). d1, d2, a, b, c, d, e and h are all positive

constants. φ is assumed to be a smooth function of u and v, and φ(0, v) = 0 for
all v > 0, which describes the biologically realistic situation that there is no prey–
taxis in the absence of prey species; ∂n denotes the unit outer normal derivative on
the boundary. System (1) is a prey–taxis model, where u and v denote population
densities of prey and predator species at space–time location (x, t) respectively. The
movement of prey u is purely diffusive, while that of predator v is both diffusive
and advective. d1 and d2 are random dispersal rates of prey and predator. χ
measures the strength of prey–taxis. For example, if φ(u, v) > 0 for all u, v > 0,
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then the prey–taxis is positive if χ > 0 and it is negative if χ < 0. Here the
potential function φ reflects the intensity of such directed dispersal with respect
to the variation of both predator and prey densities. We would like to remark the
opposite case φ(u, v) < 0 can be used to model volume–filling effect in predators or
group–defense in preys. See our discussions in the last paragraph of this section. It
is the goal of this paper to study the existence and stability of nonconstant positive
solutions to the stationary system of (1).

The reaction system in (1) or its ODE system is referred to as the Rosenzweig–
MacArthur model [34, 43]

ut = u(a(1− u
h )− bv

u+c ), t > 0,

vt = v( eu
u+c − d), t > 0,

u(0) = u0, v(0) = v0,

which has been widely applied in real–life ecology [36]. This model is also known as
the Lotka–Volterra equations with a Holling type II predator functional response
or the Gause model. See [34, 35] and Chap. 4 in [9] for works on this system and
similar modified Lotka–Volterra equations. Here a is the intrinsic growth rate of the
predator, h is the environment carrying capacity, b and e are the interaction rates
for the two species, and d is the intrinsic death rate of the predator. c measures
the saturation effect on the predator growth due to the consumption of prey at a
unit number.

The Rosenzweig–MacArthur ODE model has been investigated by various au-
thors. It is easy to see that it has three equilibrium points (0, 0), (h, 0) and

(2) (ū, v̄) =
( cd

e− d
,
ace
(
h(e− d)− cd

)
bh(e− d)2

)
,

where (ū, v̄) is positive if and only if 0 < cd < h(e − d). For the sake of our
mathematical analysis, throughout this paper we make the following assumptions

(3) d < e,
cd

e− d
< h <

c(d+ e)

e− d
.

By the standard ODE stability analysis, see [9, 17] e.g., the first two equilibrium
points (0, 0) and (h, 0), corresponding to the extinction of species and predators
respectively, are both saddle points. (ū, v̄) corresponds to the coexistence of both
species and it undergoes a Hopf bifurcation as e increases . Moreover, according to
[2], this equilibrium loses its stability to a small amplitude periodic orbit which is
unique hence stable. The relaxation oscillator profile of the unique limit cycle of
the ODE system is discussed in [16]. See [57] and the references therein for more
discussions. We also want to point out that Rinaldi et al. [42] studied this model
with time–periodically varying parameters and identified six elementary seasonality
mechanisms through complete bifurcation diagrams.

In the absence of prey–taxis, system (1) reads

(4)


ut = d1∆u+ u(a(1− u

h )− bv
u+c ), x ∈ Ω, t > 0,

vt = d2∆v + v( eu
u+c − d), x ∈ Ω, t > 0,

∂nu = ∂nv = 0 x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

and this model has also been extensively studied by various authors. Choosing
d2 = 0 and scaling the rest parameters in (4), Dunbar [7] obtained periodic travel-
ing wave train and traveling front solutions for this diffusive predator–prey system.
His analysis also shows the existence of periodic orbits, heteroclinic orbits and a
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heteroclinic connection of a point and a periodic orbit. Yi et al. [57] performed
detailed bifurcation analysis to general reaction–diffusion one–dimensional systems
including the diffusive system (4). They derived an explicit algorithm to determine
the properties of Hopf bifurcation of general reaction–diffusion systems (without
cross–diffusion) through very detailed and complete calculations which are conve-
nient for readers and future applications. Steady state bifurcations are carried out
in details. See [57] and the references therein for more works of reaction–diffusion
systems arising from population dynamics.

From the view point of mathematical modeling, it is interesting and importan-
t to study formation of nontrivial patterns in the reaction–diffusion systems of
population dynamics. These patterns can be used to describe various interesting
phenomena such as specific segregation which is ubiquitous in ecosystems. Coexis-
tence of prey and predator species, which is crucial to biodiversity of an ecosystem,
can be modeled by spatially inhomogeneous positive patterns. We are motivated
to study the existence and stability of nonconstant positive steady states of (1)
which are natural candidates for the attractors of the time–dependent system. In
particular we investigate the effect of prey–taxis on the pattern formations in (4).
Though it is accepted by many scholars that mathematical analysis of prey–taxis
system including (1) was initiated by Ainseba et al. [1] in 2008, reaction–diffusion
systems with prey–taxis have been proposed and studied by various authors much
earlier as far as we know. For example, Kareiva and Odell [19] in 1987 proposed
a mechanistic approach formulated as PDEs with spatially varying dispersals and
advection to demonstrate and explain that area–restricted search does create preda-
tor aggregation. Moreover, chemotaxis modeling the directed movement of cells to
stimulating chemicals has been mathematically modeled by Patlak [40] in the 1950s
and Keller–Segel [21, 22, 23] early in the 1970s.

There are some works devoted to the mathematical analysis of prey–taxis mod-
els. In [1], Ainseba et al. proved the existence of weak solutions of system (1) with
slightly general kinetics through Schauder fixed point theorem and the uniqueness of
the weak solution via duality technique. It is assumed that the sensitivity function
takes the form φ(u, v) = uφ1(v) and there exists a threshold value vm (denoted
by um in [1]) such that φ1(v) ≡ 0 for all v ≥ vm. This assumption contributes
to the mathematical analysis in [1] and it is reasonable with biology justification-
s. It is sometimes referred to (e.g., [38]) as the volume–filling effect in predation
which models the situation that predators stop foraging self–packed environmen-
t and prey–taxis vanishes there. Under the same volume–filling assumption, Tao
[48] obtained global existence and uniqueness to this system through contraction
mapping principle. Recently, He and Zheng [14] further proved that the global
solution obtained in [48] is globally bounded when the space dimension N = 1, 2, 3.
Lee et al. studied pattern formation in [29] and traveling wave solutions in [30]
for 1D prey–taxis systems with several classes of population kinetics. It is showed
that prey–taxis stabilizes population dynamics and inhibits formation of nontrivial
patterns when there is no prey–repulsion such as aforementioned volume–filling ef-
fect. Yousefnezhad and Mohammadi [58] studied global asymptotic stability of the
positive equilibrium for systems with general kinetics than (1). By the Crandall–
Rabinowitz theory [5, 6] and the user–friendly version developed by Shi and Wang
[46], bifurcation analysis is carried out in [55] for (1) with φ(u, v) ≡ χ(u), χ being
an arbitrary constant (not necessary positive) over multi–dimensions. Li et al. [31]
investigated global stabilities of equilibrium points to (1) with volume–filling effect.
They also carried out detailed Hopf bifurcation analysis following the algorithm
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developed in [57]. Existence of non–constant positive steady states is obtained
through degree method there. It seems necessary to mention that [52] considered
a very similar prey–taxis model with slightly different kinetics. Both our theoreti-
cal and numerical results indicate that prey–taxis induces various complicated and
complex spatial–temporal dynamics, which might share similarities even when the
kinetics are different. For predator–prey models with (non)linear diffusion, oth-
er types of population kinetics, or population dynamics model with heterogeneous
environment, see the works [4, 10, 25, 26, 27, 28, 37, 44] and the references therein.

It is the goal of our paper to investigate the existence and stability of non–
constant positive steady states to (1). For the simplicity of mathematics and better
illustration of our theoretical and numerical results, we shall confine our attention
to system (1) over one–dimensional interval (0, L)

(5)


ut = d1uxx + u(a(1− u

h )− bv
u+c ), x ∈ (0, L), t > 0,

vt = (d2vx − χφ(u, v)ux)x + v( eu
u+c − d), x ∈ (0, L), t > 0,

ux = vx = 0 x = 0, L, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ (0, L).

The starting point in our analysis of (5) is the linearized stability of the equilibri-
um (ū, v̄). In the mathematical analysis of pattern formation in reaction–diffusion
systems, principle of exchange of stability is often employed to determine when bi-
furcation occurs for a class of evolutionary equations. See [45, 47] etc. for example.
It is well know that Turing’s instability can be applied for the pattern formation
in various reaction–diffusion systems, however, when Turing’s instability does not
occur in the purely diffusive system, advection tends to destabilize the spatially
homogeneous solutions as certain system bifurcation parameter crosses a threshold
value, then there emerge spatially inhomogeneous solutions to the system. More-
over this principle usually gives a qualitative relationship between the shape of
bifurcating curve (such as its turning direction) of solutions and their stability.

There are several contributions of the current work. First of all, our linearized
stability analysis of equilibrium (ū, v̄) extends the results in [30] which states that
prey–taxis stabilizes reaction–advection–system including (1). Our analysis shows
that this is true only if the prey–taxis is positive, however this conclusion does not
hold when prey–repulsion is taken into consideration, which models the biologically
realistic volume–filling effect due to the over–crowding of predator species or group
defense of prey species. Then we apply bifurcation theory to obtain nonconstant
positive steady states to (1). See Theorem 2.2. Our stability analysis of the bi-
furcating solutions in Theorem 3.1 provides a wave mode selection mechanism for
(1), following the approach recently developed in [32, 51, 54] etc. for reaction–
advection–diffusion systems modeling chemotaxis or species competition. Since our
work is in 1D, Neumann Laplacian eigenvalue is −(kπL )2 and it has a very clean
structure, therefore we are able to perform detailed and involved calculations to
show that the bifurcation branches are pitch–fork, in contrast to the transcritical
branches in [55]. We shall show that the only stable local branch must have a
critical bifurcation value and its stability is determined by its turning direction.
Finally, we perform extensive numerical simulations in Section 4 to illustrate and
support our theoretical results. Our numerical studies of (5) indicate that this
1D prey–taxis system admits very complicating and interesting spatial–temporal
dynamics.
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2. Existence of nonconstant positive steady state

This section is devoted to obtain existence of nonconstant positive steady states
of (5), i.e., nonconstant positive solutions to the following system

(6)


d1u
′′ + u

(
a(1− u

h )− bv
u+c

)
= 0, x ∈ (0, L),(

d2v
′ − χφ(u, v)u′

)′
+ v( eu

u+c − d) = 0, x ∈ (0, L),

u′ = v′ = 0, x = 0, L,

where ′ denotes d
dx here and in the sequel. In particular, we are interested in the

effect of prey–taxis on the qualitative behaviors of the solutions.

2.1. Linearized stability analysis of homogeneous steady state. We first
investigate linearized analysis of its homogeneous solution (ū, v̄) given by (2). Take
(u, v) = (ū, v̄)+(U, V ), where U and V are small spatial perturbations in H2(0, L)×
H2(0, L), then we arrive at the following system
(7)

Ut ≈ d1Uxx +
(
a(1− 2ū

h )− bcv̄
(ū+c)2

)
U − bū

ū+cV +O(U2), x ∈ (0, L), t > 0

Vt ≈
(
d2Vx − χφ(ū, v̄)Ux

)
x

+ cev̄
(ū+c)2U + ū(e−d)−cd

ū+c V +O(V 2), x ∈ (0, L), t > 0

Ux(x) = Vx(x) = 0, x = 0, L, t > 0.

Now we look for solutions of (7) in the form

(U, V ) = (C1, C2)eσt+ikx,

where Ci (i = 1, 2) are constants to be determined, σ is the growth rate of the
perturbations and k is the wavemode vector with |k|2 = (kπL )2. Substituting these
solutions into the linearized system (7) and equate their first order terms, we have

(σI +Ak)

(
C1

C2

)
=

(
0
0

)
,

where the stability matrix is

(8) Ak =

(
−d1(kπL )2 − a

h ū+ būv̄
(ū+c)2 − bū

ū+c

χφ(ū, v̄)(kπL )2 + cev̄
(ū+c)2 −d2(kπL )2

)
, k ∈ N.

By the standard principle of linearized stability (Theorem 5.2 in [47] or [45]
e.g.), (ū, v̄) is asymptotically stable with respect to (1) if and only if the real part
of the eigenvalue σ to matrix (8) is negative for any k ∈ N+. The characteristic
polynomial to (8) reads

(9) pk(σ) = σ2 − Tkσ +Dk,

where

Tk = −(d1 + d2)(
kπ

L
)2 − a

h
ū+

būv̄

(ū+ c)2

and

Dk =
(
d1(

kπ

L
)2 +

a

h
ū− būv̄

(ū+ c)2

)
d2(

kπ

L
)2 +

(
χφ(ū, v̄)(

kπ

L
)2 +

cev̄

(ū+ c)2

) bū

ū+ c
.

We notice that Tk < 0 for each k ∈ N thanks to (3). According to the standard
linearized stability theory, since D0 > 0, (ū, v̄) is locally stable if and only if Dk > 0
for each k ∈ N+, while it is unstable if there exists at least one k such that Dk < 0.
We have the following results.
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Lemma 2.1. Suppose that condition (3) holds and φ(ū, v̄) 6= 0. If φ(ū, v̄) > 0,
the equilibrium (ū, v̄) is locally stable if χ > χ

0
and it is unstable if χ < χ

0
; and

if φ(ū, v̄) < 0, the equilibrium (ū, v̄) is locally stable if χ < χ̄0 and it is unstable if
χ > χ̄0, where

(10) χ
0

= min
k∈N+

χk and χ̄0 = max
k∈N+

χk

with

(11) χk = −

(
d1(kπL )2 + a

h ū−
būv̄

(ū+c)2

)
d2(kπL )2 + bceūv̄

(ū+c)3

bū
ū+cφ(ū, v̄)(kπL )2

Proof. Since the proof is standard following our discussions and some straightfor-
ward calculations, we only discuss the case φ(ū, v̄) > 0. First of all, we see that the
mode k = 0 is always stable since D0 > 0. For each k ∈ N+, Dk is a linear function
of χ which can be written as

Dk =
būφ(ū, v̄)

ū+ c
(
kπ

L
)2
(
χ− χk

)
.

If (ū, v̄) is locally stable, then Dk > 0 for all k ∈ N+ which implies that χ must
be bigger than the minimum of χk over N+, denoted by χ

0
. Similar we can easily

show that (ū, v̄) is unstable if χ < χ
0
. �

We want to point out that, for each k ∈ N+, χk > 0 if φ(ū, v̄) < 0 and χk < 0
if φ(ū, v̄) > 0, therefore both χ

0
and χ̄0 are finite numbers. Lemma 2.1 implies

that prey–taxis destabilizes prey–taxis system (5) if prey–repulsion is present (due
to volume–filling effect of predator species [38], or group defense of prey species
[12]) which is modeled by taking φ(ū, v̄) < 0, while it stabilizes (5) otherwise. This
lemma extends the results in [30]. If φ(ū, v̄) = 0, then Dk > 0 and (ū, v̄) is locally
stable. However, since we shall show that χk in (11) is a bifurcation value for each
k ∈ N+, throughout this paper we assume that φ(ū, v̄) 6= 0 hence χk is well–defined.

2.2. Steady state bifurcation. We now study the existence of nonconstant
steady state to (6). In order to apply the bifurcation theory in [5, 6, 46], we
introduce the Hilbert spaces

X = {w ∈ H2(0, L)|w′(0) = w′(L) = 0},Y = L2(0, L)

and rewrite (6) into the following equivalent abstract form

F(u, v, χ) = 0, (u, v, χ) ∈ X × X × R

where

(12) F(u, v, χ) =

(
d1u
′′ + u

(
a(1− u

h )− bv
u+c

)(
d2v
′ − χφ(u, v)u′

)′
+ v
(
eu
u+c − d

) ) .
If (u, v) is a solution of (12) in X × X , then it is a smooth solution of (6) thanks
to the elliptic regularity theorems. We want to point out that the steady state
bifurcation theory recently developed version in [46, 56] allows one to easily handle
reaction–diffusion systems without reducing them into single equations; moreover
the verification of necessary conditions to apply this theory, e.g. Fredholmness
condition, becomes easier and more straightforward as we shall see below.

To set up the framework to apply the bifurcation theory, we collect some facts
about F . It is obvious that F(ū, v̄, χ) = 0, ∀χ ∈ R. F : X × X × R → Y × Y is a
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continuously differentiable mapping and for any fixed (û, v̂) ∈ X × X , the Fréchet
derivative is

(13) D(u, v)F(û, v̂, χ) =

(
d1u
′′ + û(− a

h + bv̂
(û+c)2 )u− bû

û+cv

d2v
′′ + cev̂

(û+c)2u+ (−d+ eû
û+c )v + T

)
,

where
T = −χ

(
φ(û, v̂)u′ + φu(û, v̂)û′u+ φv(û, v̂)û′v

)′
,

and (13) is a strictly elliptic operator. Moreover, it is easy to verify that it sat-
isfies the Agmon’s condition according to Remark 2.5 of case 2 with N = 1 in
Shi and Wang [46]. Therefore Theorem 3.3 and Remark 3.4 in [46] imply that
D(u,v)F(û, v̂, χ) : X × X × R+ → Y × Y is Fredholm operator with zero index.

To show that bifurcation occurs at (ū, v̄, χk), we first need implicit function
theorem to fail at this point. To this end, we will show that the following condition
is satisfied

N
(
D(u, v)F(ū, v̄, χk)

)
6= {0}

or equivalently, thanks to (13), the following system has nontrivial solutions

(14)


d1u
′′ + ū(− a

h + bv̄
(ū+c)2 )u− bū

ū+cv = 0, x ∈ (0, L)

d2v
′′ − χkφ(ū, v̄)u′′ + cev̄

(ū+c)2u = 0, x ∈ (0, L)

u′(x) = v′(x) = 0, x = 0, L.

Let (u, v) be a solutions to (14) with the eigen–expansions

u =

∞∑
k=0

tk cos
kπx

L
, v =

∞∑
k=0

sk cos
kπx

L
,

where tk and sk are constants to be determined. Substituting these expansions
into (14), multiplying the new equations by cos kπxL and then integrating them over
(0, L), we collect

(15)

(
−d1(kπL )2 + ū(− a

h + bv̄
(ū+c)2 ) − bū

ū+c

χk(kπL )2φ(ū, v̄) + cev̄
(ū+c)2 −d2(kπL )2

)(
tk
sk

)
=

(
0
0

)
.

It is easy to see that from (11) that the coefficient matrix in (15) is singular,
therefore hence (14) has nontrivial solutions. Moreover, suppose that χk 6= χj for
k 6= j, then N

(
D(u,v)F(ū, v̄, χk)

)
is one–dimensional and it has span

N
(
D(u,v)F(ū, v̄, χk)

)
= span{(ūk, v̄k)}k∈N+ ,

where

(16) (ūk, v̄k) = (1, Qk) cos
kπx

L
with

(17) Qk = −
d1(kπL )2 − ū(− a

h + bv̄
(ū+c)2 )

bū
ū+c

.

We now present the first main result of this paper which establishes nonconstant
positive solutions to (6) bifurcating from (ū, v̄) at χ = χk for each k ∈ N+.

Theorem 2.2. Let (ū, v̄) be the positive equilibrium of (6) giving by (2) and assume
that condition (3) holds. Suppose that φ(ū, v̄) 6= 0 and for all different positive
integers k, j ∈ N+

(18) d1d2k
2j2(

π

L
)4 6= bceūv̄

(ū+ c)3
, k 6= j.
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Then for each k ∈ N+, there exists a small positive constant δ such that (6) admits
nonconstant positive solutions (uk(s, x), vk(s, x), χk(s)) ∈ X×X×R+ for s ∈ (−δ, δ)
with

(
uk(0, x), vk(0, x), χk(0)

)
= (ū, v̄, χk), where χk is given by (11); moreover

the solutions are continuously differentiable functions of s and have the following
asymptotic expansions

(19) (uk(s, x), vk(s, x)) = (ū, v̄) + s(1, Qk) cos
kπx

L
+ s2(Φ, Ψ), s ∈ (−δ, δ),

where (Φ, Ψ) is an element in any complement Z of span{(ūk, v̄k)}k∈N+ given by

(20) Z =
{

(Φ, Ψ) ∈ X × X
∣∣∣ ∫ L

0

(Φ+QkΨ) cos
kπx

L
dx = 0

}
;

furthermore all nontrivial solutions of (6) around (ū, v̄, χk) must stay on the curve
Γk(s) =

(
uk(s, x), vk(s, x), χk(s)

)
, s ∈ (−δ, δ).

Proof. Our results follow from Theorem 1.7 of Crandall and Rabinowitz [5] once
we prove the following transversality condition

(21)
d

dχ

(
D(u,v)F(ū, v̄, χ)

)
(ūk, v̄k)|χ=χk /∈ R(D(u,v)F(ū, v̄, χk)),

where (ūk, v̄k) is given in (16) and R(·) denotes range of the operator. We argue
by contradiction and assume that (21) fails, then there exist a nontrivial pair (ũ, ṽ)
to the following problem

(22)

{
d1ũ
′′ + ū(− a

h + bv̄
(ū+c)2 )ũ− bū

ū+c ṽ = 0, x ∈ (0, L),

d2ṽ
′′ − χkφ(ū, v̄)ũ′′ + cev̄

(ū+c)2 ũ = (kπL )2φ(ū, v̄) cos kπxL , x ∈ (0, L).

Multiplying (22) by cos kπxL and integrating them over (0, L) by parts, we have −d1(kπL )2 + ū(− a
h + bv̄

(ū+c)2 ) − bū
ū+c

χk(kπL )2φ(ū, v̄) + cev̄
(ū+c)2 −d2(kπL )2


 ∫ L

0
ũ cos kπxL dx∫ L

0
ṽ cos kπxL dx


=

 0

(kπ)2

2L φ(ū, v̄)

 .

The coefficient matrix is singular thanks to (11), therefore (22) has no solutions and
this proves the transversality condition (21). Moreover, (18) implies that χi 6= χj ,
∀i 6= j, hence the Frechet derivative in (21) has simple eigen–value. Then χk is a
bifurcation value and the statements in Theorem 2.2 follow from Theorem 1.7 and
Theorem 1.18 in [5]. The proof of Theorem 2.2 is complete. �

Theorem 2.2 establishes the existence and asymptotic expansions of positive
solutions to (6) on each local branch Γk(s) when χ is around χk. In the qualitative
studies of prey–taxis system (5), it is important to study the global continuum of
its steady state bifurcation branches since positive solutions may exhibit striking
structures in the limit of bifurcation parameter. According to the global bifurcation
theory for Fredholm operators [41, 46] (see [56] for a user–friendly review e.g.), the
continuum of Γk(s), denoted by C, satisfies one of the following three alternatives:

(a). it is not compact in X × X × R+;
(b). it contains a point (ū, v̄, χ∗) with χ∗ 6= χk;
(c). it contains a point (ū+ u∗, v̄ + v∗) with 0 6= (u∗, v∗) ∈ Z defined by (20).
In [3, 56], a novel approach has been developed, based on maximum principles

and topology argument, to obtain global bifurcation for a class of chemotaxis steady
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state system without cellular growth in 1D. It is showed cases (b) and (c) can
not occur for the first bifurcation branch and its continuum must (eventually)
extend to infinity in the positive direction in the axis of bifurcation parameter.
Then they were able to show that this class of chemotaxis system develops various
interesting patterns such as boundary spikes, transition layers, etc in the limit of
large chemotaxis rate. These patterns can be used to model the celebrated cellular
aggregation phenomenon in chemotaxis. See the applications of this approach in
shadow systems [50, 51].

In [55], the authors performed local bifurcation analysis for (1) with φ(u, v) ≡ v
over high space dimensions. Global bifurcation result is also provided there which
states that case (b) and case (c) can not occur for each local bifurcation branch and
the continuum of Γk must extend to infinity in the positive direction of χ–axis for
each k ∈ N+. Though it is not the goal of our work to agree with or disagree with
these statements with a rigorous proof, we find that very recently in [33], Ma and
Wang obtained global bifurcation of chemotaxis model with logistic cellular growth
in one–dimensional space, where they apply a reflective and periodic extension
method as in [18]. This work extends that in [56] and provides a foundation for
the qualitative analysis of positive steady state to logistic chemotaxis models in the
limit of large chemotaxis rate. We surmise that their approach carries over for (6)
and detailed arguments are out of scope of this paper.

3. Stability analysis of bifurcating solutions

We proceed to study the local stability of the bifurcation branches Γk(s) to (6)
obtained in Theorem 2.2, with the bifurcating solution (uk(s, x), vk(s, x), χk(s))
viewed as an equilibrium to the time-dependent system of (6). F is C4-smooth
in s if φ is C4, therefore, according to Theorem 1.18 in [5], we have the following
asymptotic expansions of (uk(s, x), vk(s, x), χk(s))

(23)

 uk(s, x) = ū+ s cos kπxL + s2ϕ1 + s3ϕ2 +O(s4),
vk(s, x) = v̄ + sQk cos kπxL + s2ψ1 + s3ψ2 +O(s4),
χ = χk + sK1 + s2K2 + o(s2),

whereO–terms are taken in X–topology; K1, K2 are constants to be determined and
we have skipped index k without confusing the reader; moreover (ϕi, ψi), i = 1, 2,
are in the closed complement of the null space N (D(u,v)F(ū, v̄, χk)), that being
said

(24) (ϕi, ψi) ∈ X × X and

∫ L

0

ϕiūk + ψiv̄kdx = 0, i = 1, 2,

where (ūk, v̄k) is given by (16).

3.1. Pitch–fork bifurcation. We first show that Γk(s) is pitch–fork by proving

K1 = 0. Here and in the sequel we denote φ̄ = φ(ū, v̄), φ̄u = ∂φ(ū,v̄)
∂u , ... etc. We
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have from Taylor’s expansions that

φ(uk, vk) = φ̄+ s(φ̄u + φ̄vQk) cos
kπx

L

+ s2
(
φ̄uϕ1 + φ̄vψ1 +

1

2
(φ̄uu + 2φ̄uvQk + φ̄vvQ

2
k) cos2 kπx

L

)
+ s3

(
φ̄uϕ2 + φ̄vψ2 + (φ̄uu + φ̄uvQk)ϕ1 cos

kπx

L

+ (φ̄uv + φ̄vvQk)ψ1 cos
kπx

L

+
1

6
(φ̄uuu + 3φ̄uuvQk + 3φ̄uvvQ

2
k + φ̄vvvQ

3
k) cos3 kπx

L

)
+O(s4).(25)

Substituting (23) and (25) into the first equation of (6), and then collecting the
s2–terms there we have

(26)



d1ϕ
′′
1 + ū(− a

h + bv̄
(ū+c)2 )ϕ1 − bū

ū+cψ1

= (− bcv̄
(ū+c)3 + a

h + bcQk
(ū+c)2 ) cos2 kπx

L , ∈ (0, L),

d2ψ
′′
1 + cev̄

(ū+c)2ϕ1 + (kπL )2φ̄ cos kπxL K1

= χk
(
φ̄ϕ′′1 + (φ̄u + φ̄vQk)(cos kπxL (cos kπxL )′)′

)
+( cev̄

(ū+c)3 − ceQk
(ū+c)2 ) cos2 kπx

L , x ∈ (0, L),

ϕ′1(x) = ψ′1(x) = 0, x = 0, L.

Multiplying the first and second equation of (26) by cos kπxL and then integrating
them over (0, L) by parts, we collect
(27)

bū

ū+ c

∫ L

0

ψ1 cos
kπx

L
dx+

(
d1(

kπ

L
)2 − ū(−a

h
+

bv̄

(ū+ c)2
)
)∫ L

0

ϕ1 cos
kπx

L
dx = 0

and

(kπ)2φ̄K1

2L
=−

( cev̄

(ū+ c)2
+ χkφ̄(

kπ

L
)2
)∫ L

0

ϕ1 cos
kπx

L
dx

+ d2(
kπ

L
)2

∫ L

0

ψ1 cos
kπx

L
dx.(28)

Solving (27) with (24) gives us

(1 +Q2
k)

∫ L

0

ϕ1 cos
kπx

L
dx = 0,

then we have that∫ L

0

ψ1 cos
kπx

L
dx =

∫ L

0

ϕ1 cos
kπx

L
dx = 0, ∀k ∈ N+.

Finally it follows from (28) that K1 = 0, hence the bifurcation branch Γk(s)
around χk is of pitch-fork type, i.e., one–sided. As we shall see in the coming
analysis, the sign of K2 determines the branch direction hence the stability of
(uk(s, x), vk(s, x), χk(s)). In order to evaluate, one equates the s3–terms in (23)
and collect a system of φ2, ψ2 and K2 similar as (26). By the same calculations
that lead to K1 = 0, we will be able to express K2 in terms of system parameters.
Since the computations are straightforward but very involved, we skip them here.
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3.2. Stability results. In light of the fact that K1 = 0 in (23) for each k ∈ N+,
here we give another main result of this paper about the stability of the bifurcating
solutions on Γk(s) around (ū, v̄, χk). Here by the stability of Γk(s) we mean that
of the bifurcating solution on this branch viewed as an equilibrium to (5). Our
stability analysis of the bifurcating solutions is based on Theorem 1.16 in [6] and
we now present the following results.

Theorem 3.1. Assume that all the conditions in Theorem 2.2 hold and φ(ū, v̄) 6= 0.
Then the following statements hold:

(i). If φ(ū, v̄) > 0. Suppose that χk0
= mink∈N+ χk, then for each k 6= k0, Γk(s),

s ∈ (−δ, δ) is always unstable; Γk0
(s), s ∈ (−δ, δ) is stable if K2 > 0 and it is

unstable if K2 < 0.
(ii). If φ(ū, v̄) < 0. Suppose that χk1 = maxk∈N+ χk, then for each k 6= k1,

Γk(s), s ∈ (−δ, δ) is always unstable; Γk1
(s), s ∈ (−δ, δ) is stable if K2 < 0 and it

is unstable if K2 > 0.

Proof. We shall only prove part (i) and part (ii) can be proved by the same argu-
ments. Linearize (6) around (uk(s, x), vk(s, x), χk(s)), then the branch Γk(s) will
be asymptotically stable if the real part of any eigenvalue λ of the following problem
is negative:

(29) D(u,v)F(uk(s, x), vk(s, x), χk(s))(u, v) = λ(u, v), (u, v) ∈ X × X .

According to Corollary 1.13 in [6], there exist an interval I containing χk and C1-
smooth functions (χ, s) : I × (−δ, δ) → (µ(χ), λ(s)) with λ(0) = 0 and µ(χk) = 0
such that, λ(s) is an eigenvalue of (29) and µ(χ) is an eigenvalue of the following
eigenvalue problem

D(u,v)F(ū, v̄, χ)(u, v) = µ(u, v), (u, v, χ) ∈ X × X × I

or equivalently the following eigenvalue problem

(30)


d1u
′′ + ū(− a

h + bv̄
(ū+c)2 )u− bū

ū+cv = µ(χ)u, x ∈ (0, L),

d2v
′′ − χφ(ū, v̄)u′′ + cev̄

(ū+c)2u = µ(χ)v, x ∈ (0, L),

u′(x) = v′(x) = 0, x = 0, L.

Moreover, λ(s) is the only eigenvalue of (29) in any fixed neighbourhood of the
origin of the complex plane and µ(χ) is the only eigenvalue of (30) around χk.
Furthermore the eigenfunction of (30) can be represented by

(
u(χ, x), v(χ, x)

)
,

which depends on χ smoothly and is uniquely determined by
(
u(χk, x), v(χk, x)

)
=(

cos kπxL , Qk cos kπxL
)

and
(
u(χ, x), v(χ, x)

)
−(

cos kπxL , Qk cos kπxL
)
∈ Z, where Qk and Z are defined by (17) and (20) respec-

tively.
To prove the instability of Γk(s) around (ū, v̄, χk) for each k 6= k0, we first study

the limit of (29) as s→ 0, or equivalently the following eigenvalue problem

(31)


d1u
′′ + ū(− a

h + bv̄
(ū+c)2 )u− bū

ū+cv = λ(0)u, x ∈ (0, L),

d2v
′′ − χkφ(ū, v̄)u′′ + cev̄

(ū+c)2u = λ(0)v, x ∈ (0, L),

u′(x) = v′(x) = 0, x = 0, L.
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Testing (31) by cos kπxL over (0, L) by parts gives rise to(
−d1(kπL )2 + ū(− a

h + bv̄
(ū+c)2 )− λ(0) − bū

ū+c

χk(kπL )2φ(ū, v̄) + cev̄
(ū+c)2 −d2(kπL )2 − λ(0)

)

×

( ∫ L
0
u cos kπxL dx∫ L

0
v cos kπxL dx

)
=

(
0
0

)
,

therefore λ(0) is an eigenvalue of (31) if and only if pk(λ0) = λ2
0 − Tkλ0 + Dk,

where Tk and Dk = Dk(χk) are the same as given in (8) with χ = χk. It is easy
to see that for any k 6= k0 Tk > 0 and Dk(χk) > 0 from the definition of k0,
therefore pk(λ) = 0 has a root λ(0) > 0 which is also an eigenvalue of (31). From
the standard eigenvalue perturbation theory in [20], (29) always has a positive root
in a small neighborhood of the origin of the complex plane if k 6= k0. This shows
that for each k 6= k0, Γk(s) is unstable for s ∈ (−δ, δ). We want to point out that
0 is a simple eigenvalue of (31) since χk 6= χj for k 6= j.

Now we proceed to study the stability of the nonconstant solutions (uk0
(s, x),

vk0(s, x)) on branch Γk(s), s ∈ (−δ, δ). According to the analysis above, we see
that the characteristic polynomial p(λ0) hence (30) with k = k0 has one negative
eigenvalue and a zero eigenvalue. Therefore we only need to study the property of
this zero eigenvalue around s = 0 which will be denoted by λ(s) as above without
confusing our reader. In particular, (uk0

(s, x), vk0
(s, x)) is asymptotically stable if

λ(s) < 0 and it is unstable if λ(s) > 0. Taking s = 0, following the same analysis
that leads to (21), we have that λ = 0 is a simple eigenvalue of D(u,v)F(ū, v̄, χk)

and the eigenspace is N
(
D(u,v)F(ū, v̄, χk)

)
= {(1, Qk) cos kπxL } and (1, Qk) cos kπxL

is not in the range of this operator.
Differentiating (30) with respect to χ and taking χ = χk0

give us
(32)
d1u̇
′′ + ū(− a

h + bv̄
(ū+c)2 )u̇− bū

ū+c v̇ = µ̇(χk0
) cos k0πx

L , x ∈ (0, L),

d2v̇
′′ − χk0φ(ū, v̄) cos′′ k0πx

L − φ(ū, v̄)u′′ + cev̄
(ū+c)2 u̇ = µ̇(χk0) cos k0πx

L , x ∈ (0, L),

u̇′(x) = v̇′(x) = 0, x = 0, L,

where the dot-notation ˙ in (32) denotes the differentiation with respect to χ eval-

uated at χ = χk0 and in particular u̇ = ∂u(χ,x)
∂χ

∣∣
χ=χk0

, v̇ = ∂v(χ,x)
∂χ

∣∣
χ=χk0

.

By Theorem 1.16 in [6], the eigenvalue λ(s) of (29) and the function−sχ′k0
(s)µ̇(χk0

)
have the same zeros and the same sign near s = 0 if λ(s) 6= 0, and

(33) lim
s→0,λ(s)6=0

−sχ′k0
(s)µ̇(χk0)

λ(s)
= 1.

On the other hand, multiplying both equations in (32) by cos k0πx
L and integrating

them over (0, L) by parts, we arrive at the following system(
−d1(k0π

L )2 + ū(− a
h + bv̄

(ū+c)2 ) − bū
ū+c

χk0(k0π
L )2φ(ū, v̄) + cev̄

(ū+c)2 −d2(k0π
L )2

)(∫ L
0
u̇ cos k0πx

L dx∫ L
0
v̇ cos k0πx

L dx

)

=

(
µ̇(χk0

)L2(
µ̇(χk0

)Qk0
−φ(ū, v̄)

(
k0π
L

)2)L
2

)
We see from (33) that the coefficient matrix is singular, therefore if the algebraic

system is solvable, we must have that
d2(

k0π
L )2

bū/(ū+c) =
µ̇(χk0

)Qk0
−φ(ū,v̄)(

k0π
L )2

µ̇(χk0
) , which

together with (3) implies that sgn(µ̇(χk0
)) = −sgn(φ(ū, v̄)), therefore sgn(λ(s)) =
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sgn(φ(ū, v̄)K2) in light of (33) since K1 = 0. Therefore, the sign of K2 determines
that of λ(s) hence the stability of the bifurcating branches. This completes the
proof of Theorem 3.1. �

The local bifurcation branches described in Theorem 3.1 are schematically p-
resented in Figure 1. Theorem 3.1 inserts that, among the infinitely many local

If Γk0(s) turns to the right, the portion
around (ū, v̄, χk0) is stable; Γk(s) around
(ū, v̄, χk) is always unstable if k 6= k0.

If Γk0(s) turns to the left, the por-
tion around (ū, v̄, χk0) is unstable; Γk(s)
around (ū, v̄, χk) is always unstable if
k 6= k0.

Figure 1. Bifurcation diagrams when case (i) in Theorem 3.1 oc-
curs. The stable bifurcation curve is plotted in solid lines and the
unstable bifurcation curve is plotted in dashed lines. The bifurca-
tion curve is of pitch–fork type, i.e., being one–sided.

bifurcation branches, the only stable branch must be the portion of the left–most
one that turns to the right if φ(ū, v̄) > 0 or the portion of the right–most branch
that turns to the left if φ(ū, v̄) < 0. Moreover, according to Lemma 2.1, (ū, v̄) loses
its stability to nontrivial steady states of (6) that has a spatial pattern cos k0πx

L or

cos k1πx
L when φ(ū, v̄) > 0 or φ(ū, v̄) < 0 respectively.

It is necessary to point out that, though Theorem 3.1 provides a complete under-
standing on the local branches, we do not know much about the global behaviors
of the stationary system (6) or the time–dependent system (5). Indeed (5) has ex-
tremely rich and complicated dynamics such as the merging and emerging of spikes
or time–periodic spatial patterns. See our numerical simulations in Figures 5 and
Figure 6 for example, where χ is chosen to be far away from χk0

or χk1
.

In general, it is impossible to determine at which k that χk achieves its minimum
or maximum as in (10). When the interval length L is sufficiently small, we calculate

in (11) that χk ≈ −
d1d2( kπL )2

bū
ū+cφ(ū,v̄)

, therefore minχk or maxχk is achieved at k = 1 either

φ(ū, v̄) > 0 or φ(ū, v̄) < 0, this indicates that when the interval is small, (ū, v̄)
loses its stability to cos πxL which is spatially monotone; moreover larger intervals
supports larger wavemode and more interior spikes. See Figure 3 for numerical
simulations which support this conclusion.

4. Numerical simulations

In this section, we perform some numerical studies on the formation of spatial
patterns in system (5). We choose the potential function to be φ(u, v) = uv(M−v)
for some positive constant M to be selected in each simulation. Here M measures
the threshold value of volume–filling effect above which predators escape the region
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with their over–crowding focal species. Throughout this section we choose the ini-
tial data to be (u0, v0) = (ū, v̄)+0.01 cos 2.4πx, which are small perturbations of the
homogenous equilibrium (ū, v̄) given by (2), then we investigate several sets of sys-
tem parameters to study the regime under which small perturbated inhomogeneous
data can develop into stationary or time-periodic solutions with spatial patterns.
In particular, the numerics support our theoretical findings on the existence and
stability of the bifurcating solutions established in Theorem 2.2 and Theorem 3.1.

In Figure 2, we show the formation and stabilization of stationary patterns of
system (5) developed from steady state bifurcation over Ω = (0, 6). System param-
eters are chosen to be d1 = 0.5, d2 = 1, a = 2.5, b = 1, c = 0.2, d = 3, e = 4.5
and h = 0.6 therefore the unique positive equilibrium is (ū, v̄) = (0.4, 0.5). The
volume–filling threshold value in φ is taken M = 0.1. We calculate (14) to find
that mink∈N+ χk = χ2 ≈ 18.145, therefore k0 = 2 is the stable wave number and
cos 2πx

6 is the stable wave mode to which the equilibrium (ū, v̄) = (0.4, 0.5) loses its
stability, despite that the initial data have spatial mode cos 2.4πx. This supports
our stability analysis of the bifurcating solutions obtained in Theorem 2.2.

Figure 2. Formation of stationary stable patterns of (5) over
Ω = (0, 6) from initial data (u0, v0) being small perturbations from
(ū, v̄) with spatial mode cos 2.4πx. System parameters are chosen
d1 = 0.5, d2 = 1, a = 2.5, b = 1, c = 0.2, d = 3, e = 4.5, h = 0.6
and M = 0.1. Prey–taxis is chosen to be χ = 20 around the critical
bifurcation value χ2 = 18.145.

In Figure 3, we examine the effect of interval length on the variation of patterns
in (5) when prey–taxis rate χ is around the critical bifurcation value. System
parameters and initial data are taken to be the same as those for Figure 2. We
select interval length to be L = 8, 11, 13 and 16 in each graph, which corresponds
to the critical bifurcation values χ3 ≈ 18.0412, χ4 ≈ 18.0164, χ5 ≈ 18.0892 and
χ6 ≈ 18.0412 in each plot from the left to the right. Therefore according to Theorem
2.2, (ū, v̄) loses its stability to the stable wave mode cos 3πx

8 , cos 4πx
11 , cos 5πx

13 and

cos 6πx
16 respectively and this is verified numerically in Figure 3. We observe that
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a larger interval supports higher wave number than a smaller interval hence stable
patterns with more aggregates. Indeed, by periodically reflecting and extending (5)
from (0, L) to (0, 2L), one can expect similar dynamics between the same system
over these two intervals, e.g, as intuitively observed in the plots with L = 8 to
L = 16.

Figure 3. Effect of interval size on the formation of nontrivial
steady states from small perturbations of (ū, v̄). System parame-
ters and initial data in (5) are the same as in Figure 2. These plots
agree very well with the wave mode selection mechanism implied
by Theorem 3.1. We observe that large intervals support more
aggregates than small intervals.

Figure 4 provides insights on how a large prey–taxis rate χ effects pattern for-
mations in (5) qualitatively. All system parameters are chosen to be the same as
in Figure 2 except that the domain size L changes to 7 and the prey–taxis rate χ is
larger than the minimum bifurcation value χ3 ≈ 18.579. φ(ū, v̄) < 0 since M < v̄
therefore a larger prey–taxis rate χ benefits the spatial heterogeneity and aggrega-
tion of population species in (5). Our simulations suggest that species population
densities develop into spiky functions when χ is large.

As the prey–taxis rate χ increases, sometimes we observe spatially inhomoge-
neous time-periodic phenomena presented in Figure 5. We choose χ = 0.089, which
is bigger than the critical bifurcation value χ6 = 0.072. And we can also observe
that the wave mode number is k = 6 even in time–periodic pattern, and the rig-
orous analysis is out of our scope of our paper. It is necessary to point out that
spatial–temporal periodic patterns have been observed in chemotaxis models with
cellular growths [8, 39, 53, 54], as well as for two–predator and one–prey systems
with prey–taxis [49].

Finally, we present Figure 6 with the formation of stationary patterning process
though merging and emerging or spikes in (5). Here merging refers to two peaks
that collide and form a single peak while emerging refers to a new peak that appears
from between two peaks, as shown at time t ≈ 120s.
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Figure 4. Formation of nonconstant positive steady states to (5)
over Ω = (0, 7) when prey–taxis χ is chosen to be larger than the
critical bifurcation value χ3 ≈ 18.579. Initial data and system
parameters are chosen to be the same as in Figure 2 except that
L = 7 and χ = 21, 24, 27 and 36 in each plot from left to right.

Figure 5. Regular time-periodic patterning in (5) from (ū, v̄) over
Ω = (0, 6). Subplots in lines show the prey–predator phase plane at
the each space location for time t ∈ (200, 500). System parameters
are chosen d1 = 0.1, d2 = 0.1, a = 2.5, b = 1, c = 2, d = 0.5, e = 4,
h = 2.5 and χ = 0.089, M = 0.7. These simulations demonstrate
the sustained coexistence and spatial–temporal oscillations of of
prey and predator species over the habitat.
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