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PRECONDITIONING A COUPLED MODEL FOR REACTIVE

TRANSPORT IN POROUS MEDIA

LAILA AMIR AND MICHEL KERN

Abstract. Reactive transport problems involve the coupling between the chemical interactions

of different species and their transport by advection and diffusion. It leads to the solution of

a non-linear systems of partial differential equations coupled to local algebraic or differential
equations. Developping software for these two components involves fairly different techniques, so

that methods based on loosely coupled modules are desirable. On the other hand, numerical issues

such as robustness and convergence require closer couplings, such as simultaneous solution of the
overall system. The method described in this paper allows a separation of transport and chemistry

at the software level, while keeping a tight numerical coupling between both subsystems. We give

a formulation that eliminates the local chemical concentrations and keeps the total concentrations
as unknowns, then recall how each individual subsystem can be solved. The coupled system is

solved by a Newton–Krylov method. The block structure of the model is exploited both at the

nonlinear level, by eliminating some unknowns, and at the linear level by using block Gauss-Seidel
or block Jacobi preconditioning. The methods are applied to a 1D case of the MoMaS benchmark.
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1. Introduction

Reactive transport in porous media studies the coupling of reacting chemical
species with mass transport in the subsurface, see [5, sec. 7.9] for an introduction,
or [3, 7] for more comprehensive references. It plays an important role in several
applications when modeling subsurface flow [64, 63, 74] :

• chemical trapping is one of the mechanism by which the safety of geological
sequestration of carbon dioxide in deep saline aquifers can be ensured [4,
25, 57, 66];
• nuclear waste storage is based on a multiple barrier concept so as to delay

the arrival of radionuclides in the bio-sphere. The concrete barrier that
seals the repository may be attacked by oxidized compounds, and again its
safety needs to be assessed [18, 45, 58];
• bio-geochemistry involves interactions with organic chemicals, and is impor-

tant for studies of soil pollution, and also for planning bio-remediation [15,
47].

The numerical simulation of reactive transport has been the topic of numerous
works. The survey by Yeh and Tripathi [72] has been very influential in estab-
lishing a mathematical formalism for setting up models, and also for establishing
the “operator splitting” approach (see below) as a standard. More recent surveys,
detailing several widely used computer codes and their applications, can be found
in the book [74] and the survey article [64].

One traditionally distinguishes two main approaches for solving reactive trans-
port problems:
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Sequential Iterative Approach (SIA): in this family of methods (also known
as operator splitting), transport and chemistry are solved alternatively [14,
41, 48, 59, 73]. This has the advantage that a code for reactive transport
can be built from pre-existing transport and chemistry codes [33], and that
no global system of equations needs to be solved. On the other hand, the
splitting between chemistry and transport may restrict the time step in
order to ensure convergence of the method, and the splitting may also in-
troduce mass errors that need to be controlled [67]. As the above references
show, the method can be quite successful if it is implemented carefully.

Globally implicit Approach (GIA): Here the fully coupled system involv-
ing transport and chemistry is solved in one shot (see for instance [24, 56]
and the references below). The balance is the opposite of what it was for
SIA: the method does not introduce spurious mass errors, and can converge
with large time steps, but it leads to a large and difficult to solve system
of non-linear equations coupling all the chemical species at all grid points.
The system can be solved by substituting the mass action laws into the
conservation equations, a variant known as Direct Substitution approach
(DSA) as in [25, 28]. Recently, methods that solve the coupled problem
without direct substitution have been introduced. In [29, 39, 40], local
chemical systems are solved, and the solution becomes an additional term
in a transformed form of the transport. In [16, 21, 22], the overall coupled
system is solved as a Differential Algebraic System.

In addition to the surveys mentioned above, the methods have been compared
in several studies or benchmarks [11, 46, 55]. It is fair to say that no method or
code emerges as a clear winner for all situations.

We finish this short (and far from exhaustive) review of the literature by noting
that most of the work cited deal with one-phase flow and transport. The methods
have recently been extended to the case of two-phase flow [1, 25, 57, 61] .

In a previous paper [2], the authors introduced a method that belongs to the
GIA family without sacrificing the ease of implementation of the SIA methods, due
to the separation of software modules for chemistry and transport. The method
solves the nonlinear coupled system by a Jacobian-free Newton–Krylov method.

This paper presents several improvements to [2]:

• a systematic study of preconditioning methods for the linearized coupled
problem, and their relationship to elimination methods. This results in a
method where the mobile concentrations are eliminated, and one solves
for the total fixed concentrations. We give both heuristic arguments and
experimental evidence that the convergence rate for both the Newton and
GMRES iterations is bounded independently of the mesh size;
• a formulation of the chemical equilibrium problem that does not need the

a priori separation of the chemical species between primary and secondary
components, but that keeps the distinction between mobile and immobile
species.

The method originally introduced in [2] approximated the Jacobian matrix by
vector product by finite difference, so that only solvers for transport and chemistry
were needed, and they could be applied as black boxes. In this work, we slightly
“open the boxes”, as we propose to compute exactly the Jacobian matrix by vector
products, so that access to the Jacobians of the transport and chemical solvers
are needed. We feel the added accuracy and reduced cost (for the chemical part,
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inverting the jacobian is much less expensive than solving the whole system) more
than make up for the additional requirement on the software.

Since the convergence of Krylov solvers can be slow, we devote a significant part
of the paper to the analysis of preconditioning methods. We show that block pre-
conditioning is equivalent to the elimination of variables, and that the elimination
can be performed directly on the non-linear system.

In a different direction, this paper also relaxes the reliance on the Morel for-
mulation that requires that one identifies a priori a set of principal and secondary
species. We show that the coupled problem can be formulated in the same way
as before, but that the various totals involved are then defined in a more intrinsic
way. This may be seen as a particular case of the general reduction mechanism of
Knabner et al [29, 40], but we believe the simpler formulation may be of interest
to practitioners. The formulation also leads to a method for solving the chemical
system that makes uses of orthogonal matrices and may lead to better conditioned
Jacobians (this remains to be investigated).

In this work, we consider only a simplified physical and chemical setup (one
phase flow, no mineral reactions, no kinetic reactions) so as to concentrate on the
numerical issues related to the coupling between transport and chemistry. Gen-
eralization to more realistic situations (2D and 3D geometries, kinetic reactions,
presence of mineral species) will be the topic of future studies.

An outline for the rest of this paper is as follows: we set up the mathematical
model in section 2, and show how to reduce the problem by eliminating the chem-
ical concentrations. Numerical methods for solving the local chemical equilibrium
problem and the advection–diffusion equations for transport are the topic of sec-
tions 3.1 and 3.2 respectively. Section 4 deals with the formulation of the coupled
problem, and its solution by a Newton–Krylov method. Preconditioners for the
linear system and elimination methods for the non-linear system are detailed in
section 5. Finally, in section 6 the methods are validated on two test cases, includ-
ing the 1D MoMaS reactive transport benchmark, which is a fairly difficult test
case for reactive transport [11].

2. Reactive transport model

We consider a set of species subject to transport by advection and diffusion and
to chemical reactions in a porous medium occupying a domain Ω ⊂ Rd (d = 1, 2, 3).
The chemical phenomena involve both homogeneous and heterogeneous reactions.
Homogeneous reactions, in the aqueous phase, include water dissociation, acid–
base reactions and redox reactions, whereas heterogeneous reactions occur between
the aqueous and solid phases, and include surface complexation, ion exchange and
precipitation and dissolution of minerals (see [3] for details on the modeling of
specific chemical phenomena). Accordingly, we assume there are Ns mobile species
(Xj)j=1,...,NS in the aqueous phase and N̄s immobile species in the solid phase
(X̄j)j=1,...,N̄S , and that there are Nr homogeneous reactions, and N̄r heterogeneous
reactions.

In this work, we only consider equilibrium reactions, which means that the chem-
ical phenomena occur on a much faster scale than transport phenomena, see [52].
This assumption is justified for aqueous phase and ion–exchange reactions, but
may not hold for reactions involving minerals. Such reactions should be modeled
as kinetic reactions, with specific rate laws [5, 25].
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We can write the chemical system as

Ns∑
j=1

(Scc)ijXj � 0 i = 1, . . . , Nr homogeneous reactions,

Ns∑
j=1

(Sc̄c)ijXj +

N̄s∑
j=1

(Sc̄c̄)ijX̄j � 0 i = 1, . . . N̄r heterogeneous reactions,

or in condensed form

(1) S

(
X
X̄

)
=

(
Scc 0
Sc̄c Sc̄c̄

)(
X
X̄

)
�

(
0
0

)
.

We denote by S the stoichiometric matrix, with the sub-matrices Scc ∈ RNr×Ns ,
Sc̄c ∈ RN̄r×Ns and Sc̄c̄ ∈ RN̄r×N̄s . We assume that both the global stoichiometric
matrix S and the “aqueous” stoichiometric matrix Scc are of full rank. As there
will usually be more species than reactions, this just means that all reactions are
“independent” (in the linear algebra sense !), and that this is also true of the
reactions in the aqueous phase.

Each reaction gives rise to a mass action law, linking the activities of the species.
For simplicity, we assume all species follow an ideal activity model, so that their
activity is equal to their concentration. We denote by cj (resp. c̄j) the concentration
of species Xj (resp. X̄j). It will be convenient to write the mass action law in
logarithmic form, so for a vector c with positive entries, we denote by log c the
vector with entries log cj . We then have

(2)

(
Scc 0
Sc̄c Sc̄c̄

)(
log c
log c̄

)
=

(
logK
log K̄

)
,

where K ∈ RNr and K̄ ∈ RN̄r are the equilibrium constants for their respective
reactions.

Next, we write the mass conservation for each species, considering both transport
by advection and diffusion and chemical reaction terms:

(3)
φ∂tc +Lc = STccr + STc̄cr̄,

φ∂tc̄ = STc̄c̄r̄,
in Ω× [0, Tf ]

where L denotes the advection–diffusion operator (written in 1D):

L(c) = ∂x (−D∂xc+ uc) ,

φ is the porosity (fraction of void in a Representative Elementary Volume available
for the flow), u is the Darcy velocity (we assume here permanent flow, so that u
is considered as known), D is a diffusion–dispersion coefficient and r ∈ RNr and

r̄ ∈ RN̄r are vectors containing the reaction rates. We assume that the diffusion
coefficient is independent of the species. This is a strong restriction on the model,
but one that is commonly assumed to hold [2, 39, 54, 72]. The model is completed
by appropriate initial and boundary conditions.

Since we assume that all reactions are at equilibrium, the reaction rates are
unknown and we now show how they can be eliminated.
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2.1. Elimination of the reaction rates – the coupled problem. We follow
the approach of Saaltink et al.[54] (see also a more general approach in [39, 40]) by
introducing a kernel matrix U such that UST = 0, i.e. such that columns of UT

form of basis for the null-space of S. This can be done in several ways (see the
above references, and section 3.1). Here we outline how one can compute such a
matrix with the same structure as that of S.

Lemma 2.1. Assume that the matrix S is as defined in equation (1), that it has
full rank, and that the submatrix Scc also has full rank. Then there exists a kernel
matrix

(4) U =

(
Ucc Ucc̄
0 Uc̄c̄

)
,

Ucc ∈ R(Ns−Nr)×Ns , Ucc̄ ∈ R(Ns−Nr)×N̄s

Uc̄c̄ ∈ R(N̄s−N̄r)×N̄s

such that UST = 0.

Proof. The existence of a kernel matrix U is well known (see any standard text on
linear algebra, such as [65] or [49]). The content of the lemma is that the kernel
matrix can be chosen with a block upper triangular structure.

The proof proceeds by computing each block of the product, and showing that
the blocks in U can be chosen as specified. This is true because both Ccc and Cc̄c̄
are of full rank (the later because the full matrix S is block triangular). �

With the kernel matrix constructed in lemma 2.1, we can eliminate the reaction
terms in equation (3). We start by defining the total analytic concentration for
the mobile and immobile species respectively (these are the same as various total
quantities defined in the classical survey by Yeh and Tripathi [72])

(5)

(
T
T̄

)
=

(
Ucc Ucc̄
0 Uc̄c̄

)(
c
c̄

)
.

We also define the total mobile and immobile concentrations for the species in the
aqueous phase

(6) C = Ucc c, C = Ucc̄ c̄,

so that the total concentrations are given by

(7) T = C + C̄ = Ucc c+ Ucc̄ c̄.

These new unknowns are all of dimension Nc, where Nc = Ns − Nr. We now
multiply system (3) on the left by U . Because of our assumption that D is the
same for all chemical species, multiplication by U commutes with the differential
operator, and the system can be rewritten as

(8)
φ∂tC + φ∂tC + LC = 0,

φ∂tT̄ = 0.

The coupled system consists of the (Ns − Nr) + (N̄s − N̄r) conservation PDEs
and ODEs (8), together with the Nr + N̄r mass action laws (2) and the relations
connecting concentration and totals (6) and the second line of (5), for the Ns + N̄s
concentrations and 2(Ns − Nr) + N̄s − N̄r totals. Note that the ODEs for T̄ are
decoupled from the rest of the system. In section 4, we show how to eliminate the
individual concentrations from the system, so that only the totals C and C̄ remain
as unknowns.
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Remark 1. The formulation for the chemical system given in equations (2) and (5)
generalizes the well known Morel formulation [50], where a set of “principal” species
is identified, and the remaining “secondary” species are written in terms of the
principal ones.

The stoichiometric matrix S is split naturally in blocks, the mass action laws
allow the elimination of the secondary unknowns, and the conservation laws lead to
a non-linear system of equations for the principal species.

In the next section, we show that the “local chemical system” (2), (5) can be
solved (for given (T, T̄ )) in a similar way, without having first to explicitly identify
the principal and secondary species.

3. Methods for solving chemistry and transport

We briefly recall in this section how the chemical equilibrium system, and the
transport equation are solved.

3.1. The chemical equilibrium problem. The subsystem formed by the mass
action laws (2) and the definition of the totals (5) is a closed system that enables
computation of the individual concentrations c and c̄ given the totals T and T̄ .
This is actually the same system that would be obtained in a closed chemical
system where now T and T̄ would be known as the input total concentrations.
This subsystem is what we call in the following the chemical equilibrium problem.
It is a small (its size is the number of species) nonlinear system, that is notoriously
difficult to solve numerically (see for example [13, 17, 29, 44]).

It will be convenient in this subsection to temporarily ignore the distinction
between mobile and immobile species. We thus define the vectors

ξ =

(
c
c̄

)
∈ RNξ , κ =

(
logK
log K̄

)
∈ RNκ τ =

(
T
T̄

)
∈ R(Nξ−Nκ)

(Nξ = Ns+N̄s is the total number of species and Nκ = Nr+N̄r is the total number
of reactions), and write the problem for the chemical equilibrium as

(9)
S log ξ = κ,

Uξ = τ,

with the stoichiometric matrix S ∈ RNκ×Nξ , and the kernel matrix U ∈ R(Nκ−Nξ)×Nξ

is such that UST = 0.
It has been shown by several authors [2, 13, 29] that taking the logarithms of

the concentrations as new unknowns in (9) is beneficial from the numerical point
of view, as it automatically ensures that all concentrations will be positive (which
might otherwise be difficult to enforce), and it makes all the unknowns to be of
comparable size (in some cases, such as redox reactions, the concentrations have
been seen to vary over several orders of magnitude). We take the same convention
to define the exponential of a vector as for the logarithm: for a vector z the vector
exp(z) is defined so that its ith entry is exp(zi). By defining z = log(ξ) ∈ RNξ ,
system (9) thus becomes

(10)
Sz = κ,

U exp(z) = τ,

In order to solve system (10), we take a cue from the solution of constrained
least squares problem (see [8, chap. 5], and also [20] in the same context): we
consider the first equation as a constraint, and determine its general solution as the
sum of a particular solution, and an unknown of smaller dimension, that will be
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found by substitution into the second equation. Following the references above, we

first compute a QR decomposition of ST , as QTST =

(
R
0

)
, with Q = (Q1, Q2) ∈

RNξ×Nξ orthogonal and R ∈ RNκ×Nκ upper triangular (and invertible, as S is
assumed to be of full rank).

The columns of Q1 ∈ RNξ×Nκ form an orthonormal basis of range ST , while
those of Q2 ∈ RNξ×(Nξ−Nκ) form an orthonormal basis of Ker S. A first conse-
quence is that one may choose U = QT2 in the second equation of (10).

Now, any z ∈ RNξ may be written uniquely as z = Q1y1 +Q2y2, with y1 ∈ RNκ

and y2 ∈ RNξ−Nκ . If we substitute this expression in the first equation of (10), we
obtain

RT y1 = κ,

which determines y1 uniquely. We set b1 = Q1R
−Tκ, so that z = b1 + Q2y2 ,with

b1 known.
We now use the expression for z in the second equation of (10), and we obtain

a non-linear system of size Nξ −Nκ for y2 ∈ RNξ−Nκ :

(11) H(y2) =
def

QT2 exp(b1 +Q2y2)− τ = 0.

This is the system that is to be solved numerically, and that is analogous to the
non-linear system for the principal species obtained via the Morel formalism. The
number of unknowns has been reduced from the number of species to the number
of species minus the number of reactions, that is the number of principal species.

As a side remark, let us notice that the Jacobian matrix for this reduced chemical
system has the form

Jc = QT2 diag(c) Q2, c = b1 +Q2y2,

and this form is again the same as that obtained from the Morel formulation, with
the difference that here matrix Q2 is orthogonal. This may be important as the
Jacobian matrices occuring in the solution of the chemical equilibrium problem may
be very ill conditioned, as shown in [42]. Thus using orthogonal matrices limits the
ill-conditioning to the diagonal matrix diag(c) where it is harmless.

To solve the reduced chemical problem (11), we use a variant of Newton’s
method. As is well known Newton’s method does not always converge in prac-
tice and, especially for a code that is designed to be used in coupling applications,
it is essential to ensure that the solver “always” works. We have found that using
a globalized version of Newton’s method (using a line search, cf. [34]) was effective
in making the algorithm converge from an arbitrary initial guess.

We now return to the context of solving the coupled problem, where it is impor-
tant to distinguish between mobile and immobile species. Indeed, what is needed
is the partition of the species between their mobile and immobile forms, rather
than the individual concentrations (though they are still needed as intermediate
quantities). The totals can be computed a posteriori using their definitions in
equation (6).

It will be convenient to condense the chemical sub-problem by a function

(12)
ψC : RNc → RNc

T 7→ ψC(T ) = C̄ = Ucc̄ c̄

where c̄ is obtained by solving the chemical problem (10), given T (and T̄ , which
we take as a constant) for ξ, and computing C̄ as indicated above.
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3.2. Transport model. In this section we denote by c a generic unknown concen-
tration. When the transport system is solved in the context of a coupled problem,
the role of c will be played by C as defined in Section 2, cf. equation (8). The
transport of a single species through a 1D porous medium Ω =]0, L[ is governed by
the advection–diffusion equation (cf. (3)):

(13) φ∂tc+ ∂x (−D∂xc+ uc) = φ∂tc+ ∂xj = φq, 0 < x < L, 0 < t < Tf ,

implicitly defining the flux j.
The initial condition is c(x, 0) = c0(x) and, in view of the applications, the

boundary conditions are a Dirichlet condition (given concentration) c(0, t) = cd(t)

at the left boundary (x = 0) and zero diffusive flux
∂c

∂x
= 0 at the right boundary

(x = L). We could easily take into account more general boundary conditions.

3.2.1. Discretization in space. We treat the space and time discretization sep-
arately, as we will use different time discretizations for the different parts of the
transport operator.

For space discretization we use a cell-centered finite volume scheme [23]. The
interval ]0, L[ is divided into Nh intervals [xi− 1

2
, xi+ 1

2
] of length hi, where x 1

2
=

0, xNh+ 1
2

= L. For i = 1, .., Nh we denote by xi the center and xi+1/2 the extremity

of the element i. We denote by ci, i = 1, .., Nh the approximate concentration in
cell i.

We split the flux in equation (13) as the sum of a diffusive flux jd = −D ∂c

∂x
and an

advective flux ja = uc. We then integrate equation (13) over a cell ]xi−1/2, xi+1/2[,
to obtain

(14) φihi
dci
dt

+ jd,i+ 1
2

+ ja,i+ 1
2
− jd,i− 1

2
− ja,i− 1

2
= hiφiqi, i = 2, . . . , Nh.

Our flux approximations come from finite differences. For the diffusive flux, we
use harmonic averages for the diffusion coefficient (as used in mixed finite element
methods) :

(15) jd,i+ 1
2

= −Di+ 1
2

(
ci+1 − ci
hi+ 1

2

)
with

Di+ 1
2

=
2DiDi+1

Di +Di+1
, D 1

2
= D1 DNh+ 1

2
= DNh and hi+ 1

2
=
hi + hi+1

2

For the advective flux, we use an upwind approximation, so that (assuming for
simplicity that u > 0), ja,i+ 1

2
= uci

These approximations are corrected to take into account the boundary condi-
tions, both at x = 0 and at x = L. We give a matrix formulation, keeping time
continuous for now. Since we will be using different discretizations for the diffu-
sive and advective parts (see next section), we keep the matrices for advection and
diffusion separate. With the notation:

αi =
Di+ 1

2

hi+ 1
2

+
Di− 1

2

hi− 1
2

, βi = −
Di− 1

2

hi− 1
2

, γi = −
Di+ 1

2

hi+ 1
2

, i = 2, . . . , Nh − 1,

we define the matrices (with appropriate modifications for the boundary terms)

Ad = tridiag(βi, αi, γi), Aa = tridiag(−u, u, 0)

as well as M = diag(φihi).
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The semi-discrete system can be written as

(16) M
dc

dt
+ (Ad +Aa)c = Mq,

with the initial condition ci = 1
hi

∫ xi+1/2

x1−1/2
c0(xi).

3.2.2. Time discretization. As the transport operator contains both advective
and diffusive terms, it makes sense to use different time discretization methods for
the different terms. Specifically, the diffusive terms should be treated implicitly,
and the advective terms are better handled explicitly. Similarly to what was done
above, we discretize the interval [0, Tf ] with a time step ∆t, which we take as a
constant for simplicity, and we denote by cni the (approximate) value of ci(n∆t),
and by cn the corresponding vector.

We compare several methods for discretization in time.

Fully implicit: both the diffusive and advective terms are treated implicitly:
at each time step, we solve a linear system

(M + ∆t(Ad +Aa))cn+1 = Mcn +M∆tqn+1.

Explicit advection and implicit diffusion: the diffusive terms are treat-
ed implicitly, and advective terms are handled explicitly under a CFL con-
dition. With this scheme, the system to be solved at each time step is

(M + ∆tAd)c
n+1 = (M −∆tAa)cn +M∆tqn+1.

As it has an explicit part, the scheme just defined is stable under the CFL
condition φiu∆t ≤ maxi hi.

As this may be too severe a restriction (some of our applications require
integration over a very large time interval), we use an operator splitting
scheme proposed by Siegel et al. [60] (see also [30]) that is both uncondi-
tionally stable, and has a good behavior in advection dominated situations.

Splitting: (Explicit advection and implicit diffusion), with sub-time steps :
this scheme works by taking several small time steps of advection, controlled
by CFL condition within a large time step of diffusion. Thus CFL impacts
advection, and larger time steps can be taken for diffusion.

More precisely, the time step ∆t will be used as the diffusion time step, it
is divided into Na time steps of advection ∆ta such that ∆t = Na∆ta where
Na ≥ 1, the advection time step will be controlled by CFL condition. Note
that taking a single advection step amounts to using the implicit–explicit
method seen previously. We solve equation (13) over the time step [tn, tn+1]
by first solving the advection equation φ∂tc+ ∂x(uc) = 0 over Na steps of
size ∆ta each, and then solve the diffusion equation φ∂tc+∂x(−D∂xc) = φq
starting from the value at the end of the advection step.
Advection step. Denote the intermediate times by tn,m,m = 0, . . . , Na,
with tn,0 = tn, tn,Na = tn+1. Each interval [tn, tn+1] is then divided into
Na intervals [tn,m, tn,m+1],m = 0, ...Na − 1. Let cn,m be the approximate
concentration c at time tn,m and cn,0 = cn. We discretize the advection
equation in time, using the explicit Euler method, we obtain

(17) Mcn,m+1 = (M −∆taAa)cn,m, m = 0, . . . , Na − 1.
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Diffusion step. The diffusion part is discretized by an implicit Euler scheme,
starting from cn,Na :

(18) (M + ∆tAd)c
n+1 = Mcn,Na +M∆tqn+1.

For further use, we note that all three discretizations methods can be written in
a similar way, as

(19) Acn+1 = Bcn +M∆tqn+1,

where the matrices A and b are defined in each case as:

Fully implicit: A = M + ∆t(Ad +Aa) and B = M ,
Explicit–implicit: A = M + ∆tAd and B = M −∆tAa,
Splitting: A = M + ∆tAd and B is defined implicitly by (17)

Alternatively, we may want to follow the pattern begun in section 3.1, and ab-
stract one transport step as a mapping from cn to cn+1 under the action of the
source qn+1. We define

(20)
ψT : RNh ×RNh → RNh

(c, q) 7→ ψT (c, q) = A−1(Bc+M∆tq).

4. Methods for solving the coupled system

In this section, we discuss methods for solving the coupled transport–chemistry
system. It may be difficult to compute and store the Jacobian matrix (it may be
very large, and contains a block that is the inverse of the chemical solution operator,
which may be difficult to compute). Consequently we advocate a Newton–Krylov
approach, as this requires only the multiplication of the Jacobian matrix by a given
vector, the Jacobian matrix itself does not have to be stored. By exploiting the
block structure of the Jacobian matrix, the matrix–vector product can be computed
in terms of the individual Jacobians.

The efficiency of the Newton–Krylov method rests on the choice of an adequate
preconditioner (see [38] for several illustrations). In this paper, we show that block
preconditioners for the Jacobian can be related to physics–based approximations,
and also that a block Gauss–Seidel preconditioner is closely related to an elimination
method at the non-linear level.

4.1. Formulation of the coupled system. We start with the coupled system
that was obtained at the end of section 2. It consists of the (transformed) transport
equations (8), together with the mass action laws (2). They are linked by the
definition of the transformed variables T,C and C̄ in equations (6) and (7).

Because chemistry is local, we can eliminate the individual concentrations at
each point by using the “chemical solution” operator ψC defined in equation (12).
This only leaves C, C̄, T and T̄ as unknowns that are solution of the following
system

(21)

φ∂tC + φ∂tC̄ + LC = 0,

φ∂tT̄ = 0,

T = C + C̄,

C̄ = ψC(T ).

As is clear from the second equation, T̄ is constant in time (we will see that it
is simply the cationic exchange capacity in the example below). To simplify the
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notation, the equation for T̄ will be omitted in the sequel, and it has been dropped
from the definition of ψC .

The next step is to discretize the transport equations in space and time, using any
of the methods that were discussed in section 3.2. For ease of notation, we denote
the discrete unknowns (vectors of size Nh) by the same letter in bold typeface as
their continuous counterpart. Moreover, all quantities at time tn will be indicated
by a superscript n.

We make use of a notational device, inspired from Matlab, that was introduced
in [2] to take into account the dependence of the unknowns both on the grid cell
index and the chemical species index. For a block vector uij , where i ∈ [1, Nc]
represents the chemical index and j ∈ [1, Nh] represents the spatial index, we
denote by

• u:,j the column vector of concentrations of all chemical species in grid cell
j;
• ui,: the row vector of concentrations of species i at all grid points.

The unknowns are thus numbered first by chemical species, then by grid points,
so that all the unknowns for a single grid point are numbered contiguously. As
proposed by Erhel et al. [22], we make use of the Kronecker product and the vec
notation (see for instance [26]). Given V =

(
V1, V2, . . . , VNc

)
∈ RNx×Nc (Vi denotes

the ith column of V ) we denote by vec(V ) the vector in RNxNc such that

vec(V ) =


V1

V2

...,
VNc

 .

We also extend the solution operator ψC (defined in (12) to operate on the global
vector:

(22)
ΨC : RNc×Nh 7→ RNc×Nh

T→ ΨC(T), with ΨC(T):,j = ψC(T:,j), for j = 1, . . . , Nh

and define the right hand side vector by bn = BCn +MC̄n.
With these conventions, the discretized version of the coupled system (21) be-

comes

(23)

A(Cn+1
i,: )

T
+M(C̄n+1

i,: )
T − (bni,:)

T
= 0, i = 1, . . . , Nc,

Tn+1
ij −Cn+1

ij − C̄n+1
ij = 0, i = 1, . . . , Nc, j = 1, . . . , Nh,

C̄n+1
:,j −ΨC(Tn+1

:,j ) = 0, j = 1, . . . , Nh.

This is a non-linear system of equations to be solved at each time step for the three
unknowns (Cn+1,Tn+1, C̄n+1) ∈ R3NcNh , defined by the function f : R3NcNh 7→
R3NcNh , such that

(24) f

C
T
C̄

 =

(A⊗ I)C + (M ⊗ I)C̄− bn

T−C− C̄
C̄−ΨC(T)

 = 0.

4.2. Solution of the coupled system by Sequential Iterative Approach.
The most classical method for solving the coupled problem (24) is the Sequential
Iterative Approach (SIA) that consists of separately solving the transport equations
and the chemical equations cf. [14, 41, 54, 72].
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It will be convenient to extend the solution operator for transport ψT (defined
in (20)) to operate on global vectors
(25)
ΨT : RNc×Nh ×RNc×Nh 7→ RNc×Nh

(C,Q)→ ΨT (C,Q), with ΨT (C,Q)i,: = ψT (Ci,:,Qi,:), for i = 1, . . . , Nc.

The solution operators ΨC and ΨT emphasize that both the transport and chem-
istry steps can be seen as black boxes. This is the basis for the approach followed
in [33], where a flexible code that allows switching the transport and chemistry
components is presented. We show in the next section that this black box approach
is not restricted to the SIA.

At each time step, we iterate on the transport and chemistry problem. More
precisely, for each iteration k, we first solve the transport equations:
(26)

Cn+1,k+1 = ΨT

(
Cn,M

(C̄n+1,k − C̄n)

∆t

)
= −(A−1 ⊗ I)

(
(M ⊗ I)C̄n+1,k − bn

)
for Cn+1,k+1 (there is one transport equation for each species). The new mobile
total concentrations are added to the immobile concentrations C̄n+1,k (from the
previous iteration) to obtain Tn+1,k+1, and this last concentration provides the
data for the local chemical problems

(27) C̄n+1,k+1 = ΨC(Tn+1,k+1).

The iterations are stopped when the difference between the solutions in the itera-
tions k and k + 1 is small enough, relative to a specified tolerance

(28)
‖ Cn+1,k+1 −Cn+1,k ‖

‖ Cn+1,k+1 ‖
+
‖ C̄n+1,k+1 − C̄n+1,k ‖

‖ C̄n+1,k+1 ‖
< ε

It is known that in order both to control the errors due to the splitting, and to
ensure convergence, this method requires a small time step [43, 55, 67].

4.3. Solution of the non-linear system by a Newton-Krylov method. In
the geochemical literature, the SIA method is known as an operator splitting ap-
proach, but it is more properly a block Gauss–Seidel method on the coupled system.
This suggests that other, potentially more efficient, methods could be used to solve
system (24). A natural candidate is Newton’s method. Since the system is large,
and also because it involves implicitly defined functions, we turn to the Newton-
Krylov variant.

Recall that at each step of the “pure” form of Newton’s method for solving
f(Z) = 0, one should compute the Jacobian matrix J = f ′(Zk), solve the linear
system

(29) J δZ = −f(Zk),

usually by Gaussian elimination, and then set Zk+1 = Zk + δZ. In practice, one
should use some form of globalization procedure in order to ensure convergence from
an arbitrary starting point. If a line search is used, the last step should be replaced
by Zk+1 = Zk + λδZ, where λ is determined by the line search procedure [34].

The Newton–Krylov method (see [34, 38] and [28], to which our work is closely
related) is a variant of Newton’s method where the linear system (29) that arises at
each step of Newton’s method is solved by an iterative method (of Krylov type), for
instance GMRES [53]. As the linear system is not solved exactly, the convergence
theory for Newton’s method does not apply directly. However, the theory has been
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extended to the class of Inexact Newton methods, of which the Newton–Krylov
methods are representatives. The theory leads to a practical consequence, by giving
specific strategies for the forcing term, that is the tolerance within which the linear
system has to be solved (see [34] or the short discussion in [2]).

The main advantage of this type of method is that the full (potentially very
large) Jacobian is not needed, one just needs to be able to compute the product of
the Jacobian with a vector. As this Jacobian matrix vector product is a directional
derivative, this leads to Jacobian free methods, where this product is approximated
by finite differences. However, for the system considered here, this has several
drawbacks: in addition to its inherent inaccuracy, computing the derivative by finite
difference entails solving one more chemistry problem. It was shown in [2] how this
computation could be performed exactly. This is both cheaper and more accurate.
Moreover, the above reference also shows how the natural block structure present in
the coupled system (23) can be exploited to efficiently compute the residual. This
is what is done in the present work, and we now give some details.

To compute the Jacobian matrix times vector product, start from equation (24).
The Jacobian matrix of f has the following block form

(30) Jf =

A⊗ I 0 M ⊗ I
−I I −I
0 −JC I

 ,

where JC is a block diagonal matrix, whose jth block is ψ′C(T:j), for j = 1, . . . , Nh,

and the action of the Jacobian on a vector v =
(
vTC , v

T
T , v

T
C̄

)T
can be computed as

(31) Jf

vCvT
vC̄

 =

(A⊗ I)vC + (M ⊗ I)vC̄

−vC + vT − vC̄
vC̄ − JCvT

 .

Of course, the Kronecker product is just a notational device, and the matrices A⊗I
or I ⊗M are never actually formed. Instead, we use a well know property of the
Kronecker product (see [26]) :

(32) (A⊗ I) vec(V ) = vec(V AT ),

and this just requires to multiply the matrix A by the concentration vector for each
species.

Since the Krylov solvers can stagnate, resulting in slow convergence, possible
strategies for preconditioning the linear system will be investigated in the next
section.

5. Non linear and linear preconditioning

Since the Jacobian matrix is not explicitly computed (it will just be used as a
theoretical device in what follows), the only available options for preconditioning
the system are those that respect the block structure of the matrix. We introduce
two preconditioners derived from classical block-iterative methods, and we show
that these methods have strong links to the SIA method from section 4.2, and also
to a non-linear elimination method, to be introduced in section 5.2.

5.1. Block preconditioning for the coupled system. Using a preconditioner
means that instead of solving, at each Newton iteration, the system

(33) JfδZ = −f(Zk)

one solves one of the (mathematically equivalent) systems:
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right preconditioning: JfP
−1δy = −f(Zk), and then δZk = P−1δy,

left preconditioning: P−1JfδZ = −P−1f(Zk).

The matrix P is called a preconditioner, and it should be chosen so as to fulfill the
often conflicting goals :

• P should be close to Jf so that GMRES converges faster for the precondi-
tioned system than for the original one,

• P is “easy” to invert, so that each iteration is not much more expensive
than an iteration for Jf alone.

As already mentioned, in the context of the coupled problem (24), the entries
of the Jacobian matrix Jf are not known explicitly, so that methods that depend
on the entries of the matrix (such as incomplete factorization methods) cannot
be used. On the other hand, we know the block structure of Jf (see (30)), and
we can invert the upper left diagonal block (of course, when we write “invert”
we really mean “solve a linear system with”. We never actually form the inverse.
See also remark 2 below). These two facts can be exploited by resorting to block
preconditioners that respect the bock structure of the Jacobian. Specifically, we
investigate block methods derived from classical iterative methods, namely Jacobi
and Gauss–Seidel.

Block Jacobi preconditioning: The preconditioning matrix P for block
Jacobi is:

PBJ =

A⊗ I 0 0
0 I 0
0 0 I

 ,

so that the action of the left-preconditioned matrix on a vector v = (vTC , v
T
T , v

T
C̄

)T

is :

(34) P−1BJJfv =

vC + ((A−1M)⊗ I)vC̄
vC + vT − vC̄
−JCvT

 .

Block Gauss–Seidel preconditioning: The preconditioning matrix P for
block Gauss–Seidel and its inverse are :

PBGS =

A⊗ I 0 0
−I I 0
0 −JC I

 , P−1BGS =

 A−1 ⊗ I 0 0
A−1 ⊗ I I 0

JC(A−1 ⊗ I) JC I

 ,

so that the action of the left-preconditioned matrix on a vector v = (vTC , v
T
T , v

T
C̄

)T

is :

(35) P−1BGSJfv =

vC +
(
(A−1M)⊗ I

)
vC̄

vT − vC̄ +
(
(A−1M)⊗ I

)
vC̄

vC̄ − JCvC̄ + JC
(
(A−1M)⊗ I

)
vC̄

 .

Here again, as in (31), neither A−1 nor the Kronecker products are computed.
Rather, to compute w =

(
(A−1M)⊗ I

)
vC̄ , for a given vector vC̄ ∈ RNcNh , one

defines W ∈ RNx×Nc as the solution of

(36) AW = MV TC̄

where vC̄ = vec(VC̄), then let w = vec(W ).
This means that the action of the preconditioner can be computed by solving a

transport step for each chemical species, and a multiplication by the Jacobian of the
chemical operator (which in turns requires solving a linearized chemical problem
for each grid cell). These are also the building blocks for the SIA formulation, and
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this shows that the fully coupled approach can be implemented at roughly the same
cost per iteration as the SIA approach.

Remark 2. In both cases, notice that the preconditioning step involves the inverse
of the transport block. In our 1D case, this is not a difficulty, as this block can
be easily inverted. When we move to 2D or 3D problems, this step would become
more problematic. However, the preconditioners could then be defined by replacing
the matrix A in the definition of Jf by the application of a (spectrally equivalent)
matrix, such as several iterations of a multigrid solver. A multigrid method such
as that proposed recently in [62] would be particularly appropriate.

Remark 3. In both cases (exact or inexact transport solver), one should expect
mesh independent convergence, as the operator being solved by GMRES becomes
bounded independently of the mesh. This expectation will be confirmed by the nu-
merical results in section 6.1.5.

5.2. Elimination of unknown as non-linear preconditioning. In this sec-
tion, we consider alternative solution strategies, based on eliminating some of the
unknowns from the system (24). We group these strategies under the heading of
“non-linear preconditioning” because the elimination is done before the lineariza-
tion, but it must be noted that we take advantage of the fact that the first (block)
equation of (24) is linear and can be solved species by species. In this context, this
strategy should be reminiscent of the “non-linear preconditioning” as introduced
by Cai and Keyes [9], where block of unknowns are eliminated locally. It also pro-
vides an extension to multi-component transport of previous work by Kern and
Taakili [36] that deals with preconditioning a model with one species undergoing
sorption.

We first eliminate T from the original system (24), leading to a system with only
C and C̄ as unknowns

g

(
C
C̄

)
= 0

with

(37) g

(
C
C̄

)
=

(
(A⊗ I)C + (M ⊗ I)C̄− bn

C̄−ΨC(C + C̄)

)
.

The Jacobian of the new system is

Jg =

(
A⊗ I M ⊗ I
−JC I − JC

)
,

and the Jacobian by vector product is :

(38) Jg

(
vC
vC̄

)
=

(
(A⊗ I)vC + (M ⊗ I)vC̄
−JC(vC + vC̄) + vC̄

)
,

One can even go one step further, by eliminating both the unknowns T and C,
to obtain a system with C̄ as the single unknown:

(39) h(C̄) = C̄−ΨC

(
ΨT

(
Cn,M

C̄− C̄n

∆t

)
+ C̄

)
= 0.

This equation is presented in fixed point form, and solving it by fixed point method
recovers the SIA method described in Section 4.2. But equation (39) can also be
solved by Newton’s method. We presented a Jacobian-free Newton-Krylov method
in [2]. Its main advantage is to require that one be able to evaluate the nonlinear
residual function h, and the Jacobian times vector product is approximated by
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finite difference. Since it involves solving an additional chemical problem, this step
is very expensive. In this work, we use the exact Jacobian of h, which requires that
we “open the black box”, to look in more detail at the structure of the Jacobian.
To do this, we rewrite the equation above by making use of the precise definition
of the transport operator ΨT :

(40) h(C̄) = C̄−ΨC

(
(A−1 ⊗ I)

(
bn − (M ⊗ I)C̄

)
+ C̄

)
= 0.

If we denote by JT = I −
(
(A−1M)⊗ I

)
the Jacobian matrix of ΨT , we easily see

that the Jacobian by vector product for h is:

(41) Jhv = v − JCJT v = v − JCv + JC
(
(A−1M)⊗ I

)
v.

Both the alternative formulation and its Jacobian involve the solution of transport
at each Newton step. One again expects that convergence of the linear solver will
become independent of the mesh size [36]. This will be confirmed in Section 6.

5.3. Links between block preconditioning and elimination. The main ad-
vantage of the SIA approach is that it allows the reuse of existing software modules
for solving transport and chemistry. This is an important practical issue, as these
modules may have been developed independently, even by different groups. This
advantage is offset by the possibly slower convergence when compared to GIA, see
for example [28]). The “h” method proposed in section 5.2 (keeping only C̄ as
unknown) belongs to the GIA family, in the sense that it solves both chemistry
and transport as a coupled system. This method is in the same spirit as the one
proposed by Knabner and his group [29, 39, 40]. The reduction method proposed
in these papers is more general than the formulation in section 4.1, but their “res-
olution function” is identical to the chemical solution operator ΨC .

However, the method aims at keeping some of the advantages of SIA: it allows
to keep transport and chemistry as separate modules. Equation (40) shows that
the evaluation of the residual when solving the system with h requires solving
a transport step for each species, and then solving a local chemical equilibrium
system at each grid cell. It was shown in [2, 38] that this is sufficient, provided
one accepts to approximate the Jacobian matrix by vector product by a finite
difference quotient. However, the present paper makes the point that it is both
cheaper and more accurate to compute this matrix-vector product exactly. This
requires more cooperation from the chemical solver, as one needs to access its
Jacobian computation;

We also give some indications for comparing the cost of the “h” method with SIA.
At each iteration of SIA, one has to solve one transport problem per component, and
one chemical equilibrium problem per grid cell. For the “h” method, the same cost
is incurred at each Newton iteration, and one has to add the cost of the Jacobian
matrix vector product at each GMRES iteration. This translates to one additional
transport problem for each component, and one linearized chemical problem for
each cell. We neglect the overhead of constructing the Arnoldi basis in GMRES,
as the number of iterations is expected to be small (as confirmed by the results in
section 6.1.5). So the number of transport problems to be solved is the sum of the
number of Newton and GMRES iterations, but the number of chemical equilibrium
problems is only the number of Newton iterations. One can hope (and again this
is confirmed by our numerical experiments) that the number of Newton iterations
will remain small. Additionally, it has been observed that the SIA method needs a
small time step to reduce the splitting errors (see [11, 41]).
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It is more difficult to comment on the cost of GIA, as this will depend in a crucial
way on the efficiency of the solver. With proper care and effort, DSA methods can
be made very efficient [27]. The results in [29] also show that a method based on a
structure similar to that of the “h” method was among the fastest on the MoMaS
benchmark.

It is interesting to note that both the SIA method and the “h” function method
from section 5.2 can be interpreted in terms of the block preconditioners introduced
in section 5.1.

Indeed, the elimination method can be interpreted as a (linear) change of vari-
ables, given by

(42)


C̃ = C +

(
(A−1M)⊗ I

)
C̄

T̃ = T−
(
(I −A−1M)⊗ I

)
C̄

˜̄C = C̄

,

whose matrix

B =

I 0 (A−1M)⊗ I
0 I −(I −A−1M)⊗ I
0 0 I


is block triangular, so that the transformation is easily inverted. The transformed
system

f̃

C̃

T̃
˜̄C

 = f

C
T
C̄


takes the simple form

(43) f̃

C̃

T̃
˜̄C

 =


(A⊗ I)C̃− b

−C̃ + T̃

˜̄C −ΨC

(
T̃ +

(
(I −A−1M)⊗ I

) ˜̄C

)
 = 0.

and the last equation is obviously identical to (40), after having eliminated the first
two unknowns.

Because the transformation used is linear, and because Newton’s method is in-
variant under a linear transformation, the iterates between the original and the
transformed system will be related by the same transformation (provided the ini-
tial guesses are related similarly). Note that this will not necessarily be true for an
inexact Newton’s method, such as the Newton-Krylov method used in this work.
However, Deuflhard points out [19, sec. 2.2.4] that because the Newton residual
is invariant under affine transformations, GMRES is the natural choice for solving
the linear system arising at each Newton iteration. Moreover, left preconditioning
can be used with GMRES provided the preconditioning matrix

• is kept constant throughout the Newton iterations,
• and is incorporated in the convergence monitoring criteria.

Note that the Jacobian of the transformed system is the block triangular matrix

(44) Jf̃ =

A⊗ I 0 0
−I I 0
0 −JC Jh


where Jh = I − JC

(
(I −A−1M)⊗ I

)
, defined in (41), is actually the Schur com-

plement of Jf with respect to its first two variables.
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This confirms the close link between the non-linear elimination method from
section 5.2 and block Gauss–Seidel preconditioning in (35): as noted above, the
Jacobian of h is exactly the Schur complement of the Jacobian of f . In both cases,
one needs to compute (JC((A−1M) ⊗ I))v. Of course, we are once again taking
advantage of the fact that one of the operators is linear !

An interesting consequence of the change of variables is that, because Jf̃ and the
change of variable matrix B are both block triangular, differentiating the identity
f = f̃ ◦B leads to a block triangular factorization of Jf ,

(45) Jf = Jf̃B =

A⊗ I 0 0
−I I 0
0 −JC S

I 0 (A−1M)⊗ I
0 I −(I −A−1M)⊗ I
0 0 I

 .

This factorization could be used as a basis for constructing efficient preconditioners
for Jf , much as in the spirit of [31], [32] (see also [51]). The matrix B is upper
triangular with unit diagonal, so that all its eigenvalues are equal to 1. As noted
in [69], under these conditions, Krylov subspace methods for the preconditioned
system J−1

f̃
Jf converge in 1 iteration, giving Jf̃ as a perfect preconditioner.

Because it contains S as its (3, 3) block, Jf̃ cannot be formed, let alone inverted.

A first solution is to replace S by an approximation S̃ that is easier to invert. The
simplest choice is to take S̃ = I, which gives the block Gauss–Seidel preconditioner
from section 5.1. But actually, systems with S can be solved by an iterative method,
as the matrix vector product Sv can be computed by proceeding as for the Gauss–
Seidel preconditioner at the end of section 5.1 (see equation (36)).

The numerical results in section 6.1.5 (cf. figure 9) will confirm that the perfor-
mance of SIA and block Jacobi on the one hand and the elimination method and
block Gauss–Seidel on the other hand are very similar.

6. Numerical results

6.1. MoMaS Benchmark : 1D easy advective case. The MoMaS Benchmark
has been designed to compare numerical methods for reactive transport models in
1D and 2D. Different methods for coupling have been used to solve this bench-
mark. The definition has been published in [12] and the results of participants are
compared in the synthesis article [11].

The geometry of the test case is shown in Figure 1. For the 1D test case, the
domain is heterogeneous and composed of two porous media A and B. Medium A is
highly permeable with low porosity and low reactivity in comparison with medium
B. Their physical properties are given in Table 1. The Darcy velocity is constant
over the domain and is equal to φu = 5.5 10−3LT−1.

Figure 1. Geometry of the domain.
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Table 1. Physical properties of the materials.

Medium A Medium B
Porosity φ (−) 0.25 0.5
Total immobile concentration TS 1 10

The chemical reactions are summarized in Table 3. The 7 reactions involve 9
mobile species (in the aqueous phase) and 3 immobile species (in the solid phase).

The characteristic feature of this chemical system is that it contains large stoi-
chiometric coefficients that range from -4 to 4 and a large variation of equilibrium
constants between 10−12 and 1035.

Boundary and initial conditions are presented in Table 2. The simulation involves
an injection period followed by a leaching period, so that the system is returned to
its initial state. Note that the total for the immobile species is given in Table 1.

Table 2. More tableau for CHEMICAL equilibrium.

X1 X2 X3 X4 S K
C1 0 -1 0 0 0 10−12

C2 0 1 1 0 0 1
C3 0 -1 0 1 0 1
C4 0 -4 1 3 0 10−1

C5 0 4 3 1 0 10+35

CS1 0 3 1 0 1 10+6

CS2 0 -3 0 1 2 10−1

Table 3. Boundary and initial conditions.

Total T1 T2 T3 T4

Conc. 0 -2 0 2
Injection 0.3 0.3 0.3 0
t∈[0,5000]
Leaching 0 -2 0 2
t∈[5000,..]

6.1.1. Sample results. The results obtained in [11] indicate that one needs to
refine the mesh around medium B if one is to obtain accurate results. For all test
cases, we use a mesh such that hA = 4hB . The computations were carried out
with the various methods presented in this paper. When used with the appropriate
numerical parameters they all gave comparable results. The figures in this section
were obtained with the h-method.

Figure 2 shows profiles of the concentrations of several species. The left and
middle images show concentrations of (a part of) mobile species C1 and immobile
species S at an early time t = 10, whereas the right image shows concentration of
aqueous species C2 on a smaller interval during the leaching period, at t = 5010.
The middle image highlights the effect of the heterogeneity at x = 1.

Figure 3 shows elution curves, that is evolution of the concentrations at the end
of the domain (x = 2.1) as a function of time, for a mesh with 384 elements. Notice
that the evolution of C5 follows a fairly complex pattern. It turns out that the
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Figure 2. Concentrations profiles. Left figure: C1 at t = 10,
middle figure S at t = 10, right figure C2 at t = 5010.

accuracy for both species X3 and C5 is quite sensitive to the mesh size used. We
come back to this point in detail in the next subsection.

Figure 3. Elution curves (concentrations at right end of the do-
main as a function of time). Left image: species X3, middle image:
species C5, right image: species C2.

The results shown on these figures are in good agreement with those showed by
various groups in the comparison paper[11].

As mentioned above, some of the species show a very sensitive dependence on
the mesh and time step used. It has proven necessary to use very fine meshes, as
well as small time steps, in order to resolve these species accurately. We now study
in more detail how the accuracy depends on the time and space meshes

6.1.2. Influence of spatial discretization. The evolution of species X3 and
C5, as a function of time, exhibits unphysical oscillations. The origin of these
oscillations has been explained in [41], and is due to the interplay between the very
stiff reactions and the spatial discretizations. They should decrease as the mesh is
refined.

Figures 4 shows that this is indeed what happens as we increase the number of
discretization points. A mesh with 384 points gives qualitatively correct results, but
we have also made use of a finer meshes in order to obtain more accurate results.

The effect of the mesh size on the accuracy of the results is also shown by looking
in detail at two specific species: mobile species C1 and immobile species S, both at
time t = 10. They both exhibit a sharp peak, and we focus on the accuracy with
which the location and amplitude of the peak can be determined. These elements
were part of the comparison criteria for the benchmark, and were examined in detail
in [11].

We also discuss the influence of the discretization scheme, by comparing the
three schemes introduced in section 3.2 from the point of view of accuracy. Their
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Figure 4. Elution curves of X3 (left) and C5 (right) concentra-
tion, for various mesh resolutions.

relative efficiencies are compared in section 6.1.4. In figures 5 and 6, the curves are
labeled by the total number of discretization points in space. The coarsest mesh,
corresponding to n = 96, has ∆x = 0.025 in medium A and ∆x = 0.00625 in
medium B. In both cases the time step was chosen as ∆t = ∆tc (advective time
step), with a CFL=0.1, as given by the smaller space mesh in medium B. Note that
since the CFL is fixed, each curve also corresponds to a different time step.

Figure 5 compares the concentrations of species C1 on the interval [0, 0.2], at
time t = 10, as computed by the three discretization schemes on increasingly refined
meshes. As soon as the mesh has sufficiently many points to successfully resolve the
solution, all three schemes give identical solutions. On the other hand, one needs
at least 384 points (and preferably 768) to obtain a satisfactory solution.

Figure 5. Concentration of species C1 at t = 10 for the different
discretization schemes and various mesh resolutions.

Figure 6 compares the concentration of species S (a sorbed species) on the in-
terval bracketing the location of the peak [0, 0.15], at time t = 10, as computed
by the three discretization schemes on increasingly refined meshes. Here also, the
three schemes give identical solutions when the mesh is fine enough. This time,
one needs at least 768 mesh points to obtain a converged solution. One should
compare Figure 6 in [11], and also refer to Table 4 there, where the location and
amplitude of the peak are tabulated for all the methods used in the benchmark.
We have obtained values of x = 0.0175 for the location of the peak, and S = 0.985
for its height. These values are in the range reported by the other teams, but are



PRECONDITIONING A COUPLED MODEL FOR REACTIVE TRANSPORT 39

different form the “mean” values as reported in [11]. They are however very close
to the “reference” values found in [10].

Figure 6. Concentration of species S at t = 10 for the different
discretization schemes and various mesh resolutions.

6.1.3. Influence of temporal discretization. We now discuss the influence of
the time step, or more precisely the value of the CFL coefficient (given by CFL =
uφ∆t/hmin on the accuracy.

The three schemes used for time discretization have different behavior with re-
spect to the choice of time step:

The splitting method: allows the use of different time steps (and different
numerical methods) for the advection and the diffusion step. The advection
time step is restricted by the CFL condition (it is an explicit sub-step),
whereas the time step for diffusion is not restricted by stability. We have
used three different choices: chose the same time step for advection and
diffusion (respecting the CFL condition), once with a CFL condition of 1,
and once with a CFL condition of 0.1, and choose a diffusion time step 3
times larger than the advection time step (the latter chosen by the CFL
condition).

The fully implicit method: here there is only one time step, and no stabil-
ity restriction. We have compared three time steps, corresponding to CFL
coefficients of 0.1, 1 and 3 respectively.

The explicit–implicit method: this method also imposes a single time step,
and in addition it is subject to the stability condition of the explicit method,
so the time step is restricted to CFL ≤ 1. We compare 2 time steps, cor-
responding to CFL coefficients of 0.1 and 1 respectively.

Figure 7 compares the concentration of species S as computed by the three
methods, for the time step sizes chosen as explained above, for two different mesh
resolutions.

For all three methods the location of the peak was correctly determined even
for larger values of the time step and the mesh size, but its amplitude was only
correctly estimated for the finer mesh size.

For both splitting and explicit-implicit schemes, it is not necessary to use a CFL
of 0.1 (a CFL of 1 is enough) for the peak amplitude to reach the value 1, but
what is needed is to refine the mesh (up to 1536 nodes). However, the fully implicit
scheme needs both a small time step corresponding to a CFL of 0.1 and a fine mesh
with 1536 nodes to obtain the same results as the other schemes.
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Figure 7. Effect of the CFL condition on the concentrations in
S (top figure 768 nodes, bottom figure 1536 nodes).

6.1.4. CPU time. We now compare the relative efficiency of the three time dis-
cretization methods. One should keep in mind that the problem under study is
a 1D model, so that solving a linear system is a not very time consuming. The
conclusions reached below would have to be re-examined for a 2D (and even more
for a 3D !) model. We have also compared the effect of using the fully implicit
method with a variable time step (albeit not an adaptive choice, a sequence of
pre-computed time steps is used for different phases of the solution evolution).

Figure 8 compares the CPU times required by the h-method with different time-
discretization schemes as the space mesh is refined. The time step was chosen as
follows (in all cases, the smallest mesh size was used):

For the splitting method: The diffusion time step is 3 times larger than
the advection time step that respects a CFL coefficient of 1.

For the explicit-implicit method: One time step is used controlled by a
CFL condition of 1.

For the fully implicit method: One time step is used corresponding to a
CFL coefficient of 3 (no stability restriction).

For the fully implicit (variable) method: Variables time steps are used,
as described in table 4. The time steps are chosen so as to have a small
time step when strong variations happen due to the reactions (especially
during injection and leaching period) and a large time step is used for the
intervals that represent the steady state.

As expected, using a variable time step results in large savings (while maintaining
the accuracy). Among the 3 schemes with fixed time step, the explicit–implicit
method is the most expensive, with the fully implicit and the splitting methods
leading to comparable costs.
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Table 4. CFL values for variable time step simulation.

Start time 0 20 100 2500 3200 5000 5100
End time 20 100 2500 3200 5000 5100 6000
CFL value 1 5 10 5 40 1 40
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Figure 8. CPU time required by the time discretization methods
as the space mesh is refined.

6.1.5. Influence of preconditioning strategy. In this section, we compare the
various preconditioning strategies discussed in section 5. Our main criteria will
be the number of linear and non-linear iterations. We have not tried to optimize
the inexact Newton strategy, but have just relied on the default choices as pro-
vided in the Newton–Krylov code (we use the nsoli code from the book by C.
T. Kelley [35]). In all experiments, GMRES was used without restart, and with a
maximum number of allowed iterations fixed at 40.

Figure 9 shows how these numbers change as the mesh is refined. The various
linear preconditioning strategies (applied to the coupled system) are compared with
the elimination, or nonlinear preconditioning, strategy. As predicted, the nonlinear
elimination strategy has the smallest number both for non-linear and for linear
iterations. It also shows a behavior that is independent of the mesh size.
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Figure 9. Non-linear (left) and linear (right) iterations for differ-
ent preconditioning strategies.

The unpreconditioned method is unsurprisingly non scalable, at least as far as
the linear iterations are concerned. The number of non-linear iterations grows only
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weakly with the number of mesh points. The same is true for Jacobi precondition-
ing.

Gauss–Seidel preconditioning, on the other hand, show only a modest increase
in the number of linear iterations, and a behavior for the non-linear iterations that
is in between that of the unpreconditioned and the elimination strategies.

As explained in section 5, a limitation of the elimination strategy is that it
requires an exact solution of the transport step. In this case, the Gauss–Seidel
preconditioner might prove useful: replacing the transport solve step by an approx-
imation, such as several iterations of a multi-grid solver, should lead to a more
efficient solution method, with similar convergence behavior. We plan to explore
this strategy in a forthcoming work.

Last, figure 10 shows the time required by the various methods. Since the cost
of the methods is comparable, the ordering is the same as that in the previous
figure. It confirms the good efficiency of the elimination strategy, with Gauss–
Seidel preconditioning as a distant second.
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Figure 10. CPU time as a function of the mesh size for the various
solution methods.

We can try and summarize the relative performances of the various methods as
follows:

• the original f formulation is not numerically scalable, neither at the non-
linear level, nor at the linear level;
• the block Jacobi preconditioner applied to f does not bring any improve-

ment;
• the block Gauss–Seidel preconditioner improves the linear performance, but

does not have a significant non-linear effect (nor was it expected);
• the g formulation improves the linear performance, but not as much as

Gauss–Seidel preconditioning;
• the h formulation, after elimination of the C unknowns is the only method

that gives a convergence independent of the mesh size.

Of course, these conclusions are more or less natural: methods f and g keep the
ill-conditioning from the second order operator (except for g at the linear level).
The elimination method, leads to a bounded operator on L2 (at least formally),
and is expected to give mesh independent convergence.

This good performance of the elimination method, at least on the linear level,
can be confirmed by looking at the field of values of the matrix Jh. The field of
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values of a matrix is the subset of the complex plane defined by

W (Jh) =

{
xHJhx

xHx
, x ∈ C, x 6= 0

}
.

It includes the eigenvalues and is a convex set. For a non-symmetric matrix, the
convergence of GMRES is better described by the field of values than by the eigen-
values (see [6] or [37]). We conjecture that the field of values of the Schur comple-
ment Jh can be bounded away from 0, independently of Nx. Though we have no
proof at the moment, we have the following numerical confirmation on figure 11,
which shows the field of values and isolines of the ε-pseudo-spectra of the Jacobian
matrix Jh for 2 different mesh sizes. One can see that the convex hull of the field
of values is indeed approximately independent of the mesh size. The figure was
obtained thanks to the Eigtool software [70, 71].

Figure 11. Field of values (dashed line) and pseudo-spectra (col-
or) for matrix Jh, with Nx = 768 and Nx = 1536.

6.2. Test 2. Ions exchange in a natural system. Our second test case comes
for a field study that includes experimental results (see Valocchi et al [68]). We
follow the setup given in Fahs et al [24], as this reference includes more details for
the numerical simulation. In this test case, four aqueous components (Na+, Ca2+,
Mg2+ and Cl−) are injected into an homogeneous landfill. During the transport,
the aqueous components react with the ion exchange sites of the soil (S). Three
reactions of ion exchange occur and lead to three adsorbed species S–Na, S2–Ca,
S2–Mg.
Chemical reactions, constants of equilibrium, initial and boundary conditions are
summarized in Table 5.

Table 5. Chemical reactions, initial and boundary conditions.

Na+ Ca2+ Mg2+ Cl− S log K
S–Na 1 0 0 0 1 4
S2–Ca 0 1 0 0 2 8.602
S2–Mg 0 0 1 0 2 8.355

initial (mmol/l) 248 165 168 161 750
injected (mmol/l) 9.4 2.12 0.494 9.03

In this test, we consider a column of length L=16 m. The values of the transport
parameters are given in Table 6 The simulated time is T=5000 h. The mesh size
is equal to 0.08 m , the time step is equal to 0.11089 h corresponding to CFL
coefficients of 1.



44 L. AMIR AND M. KERN

Table 6. Transport parameters.

Darcy velocity u=0.2525 [m/h]
Dispersion coefficient D=0.74235 [m2/h]
Porosity 0.35

Figure 12 shows the evolution of the concentrations in Ca2+ and Mg2+ at the
end of the column, as a function of time (we use the same units as Fahs et al [24]
which are different than those originally used by Valocchi et al [68]). The results
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Figure 12. Variation of Ca2+ and Mg2+ concentrations as func-
tion of time in the output of the domain.

are in qualitative agreement with those in both references (Figure 1 in Fahs et
al [24], Figure 11 in Valocchi et al [68]), though it appears difficult to make a
precise comparison as the curves are in logarithmic scale on both axes.

Finally, figure 13 compares the number of linear and non-linear iterations for the
various methods presented. In this case, the number of non-linear iterations was
very close for all methods (with Block-Jacobi preconditioning a close winner), and
both the Gauss-Seidel preconditioning and the h-method again giving a convergence
independent of the mesh size

Figure 13. Number of non-linear (left) and linear (right) itera-
tions for ion exchange example.
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7. Conclusion and perspectives

In this work, several methods for improving the efficiency of a global approach for
coupling transport and chemistry based on a Newton-Krylov method were studied.

An alternative formulation and block preconditioners for linear system were used
to accelerate the convergence of the Krylov method and to reduce CPU time. The
results show that the alternative formulation requires less CPU time than other
preconditioners, and the number of linear and non linear iterations becomes almost
independent of the mesh.

The reactive transport benchmark 1D problem proposed by GNR MoMaS was
used to demonstrate the efficiency of the method.

Natural extensions of this work to multidimensional situations are under way, as
well as extensions to handle kinetic reactions.
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