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OUTPUT FEEDBACK CONTROL OF FLOW SEPARATION

OVER AN AEROFOIL USING PLASMA ACTUATORS

R. BROGLIA, K.-S. CHOI, P. HOUSTON, L. PASQUALE, AND P. ZANCHETTA

Abstract. We address the problem of controlling the unsteady flow separation over an aerofoil,
using plasma actuators. Despite the complexity of the dynamics of interest, we show how the

problem of controlling flow separation can be formulated as a simple set-point tracking problem,

so that a simple control strategy may be used. A robust output feedback control is designed, on
the basis of a low-order, linear, dynamical model approximating the incompressible Navier-Stokes

equations, obtained from the snapshots of 2D laminar finite element simulations at Re = 1, 000.

Fast flow reattachment is achieved, along with both stabilisation and increase/reduction of the
lift/drag, respectively. Accurate 2D finite element simulations of the full-order nonlinear equations

illustrate the effectiveness of the proposed approach: good dynamic performances are obtained,

as both the Reynolds number and the angle of attack are varied. The chosen output can be
experimentally measured by appropriate sensors and, despite its simplicity, the proposed set-point

tracking controller is sufficient to suppress the laminar separation bubble; moreover, its extension

to 3D turbulent configurations is straightforward ([33; 7]), thus illustrating the effectiveness of the
designed control algorithm in more practical conditions, which are far from the design envelope.

Key words. Feedback flow control, robust control, reduced-order modelling, Plasma actuators,

nonlinear systems.

1. Introduction

Closed-loop flow control is aimed at altering a natural flow state into a more
desirable state, which is chosen depending on control objectives. Crucial examples
are: manipulation of flow separation and flow reattachment, drag reduction, noise
suppression, stall prevention, increasing mixing and combustion efficiency. Within
this context, feedback controllers are pivotal, as they can achieve a full and efficient
regulation of the flow field in real-time, see [18]. In particular, the incorporation
of control theory into many open problems in fluid mechanics presents a host of
new opportunities, with a wide range of applications in disparate fields (e.g. gas
turbines, aircraft, as well as ground and marine vehicles).

The control input is usually an electric signal, which has to be converted to
a physical quantity by means of an actuator. A new and original technology us-
ing non-thermal surface plasmas has witnessed a significant growth in interest in
recent years, see [10; 12; 15; 31; 39], as they: have no moving parts; exhibit an ex-
tremely fast time-response; are characterised by low mass and low input power [8].
These surface dielectric barrier discharge (DBD) actuators are used to accelerate
the near-wall flow, thus modifying the velocity profile within the boundary layer.
The ionised fluid results in a localised body force vector field, which acts on the
overlying neutrally charged fluid. The plasma actuator AC voltage can be used as
a control input so that the generated force directly affects the flow over the aerofoil.
However, the coupled neutrally-charged fluid and plasma dynamics are not trivial to
model: neither the analytical model, which results in a system of nonlinear Partial
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Differential Equations (PDEs), nor the high-dimensional discretised dynamics, are
suitable for control design purposes. Furthermore, the dependence of the dynamical
properties on both the unknown flow and geometry parameters is highly nonlinear.
Therefore, it is very difficult to obtain an accurate control-oriented model. On
the other hand, we show that the problem of controlling flow separation along the
aerofoil can be formulated as a simple set-point tracking problem, so that a simple
control strategy may be used. In particular, we aim to design a robust integral
controller, on the basis of the recent results in [25], which however requires some
stability conditions to be satisfied by the model. Then, the objective becomes to
find a suitably accurate but “cheap” model, which allows for the design of such a
simple controller.

In this regard, the introduction of a dedicated, reduced-order model (ROM),
which is based on the explicit description of the flow dynamics, can convey a clear-
er understanding of the underlying physics of the problem, compared to system
identification methods, see [9; 11]. One way of obtaining tractable ROMs is to
project large-scale problems onto lower-dimensional subspaces, thus providing in-
sight into the key spatial modes of fluid/structure systems, contrarily to black-box
identification techniques, see [2]. The most popular model reduction technique
in the control community is the balanced truncation, a classic method developed
in [30] for stable, linear systems, which was extended in [41] to unstable, linear
systems.

An approximated balanced truncation method, called balanced Proper Orthogo-
nal Decomposition (POD), was extended in [34] to linear fluid systems and is based
on a variant of the method proposed in [20], which forms approximate empirical
Gramians. Moreover, the balanced POD was extended in [1] to unstable linear
systems, when the dimension of the unstable subsystem is relatively small. The
balanced POD projects the system onto the subspace spanned by the most ob-
servable and controllable modes and was shown to outperform the standard POD
introduced in [22] for closed-loop flow control applications, see [4; 16]. Several
authors have focused on the feedback control of balanced POD models, based on
the Navier-Stokes equations, linearised about a single steady trajectory, see, for
instance, [1; 4]. These linearisation-based approaches allows for the application of
well-established linear model reduction methods. However, an accurate approxi-
mation of the nonlinear behaviour can only be obtained in a small neighbourhood
of the considered trajectory, whose choice heavily affects the control performance.
Moreover, the resulting model is unstable, in contrast with the typical stability
properties of fluid systems. The key idea is then to take advantage of the effective-
ness of this linear model reduction method, while avoiding the restrictions related
to linearisation approaches.

A variant of the Arnoldi algorithm called Dynamic Mode Decomposition (DMD)
was proposed in [36] to approximate part of the spectrum of the Koopman oper-
ator, see [19]. The latter is an infinite-dimensional linear operator describing the
evolution of observables on the phase space, which has been used to analyse uncon-
trolled, nonlinear dynamical systems, see [28; 27; 29], evolving on an attractor. The
article [35] showed that the DMD modes approximate some of the Koopman modes,
which can be interpreted as the eigenmodes of a finite-dimensional linear map that
approximates the true, nonlinear one. This method does not rely on linearisation
of the dynamics: indeed, it captures the full information of the nonlinear system.
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On the other hand, the order of the DMD linear model is high and depends on
the number of linearly independent snapshots needed to describe the dynamics of
interest. Furthermore, there are no well-defined selection criteria for selecting the
DMD modes to be retained in the ROM, see [4], thereby making the use of DMD
as a model reduction method less straightforward.

Recent works on feedback flow separation control using plasma actuators fo-
cused on either model-free or system identification based controllers. For instance,
[6] proposed a slope-seeking algorithm to obtain maximum time-averaged lift, which
is measured by a three-component balance. In [10], the authors proposed a retro-
spective cost adaptive algorithm to minimize the variation of the aerodynamic lift.
The Eigensystem Realisation Algorithm (ERA) - a system identification method
introduced in [17] - was applied to the impulse responses of the aerodynamic lift,
in order to obtain a linear model, upon which the controller was designed. In [23]
it is demonstrated that ERA yields the same ROMs as balanced POD, in the case
of stable, linear systems but the physical meaning of the state-variables is lost.
Furthermore, the aerodynamic lift, which is the chosen output in both [6] and [9],
cannot be measured in real-time in realistic flow control applications.

Our objective is to solve the problem of directly controlling the unsteady flow
separation using real-time velocity measurements, which are available in realistic
applications, see, for instance, [15]. We propose this flow separation problem as a
practical application of the new theoretical results in [25]. In particular, the aim of
this paper is to show how, despite the high complexity of the system, a very simple
robust output regulator is sufficient to effectively suppress the flow separation a-
long an aerofoil, using a single DBD plasma actuator. First, a novel control-oriented
ROM of the flow/actuator dynamics, whose state variables have a clear and consis-
tent physical meaning, is proposed. The method combines DMD, as an alternative
to linearisation, and balanced POD, as a way to select the most observable and con-
trollable DMD modes. The high-order DMD model is projected using the balanced
POD modes, thus yielding a balanced, stable, linear ROM. Furthermore, on the
basis of the so-obtained model, we extend the recent results in [25] to a wider class
of control systems and propose their application to this specific problem, which is
of practical interest. Accurate finite element simulations of the full-order nonlin-
ear equations are performed in order to test the control effectiveness and validate
the modelling assumptions: they illustrate the robust performance, with respect
to both parameter variations (i.e., geometry of the domain and Reynolds number)
and model uncertainties, of the proposed control algorithm.

It has to be noted that, although the linear ROM is obtained from the snapshots
of 2D laminar finite element simulations at Re = 1, 000, the proposed controller
has been proved to be suitable for a more practical application, i.e., to the lami-
nar/turbulent transition control over a 3D wing at higher Reynolds numbers, see
[33; 7], which are far from the design envelope.

2. Problem Statement and Objectives

This paper addresses the practical problem of robustly controlling the unsteady
flow separation over an aerofoil, using the plasma actuator voltage as the control
input and realistically available real-time velocity measurements as the control out-
put. In particular, we aim to formulate and solve the flow separation problem, i.e.,
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to make

(1) ∂nuτ (t,x)|ΓN =
(
τ (x) · ∇u(t,x) · n(x)

)
|ΓN > 0,

as a simple output regulation problem, i.e., to make the measured output

(2) y(t) = uτ (t,xs) > ε > 0.

Here, u is the time-dependent flow velocity vector; x and xs denote the spatial coor-
dinates and the sensor location, respectively; ΓN represents the aerofoil boundary;
n and τ are the normal and tangent unit vectors to ΓN , respectively. Our objective
is to design a simple robust output feedback control, along with a suitable reference
signal y∗ for y, in order to suppress the flow separation along the aerofoil, i.e., to
drive the regulation error ỹ = y − y∗ to zero. To this end, we extend the recent
results in [25] to a wider class of control-systems, which are suitable for our specific
scenario, and propose their application to the flow separation control problem.

We assume there exist suitable references ε for the output y(t), which guarantee
that, given a certain range for both Re and β, the solution of the output regula-
tion problem (2) implies the solution of the flow separation problem (1). This is
formalised by the following assumption.

Assumption 1. For any δ ≥ 0 there exist some references ε > 0, a Tε > 0 and a
Tδ ≥ Tε such that, if y(t) > ε for all t > Tε, then ∂nuτ (t,x)|ΓN > −δ for all t > Tδ,
Re ∈ RRe = [Rem, ReM ], β ∈ Rβ = [βm, βM ].

The resulting regulating control is designed upon a single ROM approximation of
the nonlinear flow dynamics, for given parameters. The proposed control-oriented
ROM is obtained from the snapshots of a finite element approximation of the 2D
incompressible Navier-Stokes equations, which govern the evolution of u, in the
presence of a body force distribution, which represents the action of the plasma
actuators on the neutrally-charged flow dynamics.

3. Control-oriented ROM

We obtain in this section a linear reduced-order representation of any nonlinear
high-order system of the form: x = x(t) : R → Rn, ẋ = dx/dt, E ∈ Rn×n,
F(·) : Rn → Rn, G ∈ Rn×p, v = v(t) : R→ Rp, y = y(t) : R→ Rq, such that

(3)

{
Eẋ = F(x) +Gv,

y = Hx,

under the assumption that the open-loop asymptotic trajectories of the full-order
nonlinear dynamics (3) in the phase space evolve towards finite dimensional attrac-
tors. Since a time-stepping is required, in order to compute the n states of system
(3), a discrete-time setting is used in this section, to derive the ROM.

3.1. Preliminaries: Balanced POD. Consider a stable, linear system (F̄ , Ḡ, H̄)
with m states, p inputs and q outputs. Let x̄1(t), ..., x̄p(t) be the the state respons-
es to unit impulses v = [v1(t), ..., vp(t)] = [δ(t), ..., δ(t)] and z̄1(t), ..., z̄q(t) be the
impulse responses of the adjoint system (F̄T, H̄T, ḠT), where (·)T denotes the trans-
pose of (·). Suppose the controllability and observability Gramians can be factorised
as Wc = XXT, Wo = ZZT, where X = [x̄1(t1)

√
δ1, ..., x̄1(tm̄)

√
δm̄, ..., x̄p(t1)

√
δ1, ...,

x̄p(tm̄)
√
δm̄] and Z = [z̄1(t1), ..., z̄1(tm̄), ..., z̄p(t1), ..., z̄p(tm̄)] are the snapshots ma-

trices used to compute the empirical Gramians and δi are quadrature coefficients.
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The balancing modes are computed by performing the Singular Value Decomposi-
tion (SVD) of the matrix ZTX:

(4) ZTX =
(
U1 U2

)(Σ1 0
0 0

)(
V1

V2

)T

,

where Σ1 = diag(σ1, ..., σr1) ∈ Rr1×r1 is a diagonal matrix, whose eigenvalues are
all the non-zero Hankel singular values σ1 > σ2... > σr1 > 0, r1 is the rank of ZTX,
U1 ∈ Rm×r1 , V1 ∈ Rr1×r1 and UT

1 U1 = V T
1 V1 = Ir1 , where Ir1 ∈ Rr1×r1 is the

identity matrix. Define the matrices Φr ∈ Rm×r, Ψr ∈ Rm×r as

(5) Φr = XV1Σ
−1/2
1 , Ψr = ZU1Σ

−1/2
1 ,

where r ≤ r1 can be chosen in order to neglect the smallest Hankel singular values
in Σ1. The columns of Φr = [ϕ1, ..., ϕr] form the first r columns of the balancing
transformation, e.g. the balancing modes. The rows of ΨT

r = [ψ1, ..., ψr]
T form the

first r rows of the balancing transformation, e.g. the adjoint modes.

3.2. Preliminaries: DMD. Let x(k) = x(tk) = x(k∆t) be the iterates of the
state, sampled at regular time intervals k∆t, where ∆t is a fixed time step, which
could be, as in the following, the finite element simulation time step. The DMD
algorithm, proposed by [36], approximates the flow field x(k) as the sum of the first
m approximated Koopman modes, called DMD modes νj , weighted by the powers
λkj of their corresponding eigenvalues:

(6) x(t) =

+∞∑
j=0

φj(x(0))ν̃je
(ρj+iωj)t ≈ x(k)=̇

m∑
j=0

νjλ
k
j ,

where φj(x(0)) is the Koopman eigenfunction and ν̃j is the Koopman mode, rep-
resenting a complex-valued flow structure, associated with the growth rate ρj and
frequency ωj . Equivalently to (6), it is assumed that there exists a linear mapping

F , describing the evolution of the the flow field in time: x(k+1) = Fx(k).

3.3. Balanced DMD. Following [36], we first collect m+1 snapshots of the state
responses, of the full-order nonlinear system (3), which corresponds in this work
to the finite element approximation of the incompressible Navier-Stokes equations,
to a finite-amplitude impulsive input δ(t − t0), t0 ≥ 0, and arrange them in two
matrices: XNL = [x(0), ..., x(m−1)] and ZNL = [x(1), ..., x(m)]. We then perform the
reduced SVD of the matrix XNL: XNL = UΣV T, where Σ ∈ Rm×m is diagonal,
U ∈ Rn×m, V ∈ Rm×m and UTU = V TV = Im. Define the m×m matrix
F̄ = UTZNLV Σ−1 whose eigendecomposition is given by F̄R = RΛ, with R =
[r1, ..., rm] and Λ = diag(λ1, ..., λm). The dynamic modes νj are then given by
Φm = [ν1, ...,νm] = URD, where D is a diagonal matrix, used to scale the modes,
computed as in [5], so that the sum of the modes equals the first data vector
x(t0). If the snapshots are computed from a system with no inputs, it is assumed,
as in [36], that the evolution of the flow field can be expressed by a linear map
F ∈ Rn×n: x(k+1) = Fx(k). A least square approximation of the matrix F is

given by F = ZNLX
†
NL ≈ ZNLV Σ−1UT, where (·)† denotes the Moore-Penrose

pseudoinverse of (·), i.e., X†NL = [XNLX
T
NL]−1XNL.

In the case of a system with inputs, a linear system, approximating the nonlinear
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one, can be obtained as follows:

(7)

{
x(k+1) ≈ UF̄UTx(k) + UḠv(k),

y(k) ≈ H̄UTx(k),

where Ḡ = UTx(0) ∈ Rm and H̄ = CU ∈ R1×m. Note that the input vector UḠ
is chosen as the projection of the excited initial condition x(0) onto the POD basis,
spanned by the columns of U . This choice is motivated by the fact that the impulse
responses of system (7), needed to compute the balanced modes, can be expressed
as x(k) ≈ F kx(0) = UF̄ kUTx(0).

In fluid systems, the dimension of the attractor is bounded, so that the essential
dynamics is finite-dimensional, see [27]. Therefore, there cannot be any asymptot-
ically growing structures and thus ρj ≤ 0 for all j = 0, ...,+∞, cf. [3]; i.e. all the
Ritz values λj lie within the unit cycle. The so-obtained DMD linear model (7),
is thus stable (i.e. |λj | ≤ 1, j = 1, ...,m) but the dynamic properties of the at-
tracting set are lost. Since limit cycles cannot be described using linear dynamics,
a projection onto the asymptotically stable eigenspace is performed.

Let L ∈ Rm be the left eigenvector matrix of F̄ : F̄TL = LΛH, where (·)H denotes
the Hermitian transpose of (·). The right and left eigenvectors are partitioned as
R = [Rs, Ru] and L = [Ls, Lu], respectively, where the subscripts s and u refer to
the parts of the spectrum Λs, which is asymptotically stable, and Λu, which lies on
the unit circle, respectively. The projection operator Ps = Im − Ru(LH

uRu)−1LH
u ,

where Im is the m×m identity matrix, is used to restrict the dynamics of (7) to the
asymptotically stable subspace of F̄ . The balanced POD is computed using the full
state (direct and adjoint) snapshots of the reduced m-th order projected system

(8)

{
x̄

(k+1)
s = F̄ x̄

(k)
s + PsḠv(k),

ȳ(k) = H̄Psx̄(k)
s ,

where x̄
(k)
s = Psx̄(k) = PsUTx(k) ∈ Rm, in order to select the r � m relevant

modes to be retained in the reduced-order model. The full-order balanced-POD
modes Φ = UΦr, Ψ = UΨr, with Φr, Ψr defined in (5), yield the asymptotically
stable, linear model of order r:

(9)

{
ξ(k+1) = Āξ(k) + B̄v(k),

ȳ(k) ≈ C̄ξ(k),

where Ā = ΨT
r F̄Φr, B̄ = ΨT

r Ḡ and C̄ = H̄Φr.

4. Regulating Control

For the specific application to flow separation control, the sampling time k∆t,
used to construct the ROM is much smaller compared to the fluid time-scales.
Therefore, the action of the discrete-time input v(k) on the flow field can be con-
sidered continuous. The discrete-time ROM (9) can be thus converted into a
continuous-time system (w ∈ R)

(10)

{
ξ̇ = Aξ +Bv, ξ(0) = ξ0,
y = Cξ,

where, ξ : R→ Rr is the reduced-order state vector; A ∈ Rr×r is a low-order linear
operator approximating the nonlinear dynamics, whose eigenvalues belong to the
open left half of the complex plane; B ∈ Rr is the input matrix; C ∈ R1×r is the
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output matrix. Let Ir be the r×r identity matrix and P (s) = C(sI−A)−1B, whose
poles have all negative real part, be the open-loop transfer function of system (10).

Define P (s) =̇ nP (s)
dP (s) and let v∗, y∗ and ξ∗ be the references for the input, output

and state, respectively. Denoting ξ̃ = ξ − ξ∗ and η = −v∗ : R → R, the error
dynamics are given by

(11)


˙̃
ξ = Aξ̃ +B(v + η),
η̇ = 0, η(0) = η0,

ỹ = Cξ̃,

so that the control problem can be formulated as a disturbance rejection problem,
where the reference input v∗ = −η can be viewed as a disturbance vector, which
matches the control input v, see [25].

Similarly to [24], the control problem becomes to design a suitable feedback law
v(t) for system (10), based on the real-time measurement y(t), in order to robustly
regulate the latter to a given reference region (e.g. y(t) ≥ ε > 0). The key objective
is to design v such that the closed-loop trajectories of system (3) are guaranteed to
evolve within some “safe” invariant set in different scenarios, depending on uncer-
tain parameters (e.g., the Reynolds number Re and angle of attack β). However,
as the linear ROM (10) is computed at given parameters (i.e. Re and β), it cannot
give an accurate approximation of the full-order nonlinear dynamics (3) when the
unknown parameters are varied. Furthermore, the dependence of dynamical prop-
erties of fluid systems on such parameters is highly nonlinear. Therefore, on the
basis of the recent results in [25], we design a robust output regulator guaranteeing
exponential convergence of the regulation error: it only requires the system to have
a non-zero steady-state gain of known sign.

The uncertain matrices A, B, C, as well as the order of the model, highly depend
on the uncertain set of parameters which defines the physical problem, such as, in
our specific application, the Reynolds number Re and angle of attack β. Given a
certain range for the uncertain parameters (e.g. Re and β), we only assume that
there exist some positive constants r, εajk , εbj and εcj , such that the coefficients
of A, B, C, belong to their corresponding compact sets [ajk − εajk , ajk + εajk ],
[bj − εbj , bj + εbj ], [cj − εcj , cj + εcj ], for any j, k = 1, ..., r, and are such that P (0)
does not change sign, within the whole range.

4.1. Control Algorithm: Robust Integrator. We translate the initial control
objective (2) into the following: y ∈ Ωε = [εm, εM ], where εm and εM are chosen
positive constants. In particular, the lower bound for the output reference can
be chosen in order to guarantee any a priori fixed requirement, such as, in the
present application, the suppression of the separation bubble over the aerofoil; the
upper bound can be chosen in order to limit the power consumption. Therefore,
the control problem, similarly to [24], becomes to design v such that the chosen
controlled output y belongs to a “safe” compact set Ωε.

In particular, the reference output y∗ is chosen as

(12) y∗(t) =

 εm, if y(t) < εm,
y(t), if y(t) ∈ Ωε,
εM , if y(t) > εM .
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The references for the state and the input are defined as

ξ∗(t) =

 ξm, if y(t) < εm,
ξ(t), if y(t) ∈ Ωε,
ξM , if y(t) > εM ,

(13)

v∗(t) =


vm, if y(t) < εm,
argminv̄∈Ωη

∣∣v̄ + η̂
∣∣, if y(t) ∈ Ωε,

vM , if y(t) > εM ,
(14)

where the constant pairs ξm, vm and ξM , vM can be computed by solving the
regulator problem, see [25], for y∗ = εm and y∗ = εM , respectively.

The resulting control algorithm reads

(15)

{
˙̂η = k sign(P (0))ỹ, η̂(0) = η̂0,
v = −η̂.

The overall feedback controller (15), (12) depends on: the measured output y; the
bounded reference y∗; the known sign of P (0); the positive design parameters k,
εm, εM . Note that, when ε = εm = εM , the control algorithm (15), (12) reduces to
(15), with a constant output reference.

4.1.1. Stability Analysis. The main result of this section, which extends the
results obtained in [25] to systems of the form (10), (15), (12), is summarised by
the following theorem: it shows how a robust integral controller is sufficient to
guarantee the solution of the slow separation problem for the reduced-model (10).

Theorem 1. Consider the closed-loop system (10), (15), (12). Assume that P (0) 6=
0 with known sign. Then, for any initial condition (ξ0, η0, η̂0), there exists a suf-
ficiently small k∗ > 0 such that the regulation error y(t) − y∗(t) and the control
input error v(t) − v∗(t) exponentially tend to zero, as t tends to infinity, for any
0 < k ≤ k∗.

Proof. a). Case ε = εm = εM . System (11) can be rewritten as

(16) Ỹ(s) = P (s) (v(s) + η) , P (s) =̇
nP (s)

dP (s)
.

The stability of the closed-loop system is determined by the zeros of the transfer
function

(17) Q(s) = 1 + kP (s)

(
sign(P (0))

s

)
=̇
nQ(s)

dQ(s)
.

By the root locus, for sufficiently small k > 0, r zeros of Q(s) are sufficiently close
to the r poles of P (s) and, therefore, they have negative real part. The remaining
branch of the root locus starts from 0 in the s-plane with angle π, so that also the
remaining zeros of Q(s) have negative real part.

b). Case εm < εM . Let η̃ = v− v∗ = η− η̂ and χ̃ = [ξ̃, η̃]T. The closed-loop error
dynamics can be written as

˙̃χ =

[
A B

−k sign(P (0))C 0

]
χ̃=̇Acχ̃,

ỹ = [C, 0] χ̃.
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The characteristic polynomial of the closed-loop matrix Ac can be computed as

pAc(s) = det(sIr+1 −Ac) = det

[
sIr −A B

−k sign(P (0))C s

]
= det(sIr −A)

(
s+ kC(sIr −A)−1Bsign(P (0))

)
= sdP (s) + knP (s)sign(P (0)) = nQ(s).

where Ir+1 is the (r + 1) × (r + 1) identity matrix. Therefore, Ac is Hurwitz, as
its eigenvalues coincide with roots of nQ(s) and have negative real part for any
sufficiently small k. Thus, there exist two symmetric, positive definite matrices
P and Q satisfying the Lyapunov equation: PAc + AT

c P = −Q. Consider the
candidate Lyapunov function V(t)=̇χ̃T(t)Pχ̃(t), satisfying

(18) α1‖χ̃(t)‖2 ≤ V(t) ≤ α2‖χ̃(t)‖2,

where α1, α2 > 0 are positive constants. The time derivative of V(t), along the
trajectories of the closed-loop system satisfies the following inequality:

V̇ ≤ −χ̃TQχ̃+ 2χ̃TPζ(χ̃) ≤ −M‖χ̃‖2 ≤ −M‖χ̃‖2,

where M = ‖Q‖. Therefore, there exists an α3 > 0 such that

(19) V̇ ≤ −α3‖χ̃‖2 ≤ −
α3

α2
V,

thus implying the closed-loop boundedness and the exponential convergence to zero
of both the regulation error ỹ(t) and the control input error v(t)− v∗, as t tends to
infinity.

Let ξ̃ = ξ − ξ∗ and η̃ = v− v∗. When the output vector belongs to the compact

set Ωε, we have: ξ̃ ≡ 0,
˙̃
ξ ≡ 0, ˙̃η ≡ 0. Thus, for any t ≥ 0 such that y(t) ∈ Ωε,

V̇(t) ≡ 0. When the output does not belong to the reference region, there exist
three positive constants α1, α2, α3 > 0 such that V(t) and its time derivative
satisfy (18) and (19), respectively. Therefore, for any t ≥ 0 such that y(t) /∈ Ωε,

V̇(t) < 0 and the distance dP (χ(t),Ωχ) =̇ infχ̄∈Ωχ ‖χ− χ̄‖P =̇
√
χ̃TPχ̃,between χ

and its reference set Ωχ satisfies d2
P (χ(t),Ωχ) ≤ α2‖χ̃‖2 ≤ e−αtδ,where α = α3/α2

and δ = V(0)α2/α1. Since 0 ≤ V(t) ∈ C1 is lower bounded and its derivative
is semi-negative definite, it admits a finite limit, see [13, p. 61]. Closed-loop

boundedness and exponential convergence of V̇(t) (and, therefore, of ξ̃ and ˙̃η) to zero
are thus guaranteed, according to Barbalats lemma, as V(t) is uniformly continuous.
Consequently, ξ(t) converges to a constant reference ξ̄ ∈ Ωξ and v(t) converges to
a constant value v̄, as t tends to infinity. If v̄ /∈ Ωη, then ȳ = Cξ̄ = −P (0)v̄ /∈
Ωε, which contradicts ξ̄ ∈ Ωξ. Therefore, v̄ ∈ Ωη and the distance dP (χ(t),Ωχ)
exponentially tends to zero, as t tends to infinity. �

4.2. Control Algorithm: Time-Varying Gain. A variant of (15) is proposed
here in order to extend the designed controller to a wider class of closed-loop sys-
tems. Define

(20)

{
˙̂η = k sign(P (0))ỹ− µη̂ỹ2, η̂(0) = η̂0,
v = −σ(y)η̂,

where k > 0 and µ ≥ 0 are chosen control gains and 0 < σ(y) ≤ 1 is any real-valued,
bounded, continuous function. In particular, similarly to the projection algorithm
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defined in [26], σ(y) is chosen as

σ(y) =

 1 if y < εm or v̂∗ < 0,
1− σε(y) if y ∈ Ωε and v̂∗ > 0,
1− σε(εM ) if y > εM and v̂∗ > 0,

(21)

σε(y) =
y2 − ε2m
y2
M − ε2m

,(22)

where yM > εM ≥ εm > 0 are positive design parameters. Note that, when
ε = εm = εM , the control algorithm (12), (20), (21), (22) reduces to (15), with a
constant output reference.

Remark 1. The introduction of the function σ(y) is used, for this specific applica-
tion, to reduce the control action, once the controlled output reaches the desired
region. This time-varying gain, along with the less restrictive reference signal, al-
lows for the use of higher gains k, thus leading to faster dynamic performances,
whilst limiting the overshoot.

Remark 2. The anti-windup term µη̂ỹ2 plays a stabilizing role similar to the one
played by the well-known term µη̂, where the quadratic function of the tracking
error ỹ2 has been introduced in order not to affect the stability analysis, when µ is
sufficiently small.

Theorem 2. Consider the closed-loop system (10), (12), (20), (21), (22). Assume
that P (0) 6= 0 with known sign. Then, for any initial condition (ξ0, η0, η̂0), there
exist a k∗ > 0 and a sufficiently small µ∗ ≥ 0, depending on k∗, such that the
regulation error ỹ(t) and the control input error v(t)−v∗ exponentially tend to zero,
as t tends to infinity, for any 0 < k ≤ k∗, 0 ≤ µ ≤ µ∗.

Proof. a). Case σ(t) ≡ 1. The closed-loop error dynamics can be written as

˙̃χ =

[
A B

−k sign(P (0))C 0

]
χ̃+

[
0

µξ̃TCTCξ̃(η − η̃)

]
=̇Acχ̃+ ζ(χ̃),

ỹ = [C, 0] χ̃,

where Ac is Hurwitz for any sufficiently small k. Thus, there exist two symmetric,
positive definite matrices P and Q satisfying the Lyapunov equation: PAc+AT

c P =
−Q. Consider the candidate Lyapunov function V(t) = χ̃T(t)Pχ̃(t), satisfying (18).
The time derivative of V(t), along the trajectories of the closed-loop system satisfies
the following inequality:

V̇ ≤ −χ̃TQχ̃+ 2χ̃TPζ(χ̃) ≤ −M1‖χ̃‖2 + 2M2µ‖χ̃‖2
∣∣ηη̃ − η̃2

∣∣
≤ −

(
M1 −

M2µη
2

2

)
‖χ̃‖2,

whereM1 = ‖Q‖,M2 = ‖P‖‖C‖2. Therefore, for sufficiently small µ, there exists
an α3 > 0 such that (19) is satisfied, thus implying the closed-loop boundedness
and the exponential convergence to zero of both the regulation error ỹ(t) and the
control input error v(t)− v∗, as t tends to infinity.
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b). Case with time-varying σ(t). When the output does not belong to the refer-
ence region, the closed-loop error dynamics becomes

˙̃χ =

[
A B

−kσ(y)sign(P (0))C 0

]
χ̃+

[
0

µξ̃TCTCξ̃(η − η̃)

]
=̇Aσχ̃+ ζ(χ̃),

ỹ = [C, 0] χ̃,

so that, since kσ(εM ) ≤ kσ(y) ≤ k, Aσ is Hurwitz for sufficiently small k and
Theorem 1 holds. Furthermore, there are no solutions on the imaginary axis of the
equation

1 +Kσ(s)P (s)
1

s
= 0,

where Kσ(s) > 0 is the Laplace transform of kσ(εM ) < kσ(y(t)) ≤ k, for any finite
Kσ(s), so that the positive root locus cannot cross the imaginary axis. �

5. A Practical Application: Flow Separation Control

We propose the application of both the model reduction method, described in
section 3, and the regulating control, described in section 4, to the unsteady in-
compressible Navier-Stokes equations, in the presence of a body force distribution
generated by the plasma actuator. The application case considered here is the sup-
pression of the recirculating bubble on the suction side of a NACA-0012 profile at
different, but fixed, Reynolds numbers and angles of attack.

5.1. Physical Model. Let Ω be an open bounded domain in R2 and let T > 0
denote the final time. The flow of an incompressible viscous Newtonian fluid can be
described by the non-dimensionalised Navier-Stokes equations, which are derived
from the conservation of mass and momentum, namely,

(23)
∂tu = −(u · ∇)u−∇p+ 1

Re∆u+ f in (0, T ]× Ω,
0 = ∇ · u in (0, T ]× Ω,

with initial condition

(24) u(0,x) = u0(x) in Ω,

and boundary conditions

(25)
u(t,x) = g(x) on Γin,
u(t,x) = 0 on Γ0,

( 1
Re∇u− pI)n = 0 on Γout.

Here: x ∈ Ω; n denotes the unit outward normal vector on ∂Ω = Γin ∪ Γ0 ∪ Γout;
Γin, Γout and Γ0 denote the inflow, outflow and wall boundaries, respectively; u :
[0, T ]×Ω→ R2 is the velocity vector; p : [0, T ]×Ω→ R is the pressure; I ∈ R2×2 is
the identity matrix; Re = ρU∞c/µ is the Reynolds number; U∞ is the free-stream
velocity (in m/s); ρ is the fluid density (in kg/m3); c = 0.1m is the chord length,
µ is the dynamic viscosity (in kg/(m·s)); f : [0, T ]×Ω→ R2 is the localised body
force vector field, which represents the control input. The latter can be expressed
as f(t,x) = c/ρU2

∞(fx(t,x), fy(t,x)), where fx, fy are the streamwise and normal
component (in N/m3). All the above listed functions are assumed to be sufficiently
smooth. The wall-tangential velocity, evaluated at the selected sensor location xP ,

(26) y(t) = uτ (t,xP ) = τ (xP ) · u(t,xP ),
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where τ denotes the tangent unit vector, is chosen as the measured output. The
time scale disparity between the flow and the discharge frequencies allows for as-
suming that the force acts on the neutral fluid in a quasi-steady manner. The body
force felt by the neutral flow is equivalent to the Lorentz force acting on the net
charge density. Several models for the DBD actuator force have been proposed
(see, for instance, [12] for a detailed review). The bilinear model proposed in [38]
is widely used in the flow control literature, see, for instance, [9], because of its
simplicity. The variation in space of the electric field, which is directly propor-
tional to the Lorentz force, is linearised, without computing the detailed electric
field. This assumption is not consistent with experiments, see, for instance, [14; 32],
which show an exponential spatial decay. As a result, the model over-predicts the
actuator effect. Here we select a modified version of the recent model proposed in
[40], which demonstrated good agreement with the experimental data. The model
is characterised by an exponential dependence on the spatial coordinates and, in
particular, the force is modelled by a Rayleigh distribution, see [40]; thereby,

f(t,x) = fτ (t, xτ , yn)τ (x) + fn(t, xτ , yn)n(x) = I(t)
λfxτ
σ2
f

e−x
2
τ/2σ

2
f−λfynτ (x),

where, I(t) = kvV(t)/Vm (kv ∈ R, Vm = 1 kV) is the total plasma force; V(t) :
R→ R is the amplitude variation of the operation voltage (in kV); v(t) = V(t)/Vm

is the corresponding non-dimensionalised voltage input, scaled by Vm; fτ , fn (in
N/m3) are the tangential and normal components, with respect to the aerofoil, of
the force density, respectively; xτ , yn ≥ 0 are related to x = (x, y) by a coordinate
transformation and respectively refer to the tangent and normal components, rel-
ative to the geometry. The parameters λf = 1.6, σf = 1.9, kv = 5200e1/2σf/λf
are chosen as in [40], where this model has been compared with particle image
velocimetry (PIV) data, whilst, for sake of simplicity, a simple linear dependence
of the body force on the applied peak-to-peak voltage is assumed here.

5.2. Finite Element Approximation. The considered two-dimensional config-
uration is a NACA 0012 aerofoil geometry, denoted by ΓN , in a rectangular chan-
nel ΓR=̇Γin ∪ Γ+

R ∪ Γ−R ∪ Γout = [0, 10] × [−2, 2]. Here, the wall boundary is

Γ0 = ΓN ∪ Γ+
R ∪ Γ−R, where Γ+

R and Γ−R are the upper and lower walls of the
channel, respectively. The inflow boundary condition on Γin is a parabolic velocity
profile

(27) g(x) = −4Um
h2
c

(
y2 − h2

c

4

)
,

where hc = 4 is the channel height and Um = 1 is the maximum, non-dimensionalised
inflow velocity. The full-order, nonlinear state-space system is be obtained by s-
patially discretising the system of nonlinear PDEs (23), (25), (24), (26), using a
continuous Galerkin finite element method, thus yielding a nonlinear system of n
ODEs,

(28)

{
Eẋ = F(x) +Gv in (0, T ],

y = Hx in (0, T ],

with initial conditions

(29) x(0) = x0,
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of the same form of (3), where, x = x(t) : R → Rn is the state vector representing
the evolution in time of the nodal values of the flow fields; ẋ = dx/dt; E ∈ Rn×n
is related to the mass matrix; F(·) : Rn → Rn is a sufficiently smooth nonlin-
ear function; G ∈ Rn×p is the input matrix representing the nodal values of the
time-independent part of the body force; v = v(t) : R → Rp is the input voltage;
y = y(t) : R → Rq is the chosen control output; H ∈ Rq×n is the output ma-
trix representing the space-discretisation of (26). Quadratic and linear Lagrange
polynomials are used for the velocity and pressure fields, respectively. An implicit,
first-order backward Euler scheme is used for the time-discretisation. The FEniCS
Python library, see [21], is used to implement the finite element method for the
automatic generation of a fast, parallelized C++ code with the aim of performing
accurate numerical simulations. The computational grid is generated using Trian-
gle, see [37]. Note that the number n of states of system (28) is large (≈ 104/106)
and depends on the grid resolution.

6. Simulation Results

The reduced-order DMD model (8) has been obtained from m = 745 snapshots
of the state responses of system (28) to an impulsive input δ(t− t0). The input is
centred at t0 = 0.2, with amplitude ∆v = 2/∆t, which was chosen so that δ(t− t0)
has unitary integral. The snapshots are taken every 20∆t, where ∆t = 0.002 is the
simulation time-step, until the trajectories of the system approach a periodic orbit.
The considered two-dimensional configuration, which is used to build the ROM, is
the flow around a NACA 0012 aerofoil, with angle of attack β = 20◦ and Re = 1000.
The sensor was placed at 2c/5 and the actuator at c/5, corresponding to xτ , yn = 0,
where c is the chord length (see Figure 1). Accurate finite element simulations

Figure 1. Actuator force density and sensor position.

have been performed, as described in Section 5.2, to compute the snapshots of the
flow past the aerofoil. The dimension of the full-order system (28), describing the
evolution in time of the two components of the fluid velocity, is n ≈ 2 × 48000,
where 48000 is the number of elements in the unstructured grid. The balanced
POD has been then computed using the direct and adjoint impulse responses of
system (8), yielding a linear system with a positive steady-state gain: signP (0) = 1.

The order r of the ROM is chosen so that
∑r
i=1 σi/

∑r1
i=1 σi = 99%, where σi are

the Hankel singular values defined in section 3.1, thus yielding the reduced-order,
stable, balanced DMD model (9) of order r = 11, which is both controllable and
observable.
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Figure 2. DMD (left) and balanced DMD (right) Ritz values
Re = 1000, β = 20◦.

Figure 3. Stable (left) and unstable (right) Ritz values Re =
1000, β = 20◦.

Figure 4. Balanced DMD (green), DMD (magenta) and full-
order (blue) output responses to impulsive input (left) and bal-
anced DMD output reconstruction error (right), for t ≥ 0.2,
Re = 1000, β = 20◦.

Figure 2 shows the Ritz values computed by the DMD (left) and the proposed
balanced DMD (right). Figure 3 shows the unstable (left) and stable (right) DMD
Ritz values. The tails of the impulse responses of the full-order system (in blue) are
compared in Figure 4 with the reconstructed outputs of the DMD (in magenta),
and the balanced DMD (in green) models. An effective reconstruction of the full-
order output dynamics is obtained, by retaining only r = 11 modes in the ROM
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Figure 5. Simulation results for Re = 1000, β = 15◦.

Figure 6. Snapshots of the velocity magnitude contours and
streamlines, for Re = 1000, β = 15◦, before the controller is turned
on (top) and at t = 15 (bottom).

Figure 7. Simulation results for Re = 1000, β = 20◦.

and with the additional advantage, with respect to system-identification methods,
of retaining physical meaning in the ROM. Although the model well approximates
the flow dynamics for Re = 1000, β = 20◦, it is not guaranteed to be a good
approximation of the full-order, nonlinear dynamics when the parameters vary.
The robustness of the proposed control scheme (12), (20), (21), (22), which is
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Figure 8. Snapshots of the velocity magnitude contours and
streamlines, for Re = 1000, β = 20◦, before the controller is turned
on (left) and at t = 15 (right).

Figure 9. Simulation results for Re = 2000, β = 20◦.

based on the constructed ROM, is thus tested in four different scenarios and both
Reynolds number and angle of attack are varied: Re = 1000, β = 15◦; Re = 1000,
β = 20◦; Re = 2000, β = 20◦; Re = 5000, β = 15◦. The control parameters are the
same for the four cases and are chosen as: k = 3, µ = 10k, εm = 0.1, εM = 0.15,
yM = εm + εM . The controller is turned on at t = 4.5. All the controller initial
conditions are set to zero, whilst the initial velocity u and pressure fields p are in the
limit cycle regime. Figures 5, 6 show the simulation results for Re = 1000, β = 15◦.
The snapshots of the velocity magnitude contours and streamlines in figure 6 show
an evident flow reattachment: the proposed adaptive control effectively suppressed
the separation bubble, as well as the shedding vortices. Both a significant increase
of the lift coefficient (figure 5b), as well as a reduction of the drag coefficient (figure
5a), are achieved. A fast and smooth output regulation to y∗ ∈ Ωε is shown in
figure 5c. The scaled, non-dimensionalised voltage input v(t) = σ(y)v̂∗(t) is shown
in figure 5d, along with its corresponding estimated reference input v̂∗(t). The
same considerations hold for the simulation results at both Re = 1000, β = 20◦

(depicted in figures 7, 8), Re = 2000, β = 20◦ (depicted in figures 9, 10) and
Re = 5000, β = 15◦ (depicted in figures 11, 12). Note that, although a simple
linear model, built upon a single scenario, is used for the control design, good
dynamic performances are achieved as both the flow and geometry parameters are
varied.
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Figure 10. Snapshots of the velocity magnitude contours and
streamlines, for Re = 2000, β = 20◦, before the controller is turned
on (left) and at t = 15 (right).

Figure 11. Simulation results for Re = 5000, β = 15◦.

Figure 12. Snapshots of the velocity magnitude contours and
streamlines, for Re = 5000, β = 15◦, before the controller is turned
on (left) and at t = 15 (right).

7. Conclusions

A low-order, control-oriented, linear model of unsteady flows past an aerofoil,
in the presence of a DBD body force, is obtained using the snapshots of 2D finite
element simulations at Re = 1, 000. On the basis of the proposed model, a robust
set-point tracking feedback controller has been designed: it guarantees exponential
flow separation suppression when the steady-state gain of the approximated linear
model is non-zero and of known sign. A simple configuration, with one sensor and
one actuator is considered. Accurate 2D finite element simulations show that a fast
flow reattachment is achieved, along with both stabilisation and increase/reduction
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of the lift/drag, respectively. Although the proposed controller is simple, it is able
to effectively suppress the separation bubble, as well as the shedding vortices, while
achieving good dynamic performances, as both the Reynolds number and the angle
of attack are varied. Furthermore, the presented method provides a criterion for
optimising the placement of sensors and actuators: the problem of choosing both
measurements and actuation can be addressed by selecting suitable configurations,
leading to a non-zero steady-state gain of the approximated transfer function. Note
that the chosen output can be experimentally measured by appropriate sensors and
the extension of the proposed approach to 3D configurations is straightforward.
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