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SECOND-ORDER TWO-SCALE ANALYSIS METHOD FOR

DYNAMIC THERMO-MECHANICAL PROBLEMS OF

COMPOSITE STRUCTURES WITH CYLINDRICAL

PERIODICITY
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Abstract. In this paper, a novel second-order two-scale (SOTS) analysis method and corre-
sponding numerical algorithm is developed for dynamic thermo-mechanical problems of composite
structures with cylindrical periodicity. The formal SOTS solutions are successfully constructed by
the multiscale asymptotic analysis. Then we theoretically explain the necessity of developing the
SOTS solutions by the error analysis in the pointwise sense. Futhermore, the convergence result
with an explicit rate for the SOTS solutions is obtained. In addition, a SOTS numerical algorith-
m is presented to effectively solve these multiscale problems. Finally, some numerical examples
verify the feasibility and validity of the SOTS numerical algorithm we proposed. This study offers
a unified multiscale framework that enables the simulation and analysis of thermo-mechanical
coupled behavior of composite structures with cylindrical periodicity.

Key words. Dynamic thermo-mechanical problem, multiscale asymptotic analysis, composite
structure, cylindrical periodicity, SOTS numerical algorithm.

1. Introduction

In the past decades, composite materials have been widely used in engineering
applications owing to their attractive physical and mechanical properties. With the
appearance of various complex and extreme environments, composite materials usu-
ally served under multi-physics coupled circumstances, such as electro-mechanical,
thermo-electrical, thermo-mechanical and magneto-electro-thermo-elastic, etc. Due
to a great application prospect, the thermo-mechanical performances of composite
materials have been a research hotspot of scientists and engineers. To the best of
our knowledge, some studies have performed on dynamic thermo-mechanical prob-
lems of composites. However, most of these studies focused on one-way thermo-
mechanical coupled problems [1–5], namely only the thermal effects affect the me-
chanical field. Besides, some researchers devoted to the two-way thermo-mechanical
coupled problems which are fully coupled hyperbolic and parabolic systems, but
their researches were based on the cartesian coordinate system [6–10]. To the best
of our knowledge, the structures made of the composites with cylindrical peri-
odic configurations have a great application value in practical engineering, such
as composite shells, composite cylinder, composite tube, etc. In recent years,
some research results for composite structures with cylindrical periodicity have
appeared [5, 11–15]. However, up to now there is a lack of adequate research on
dynamic thermo-mechanical problems of composite structures with cylindrical pe-
riodicity.

The subject of this paper is to develop a SOTS analysis method and associ-
ated numerical algorithm for dynamic thermo-mechanical problems of composite
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structures with cylindrical periodicity. In such cases, the direct numerical compu-
tation of these multiscale problems needs a tremendous amount of computational
resources to capture the micro-scale behaviors due to large heterogeneities (caused
by inclusions or holes) in composite structures. Furthermore, the stability of nu-
merical scheme for these coupled systems with cylindrical periodic configurations
is also a difficult problem to handle. From the point of view of theoretical analy-
sis, the error estimate of SOTS solutions with an explicit convergence rate is hard
to gain due to lack of a prior estimate for wave equations with nonhomogeneous
boundary condition. In order to deal with these difficulties, we develop a SOT-
S method to overcome numerical difficulties based on asymptotic homogenization
method (AHM), finite element method (FEM) and finite difference method (FDM).
On the other hand, we impose the homogeneous Dirichlet condition on auxiliary
cell problems. At this case, the explicit convergence rate of SOTS solutions is eas-
ily obtained because the SOTS solutions will satisfy automatically the boundary
condition of governing equations under some assumptions.

This paper is organized as follows. In Sections 2, the detailed construction of the
SOTS solutions for dynamic thermo-mechanical problems of composite structures
with cylindrical periodicity is given by multiscale asymptotic analysis. Moreover,
the error analysis in the pointwise sense of first-order two-scale (FOTS) solutions
and SOTS solutions is obtained, respectively. Through the above analysis, we
theoretically explain the importance of developing the SOTS solutions in capturing
micro-scale information. In Section 3, an explicit convergence rate for the SOTS
solutions are derived under some hypotheses. In Section 4, a SOTS numerical
algorithm based on FEM and FDM is presented to solve these multiscale problems
effectively. In Section 5, some numerical results are given to verify the feasibility
and validity of our SOTS algorithm. Finally, some conclusions are given in Section
6.

For convenience, we use the Einstein summation convention on repeated indices
in this paper. Besides, the notation δij is the Kronecker symbol, and if i = j,
δij = 1, or δij = 0.

2. The multiscale asymptotic analysis of governing equations

Consider governing equations for dynamic thermo-mechanical problems of com-
posite structures with cylindrical periodicity as follows

(1)





ρε
∂2uεr
∂t2

−
(∂σε

rr

∂r
+

1

r

∂σε
rθ

∂θ
+
∂σε

rz

∂z
+
σε
rr − σε

θθ

r

)
= fr in Ω× (0, T ],

ρε
∂2uεθ
∂t2

−
(∂σε

rθ

∂r
+

1

r

∂σε
θθ

∂θ
+
∂σε

zθ

∂z
+ 2

σε
rθ

r

)
= fθ in Ω× (0, T ],

ρε
∂2uεz
∂t2

−
(∂σε

zr

∂r
+

1

r

∂σε
zθ

∂θ
+
∂σε

zz

∂z
+
σε
zr

r

)
= fz in Ω× (0, T ],

ρεcε
∂T ε

∂t
+
(∂qεr
∂r

+
1

r

∂qεθ
∂θ

+
∂qεz
∂z

+
qεr
r

)
+ T̃ βε

ij

∂εεij
∂t

= h in Ω× (0, T ],

uε(x, t) = û(x, t), T ε(x, t) = T̂ (x, t) on ∂Ω× (0, T ],

uε(x, 0) = u0,
∂uε(x, t)

∂t

∣∣
t=0

= u1(x), T ε(x, 0) = T̃ in Ω.

where Ω is a bounded convex domain (0 < r <∞) in R
3 with a boundary ∂Ω; The

uεr, u
ε
θ, u

ε
z and T ε in (1) are undetermined displacement and temperature fields;

û(x, t), T̂ (x, t) and u1(x) are known functions with macro-coordinates x = (r, θ, z);
ε represents the characteristic periodic unit cell size; ρε and cε are the mass density
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and specific heat; fr, fθ, fz and h are the the body forces in three directions and

internal heat source; u0 is the initial displacement field; T̃ is the initial temper-
ature when the composites are stress-free. In this paper, each constituent of the
composites is assumed to exhibit linear thermo-mechanical coupled response. For
governing equations, the strains εε are given in terms of the displacement field uε

as follows

(2)
εεrr =

∂uεr
∂r

, εεθθ =
1

r

(∂uεθ
∂θ

+ uεr
)
, εεrθ =

1

2

(1
r

∂uεr
∂θ

+
∂uεθ
∂r

−
uεθ
r

)
,

εεzz =
∂uεz
∂z

, εεzθ =
1

2

(∂uεθ
∂z

+
1

r

∂uεz
∂θ

)
, εεrz =

1

2

(∂uεz
∂r

+
∂uεr
∂z

)
.

If we apply the substitutions: 1 → r, 2 → θ, 3 → z and ψ1 =
∂

∂r
, ψ2 =

1

r

∂

∂θ
, ψ3 =

∂

∂z
to simplify the notations in our paper, the constitutive laws of problem (1) are

given by

σε
ij = Cε

ijklε
ε
kl − βε

ij(T
ε − T̃ )(3)

and

qεi = −kεijψj(T
ε)(4)

where {Cε
ijkl} is the fourth order elastic tensor, {βε

ij} is the second order ther-

mal modulus tensor and {kεij} is the second order thermal conductivity tensor
(i, j, k, l=1,2,3).

Now, let us set y =
x

ε
= (

r

ε
,
θ

ε
,
z

ε
) = (r̃, θ̃, z̃) as micro-coordinates of periodic

unit cell Y = (0, 1)3. Then material parameters ρε(x), cε(x), Cε
ijkl(x), k

ε
ij(x) and

βε
ij(x) can be rewritten as ρ(y), c(y), Cijkl(y), kij(y) and βij(y). Additionally, the

operators ψi for the macro-scale and ψ̃i for the micro-scale are defined as follows

(5)





ψ1 =
∂

∂r
, ψ2 =

1

r

∂

∂θ
, ψ3 =

∂

∂z

ψ̃1 =
∂

∂r̃
, ψ̃2 =

1

r

∂

∂θ̃
, ψ̃3 =

∂

∂z̃

Hence, the chain rule of AHM for original problem (1) can be expressed as

ψi = ψi + ε−1ψ̃i(6)

For obtaining the convergence result in this paper, we make the following hy-
potheses [7, 18, 19]

(A)





Cε
ijkl , β

ε
ij , k

ε
ij ∈ L∞(Ω),

Cε
ijkl = Cε

ijlk = Cε
klij , β

ε
ij = βε

ji, k
ε
ij = kεji,

∃γ0, γ1 > 0, γ0ηijηij ≤ Cε
ijklηijηkl ≤ γ1ηijηij , ∀{ηij} ∈ R

3×3,

γ0|ξ|2 ≤ βε
ijξiξj ≤ γ1|ξ|2, γ0|ξ|2 ≤ kεijξiξj ≤ γ1|ξ|2, ∀ξ = (ξ1, ξ2, ξ3) ∈ R

3,
Cε

ijkl , β
ε
ij and k

ε
ij are 1− periodic functions in y.

(B)





ρε, cε ∈ L∞(Ω),
0 < ρ0 ≤ ρε, 0 < c0 ≤ cε, where ρ0 and c0 are constants,
ρε and cε are 1− periodic functions in y.

(C) fi ∈ L2(Ω× (0, T )), h ∈ L2(Ω× (0, T )), û(x, t) ∈ (L2(Ω× (0, T )))3, T̂ (x, t) ∈
L2(Ω× (0, T )), u1 ∈ (L2(Ω))3.

In this section, we firstly give the specific construction process of first-order two-
scale (FOTS) solutions and second-order two-scale (SOTS) solutions to problem
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(1). After that, the error analysis in the pointwise sense of FOTS solutions and
SOTS solutions is given which neatly illustrates the extreme necessity of developing
SOTS solutions. On the other hand, it will give the residual equations which are
of vital significance for us to prove the main convergence theorem in Section 3.

2.1. Second-order two-scale analysis for governing equations. To the o-
riginal problem (1), we suppose that uεi (x, t) and T

ε(x, t) can be expressed as the
following asymptotic expansion forms

{
uεi (x, t) = u

(0)
i (x,y, t) + εu

(1)
i (x,y, t) + ε2u

(2)
i (x,y, t) + O(ε3),

T ε(x, t) = T (0)(x,y, t) + εT (1)(x,y, t) + ε2T (2)(x,y, t) + O(ε3).
(7)

It is worth stressing that SOTS analysis in cylindrical coordinates is quite different
from that of cartesian coordinates [7,8]. Due to lack of a consistent form of εεij(x, t)
in cylindrical coordinates, the SOTS analysis in cylindrical coordinates should start
from the basic physical quantities εεij(x, t), σ

ε
ij(x, t) and q

ε
i (x, t). Using (2) and (7),

the basic quantities εεij(x, t) can be expanded as the following forms

εεij(x, t) = ε−1ε
(−1)
ij (x,y, t) + ε0ε

(0)
ij (x,y, t) + ε1ε

(1)
ij (x,y, t) + O(ε2).(8)

where

(9)

ε
(−1)
ij =

1

2

(
ψ̃i(u

(0)
j ) + ψ̃j(u

(0)
i )

)
, ε

(s)
ij = ε

(s)∗
ij +

1

2

(
ψ̃i(u

(s+1)
j ) + ψ̃j(u

(s+1)
i )

)
,

ε
(s)∗
11 = ψ1(u

(s)
1 ), ε

(s)∗
22 = ψ2(u

(s)
2 ) +

u
(s)
1

r
,

ε
(s)∗
12 =

1

2

(
ψ2(u

(s)
1 ) + ψ1(u

(s)
2 )−

u
(s)
2

r

)
, ε

(s)∗
33 = ψ3(u

(s)
3 ),

ε
(s)∗
23 =

1

2

(
ψ3(u

(s)
2 ) + ψ2(u

(s)
3 )

)
, ε

(s)∗
13 =

1

2

(
ψ1(u

(s)
3 ) + ψ3(u

(s)
1 )

)
.

And then, we assume that σε
ij(x, t) and qεi (x, t) have the detailed asymptotic ex-

pansion forms as below

{
σε
ij(x, t) = ε−1σ

(−1)
ij (x,y, t) + ε0σ

(0)
ij (x,y, t) + ε1ε

(1)
ij (x,y, t) + O(ε2),

qεi (x, t) = ε−1q
(−1)
i (x,y, t) + ε0q

(0)
i (x,y, t) + ε1q

(1)
i (x,y, t) + O(ε2).

(10)

By virtue of (9), and constitutive laws (3) and (4), the specific expressions of each
asymptotic expansion term in (10) can be derived as follows

(11)
σ
(−1)
ij = Cijklψ̃k(u

(0)
l ), σ

(0)
ij = Cijklε

(0)∗
kl + Cijklψ̃k(u

(1)
l )− βij(T

(0) − T̃ ),

σ
(1)
ij = Cijklε

(1)∗
kl + Cijklψ̃k(u

(2)
l )− βijT

(1).

and

(12) q
(−1)
i = −kijψ̃j(T

(0)), q
(s)
i = −kijψj(T

(s))− kij ψ̃j(T
(s+1)), s = 0, 1.

Then substituting (7), (8) and (10) into original problem (1), expanding the deriva-
tives and matching terms with the same order of small periodic parameter ε, we
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can immediately obtain

(13)





ρ
∂2u

(0)
1

∂t2
= ε−2ψ̃jσ

(−1)
1j + ε−1

(
ψjσ

(−1)
1j + ψ̃jσ

(0)
1j +

σ
(−1)
11 − σ

(−1)
22

r

)

+ ε0
(
ψjσ

(0)
1j + ψ̃jσ

(1)
1j +

σ
(0)
11 − σ

(0)
22

r
+ f1

)
+O(ε),

ρ
∂2u

(0)
2

∂t2
= ε−2ψ̃jσ

(−1)
2j + ε−1

(
ψjσ

(−1)
2j + ψ̃jσ

(0)
2j + 2

σ
(−1)
12

r

)

+ ε0
(
ψjσ

(0)
2j + ψ̃jσ

(1)
2j + 2

σ
(0)
12

r
+ f2

)
+O(ε),

ρ
∂2u

(0)
3

∂t2
= ε−2ψ̃jσ

(−1)
3j + ε−1

(
ψjσ

(−1)
3j + ψ̃jσ

(0)
3j +

σ
(−1)
31

r

)

+ ε0
(
ψjσ

(0)
3j + ψ̃jσ

(1)
3j +

σ
(0)
31

r
+ f3

)
+O(ε),

ρc
∂T (0)

∂t
= −ε−2ψ̃iq

(−1)
i − ε−1

[
ψiq

(−1)
i + ψ̃iq

(0)
i +

q
(−1)
1

r
+ T̃ βij

∂ε
(−1)
ij

∂t

]

− ε0
[
ψiq

(0)
i + ψ̃iq

(1)
i +

q
(0)
1

r
+ T̃ βij

∂ε
(0)
ij

∂t
− h

]
+O(ε).

From (13), a series of equations with the same order of small parameter ε are
derived as follows according to the classical procedure of AHM [20,21]

O(ε−2) :

{
ψ̃jσ

(−1)
ij = 0,

ψ̃iq
(−1)
i = 0.

(14)

(15) O(ε−1) :





ψjσ
(−1)
1j + ψ̃jσ

(0)
1j +

σ
(−1)
11 − σ

(−1)
22

r
= 0,

ψjσ
(−1)
2j + ψ̃jσ

(0)
2j + 2

σ
(−1)
12

r
= 0,

ψjσ
(−1)
3j + ψ̃jσ

(0)
3j +

σ
(−1)
31

r
= 0,

ψiq
(−1)
i + ψ̃iq

(0)
i +

q
(−1)
1

r
+ T̃ βij

∂ε
(−1)
ij

∂t
= 0.

(16) O(ε0) :





ρ
∂2u

(0)
1

∂t2
= ψjσ

(0)
1j + ψ̃jσ

(1)
1j +

σ
(0)
11 − σ

(0)
22

r
+ f1,

ρ
∂2u

(0)
2

∂t2
= ψjσ

(0)
2j + ψ̃jσ

(1)
2j + 2

σ
(0)
12

r
+ f2,

ρ
∂2u

(0)
3

∂t2
= ψjσ

(0)
3j + ψ̃jσ

(1)
3j +

σ
(0)
31

r
+ f3,

ρc
∂T (0)

∂t
= −ψiq

(0)
i − ψ̃iq

(1)
i −

q
(0)
1

r
− T̃ βij

∂ε
(0)
ij

∂t
+ h.

Now, we start to recursively solve the asymptotic expansion terms of uεi and T ε.
From the equations with order O(ε−2), the following equations can be obtained by
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substituting (11) and (12) into (14)
{

ψ̃j

[
Cijklψ̃k(u

(0)
l )

]
= 0,

ψ̃i

[
kij ψ̃j(T

(0))
]
= 0.

(17)

Subsequently, it follows by virtue of the periodicity of the u
(0)
i and T (0), and the

linearity in the micro-scale of (17) that

u
(0)
i (x,y, t) = u

(0)
i (x, t), T (0)(x,y, t) = T (0)(x, t).(18)

That is, u
(0)
i and T (0) are independent of micro-scale variable y. Hence, it can be

concluded that σ
(−1)
ij = 0. Due to this property, (15) can be further simplified as

the following equations by using (11) and (12)
{
ψ̃j

[
Cijklψ̃k(u

(1)
l )

]
= −ψ̃j

[
Cijklε

(0)∗
kl − βij(T

(0) − T̃ )
]
,

ψ̃i

[
kij ψ̃j(T

(1))
]
= −ψ̃i

[
kijψj(T

(0))
]
.

(19)

After that, we construct

(20)

{
u
(1)
i = Nmn

i (r,y)ε(0)∗mn − Pi(r,y)(T
(0) − T̃ ),

T (1) =Mm(r,y)ψm

(
T (0)

)
, m, n = 1, 2, 3.

where Nmn
i , Pi and Mm are the first-order auxiliary cell functions defined in unit

cell Y .
Remark 1 It is important to mention that the first-order auxiliary cell func-

tions are quasi-periodic functions which all depend on the macro-coordinate r. This
is a significant difference compared to classical composites with micro-scale period-
icity in cartesian coordinates.

Now substituting (20) into (19), the following equations with homogeneous
Dirichlet boundary condition are obtained after simplification and calculation

(21)

{
ψ̃j

[
Cijklψ̃k(N

mn
l )

]
= −ψ̃j(Cijmn), y ∈ Y

Nmn
l (r,y) = 0, y ∈ ∂Y

(22)

{
ψ̃j

[
Cijklψ̃k(Pl)

]
= −ψ̃j(βij), y ∈ Y

Pl(r,y) = 0, y ∈ ∂Y

(23)

{
ψ̃i

[
kij ψ̃j(Mm)

]
= −ψ̃i(kim), y ∈ Y

Mm(r,y) = 0, y ∈ ∂Y

Then, one can obtain the following equations by making the volume integral and
using the Green’s formula on (16) inspired by Refs. [7, 8, 10, 12]

(24)





〈ρ〉
∂2u

(0)
1

∂t2
= ψj〈σ

(0)
1j 〉+

〈σ
(0)
11 〉 − 〈σ

(0)
22 〉

r
+ f1,

〈ρ〉
∂2u

(0)
2

∂t2
= ψj〈σ

(0)
2j 〉+ 2

〈σ
(0)
12 〉

r
+ f2,

〈ρ〉
∂2u

(0)
3

∂t2
= ψj〈σ

(0)
3j 〉+

〈σ
(0)
31 〉

r
+ f3,

〈ρc〉
∂T (0)

∂t
= −ψi〈q

(0)
i 〉 −

〈q
(0)
1 〉

r
− T̃

∂〈βijε
(0)
ij 〉

∂t
+ h.
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where the different operators in (24) are defined as follows

〈
φ(y)

〉
=

1

|Y |

∫

Y

φ(y)dY, 〈q
(0)
i 〉 = −

〈
kim + kij ψ̃j(Mm)

〉
ψm(T (0)),

〈σ
(0)
ij 〉 =

〈
Cijmn + Cijklψ̃k(N

mn
l )

〉
ε
(0)∗
mn −

〈
βij + Cijklψ̃k(Pl)

〉
(T (0) − T̃ ),

〈βijε
(0)
ij 〉 =

〈
βij + βmnψ̃n(N

ij
m)

〉
ε
(0)∗
ij −

〈
βijψ̃j(Pi)

〉
(T (0) − T̃ ).

(25)

Thus, the homogenized mass density ρ̂, elasticity coefficients Ĉijmn, thermal modu-

lus β̂ij and β̂
∗
ij , specific heat capacity Ŝ and thermal conductivity k̂ij can be defined

as follows

(26)

ρ̂ = 〈ρ〉, Ĉijmn(r) = 〈Cijmn + Cijklψ̃k(N
mn
l )〉,

β̂ij(r) =
〈
βij + Cijklψ̃k(Pl)

〉
, β̂∗

ij(r) = 〈βij + βmnψ̃n(N
ij
m)〉,

Ŝ(r) =
〈
ρc− T̃ βij ψ̃j(Pi)

〉
, k̂ij(r) =

〈
kij + kimψ̃m(Mj)

〉
.

Remark 2 It is easy to prove that β̂ij = β̂∗
ij for any fixed macro-coordinate r

according to Refs. [7, 8, 10].
Further, one can define the homogenized problems attached with the same initial-

boundary value condition as the original problem (1)

(27)





ρ̂
∂2u

(0)
1

∂t2
= ψj〈σ

(0)
1j 〉+

〈σ
(0)
11 〉 − 〈σ

(0)
22 〉

r
+ f1 in Ω× (0, T ],

ρ̂
∂2u

(0)
2

∂t2
= ψj〈σ

(0)
2j 〉+ 2

〈σ
(0)
12 〉

r
+ f2 in Ω× (0, T ],

ρ̂
∂2u

(0)
3

∂t2
= ψj〈σ

(0)
3j 〉+

〈σ
(0)
31 〉

r
+ f3 in Ω× (0, T ],

Ŝ
∂T (0)

∂t
= −ψi〈q

(0)
i 〉 −

〈q
(0)
1 〉

r
− T̃ β̂ij

∂ε
(0)∗
ij

∂t
+ h in Ω× (0, T ],

u(0)(x, t) = û(x, t), T (0)(x, t) = T̂ (x, t) on ∂Ω× (0, T ],

u(0)(x, 0) = u0,
∂u(0)(x, t)

∂t

∣∣
t=0

= u1(x), T (0)(x, 0) = T̃ in Ω.

Next, we start to solve the vital second-order auxiliary cell functions. Firstly, the
following equations are obtained by subtracting (16) from (27)

(28)





ψ̃jσ
(1)
1j = (ρ− ρ̂)

∂2u
(0)
1

∂t2
+ ψj〈σ

(0)
1j 〉 − ψjσ

(0)
1j +

〈σ
(0)
11 〉 − 〈σ

(0)
22 〉

r

−
σ
(0)
11 − σ

(0)
22

r
,

ψ̃jσ
(1)
2j = (ρ− ρ̂)

∂2u
(0)
2

∂t2
+ ψj〈σ

(0)
2j 〉 − ψjσ

(0)
2j + 2

〈σ
(0)
12 〉

r
− 2

σ
(0)
12

r
,

ψ̃jσ
(1)
3j = (ρ− ρ̂)

∂2u
(0)
3

∂t2
+ ψj〈σ

(0)
3j 〉 − ψjσ

(0)
3j +

〈σ
(0)
31 〉

r
−
σ
(0)
31

r
,

ψ̃iq
(1)
i = (Ŝ − ρc)

∂T (0)

∂t
+ ψi

(
〈q

(0)
i 〉 − q

(0)
i

)
+

〈q
(0)
1 〉 − q

(0)
1

r
+ T̃ (β̂ij

∂ε
(0)∗
ij

∂t
− βij

∂ε
(0)
ij

∂t
).
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Secondly, the following equations can be easily gotten by combining (9) and (20)
together

(29)

βijε
(0)
ij =

[
βij + βmnψ̃n(N

ij
m)

]
ε
(0)∗
ij − βijψ̃j(Pi)(T

(0) − T̃ ),

Cijklψ̃k(u
(1)
l ) = Cijklψ̃k(N

mn
l )ε(0)∗mn − Cijklψ̃k(Pl)(T

(0) − T̃ ),

ε
(1)∗
ij = Dijmnε

(0)∗
mn +

1

2

[
Nmn

i ψj(ε
(0)∗
mn ) +Nmn

j ψi(ε
(0)∗
mn )

]

− Eij(T
(0) − T̃ )−

1

2

[
Piψj(T

(0) − T̃ ) + Pjψi(T
(0) − T̃ )

]
,

kij ψ̃j(T
(1)) = kij ψ̃j(Mm)ψm(T (0)).

where Dijmn and Eij are defined as follows

(30)

D11mn = ψ1(N
mn
1 ), D22mn = ψ2(N

mn
2 ) +

Nmn
1

r
,

D12mn =
1

2

[
ψ2(N

mn
1 ) + ψ1(N

mn
2 )−

Nmn
2

r

]
, D33mn = ψ3(N

mn
3 ),

D23mn =
1

2

[
ψ3(N

mn
2 ) + ψ2(N

mn
3 )

]
, D13mn =

1

2

[
ψ1(N

mn
3 ) + ψ3(N

mn
1 )

]
,

E11 = ψ1(P1), E22 = ψ2(P2) +
P1

r
, E12 =

1

2

[
ψ2(P1) + ψ1(P2)−

P2

r

]
,

E33 = ψ3(P3), E23 =
1

2

[
ψ3(P2) + ψ2(P3)

]
, E13 =

1

2

[
ψ1(P3) + ψ3(P1)

]
.

Then, we replace the terms σ
(1)
ij , q

(1)
i , 〈σ

(0)
ij 〉, 〈q

(0)
i 〉 and ε

(0)
ij in (28) with (11), (12),

(25), (26) and (29). After computation, (28) can be rewritten as the following two
equations

(31)

ψ̃j

[
Cijklψ̃k(u

(2)
l )

]
= ψ̃j(βijMm)ψm(T (0)) + (ρ− ρ̂)

∂2u
(0)
i

∂t2

+
[
ψj(Ĉijmn)− ψj

(
Cijklψ̃k(N

mn
l )

)
− ψ̃j(CijklDklmn)

]
ε(0)∗mn

+
[
Ĉijmn − Cijmn − Cijklψ̃k(N

mn
l )− ψ̃k(CikjlN

mn
l )

]
ψj(ε

(0)∗
mn )

+
[
ψj

(
Cijklψ̃k(Pl)

)
− ψj(β̂ij) + ψ̃j(CijklEkl)

]
(T (0) − T̃ )

+
[
βij + Cijklψ̃k(Pl)− β̂ij + ψ̃k(CikjlPl)

]
ψj(T

(0) − T̃ )

+
δi1
r

{[
Ĉ11mn − C11mn − C11klψ̃k(N

mn
l )

]
ε(0)∗mn

+
[
β11 − β̂11 + C11klψ̃k(Pl)

]
(T (0) − T̃ )

}

−
δi1
r

{[
Ĉ22mn − C22mn − C22klψ̃k(N

mn
l )

]
ε(0)∗mn

+
[
β22 − β̂22 + C22klψ̃k(Pl)

]
(T (0) − T̃ )

}

+
2δi2
r

{[
Ĉ12mn − C12mn − C12klψ̃k(N

mn
l )

]
ε(0)∗mn

+
[
β12 − β̂12 + C12klψ̃k(Pl)

]
(T (0) − T̃ )

}

+
δi3
r

{[
Ĉ31mn − C31mn − C31klψ̃k(N

mn
l )

]
ε(0)∗mn

+
[
β31 − β̂31 + C31klψ̃k(Pl)

]
(T (0) − T̃ )

}
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(32)

ψ̃i

[
kijψ̃j(T

(2))
]
= −

[
Ŝ − ρc+ T̃ βij ψ̃j(Pi)

]∂T (0)

∂t

−
[
ψi

(
kijψ̃j(Mm)

)
− ψi(k̂im) + ψ̃i

(
kijψj(Mm)

)]
ψm(T (0))

−
[
kmn − k̂mn+kmjψ̃j(Mn) + ψ̃j(kmjMn)

]
ψmψn(T

(0))

− T̃
[
β̂mn − βmn − βij ψ̃j(N

mn
i )

]∂ε(0)∗mn

∂t

−

[
k1m − k̂1m+k1jψ̃j(Mm)

]
ψm(T (0))

r

According to (31) and (32), we construct

(33)





u
(2)
i = N jmn

i (r,y)ψj(ε
(0)∗
mn ) +Hj

i (r,y)ψj(T
(0)) + F j

i (r,y)
∂2u

(0)
j

∂t2

+Mmn
i (r,y)ε(0)∗mn +Qi(r,y)(T

(0) − T̃ ),

T (2) = S(r,y)
∂T (0)

∂t
+Rm(r,y)ψm(T (0))

+Mmn(r,y)ψmψn(T
(0)) +Gmn(r,y)

∂ε
(0)∗
mn

∂t
.

where N jmn
i , Hj

i , F
j
i , M

mn
i , Qi, S, Rm, Mmn and Gmn are the second-order

auxiliary cell functions defined in unit cell Y . Substituting (33) into (31) and (32),
a series of equations, which are attached with the homogeneous Dirichlet boundary
condition, are derived as follows

(34)





ψ̃p

[
Cipklψ̃k(N

jmn
l )

]
= Ĉijmn − Cijmn

− Cijklψ̃k (N
mn
l )− ψ̃k (CikjlN

mn
l ) , y ∈ Y

N jmn
l (r,y) = 0, y ∈ ∂Y

(35)





ψ̃p

[
Cipklψ̃k(H

j
l )
]
= βij + Cijklψ̃k (Pl)

− β̂ij + ψ̃k (CikjlPl) + ψ̃k(βikMj), y ∈ Y

Hj
l (r,y) = 0, y ∈ ∂Y

(36)

{
ψ̃p

[
Cipklψ̃k(F

j
l )
]
= δij (ρ− ρ̂) , y ∈ Y

F j
l (r,y) = 0, y ∈ ∂Y

(37)






ψ̃j

[
Cijklψ̃k(M

mn
l )

]
= ψj(Ĉijmn)− ψj

[
Cijklψ̃k(N

mn
l )

]

− ψ̃j

(
CijklDklmn

)
+
δi1

r

{[
Ĉ11mn −C11mn − C11klψ̃k (N

mn
l )

]

−

[
Ĉ22mn − C22mn − C22klψ̃k (N

mn
l )

]}

+
2δi2
r

[
Ĉ12mn − C12mn −C12klψ̃k(N

mn
l )

]

+
δi3

r

[
Ĉ31mn −C31mn − C31klψ̃k(N

mn
l )

]
, y ∈ Y

M
mn
l (r,y) = 0, y ∈ ∂Y
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(38)






ψ̃j

[
Cijklψ̃k(Ql)

]
= ψj

(
Cijklψ̃k(Pl)

)
− ψj(β̂ij) + ψ̃j(CijklEkl)

+
δi1

r

{[
β11 − β̂11 + C11klψ̃k(Pl)

]
−

[
β22 − β̂22 + C22klψ̃k(Pl)

]}

+
2δi2
r

[
β12 − β̂12 + C12klψ̃k (Pl)

]
+
δi3

r

[
β31 − β̂31 +C31klψ̃k (Pl)

]
, y ∈ Y

Ql(r,y) = 0, y ∈ ∂Y

(39)

{
ψ̃i

[
kij ψ̃j(S)

]
= −Ŝ + ρc− T̃ βijψ̃j(Pi), y ∈ Y

S(r,y) = 0, y ∈ ∂Y

(40)





ψ̃i

[
kij ψ̃j(Rm)

]
= −ψi

(
kij ψ̃j(Mm)

)
+ ψi(k̂im)

− ψ̃i

(
kijψj(Mm)

)
−

[
k1m − k̂1m + k1jψ̃j(Mm)

]

r
, y ∈ Y

Rm(r,y) = 0, y ∈ ∂Y

(41)

{
ψ̃i

[
kij ψ̃j(Mmn)

]
= −kmn + k̂mn−kmjψ̃j (Mn)− ψ̃j (kmjMn), y ∈ Y

Mmn(r,y) = 0, y ∈ ∂Y

(42)

{
ψ̃i

[
kijψ̃j(Gmn)

]
= −T̃

[
β̂mn − βmn − βijψ̃j(N

mn
i )

]
, y ∈ Y

Gmn(r,y) = 0, y ∈ ∂Y

where p = 1, 2, 3.
Remark 3 According to Lax-Milgram theorem and the hypotheses (A)-(C),

it is easy to prove that problems (21)-(23) and (34)-(42) have a unique solution for
any fixed macro-coordinate r.

In conclusion, the following theorem is obtained based on SOTS analysis for
multiscale problem (1).

Theorem 1. The dynamic thermo-mechanical problems of composite structures
with cylindrical periodicity have SOTS asymptotic expansion solutions as follows

(43)

uεi (x, t)
∼= u

(0)
i + ε

[
Nmn

i (r,y)ε(0)∗mn − Pi(r,y)(T
(0) − T̃ )

]

+ ε2
[
N jmn

i (r,y)ψj(ε
(0)∗
mn ) +Hj

i (r,y)ψj(T
(0)) + F j

i (r,y)
∂2u

(0)
j

∂t2

+Mmn
i (r,y)ε(0)∗mn +Qi(r,y)(T

(0) − T̃ )
]

(44)

T ε(x, t) ∼= T (0) + εMm(r,y)ψm(T (0)) + ε2
[
Mmn(r,y)ψmψn(T

(0))

+ S(r,y)
∂T (0)

∂t
+Rm(r,y)ψm(T (0)) +Gmn(r,y)

∂ε
(0)∗
mn

∂t

]

where u
(0)
i and T (0) are the solutions of the homogenized problem (27), andNmn

i , Pi

and Mm are the first-order auxiliary cell functions defined by (21)-(23), N jmn
i , Hj

i ,

F j
i , M

mn
i , Qi, S, Rm, Mmn and Gmn are the second-order auxiliary cell functions

defined by (34)-(42).
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2.2. Error analysis in the pointwise sense. In this subsection, the specific
error analysis of FOTS solutions and SOTS solutions in the pointwise sense is

given. Firstly, the FOTS solutions u
(1ε)
i and T (1ε), and SOTS solutions u

(2ε)
i and

T (2ε) for original problem (1) are defined as below

(45)
u
(1ε)
i = u

(0)
i + εu

(1)
i , T (1ε) = T (0) + εT (1)

u
(2ε)
i = u

(0)
i + εu

(1)
i + ε2u

(2)
i , T (2ε) = T (0) + εT (1) + ε2T (2)

Furthermore, the error functions of the FOTS solutions and SOTS solutions are
defined as follows

u
(1ε)
∆i = uεi − u

(1ε)
i , T

(1ε)
∆ = T ε − T (1ε)

u
(2ε)
∆i = uεi − u

(2ε)
i , T

(2ε)
∆ = T ε − T (2ε)

(46)

Before giving the detailed results of error analysis, some assumptions about
original problem (1) need to be presented. Suppose that Ω is composed of the
entire periodic cells, i.e. Ω̄ = ∪z∈Tε

ε(z + Ȳ ), where the index set Tε = {z =
(z1, z2, z3) ∈ Z3, ε(z + Ȳ ) ∈ Ω̄}. Besides, let Ez = ε(z + Y ) and ∂Ez be the
boundary of Ez.

To compare u
(1ε)
i and T (1ε) with the exact solutions uεi and T ε, we substitute

u
(1ε)
∆i and T

(1ε)
∆ into original problem (1), and obtain the following residual equations

of the FOTS solutions

(47)





ρε
∂2u

(1ε)
∆i

∂t2
−
{
ψjσ

ε
ij(u

(1ε)
∆ , T

(1ε)
∆ ) + δi1

[σε
11(u

(1ε)
∆ , T 1ε

∆ )− σε
22(u

(1ε)
∆ , T

(1ε)
∆ )

r

]

+ δi2
2σε

12(u
(1ε)
∆ , T

(1ε
∆ )

r
+ δi3

σε
31(u

(1ε)
∆ , T

(1ε)
∆ )

r

}

= S0i(x,y, t) + εS1i(x,y, t) in Ω× (0, T ],

ρεcε
∂T

(1ε)
∆

∂t
+
[
ψiq

ε
i (T

(1ε)
∆ ) +

qε1(T
(1ε)
∆ )

r
+ T̃ βε

ij

∂εεij(u
(1ε)
∆ )

∂t

]
= F0(x,y, t)

+ εF1(x,y, t) in Ω× (0, T ],

u
(1ε)
∆ (x, t) = 0, T

(1ε)
∆ (x, t) = 0 on ∂Ω× (0, T ],

u
(1ε)
∆i (x, 0) = −εNmn

i ε(0)∗mn

(
u(0)(x, 0)

)
= εψ̂1i(x),

∂u
(1ε)
∆i

∂t

∣∣
t=0

= −εNmn
i

∂ε
(0)∗
mn

(
u(0)

)

∂t

∣∣
t=0

+ εPi

∂T (0)

∂t

∣∣
t=0

= εψ̂2i(x),

T
(1ε)
∆ (x, 0) = −εMmψm

(
T (0)(x, 0)

)
= εψ̂3(x) in Ω.

where the operators σε
ij(u

(1ε)
∆ , T

(1ε)
∆ ) = Cε

ijklε
ε
kl(u

(1ε)
∆ ) − βε

ijT
(1ε)
∆ and qεi (T

(1ε)
∆ ) =

−kεijψj(T
(1ε)
∆ ).
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Analogously, substituting u
(2ε)
∆i and T

(2ε)
∆ into original problem (1), we derive the

following residual equations of the SOTS solutions
(48)




ρε
∂2u

(2ε)
∆i

∂t2
−
{
ψjσ

ε
ij(u

(2ε)
∆ , T

(2ε)
∆ ) + δi1

[σε
11(u

(2ε)
∆ , T

(2ε)
∆ )− σε

22(u
(2ε)
∆ , T

(2ε)
∆ )

r

]

+ δi2
2σε

12(u
(2ε)
∆ , T

(2ε)
∆ )

r
+ δi3

σε
31(u

(2ε)
∆ , T

(2ε)
∆ )

r

}
= εHi(x,y, t) in Ω× (0, T ],

ρεcε
∂T

(2ε)
∆

∂t
+
[
ψiq

ε
i (T

(2ε)
∆ ) +

qε1(T
(2ε)
∆ )

r
+ T̃ βε

ij

∂εεij(u
(2ε)
∆ )

∂t

]

= εG(x,y, t) in Ω× (0, T ],

u
(2ε)
∆ (x, t) = 0, T

(2ε)
∆ (x, t) = 0 on ∂Ω× (0, T ],

u
(2ε)
∆i (x, 0) = −εNmn

i

∂ε
(0)∗
mn

(
u(0)

)

∂t

∣∣
t=0

− ε2
{
N jmn

i ψj

[
ε(0)∗mn

(
u(0)(x, 0)

)]

+Hj
i ψj

(
T (0)(x, 0)

)
+ F j

i

∂2u
(0)
j

∂t2
+Mmn

i ε(0)∗mn

(
u(0)(x, 0)

)}
= εψ̃1i(x),

∂u
(2ε)
∆i

∂t

∣∣
t=0

= −ε
[
Nmn

i

∂ε
(0)∗
mn

(
u(0)

)

∂t

∣∣
t=0

− Pi

∂T (0)

∂t

∣∣
t=0

]

− ε2
{
N jmn

i

ψj

[
ε
(0)∗
mn

(
u(0)(x)

)]

∂t
+Hj

i

∂ψj(T
(0))

∂t

∣∣
t=0

+ F j
i

∂3u
(0)
j

∂t3
∣∣
t=0

+Mmn
i

∂ε
(0)∗
mn

(
u(0)

)

∂t

∣∣
t=0

+Qi

∂T (0)

∂t

∣∣
t=0

}
= εψ̃2i(x),

T
(2ε)
∆ (x, 0) = −εMmψm

(
T (0)(x, 0)

)
− ε2

[
S
∂T (0)

∂t

∣∣
t=0

+Rmψm

(
T (0)(x, 0)

)

+Mmnψmψn

(
T (0)(x, 0)

)
+Gmn

∂ε
(0)∗
mn

(
u(0)

)

∂t

∣∣
t=0

]
= εψ̃3(x) in Ω.

where the detailed expressions of S0i, S1i, F0, F1 and Hi, G are not given in this
paper because they are tediously long. However, it is easy to get their specific
forms and worth noting that the highest order terms of Hi(x,y, t) and G(x,y, t)

are ψiψjψkψl(u
(0)),

∂4u(0)

∂t4
, ψiψjψkψl(T

(0)) and
∂2T (0)

∂t2
.

Now we can give a conclusion about the error analysis in the pointwise sense.
From the residual equation (47), one can easily find that the residual of FOTS
solutions is order O(1) in the pointwise sense due to the terms S0i(x,y, t) and
F0(x,y, t). In addition, it is clear to see that the residual of SOTS solutions is
order O(ε) in the pointwise sense from the residual equation (48). This means that
the SOTS solutions can satisfy the original equation (1) in the pointwise sense.
Thus even ε is a small constant, the SOTS solutions can still provide the required
accuracy of engineering application and capture the micro-scale oscillating behavior
of composite materials. This is the main reason and motivation to develop the SOTS
solutions.

3. Main convergence theorem and its proof

In this section, the specific proof of the explicit convergence rate of the SOTS
solutions in the integral sense is presented. It is known to all that the classical
auxiliary cell functions are defined with periodic boundary condition [7, 12, 20, 21].
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At this case, the auxiliary cell functions have enough regularity on the boundary
of unit cell Y . However, the auxiliary cell functions in this paper are all imposed
with homogeneous Dirichlet boundary condition. For this kind of auxiliary cell
functions, the normal derivatives only are continuous on the boundary of unit cell
Y under the geometric symmetry and regularity assumptions of material property
parameters. So we firstly give some hypotheses similar to literatures [3,6,22–24] as
follows

(i) ρ(y), Cijkl(y), βij(y), c(y) and kij(y) are the functions with piecewise con-
stants in Y .

(ii) Let ∆1 . . .∆3 be the middle hyperplanes of the reference cell Y = (0, 1)3. Assume
that ρ(y), Cijij(y), βii(y), c(y) , kii(y) are symmetric with respect to ∆1 . . .∆3

and Cijkl(y), βij(y), kij(y) are anti-symmetric with respect to ∆1 . . .∆3 in
Y .

Lemma 1. Denote the operators σiY (χ) = njCijkl(y)ε
(−1)
kl (χ) and σTY (φ) =

nikij(y)ψ̃j(φ), where n1 = r · nr, n2 = nθ and n3 = r · nz. Then under assump-
tions (A)-(C) and (i)-(ii), the normal derivatives σiY (N

mn), σiY (P), σiY (N
jmn),

σiY (H
j), σiY (F), σiY (M

mn), σiY (Q) and σTY (Mm), σTY (S), σTY (Rm), σTY (Mmn),
σTY (Gmn) can be proved to be continuous on the boundary of unit cell Y by using
the same method in Refs. [6,23,24].

Lemma 2. In [16–18], the following Korn’s inequality holds for curvilinear coor-
dinates

‖u‖H1
0 (Ω) ≤ C

{∑

i,j

∣∣ei||j(u)
∣∣2
L2(Ω)

} 1
2

where ei||j(u) represents the strain in curvilinear coordinate system. Then it is easy
to know that this inequality still holds for cylindrical coordinates because cylindrical
coordinate is a special curvilinear coordinate.

Theorem 2. Suppose that Ω ⊂ R
3 is the union of entire periodic cells, i.e. Ω̄ =

∪z∈Tε
ε(z + Ȳ ), where the index set Tε = {z ∈ Z3, ε(z + Ȳ ) ∈ Ω̄}. Let uε(x, t),

T ε(x, t) and u(0)(x, t), T (0)(x, t) be the weak solutions of model problem (1) and
associated homogenized problem (27), respectively. The specific expressions of SOTS
solutions are defined in Theorem 1. Under the assumptions (A)-(C), (i)-(ii), Lem-

ma 1 and 2, if u(0) ∈ L∞(0, T ; (H4(Ω))3),
∂u(0)

∂t
∈ L∞(0, T ; (H3(Ω))3),

∂2u(0)

∂t2
∈

L∞(0, T ; (H2(Ω))3),
∂3u(0)

∂t3
∈ L∞(0, T ; (H1(Ω))3),

∂4u(0)

∂t4
∈ L∞(0, T ; (L2(Ω))3),

T (0) ∈ L∞(0, T ;H4(Ω)),
∂T (0)

∂t
∈ L∞(0, T ;H2(Ω)),

∂2T (0)

∂t2
∈ L∞(0, T ;H1(Ω));

then we have the following error estimate of SOTS solutions

(49)

∥∥∥∂u
(2ε)
∆ (x, t)

∂t

∥∥∥
L∞(0,T ;(L2(Ω))3)

+
∥∥u(2ε)

∆ (x, t)
∥∥
L∞(0,T ;(H1

0 (Ω))3)

+
∥∥T (2ε)

∆ (x, t)
∥∥
L∞(0,T ;L2(Ω))

+
∥∥T (2ε)

∆ (x, t)
∥∥
L2(0,T ;H1

0 (Ω))
≤ C(T )ε
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where C(T ) is a constant independent of ε, but dependent of T .
Proof : Firstly, the following two equalities can be obtained from (43) and (44)

(50)

σi(u
(2ε)) = njC

ε
ijkl(x)ε

ε
kl(u

(2ε))

= njCijkl(y)

{
ε−1ψ̃k(u

(0)
l ) + ε0

[
ε
(0)∗
kl (u(0)) + ψ̃k(u

(1)
l )

]

+ ε1
[
ε
(1)∗
kl (u(1)) + ψ̃k(u

(2)
l )

]}

= njCijkl(y)

{
ε0
[
ε
(0)∗
kl (u(0)) + ψ̃k

(
Nmn

l ε(0)∗mn − Pl(T
(0) − T̃ )

)]

+ ε1
[
ε
(1)∗
kl

(
Nmnε(0)∗mn −P(T (0) − T̃ )

)
+ ψ̃k

(
N jmn

l ψj(ε
(0)∗
mn ) +Hj

l ψj(T
(0))

+ F j
l

∂2u
(0)
j

∂t2
+Mmn

l ε(0)∗mn +Ql(T
(0) − T̃ )

)]}

= njCijkl(y)

{[
ε
(0)∗
kl (u(0)) + ψ̃k

(
Nmn

l

)
ε(0)∗mn − ψ̃k

(
Pl

)
(T (0) − T̃ )

]

+ ε1
[
ε
(1)∗
kl

(
Nmnε(0)∗mn −P(T (0) − T̃ )

)
+ ψ̃k

(
N jmn

l

)
ψj(ε

(0)∗
mn )

+ ψ̃k

(
Hj

l

)
ψj(T

(0)) + ψ̃k

(
F j
l

)∂2u(0)j

∂t2
+ ψ̃k

(
Mmn

l

)
ε(0)∗mn

+ ψ̃k

(
Ql

)
(T (0) − T̃ )

]}

= njCijkl(y)
[
ε
(0)∗
kl (u(0)) + ε1ε

(1)∗
kl

(
Nmnε(0)∗mn −P(T (0) − T̃ )

)]

+ σiY (N
mn)ε(0)∗mn − σiY (P)(T (0) − T̃ ) + εσiY (N

jmn)ψj(ε
(0)∗
mn )

+ εσiY (H
j)ψj(T

(0)) + εσiY (F)
∂2u(0)

∂t2
+ εσiY (M

mn)ε(0)∗mn

+ εσiY (Q)(T (0) − T̃ )

(51)

σT (T
(2ε)) = njk

ε
ij(x)ψj(T

(2ε))

= njkij(y)(ψj + ε−1ψ̃j)
[
T (0) + εMm(r,y)ψm(T (0)) + ε2S(r,y)

∂T (0)

∂t

+ ε2Rm(r,y)ψm(T (0)) + ε2Mmn(r,y)ψmψn(T
(0)) + ε2Gmn(r,y)

∂ε
(0)∗
mn

∂t

]

= njkij(y)ψj

[
T (0) + εMmψm(T (0)) + ε2S

∂T (0)

∂t
+ ε2Rmψm(T (0))

+ ε2Mmnψmψn(T
(0)) + ε2Gmn ∂ε

(0)∗
mn

∂t

]
+
[
σTY (M

m)ψm(T (0))

+ εσTY (S)
∂T (0)

∂t
+ εσTY (R

m)ψm(T (0))

+ εσTY (M
mn)ψmψn(T

(0)) + εσTY (G
mn)

∂ε
(0)∗
mn

∂t

]

These two formulas will be used in the following proof process.
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Secondly, we use the residual equation (48) to complete the error estimate. Since

∂u
(2ε)
∆i

∂t
is in L∞(0, T ;L2(Ω)),

∂u
(2ε)
∆i

∂t
cannot be directly used as test function for

residual equation (48). To overcome this difficulty, we use the density argument
[21,22]. In order to simplify the process of proof, this process is omitted. We assume
that r ∈ [r1, r2], where r1 and r2 denote the inner and outer radius of composite

structures, respectively. Then, multiplying by
∂u

(2ε)
∆i

∂t
r and T

(2ε)
∆ r on both sides of

(48) and integrating on Ω, the following equations are derived
(52)



∫

Ω

ρε
∂2u

(2ε)
∆i

∂t2
∂u

(2ε)
∆i

∂t
rdΩ−

∫

Ω

{
ψjσ

ε
ij(u

(2ε)
∆ , T

(2ε)
∆ )

+δi1[
σε
11(u

(2ε)
∆ , T

(2ε)
∆ )− σε

22(u
(2ε)
∆ , T

(2ε)
∆ )

r
]

+ δi2
2σε

12(u
(2ε)
∆ , T

(2ε)
∆ )

r
+ δi3

σε
31(u

(2ε)
∆ , T

(2ε)
∆ )

r

}∂u(2ε)∆i

∂t
rdΩ

=

∫

Ω

εHi(x,y, t)
∂u

(2ε)
∆i

∂t
rdΩ

∫

Ω

ρεcε
∂T

(2ε)
∆

∂t
T

(2ε)
∆ rdΩ +

∫

Ω

[
ψiq

ε
i (T

(2ε)
∆ ) +

qε1(T
(2ε)
∆ )

r
+ T̃ βε

ij

∂εεij(u
(2ε)
∆ )

∂t

]
T

(2ε)
∆ rdΩ

=

∫

Ω

εG(x,y, t)T
(2ε)
∆ rdΩ

Using the Green’s formula and integrating by parts on (52), the above identity can
be simplified as follows
(53)



∫

Ω

ρε
∂2u

(2ε)
∆i

∂t2
∂u

(2ε)
∆i

∂t
rdΩ +

∫

Ω

[
Cε

ijklε
ε
kl(u

(2ε)
∆ )− βε

ijT
(2ε)
∆

]
εεij(

∂u
(2ε)
∆

∂t
)rdΩ

=

∫

Ω

εHi

∂u
(2ε)
∆i

∂t
rdΩ +

∫

∪z∈Tε
∂Ez

Φi

∂u
(2ε)
∆i

∂t
rdΓy

∫

Ω

ρεcε
∂T

(2ε)
∆

∂t
T

(2ε)
∆ rdΩ−

∫

Ω

qεi (T
(2ε)
∆ )ψi(T

(2ε)
∆ )rdΩ +

∫

Ω

T̃ βε
ij

∂εεij(u
(2ε)
∆ )

∂t
T

(2ε)
∆ rdΩ

=

∫

Ω

εG(x,y, t)T
(2ε)
∆ rdΩ +

∫

∪z∈Tε
∂Ez

ϕT
(2ε)
∆ rdΓy

where Φi and ϕ result from using the Green’s formula on ∂Ez.
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Combining (50), (51) and Lemma 1 together, we can obtain
(54)




〈
Φi,

∂u
(2ε)
∆i

∂t

〉
=

∫

∪z∈Tε
∂Ez

Φi

∂u
(2ε)
∆i

∂t
rdΓy =

∑

z∈Tε

∫

∂Ez

σi(u
ε − u(2ε))

∂u
(2ε)
∆i

∂t
dΓy

=−
∑

z∈Tε

∫

∂Ez

σi(u
(2ε))

∂u
(2ε)
∆i

∂t
dΓy = 0

〈
ϕ, T

(2ε)
∆

〉
=

∫

∪z∈Tε
∂Ez

ϕT
(2ε)
∆ rdΓy =

∑

z∈Tε

∫

∂Ez

σT (T
ε − T (2ε))T

(2ε)
∆ dΓy

=−
∑

z∈Tε

∫

∂Ez

σT (T
(2ε))T

(2ε)
∆ dΓy = 0

Afterwards, it is easy to derive the following two identities by combining (53)
and (54)

1

2

∂

∂t

[ ∫

Ω

ρε(
∂u

(2ε)
∆i

∂t
)2rdΩ +

∫

Ω

Cε
ijklε

ε
kl(u

(2ε)
∆ )εεij(u

(2ε)
∆ )rdΩ

]

=

∫

Ω

εHi

∂u
(2ε)
∆i

∂t
rdΩ +

∫

Ω

βε
ijT

(2ε)
∆ εεij(

∂u
(2ε)
∆

∂t
)rdΩ

(55)

1

2

∂

∂t

[ ∫

Ω

ρεcε(T
(2ε)
∆ )2rdΩ

]
−

∫

Ω

qεi (T
(2ε)
∆ )ψi(T

(2ε)
∆ )rdΩ

=

∫

Ω

εG(x,y, t)T
(2ε)
∆ rdΩ−

∫

Ω

T̃ βε
ij

∂εεij(u
(2ε)
∆ )

∂t
T

(2ε)
∆ rdΩ

(56)

Then, the following equation is obtained by taking the sum of (56) and the product

of (55) and initial temperature T̃

1

2

∂

∂t

[ ∫

Ω

ρε(
∂u

(2ε)
∆i

∂t
)2T̃ rdΩ +

∫

Ω

Cε
ijklε

ε
kl(u

(2ε)
∆ )εεij(u

(2ε)
∆ )T̃ rdΩ

+

∫

Ω

ρεcε(T
(2ε)
∆ )2rdΩ

]
−

∫

Ω

qεi (T
(2ε)
∆ )ψi(T

(2ε)
∆ )rdΩ =

∫

Ω

εT̃Hi

∂u
(2ε)
∆i

∂t
rdΩ

+

∫

Ω

εGT
(2ε)
∆ rdΩ

(57)

Subsequently, we integrate both sides of (57) from 0 to t (0 < t ≤ T ) and it follows
that

[ ∫

Ω

ρε(
∂u

(2ε)
∆i (x, t)

∂t
)2T̃ rdΩ +

∫

Ω

Cε
ijklε

ε
kl(u

(2ε)
∆ (x, t))εεij(u

(2ε)
∆ (x, t))T̃ rdΩ

+

∫

Ω

ρεcε(T
(2ε)
∆ (x, t))2rdΩ

]
− 2

∫ t

0

∫

Ω

qεi (T
(2ε)
∆ (x, τ))ψi(T

(2ε)
∆ (x, τ))rdΩdτ

= 2

∫ t

0

∫

Ω

εT̃Hi

∂u
(2ε)
∆i (x, τ)

∂τ
rdΩdτ + 2

∫ t

0

∫

Ω

εGT
(2ε)
∆ (x, τ)rdΩdτ

+
[ ∫

Ω

ρε(
∂u

(2ε)
∆i (x, t)

∂t

∣∣
t=0

)2T̃ rdΩ +

∫

Ω

Cε
ijklε

ε
kl(u

(2ε)
∆ (x, 0))εεij(u

(2ε)
∆ (x, 0))T̃ rdΩ

+

∫

Ω

ρεcε(T
(2ε)
∆ (x, 0))2rdΩ

]

(58)
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Substituting the initial conditions and boundary conditions of residual equation
(48) into the above identity (58), the following equality is derived

(59)

[ ∫

Ω

ρε(
∂u

(2ε)
∆i (x, t)

∂t
)2T̃ rdΩ +

∫

Ω

Cε
ijklε

ε
kl(u

(2ε)
∆ (x, t))εεij(u

(2ε)
∆ (x, t))T̃ rdΩ

+

∫

Ω

ρεcε(T
(2ε)
∆ (x, t))2rdΩ

]
− 2

∫ t

0

∫

Ω

qεi (T
(2ε)
∆ (x, τ))ψi(T

(2ε)
∆ (x, τ))rdΩdτ

= 2

∫ t

0

∫

Ω

εT̃Hi

∂u
(2ε)
∆i (x, τ)

∂τ
rdΩdτ + 2

∫ t

0

∫

Ω

εGT
(2ε)
∆ (x, τ)rdΩdτ

+
[ ∫

Ω

ρε(εψ̃2i(x))
2T̃ rdΩ +

∫

Ω

Cε
ijklε

ε
kl(εψ̃1(x))ε

ε
ij(εψ̃1(x))T̃ rdΩ

+

∫

Ω

ρεcε(εψ̃3(x))
2rdΩ

]

Until now, the vital identity (59) for Theorem 2 are gained. Starting from here, we
will get the final proof.

Owing to (A) and (B), and using Poincaré-Friedrichs inequality in curvilinear
coordinates [16–18], Lemma 2 and r ∈ [r1, r2], it is easy to acquire the following
inequality by transforming left side of equation (59)
(60)∫

Ω

ρε(
∂u

(2ε)
∆i (x, t)

∂t
)2T̃ rdΩ +

∫

Ω

Cε
ijklε

ε
kl(u

(2ε)
∆ (x, t))εεij(u

(2ε)
∆ (x, t))T̃ rdΩ

+

∫

Ω

ρεcε(T
(2ε)
∆ (x, t))2rdΩ − 2

∫ t

0

∫

Ω

qεi (T
(2ε)
∆ (x, τ))ψi(T

(2ε)
∆ (x, τ))rdΩdτ

≥ ρ0T̃ r1

∥∥∥∂u
(2ε)
∆ (x, t)

∂t

∥∥∥
2

(L2(Ω))3
+ T̃ r1C1

∥∥∥u(2ε)
∆ (x, t)

∥∥∥
2

(H1
0 (Ω))3

+ ρ0c0r1

∥∥∥T (2ε)
∆ (x, t)

∥∥∥
2

L2(Ω)
+ r1C2

∫ t

0

∥∥∥T (2ε)
∆ (x, τ)

∥∥∥
2

H1
0 (Ω)

dτ

≥ λ1

(∥∥∥∂u
(2ε)
∆

∂t

∥∥∥
2

(L2(Ω))3
+
∥∥∥u(2ε)

∆

∥∥∥
2

(H1
0 (Ω))3

+
∥∥∥T (2ε)

∆

∥∥∥
2

L2(Ω)
+

∫ t

0

∥∥∥T (2ε)
∆

∥∥∥
2

H1
0 (Ω)

dτ
)

where C1 and C2 result from Korn’s inequality and Poincaré-Friedrichs inequality

in curvilinear coordinates respectively, λ1 = min(ρ0T̃ r1, T̃ r1C1, ρ
0c0r1, r1C2).
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After that, using Schwarz’s inequality and Young’s inequality, we obtain the
following inequality by transforming the right side of equation (59)
(61)

2

∫ t

0

∫

Ω

εT̃Hi

∂u
(2ε)
∆i (x, τ)

∂t
rdΩdτ

+ 2

∫ t

0

∫

Ω

εGT
(2ε)
∆ (x, τ)rdΩdτ +

∫

Ω

ρε(εψ̃2i(x))
2T̃ rdΩ

+

∫

Ω

Cε
ijklε

ε
kl(εψ̃1(x))ε

ε
ij(εψ̃1(x))T̃ rdΩ +

∫

Ω

ρεcε(εψ̃3(x))
2rdΩ

≤
3∑

i=1

2

∫ t

0

∫

Ω

(εT̃Hir)
2 + (

∂u
(2ε)
∆i

∂τ
)2

2
dΩdτ + 2

∫ t

0

∫

Ω

(εGr)2 + (T
(2ε)
∆ )2

2
dΩdτ + Cε2

≤ C
[1
2
ε2 +

1

2

∫ t

0

∥∥∥∂u
(2ε)
∆

∂τ

∥∥∥
2

(L2(Ω))3
dτ

]
+ C

[1
2
ε2 +

1

2

∫ t

0

∥∥∥T (2ε)
∆

∥∥∥
2

L2(Ω)
dτ

]
+ Cε2

≤ Cε2 + C
[ ∫ t

0

∥∥∥∂u
(2ε)
∆

∂τ

∥∥∥
2

(L2(Ω))3
dτ +

∫ t

0

∥∥∥u(2ε)
∆

∥∥∥
2

(H1
0 (Ω))3

dτ +

∫ t

0

∥∥∥T (2ε)
∆

∥∥∥
2

L2(Ω)
dτ

+

∫ t

0

∫ τ

0

∥∥∥T (2ε)
∆

∥∥∥
2

H1
0 (Ω)

dsdτ
]

where C will denote a positive generic constant and have different values in different
places in this paper.

Denote C = C/λ1, without loss of generality and setting Θ(t) =
∥∥∂u

(2ε)
∆

∂t

∥∥2

(L2(Ω))3
+

∥∥u(2ε)
∆

∥∥2
(H1

0 (Ω))3
+

∥∥T (2ε)
∆

∥∥2
L2(Ω)

+

∫ t

0

∥∥T (2ε)
∆

∥∥2
H1

0 (Ω)
dτ , then we have Θ(t) ≤ Cε2 +

C

∫ t

0

Θ(τ)dτ by combining (60) and (61) together. It follows from Gronwall’s in-

equality [21,22] that Θ(t) ≤ C(T )ε2. Subsequently, there holds the following result
(62)
∥∥∥∂u

(2ε)
∆

∂t

∥∥∥
2

(L2(Ω))3
+
∥∥u(2ε)

∆

∥∥2
(H1

0 (Ω))3
+
∥∥T (2ε)

∆

∥∥2
L2(Ω)

+

∫ t

0

∥∥T (2ε)
∆

∥∥2
H1

0 (Ω)
dτ ≤ C(T )ε2

Then using the AM-GM inequality
a+ b+ c+ d

4
≤

√
a2 + b2 + c2 + d2

4
to the left

side of (62) and squaring root on both sides of the inequality (62), the following
inequality is obtained
(63)

∥∥∥∂u
(2ε)
∆

∂t

∥∥∥
(L2(Ω))3

+
∥∥u(2ε)

∆

∥∥
(H1

0 (Ω))3
+
∥∥T (2ε)

∆

∥∥
L2(Ω)

+
∥∥T (2ε)

∆ (x, t)
∥∥
L2(0,t;H1

0(Ω))

≤C(T )ε

With the arbitrariness of time t, we get the final convergence result as follows

(64)

∥∥∥∂u
(2ε)
∆ (x, t)

∂t

∥∥∥
L∞(0,T ;(L2(Ω))3)

+
∥∥u(2ε)

∆ (x, t)
∥∥
L∞(0,T ;(H1

0 (Ω))3)

+
∥∥T (2ε)

∆ (x, t)
∥∥
L∞(0,T ;L2(Ω))

+
∥∥T (2ε)

∆ (x, t)
∥∥
L2(0,T ;H1

0 (Ω))
≤ C(T )ε

where C(T ) is a constant independent of ε, but dependent of T .
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4. Second-order two-scale numerical algorithm

In this section, we present the SOTS numerical algorithm for the multiscale
problem (1). The detailed procedures of the SOTS numerical algorithm for two-
dimensional and three-dimensional multiscale problem (1) are listed as follows

(1) Define the geometric structure of the unit cell Y = (0, 1)N (N = 2, 3) and
homogenized macroscopic region Ω in R

N , and verify the material param-
eters of composite materials. Then, generate the triangular finite element
mesh in R

2 and tetrahedral mesh in R
3, and define the linear conforming

finite element spaces Vh1(Y ) and Vh0(Ω) for the above two regions respec-
tively, where h1 and h0 represent the finite element mesh sizes of unit cell
Y and homogenized macroscopic region Ω.

(2) Solve the first-order auxiliary cell functions defined by (21)-(23) on Vh1(Y )
corresponding to different representative macro-coordinate parameters rs1 ∈
[r1, r2], where s1 = 1, 2, · · · , L̄. The specific FEM scheme for solving aux-
iliary cell function defined by (23) is given as follows

(65) −

∫

Y

kij ψ̃j(Mm)ψ̃i(υ
h1)dY =

∫

Y

kimψ̃i(υ
h1)dY, ∀υh1 ∈ Vh1(Y ).

Other first-order auxiliary cell functions can be solved similarly. And then,

the homogenized material parameters ρ̂, Ĉijmn, β̂ij , Ŝ and k̂ij are evaluat-
ed by making integral of (26) corresponding to different macro-coordinate
parameters rs1 . After that, the homogenized material coefficients can be
computed by interpolation method on each nodes of Vh0(Ω).

(3) Using the uniform time step ∆t =
T

M
to discretize time-domain (0, T ) as

0 = t0 < t1 < · · · < tM = T and tN = N∆t(N = 0, · · · ,M), we denote
fN
i = fi(x, tN ). Then, the homogenized problem (27) is solved by coupled
FDM-FEM method in a coarse mesh and with a large time step on the
whole domain Ω× (0, T ). The concrete hybrid FDM-FEM scheme is given
as follows

(66)





∫

Ω

ρ̂
u
(0),N+1
i − 2u

(0),N
i + u

(0),N−1
i

(∆t)2
νh0

i rdΩ

+

∫

Ω

Ĉijklε
(0)∗
kl (u(0),N+1)ε

(0)∗
ij (νh0)rdΩ

−

∫

Ω

β̂ij(T
(0),N+1 − T̃ )ε

(0)∗
ij (νh0)rdΩ

=

∫

Ω

fN+1
i νh0

i rdΩ, ∀νh0 ∈
(
Vh0(Ω)

)N
,

∫

Ω

Ŝ
T (0),N+1 − T (0),N

∆t
ϕ̃h0rdΩ

+

∫

Ω

k̂ijψj(T
(0),N+1)ψi(ϕ̃

h0)rdΩ

+

∫

Ω

T̃ β̂ij
ε
(0)∗
ij (u(0),N+1)− ε

(0)∗
ij (u(0),N )

∆t
ϕ̃h0rdΩ

=

∫

Ω

hN+1ϕ̃h0rdΩ, ∀ϕ̃h0 ∈ Vh0(Ω).
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It is easy to know that the dynamic system (27) is a strongly coupled
hyperbolic and parabolic system. In order to maintain the unconditional
stability of our SOTS numerical algorithm, the implicit FDM scheme is
employed in time domain of hybrid FDM-FEM scheme (66).

(4) Using the same mesh as first-order auxiliary cell functions, the second-order
auxiliary cell functions defined by (34)-(42), which correspond to different
macro-coordinate parameters rs1 , are solved by the similar FEM scheme to
(65) on Vh1(Y ), respectively.

(5) For arbitrary point (x, t) ∈ Ω×[0, T ], we use the interpolation method to get
the corresponding values of first-order auxiliary cell functions, second-order
auxiliary cell functions and homogenized solutions. The spatial derivatives

ε
(0)∗
mn , ψj(ε

(0)∗
mn ), ψm(T (0)) and ψmψn(T

(0)) in Theorem 1 are evaluated by
the average technique on relative elements [25,26], and the temporal deriva-

tives
∂T (0)

∂t
,
∂2u

(0)
i

∂t2
and

∂ε
(0)∗
mn

∂t
in Theorem 1 are evaluated by using the

hybrid FDM-FEM schemes (66) at every time steps. Then, the displace-
ment field u(2ε)(x, t) and temperature field T (2ε)(x, t) can be solved by the
formulas (43) and (44). Moreover, we can further use the higher-order
interpolation method to gain the high-precision SOTS solutions [22].

5. Numerical examples and discussion

In this section, three numerical examples are given to verify the validity and
feasibility of the SOTS numerical algorithm we developed. Since it is difficult to
find the analytic solutions for the two-way coupled system (1), we replace uε(x, t)
and T ε(x, t) with ue(x, t) and Te(x, t) which are precise FEM solutions for original
problem (1) on a very fine mesh. Without confusion, some notations are introduced
as follows
(67)

Terror0 =
||Te − T (0)||L2

||Te||L2

,Terror1 =
||Te − T (1ε)||L2

||Te||L2

,Terror2 =
||Te − T (2ε)||L2

||Te||L2

.

(68)

TError0 =
|Te − T (0)|H1

|Te|H1

,TError1 =
|Te − T (1ε)|H1

|Te|H1

,TError2 =
|Te − T (2ε)|H1

|Te|H1

.

(69)

uerror0 =
||ue − u(0)||L2

||ue||L2

,uerror1 =
||ue − u(1ε)||L2

||ue||L2

,uerror2 =
||ue − u(2ε)||L2

||ue||L2

.

(70)

uError0 =
|ue − u(0)|H1

|ue|H1

,uError1 =
|ue − u(1ε)|H1

|ue|H1

,uError2 =
|ue − u(2ε)|H1

|ue|H1

.

where |ue − u(0)|H1 =
( N∑

i,j=1

∣∣∣∣εij(ue − u(0))
∣∣∣∣
L2

) 1
2

.

5.1. Example 1: The planar dynamic thermo-mechanical problem. In
this example, a fiber reinforced cylinder shell with periodicity in radial and hoop
directions is considered. The macrostructure Ω and unit cell Y are shown in Fig.
1, where Ω = (r, θ) = [π, 3π/2]× [0, π] and ε = π/10.

The non-dimensional material property parameters of this example are listed in
Table 1.
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Figure 1. Example 1: (a) Actual physical area; (b) Computa-
tional domain Ω; (c) Unit cell Y .

Table 1. Material property parameters.

Property Matrix Inclusion
Young’s modulus E=3.0×107 E=1.5×104

Poisson’s ratio ν=0.3 ν=0.25
Mass density ρ=10.0 ρ=1.0
Specific heat c=1.0 c=0.1

Thermal modulus βij=50.0(i=j) or 0 βij=1.0(i=j) or 0
Thermal conductivity kij=3.3(i=j) or 0 kij=0.01(i=j) or 0

The data in original problem (1) of this example are given as follows

f1(x, t) = −2000, f2(x, t) = −2000, h(x, t) = 200,

û(x, t) = 0, T̂ (x, t) = 20.0 in ∂Ω,

u0 = 0, u1(x) = 0, T̃ = 20.0 in Ω.

(71)

Now, we implement the triangular mesh generation to original problem (1), aux-
iliary cell problems and corresponding homogenized problem (27). Then, the com-
putational cost of FEM elements and nodes is listed in Table 2.

Table 2. Comparison of computational cost (∆t=0.002, t ∈ [0,1]).

Original equation Cell problem Homogenized equation
number of elements 33500 854 3600
number of nodes 17021 468 1891

The SOTS algorithm is implemented for this example. After numerical compu-
tation, Fig. 2 and Fig. 3 show the numerical results for different types of solutions

T (0), T (1ε), T (2ε), T ε and u
(0)
2 , u

(1ε)
2 , u

(2ε)
2 , uε2 at t = 1.0, respectively.

The evolutive relative errors of temperature and displacement fields are shown
in Fig. 4.

From Table 2, one can easily see that the computational cost of SOTS algorithm
is much less than that of precise FEM. It means that SOTS solutions can greatly
save computer memory, which is meaningful and important to practical engineering
computation. From Fig. 2 and Fig. 3, one can see that only SOTS solutions, which
are almost the same as the precise FEM solutions, can accurately capture the micro-
scale fluctuation information due to the heterogeneities of composite materials. The
homogenized and FOTS solutions are far from enough to provide a high accuracy
solution. Besides, it is clear to see that the accuracy of SOTS solutions is much



SOTS ANALYSIS METHOD FOR DYNAMIC THERMO-MECHANICAL PROBLEMS 855

(a) (b)

(c) (d)

Figure 2. Example 1: (a) T (0); (b) T (1ε); (c) T (2ε); (d) T ε at t = 1.0.

better than homogenized and FOTS solutions from Fig. 4 whether it is the relative
errors of temperature or displacement fields. From Fig. 4, we can also find that
our SOTS numerical algorithm is stable and effective after long-time numerical
computation.

5.2. Example 2: The axisymmetric dynamic thermo-mechanical prob-

lem. This example studies the axisymmetric dynamic thermo-mechanical problem
with periodicity in axial and radial directions. The macrostructure Ω and unit cell
Y are shown in Fig. 5, where Ω = (r, z) = [1, 1.5] × [0, 1] and ε = 1/12. It is
worth noting that the computational domain Ω of this axisymmetric problem is a
cross-section of actual physical area Fig. 5(a) because there is no need to carry out
the geometric transformation for axisymmetric problem.

The non-dimensional material property parameters of this example are listed in
Table 3.

Table 3. Material property parameters.

Property Matrix Inclusion
Young’s modulus E=3.0×106 E=1.5×104

Poisson’s ratio ν=0.3 ν=0.25
Mass density ρ=10.0 ρ=1.0
Specific heat c=1.0 c=0.1

Thermal modulus βij=50.0(i=j) or 0 βij=1.0(i=j) or 0
Thermal conductivity kij=3.3(i=j) or 0 kij=0.01(i=j) or 0
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(a) (b)

(c) (d)

Figure 3. Example 1: (a) u
(0)
2 ; (b) u

(1ε)
2 ; (c) u

(2ε)
2 ; (d) uε2 at t = 1.0.
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Figure 4. Example 1: (a) Terror; (b) TError; (c) uerror; (d) uError.
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Figure 5. Example 2: (a) Actual physical area; (b) Computa-
tional domain Ω; (c) Unit cell Y .

The data in problem (1) of this example are given as follows

f1(x, t) = −2000, f3(x, t) = −2000, h(x, t) = 500,

û(x, t) = 0, T̂ (x, t) = 10.0 in ∂Ω,

u0 = 0, u1(x) = 0, T̃ = 10.0 in Ω.

(72)

Moreover, the computational cost of FEM elements and nodes is listed in Table
4 after mesh generation.

Table 4. Comparison of computational cost (∆t=0.002, t ∈ [0,1]).

Original equation Cell problem Homogenized equation
number of elements 65088 904 3600
number of nodes 32905 493 1891

Next, the SOTS algorithm is adopted for computing and simulating this example.
After numerical computation, Fig. 6 and Fig. 7 depict the numerical results for

different types of solutions T (0), T (1ε), T (2ε), T ε and u
(0)
3 , u

(1ε)
3 , u

(2ε)
3 , uε3 at t = 1.0,

respectively.
Then, we show the evolutive relative errors of temperature and displacement

fields in Fig. 8.
From Table 4, we can conclude that the SOTS numerical algorithm consumes

less computational resources compared to precise FEM method, which is of great
significance for engineering computation. Fig. 6 and Fig. 7 demonstrate that on-
ly SOTS solutions are in good agreement with the precise FEM solutions both in
temperature and displacement fields. The homogenized solutions and FOST so-
lutions can not accurately capture the thermo-mechanical responses in composite
structures. Furthermore, it is easy to find that only the SOTS solutions can pro-
vide enough accuracy for engineering applications from Fig. 8. The accuracy of
homogenized solutions and FOTS solutions is far from enough especially for the
H1 semi-norm. Hence, it is of great practical value to develop the SOTS solutions
for multiscale problem (1).

5.3. Example 3: Example 2 with a large number of inclusions. In order to
further validate the stability and effectiveness of our SOTS algorithms, this example
continues to discuss Example 2 with a large number of inclusions. In this example,
we define Ω = (r, z) = [1, 1.5]× [0, 1] and ε = 1/24. The total number of unit cells
in this example is four times as Example 2.
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(a) (b)

(c) (d)

Figure 6. Example 2: (a) T (0); (b) T (1ε); (c) T (2ε); (d) T ε at t = 1.0.

Then, the triangular mesh generation is implemented to original problem (1),
auxiliary cell problems and corresponding homogenized problem (27). The detailed
information of FEM elements and nodes is listed in Table 5.

Table 5. Comparison of computational cost (∆t=0.002, t ∈ [0,1]).

Original equation Cell problem Homogenized equation
number of elements 260352 904 3600
number of nodes 130897 493 1891

The SOTS algorithm is implemented to this example with a large number of
inclusions. After numerical computation, Fig. 9 exhibits the numerical results for

solutions T (2ε), T ε, u
(2ε)
1 , uε1, u

(2ε)
3 and uε3 at t = 1.0, respectively.

In addition, the evolutive relative errors of temperature and displacement fields
are shown in Fig. 10.

By analyzing the mesh data in Table 5, we can find that our SOTS method is
very cheap to simulate original problem (1) compared to precise FEM, which can
greatly save computer memory without reducing numerical precision. According
to the numerical result in Fig. 9, it concludes that the SOTS solutions of temper-
ature and displacement fields agree well with precise FEM solutions. From Fig.
10, it is easy to see that only SOTS solutions can provide enough numerical ac-
curacy not only in L2 norm but also in H1 semi-norm. It means that our SOTS
algorithm is stable and effective for composite structures with a large number of
inclusions. Furthermore, it can be easily seen that the SOTS solutions own the
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(a) (b)

(c) (d)

Figure 7. Example 2: (a) u
(0)
3 ; (b) u

(1ε)
3 ; (c) u

(2ε)
3 ; (d) uε3 at t = 1.0.
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Figure 8. Example 2: (a) Terror; (b) TError; (c) uerror; (d) uError.
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(a) (b)

(c) (d)

(e) (f)

Figure 9. Example 3: (a) T (2ε); (b) T ε; (c) u
(2ε)
1 ; (d) uε1; (e)

u
(2ε)
3 ; (f) uε3 at t = 1.0.

highest numerical accuracy compare with the homogenized solutions and FOST
solutions especially in the H1 semi-norm. In practical applications, engineers are
more concerned about the gradients of temperature and displacement fields, which
represent the heat flux and strain fields. Therefore, developing the SOTS solutions
for simulating the thermo-mechanical behaviors of composite structures is of great
importance in engineering application.

6. Conclusions

In this paper, we develop a novel SOTS analysis method and corresponding
numerical algorithm for dynamic thermo-mechanical problems of composite struc-
tures with cylindrical periodicity. The new contributions of this paper are the SOTS
analysis, the convergence result with an explicit rate for the SOTS solutions, and
corresponding SOTS numerical algorithm. Numerical experiments show that the
SOTS numerical method we proposed is stable and effective for multiscale problem
(1). Furthermore, numerical results show that only SOTS solutions can accurate-
ly capture the micro-scale oscillating information and provide enough numerical
accuracy for engineering applications, which support the theoretical results of this
paper. It also should be underlined that, in order to verify the validity of our SOTS
method, we use precise FEM solutions of the original problem (1) in a very fine
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Figure 10. Example 3: (a) Terror; (b) TError; (c) uerror; (d) uError.

mesh as reference solutions. In the actual engineering applications, we do not need
to numerically solve the original problem (1) in a very fine mesh. Sometimes it is
scarcely possible to obtain FEM reference solutions for large-scale engineering prob-
lems. However, we can analyze and compute these complex large-scale problems by
using the SOTS method we proposed. Moreover, the high-accuracy solutions pro-
vided by our SOTS method encourage the application of proposed SOTS method
to deal with the thermal deformation and failure analysis of complicated compos-
ite structures. The unified multiscale framework developed in this paper can be
extended to other multi-physics coupled problems.
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