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LOCAL ANALYSIS OF THE LOCAL DISCONTINUOUS
GALERKIN METHOD WITH THE GENERALIZED
ALTERNATING NUMERICAL FLUX FOR TWO-DIMENSIONAL
SINGULARLY PERTURBED PROBLEM

YAO CHENG, QIANG ZHANG, AND HALJIN WANG*

Abstract. In this paper, we analyze the local discontinuous Galerkin method with the gener-
alized alternating numerical flux for two-dimensional singularly perturbed problem with outflow
boundary layers. By virtue of the two-dimensional generalized Gauss-Radau projection and ener-
gy technique with suitable weight function, we obtain the double-optimal error estimate, namely,
the convergence rate in L?-norm out of the outflow boundary layer is optimal, and the width
of boundary layer is quasi-optimal, when piecewise tensor product polynomial space on quasi-
uniform Cartesian meshes are used. Numerical experiments are given to verify the theoretical
results.
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1. Introduction

Let Q = (0,1)? be the unit square with boundary I', and T > 0 is a final time.
Consider the following two-dimensional singularly perturbed (SP) problem

(1a) w—elu+pB-Vu+cu =f in Qx(0,T],
with the Dirichlet boundary condition

(1b) u(z,y,t) = g(x,y,t) on T x(0,7T],
and the initial condition

(1e) u(x,y,0) = up(x,y) in Q.

Here 0 < € <« 1 is the diffusion coefficient, 8 = (1, 82) is the convective velocity
field. Without loss of generality, we assume [; and 2 are positive constants. We
also assume the given functions ¢, f, g and ug are smooth enough.

It is well known that the exact solution of the SP problem (1) may change rapidly
in a narrow region nearby the outflow boundaries x = 1 and y = 1, and it always
appear boundary layer with width O(clog(1/¢)). To give a nice numerical result to
this problem, many algorithms have been presented and developed [17]. The local
discontinuous Galerkin (LDG) method is a special class of DG methods which has
received increasing interest during the last two decades. It was firstly introduced
by Cockburn and Shu [8] for the convection-diffusion problems, motivated by the
successful numerical experiment of Bassi and Rebay [1] for compressible Navier-
Stokes problems. Since the discontinuous finite element spaces do not require any
continuity at interface boundaries, the LDG method is very good at solving those
fast-varying, even those discontinuous solutions [11]. For more knowledge about
this method, please refer to the review paper [21] and the reference therein.
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There have been many global error analysis of the LDG methods for convection
diffusion problems, for example [3,9,15,19,21], where the exact solution is assumed
to be smooth enough in the whole domain. However, for SP problems, the exact
solutions often have no uniform smoothness in the whole domain, and the corre-
sponding global results become useless. To show the numerical advantage of the
LDG method for SP problems, local analysis has been carried out in [5,6,23], where
the double-optimal local error estimate was obtained. Here double-optimal means
that the convergence rate in L?-norm out of the outflow boundary layer is optimal,
and the width of boundary layer is quasi-optimal. Numerical methods related to
this topic also include the space-time DG method [13], the interior penalty DG
method [10], continuous interior penalty method [2] and so on.

It is worthy to point out that, in [5,6,23] the double-optimal error estimates
were established for purely alternating numerical flux, which means the purely up-
wind numerical flux for the convection and the purely alternating fluxes for the
diffusion. However, this type of flux is often not easy to define for linear equa-
tions with varying-coefficients or even nonlinear equations [4]. From the view of
practice, the generalized alternating numerical flux (GANF) is used more wide-
ly in the LDG method. Recently, motivated by the optimal error estimate of an
upwind-biased DG method [16], we studied the LDG method with GANF for lin-
ear convection-diffusion problems in [4]. By virtue of the generalized Gauss-Radau
(GGR) projection [15,16], we obtained the optimal L?-norm error estimate in the
whole domain. Furthermore, by establishing the sharp approximation property of
the one-dimensional GGR (1-d GGR) projection with the weight function, we also
derived in [7] the double-optimal local error estimate for the one-dimensional SP
problem with stationary outflow boundary layer.

The objective of this paper is to extend the results of [7] to the two-dimensional
SP problems with stationary outflow boundary layers. We will present the local
stability and show the double-optimal local error estimate of LDG method with
GANF for Q% element on quasi-uniform Cartesian meshes, where OF means the
space of polynomials of degree at most £ > 0 in each variable.

As an important ingredient in the local analysis, the weight function must be
defined carefully. In this paper, we take it as the exponential decay function along
each spatial directions. Besides, to achieve the double optimal local error estimate,
our main technique is the two-dimensional GGR (2-d GGR) projection. The corre-
sponding properties of 2-d GGR projections with the weight function are not easy
to be established. Specifically, there are mainly two issues we have to consider.

(1) One is to obtain the optimal approximation property of 2-d GGR pro-
jections with weight function. Since the 2-d GGR projections have much
complex expressions under the Dirichlet boundary condition, the direct ma-
nipulations based on the matrix analysis as [7] is much involved. The main
difficulty is caused by the definition of GGR projection at the corner points.
To overcome this difficulty, we will carefully investigate the structures of
coefficient matrices and use some properties of tensor product of matrices.

(2) The other is to get the superconvergence property of 2-d GGR, projections
with weight function. Different from one dimensional case, the approxi-
mation errors for 2-d GGR projections can not be completely eliminated,
in each element and on the interior element boundaries. To derive the
optimal error estimate, we need to explore the superconvergence proper-
ty, which has been discussed in [4], where the 2-d GGR projection under
periodic boundary condition was considered. However, in the local error
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analysis, this property equipped with suitable weight function need to be
established.

The rest of this paper is organized as follows. In Section 2, we present the
LDG scheme based on GANF for the two-dimensional SP problem. In Section
3, we present the local stability analysis by virtue of the local L? projection and
the suitable weight function. Section 4 is the main body of this paper, where the
double-optimal local error estimate are established with the help of the 2-d GGR
projection. In Section 5, we present some numerical experiments to verify the
theoretical results. Some concluding remarks and some technical proofs are given
in Section 6 and Appendix, respectively.

2. LDG scheme

=1,...,

element K;; = I; x J;j, where I; = (xi_%,xH%) and J; = (yj_%,yﬂ_%). Denote by

the maximum cell size h = Ir{naéc hi, where hg is the diameter of element K. The
[S397%

associated finite element space is defined as
(2) Vi ={v e L*(Q) :v|x € Q"(K),VK € Q},

where QF(K) denotes the space of polynomials of degree at most k& > 0 in each
variable on K. Obviously, this space is contained in the following broken Sobolev
space

(3) H™(Qp) ={ve L*(Q) :v|x € H"(K),YK € Q.}, m>1,

whose function is allowed to have discontinuities across the element interfaces. De-

£ +
note Vitly = hmx*}xirl v(x,y) and Vpjird = hmy‘)yji+l v(x,y) by the traces along

different directions. VVe2 define the jumps and the weigﬁted averages as

ot R R
(4a) [Wlivsy =051y ~Viny  Plegrs =00 — v
4b v =aw .+ o] v =av ., +av’
(4b) i+3.y it 3.y it+g,y zj+3 T+ 5 g+’

forany ¢ =1,2,--- ,Ny, —land j =1,2,---,N, — 1. Definition (4b) can be also
extended to ¢ = 0, N, and j = 0, N,, with some special parameters, which will be
given in the later analysis. Here and below, we use the simplified notation & = 1 —«
for an arbitrary parameter o.

By introducing two auxiliary variables p = \/eu, and ¢ = \/eu,, equation (1)
can be written in the following equivalent first-order system

(53‘) Ut + (Blu - \/gp)m + (B?u - \/EQ)U +cu= fu
(5b) p = Veug,
(5C) q= \/guu
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The LDG scheme is to seek up,pp,qn € Vi, such that in each element K;; € €y,
the following variational forms

/K [((Uh)t + cup)vi, — (Brun — vepn) (vn)e — (Baun — \/th)(vh)y}dxdy

ij

73

(6a) +/ {(iLZu’U}:)m,j—i-% — (hauvi), j——}dx_‘/K fundxdy,

i ij

(6b) / [phrh + \/guh(rh)w}dxdy +/ {(%G)H%,y - (ﬁpr]j)ifé,y}dy =0,
K J;

ij
(6¢) / [QhSh + \/guh(Sh)y}dwdy +/ {(ﬁqsﬁ)m,ﬁ% - (hqs;)myj,%}dx =0,
Kij I;

hold for all test functions vy, r, s, € Vi, The “hat” terms in (6) are the so-called
numerical fluxes which are very important in the design of LDG methods. In this
paper, we would like to adopt the generalized alternating numerical flux, similar
as [4]. Namely, on the interior element interfaces, we define

(Ta) (b hp)iy sy = (Bruf” — VEp ¥ —Vault ) s o i=1,.. . No— 1,
(7b)  (hous hg)y 41 = (Boup ™ — N —VEup®), ha j=1, N, — 1,

with 6; > 1 and 6, >
when 91 = 92 =1. If
5-

fluxes similarly as [3,

(7C) (iLl’un}/:Lp)%’y (Blg \/_ph ) \/_g)

% Obviously, they are purely alternating numerical flux
the element boundary lies on I', we define the numerical
7)1

Ly
27

(7d) (h2us hg)y,s = (B29 = VEaT, —VEG)s 1

and

(7e) (Bluvilp)N +3 (ﬂluh —7(9 — ) \/_pha \/_Q)N +1,y
(7) (]A”L2u=i1q)m,zvy+§ = (Bouy, —72(9 — up,) — Veq, . —VEg), Ny+3-

Here v and 72 depend on the ratio of viscosity coefficient and mesh size, in this
paper we take 3 = y2 =¢/h.

The initial solution can be taken as any (k + 1)-th order approximation of wy,
for example, up,(0) = II,ug, where IIj, is the standard local L2-projection onto V.
Namely, for any function z € L?(f2), the projection II;z is defined as the unique
function in V}, such that in each K € €, there holds

(8) (Mpz — z,vp) =0, Vo, € QF(K),

where (-, ) ;- is the standard inner product in L*(K).

Till now we have completed the definition of the LDG scheme for problem (1).
To facilitate the analysis, we sum up the variation forms in (6) over all elements
and obtain the following compact form: find wy, = (up,pn,qn) € Vi = (Vi)3, such
that

9) ((un)e, vn) + Br(wn, xn) = Fr(t; xn),  YXn = (Un,Th, 1) € Vh,
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where (-,-) = >, (-,-) . The bilinear functional in (9) is defined by

Bu(wn, xn) = (cun,vn) + (Ph,7n) + (qn, sn) — Hi(un, vn) — Ha(un, vn)
(10) +VEKD (un, ) + K82 (uns 51)] + VELLD (pn, vn) + L2 (g, v0)]
with

Hi(w,v) = {(frw,vs)

Ny N,—1
+3 [ (3 B = (1wl Ly )
j=17Ji * =1

Ha (U}, ’U) = <52’LU, Uy>

N, Ny-1
3 /1 (X Bow [l iy — (5o +2)wn); .y )dr,
= /I =
Ny N,—1
KO (w,v) = (w,v,) —I—Z/J Z (wel’y[[v]])H%’ydy,
=177 =1

N, Ny—1
K52 (w,v) = (w,v,) + Z/l Y (@[], 1 de,
=1 é

k1 ]:1

ol 4

~ Ny N,—1 _
) = o)+ 3 [ (X @Dy = o)y Ly, + (0], )
=177 " =1

~ N Ny_l ~
£F ) = wo) + 3 [ (X @ oy — 0], + (w0 )
i=1 7L =1
for any w,v € H' (). The linear functional in (9) is defined by
Ny
Fultin) = (o) + 3 [ Dr(@id o+ Ar(avid) )
j=1"Ji
Ny
+ Z/ [’72(gv;)x,Ny+% + BZ(QU}T)z,%}d‘T
i=1 v 1i
Ny
HVEX [ sy — )y
j=1"Ji

N
() SVED [ 10y~ (o5i) ]
i=171i

There hold the following relationships which will be used frequently in this paper.
Lemma 2.1. For any w,v € H*(Q4,), there hold identities
(12) £ (w,v) = =K (v, w), £5(w,0) = —KE (v, w).

Proof. They are obtained directly by using integration by parts and some trivial
manipulations, so we omit the details here. O
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3. Local stability

In this section we devote us to obtaining the local stability for the considered
LDG scheme. We will first give some notations, then introduce the weight function
as well as some related properties. After that, we present two important properties
of LDG spatial discretization, and the local stability result.

3.1. Some notations. Denote ||| 12(py as the standard L? norm in D, and drop
the subscript if D = Q. For any z € H*(£2,), define

Ny Ny
Il = {z [ 3Gy ey

Ja=1

N Ny 2
(13) - Z/I > {(Z;H%y + (zijé)ﬂdx} :

ig=1

as the L? norm of function z on all element interfaces I'j,. Furthermore, for any
z € H™(Dy) with m > 0 and a collection of elements set Dj,, assume that 1 is an
arbitrary weight function, we define the weighted semi-norm as

(14) |Z|’¢'7m-,Dh,_{ Z Z /K(U)DiDiz)dedy} )

i+j=m KeDy

where D%z denotes the i-th order derivative of z with respect to the spatial variable
z (similar comments can be applied to D;z) If v =1 or Dy = Qp, we will omit
the corresponding subscripts.

3.2. Weight function and related properties. In this paper, we employ the
weight function

(15) v = (5 )e (5

with cut-off function

(16) o(r) = { r-0

2—¢e", r<o,

where o > 2 is a sufficiently large constant and (xg,yo) € Q is a fixed point which
will be given in the local analysis. The similar weight functions have been adopted
in [5-7,13,22]. This weight function satisfies the following elemental properties
[5-T7):
(1) It is bounded. Namely, ¥ (z,y) € (1,4) if (z,y) € Qo = (0,20) x (0,0),
and ¢(z,y) € (0,2h#) if > xo + pohlog ¢ or y > yo + pohlog + with any
w> 0.
(2) It is decreasing in both z and y direction. Namely, ¢, < 0 and v, < 0.
(3) Its derivatives have similar form in the sense

(17) Yol < Cloh) ™ W], |1hy| < Clah) ™! 9]

Here and below, the symbol C' denotes a generic positive constant indepen-
dent of 0, xg,yo, h and €. It may have different value at each occurrence.
(4) On any domain D of diameter oh,

(18) RO(D,v¢)+ RO(D, ) + RO(D,v¢y,) < C,
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where RO(D,v) = max |v(z,y)|/ min |v(z,y)| represents the relative
(z,y)€D (z.y)€D

oscillation [14] on domain D. This property implies that the weight function
is smooth and changes slowly in a local region.

Based on the properties (17) and (18), we can set up the following inverse in-
equalities and approximation properties. Similar discussion for these conclusions
can be found in [5-7], so we omit the detailed proofs here.

Lemma 3.1. For any zp € Vy, there hold
(19) lznlpr < ChMWznll,  [[znlin, < Ch™2 [gzall.

Lemma 3.2. Let z be a given function, and denote by Il;-z = z — Iz the
L?-projection error. There holds the following approzimation properties:

(1) If 2 € H*TY(Qy) with s > 0, then

(20) [T 2|| + RE QI 2|, < CR™REFL 2],

(2) If z, € Vi, then
(21a) [ 0 (2 2) | 4+ b2 [ I (022 n, < ChEo™ 2 |[[Va|2 24|
(21b) < Co Mgzl

where =1 = 1/4.

Remark that the super-approximation property (21) will play an important role
in the local stability analysis.

3.3. Properties of LDG spatial discretization. In this subsection, we derive
two properties for the LDG spatial discretization under the following weighted norm

Il = [Iwll® + ol + 1511 + Bulllgssal ol + 12,6, (100)
(22)

1

1 3

+ Ballly Full? + 33 o, (00)|

for any function x = (v,7,s) € HY(Qp,) = (H'(Q4,))3, where
Ja.0, (U)

(S

Nz—1

N.
L 1 1 1
—{ Z/} (gﬁl(vﬂiy + Z Bi(6h — 5)[[“]]§+%,y + (551 +’71)(U)?VI+%7y)dy}
j=1v"; i=1
Jy.0. (U)

Ng 1 Ny—1 1 1
_{Zﬂ (gﬂQ(’UJr)ié + Z ﬂ2(92_ E)Hv]]iijr% +(§ﬂ2+72)(v)i,Ny+%)dx}
i=1 i j=1

are related to the definition of numerical fluxes.

N[

Lemma 3.3. Suppose € < h. For any function x = (v,7,5) € HY(Qy), there
holds

(24) Br(x, ¥*x) = (1 — Co™2)||x|2 - Clww|%,

where the bounding constant C > 0 is independent of o, h, g, yo, X and €.
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Proof. Tt is followed from (10) that

(25) Biu(, ¥°x) = (cv, $%0) + [[or]|? + [s]) + Y1 + Yo+ Ts,
where

(26a) Y1 = —Hi(v,p*v) — Ho(v,¥?v),

(26b) Ty = VEKD (0,9%r) + VELT (r,0?v),

(26¢) Ty = VEKS (v,9%s) + VELY (s, 4%0),

which will be estimated separately.
After a trivial manipulation and integration by parts, we get that

(00 (67000) = (o) + {1, (00, )

No—1
vV, YiPrv) Z/ 5 (ot 2% > %[[1/)202]]”%,@/ S (W~ )N, +1y|
i=1
Observing that
oY Wiy — gy, = 61 - DTy,
for any 1 =1,2,---, N, — 1, and the fact that ¢, < 0, we obtain
Ha(0,4%0) = =[] 20l — I 5, ().
Similarly, Ha (v, 2v) = —Ba||[¢by| 202 — J2 9,(¢v). Thus we obtain
(27) = B[z 2 U||2 + Bal| [ty | 2U||2 + 12 5, (Wv) + 12 9, (00).
By Lemma 2.1 and a direct manipulation, we have
To| = |VEKT (0, 9°r) = VEKT (%0, 7)| = [2VE (b0, 1) |-
Using Cauchy-Schwarz inequality and property (17) we get
Yol < 2vEl[gin |20l [wal 2] < CVE(h) ™2 Wl oll[vr]].
Then by the Young’s inequality and the fact that 5; > 0 and € < h, we have
(28) el < OVEh) 8 [Bulllwwe Bl + o)) < Co¥x2
Analogously we can get
(29) 5] < Co™ % x|

Finally, noticing that | (cv,%?v)| < C|¢v||* due to the boundedness of ¢, we
obtain the conclusion (24) by collecting up the above estimates. O

Lemma 3.4. Suppose ¢ < h. For any function xn = (Vn,Th, Sn) € Vh, there
holds

(30) By (s I (92 x)) < Co ™% || xa |12,

where H#x = (Hﬁv,H#r, H#s) for any function x = (v,r,s), and the bounding
constant C' > 0 is independent of o, h, xo,yo, xXn and €.
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Proof. For notational convenience, we denote by
H}J{ (¢2Xh) = (Hﬁ(iﬁ%h)a H}J{ (¢2rh)7 Hﬁ(w%gh)) = (gvv Er, 55)'
It is followed from (10) that

(31) Bu(Xn, Iy (¥°xn)) = @1+ ©2 + s + Oy,
where

(32a) Dy = (cop, &) + (rn, &) + (sn, Es) s
(32b) Dy = —Hi(vn, &) — Ha(vn, &),

(32¢) by = \/EICll(vh, )+ \/_E (rhy Ev)s
(32d) oy = \/E’ng (vhv ) =+ \/_L (Shv )7

which will be estimated separately.
Using Cauchy-Schwarz inequality and the super-approximation property (21b),
we get

(33) (con, €u) < Cllpuplllp~ Eull < Co™H[wonll* < Co™"|xall3-

The estimate to the remaining two terms in ®; are similar. So we obtain that
Py < CoMxallz-

Integrating by parts and noticing ((vp,)s,E,) = 0 due to the orthogonality of L2
projection, after some trivial manipulation, we get that

Nz—1

(0, E Z /J ~ B}, = 3 Al N~y

Then using Cauchy-Schwarz inequality and the super-approximation property (21a),
we have

[F1(0n,£0)| < Clu, o)l &,
(34) < Co 21,6, (o) |0V 2on < Co™F || xa 2

Similarly, we have |Ha (v, £,)] < Co™2||xs |2 and thus & < Co 2 ||xx 2.
Now let’s estimate ®3. Along the similar argument as that for Hi(vp, &), we
have

(35) If’C (vn, &)

Nz—1

fz / €T, 3 (0D )iy, + 005y, 1y

=1

SC\/EJz,el(wvh)lli/f Y& In,
< OVED w9, (on) (R~ 20 |vra|)) < CoYxal,

where the super-approximation property (21b) and £ < h are used in the last line.
In addition, by Lemma 2.1 and ((rp), E,) = 0, we obtain

Nz—1

VELD (i, £)] = IVEKD &,,rh|—]\f§j/ > (o In),,

111

< OVelldrnlln, |4 Eull, < CVE(R™ 2 |[bra]) (o7 2 |9V 2 vl
(36) < Co™ % | xal%,
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where Cauchy-Schwarz inequality, the inverse inequality (19) and the super -approximation
property (21a), and € < h are used in the above inequalities. Thus we obtain
®3 < Co~ 2 |xn]|2. Analogously, @, < Co~ 2 ||xal2.

Finally, collecting up the above estimates for ®; to ®,, and noticing c=! < o~
due to o > 2, we complete the proof of this lemma.

O e

3.4. Local stability conclusion. To establish the local stability conclusion, we
follow [7] and assume that F},(-) in (9) has a general form. Denote by

(37) 1B ()] = sup TeExn)l

, Vte(0,T],
Xh€Vh ”XhHﬁ

where xp, = (vp, 71, s1) € Vi, and
(38)
Ixalls = [l onll? + 0~ rall? + 1o~ sull® + 37 6, (0 o) + 12 o, (™ 1%)}

Along the same line as the proof of Lemma 3.3 in [7], we can set up the following
local stability conclusion with the general form Fy,(-).

1
2

Lemma 3.5. Assume e < h. If the parameter o in the weight function (15)
is large enough, then the solution of the LDG scheme (9) with the general form of
Fi(-) satisfies

T
(39) Jwun () < C{lwun @I + [ 1707}
where the bounding constant C > 0 is independent of o, xg,y0, h and €.

Applying Lemma 3.5 we can easily obtain the local stability for the considered
LDG scheme (6), which is stated in the following theorem.

Theorem 3.1. Assume e < h. If the parameter o in the weight function (15)
is large enough, then the numerical solution of LDG scheme (6) satisfies

T
(40)  [un(T)| < Cllvun(0)|? +C / [ 712 + g2 | at,
where the bounding constant C > 0 is independent of o, xg,yo, h and €.
Proof. Recalling the specific definition of Fj, (¢; x1) in (11), applying Cauchy-Schwarz

1

inequality and Young’s inequality, we get that FJ,(¢;xp) < T {|\1/)f||2+ lvgll3. F)} ’

where

= LIy ol + el rllf, + el sl

+Z/ B R, + 20 o eyl

[SE

(41) +Z/ (B34 o )2  + 23 1v,;)§N+l}dx} .

Due to the inverse inequality (19) and e < h, it is easy to derive that T < C||xn g,
which implies that

(42) 1B @) < ClI 12 + gl Eaqr)
So by Lemma 3.5 we get (40). O

N
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i ¢ O(e log(L/e)) Q
ohlogh)| | —— Y= -
9] |
sm |
[
\
[
\
. I N
I I T
[
Q 0 ‘
!
\
}o& Ibg(1/e))
<>
[
‘ |
r Othlog(i/h)

F1GURE 1. The square €2 and its sub-domains.

4. Local error estimate

The main goal of this section is to set up the double-optimal local error estimate
of the LDG method (6) with GANF (7). To this end, we assume that the exact
solution u can be decomposed in a precise way that is typical of the behaviors in
solution of (1) observed when interior layers and corner singularities are excluded
[17,20]. That is, there exists a positive constant M; independent of &, such that

oy e~ Bi(l—z)/e e—B2(1-y)/e
(43) LDy Dfu(e,y,t)| < M1+ | [1 4 S
: gt &
for any nonnegative integers 4, j and ¢, and (z,y,t) € Q x (0,T]. Let

1 1
Qsm = (0,1 — prelog E) X (0, 1 — paelog g),

with two positive constants p; > (k + 2)/8; for i = 1,2 (see Figure 1). Then it
follows from (43) that

(44a) ||D;D5Dfu||1:2(sz < Mo,

sm) —
(44D) | DL D3 Dful| < Ms[1 + ™ 2][1 + 792,

for any time t € (0,7] and i + j + ¢ < k + 2, where both M3 and M3 are bounding
constants independent of e. For more details, please refer to [17,20].

We can obtain the following double-optimal local error estimate under these
assumptions.

Theorem 4.1. Assume that the exact solution u of singularly perturbed problem
(1) satisfies (44). Let up, € V3, be the numerical solution of the LDG scheme (6)
with the generalized alternating numerical flux (7), where the finite element space
Vi, is made up of piecewise polynomials with degree at most k > 0 in each variable,
defined on quasi-uniform Cartesian mesh. Assume 0 < e < h < hg < 1, then there
holds the following local error estimate

(45) [w(T) = un(T)|| L2 () < CHF,
where T is the final time and Qo = (0,1 = C1hlog ;) x (0,1~ Czhlog 1) is the local

domain (see Figure 1). Here C,Cy,Cq > 0 are positive constants independent of h
and €.
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Theorem 4.1 shows that the numerical layers are restricted in the narrow region
nearby outflow boundaries with quasi-optimal width O(hlog(1/h)). The similar
result has been proved in [7] for one-dimensional case. For the two-dimensional case,
although the proof line is similar, the extension is rather involved. We will show
the detailed proof in the following subsections by using the 2-d GGR projections.

4.1. GGR projections. We will use three GGR projections in the later analysis.
In what follows, the parameters ; > 1/2 and 62 > 1/2 are arbitrary constants,
which have special meaning on I'.

(1) For any z € H?(,), the projection Py, 9,2 is the unique element in V},

such that

(46a) / (P, 0,2)vpdedy = / zupdzdy,

Kij Kij

01,y — 01,y
(46) w/Jj ((Bor 0,2)" Uh)z‘+%,ydy a /J (=" Uh)z‘+%,ydy’
(46e) /1 (o, 0,2)""0n),, ;1 du = /1 (="%vn), .y,
61,6 01,0

(46d) (Por0:2) i1y 4y = 2L+ b

hold for any v, € Q¥ 1(K;;) and i = 1,2,--+ ,N,, j = 1,2,--- | N,.. Here
and below the values of test function v, are taken from inside of each
element. In (46), 22V and 2% | are weighted averages on the element

itiy @,j+3
interfaces defined in (4b), and zfjr’f 2j .1 is the weighted average at the corner
2 2

point (; 1,9, 1), which is defined as

201,02 — 91922(55;% , yj_Jr )+ 919~22($ ;

i+h+h ) LY
+ 91922(:10;;% , yj:_%) + Hlﬁgz(x;%,y;;%).
Noting that in the cases i = N, and j = N,, the parameters ¢; = 1 and
0> = 1, respectively.
(2) For any function z € H'(£},), the projection Qg; .17 € Vj, satisfies
i)

(47a) Qg lz(vh)mdxdy:/ z(vp)dady,
Kij = Kij
01, — 01.1
(47b) /J ((QH‘L%Z) ' yvh)i_%)ydy B /J (Z 1 U’Uh)i_%7ydy7

for any v;, € QF(K;;) and any i = 1,2,...,N,, j = 1,2,..., N,. Here the
parameter 6; = 1 at the domain boundary (:E%,y) for y € J;.
(3) For any function z € H({},), the projection Q. 4,7 € Vi satisfies
3

(48a) Q. @z(vh)ydxdyz/ z(vp,)ydady,
Kij % Kij

(48b) /((@%éz)w,e}vh)m7j_%dx=/ (zwﬁzvh) i du,

r.j—L1
I, I; 2J T3

for any vy, € Qk(Kij), and any ¢ = 1,2,..., N, 7 =1,2,...,N,. Here the
parameter 0 = 1 at the domain boundary (z, y%) for z € I;.
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Lemma 4.1. Each of the GGR projections Py, g,, Q9~1 1 and Q1 g, ewists
'3 3
uniquely.
Proof. The proof is the similar as that in [4,7]. For the completeness of this paper,
we would like to present the proof for Pg, 9, as an example.
In fact, we only need to show the unique existence of £ = Py, g,z — I}z for any

z € H*(Qy), since we have known that the local L?-projection I,z exists uniquely.
It follows from (46) that

(49a) / Evpdzdy =0,
K

iJ

(49b) /J (B Vo),

J

x,0
(49¢) /I(E “0n), 541 d

7

01,0 01,0
4 d E-17 2_ 26.17 2‘
(49d) itg.dts  itggts

for any v, € Q" 1(K;;) and any i = 1,2,..., N, and j = 1,2,..., N,, where

/ 91 yvh dy7
T )y

J

Iez d
€,
zg+2

b\

e=z—1lz

is already known. Since FE € V},, we have the orthogonal expansion

01,0
E(z,y)|k, = ZZa”Pel (@) P, ().

€1—O fz 0
Here ‘
Pgl (JJ) = P@l (‘%) and Pej2 (y) = P@Q (y)

with ﬁg representing the standard Legendre polynomial of degree ¢on [—1,1], and
the affine mapping 2 = 2(z — x;)/h% and § = 2(y — yj)/h , where @; = (z;_1 +

§)/2 Y; = (y]_i —|—y]+ )/2 and h = IH_l _Ii—la h y]_i_% —y4_%.

Owing to (49a) and the orthogonahty of Legendre polynomials, it is easy to show
that

E|k,;, = E1 + E> + Ep,

where

(50a) Ei = Z af P Pi(x) Pl (y),
=0
k-1 _ _

(50b) By = > a;}"Pi (x)Pl(y),
6=0

(50c¢) Ey = Oéf,’jkpli (@) P (y)-

The unique existence of E can be verified by showing the same conclusion for
each component. This purpose can be achieved by direct manipulations. Before
showing the details, we would like to introduce a couple of notations

=l ly o by by L 0o £1,02N\T =l by o Ly ly o Lyl £1,0aN\T
Wy ;™ = (wl,] yWo 5=y vaz,j) and Wiy = = (wi,l y Wi ™) 7wi,Ny)

for any w and any i =1,2,--- ,N,, j =1,2,--- ,Ny and {1,0, =0,1,--- , k.
Then due to (49b), we can solve Ey from the linear system

(51) Ay, ab' = bt

mw]
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for any ¢ = 0,1,...,k—1and j =1,2,..., Ny, where Ay, is a N, x N, matrix,
which is given by

0 Oi(-1)F
01 01(—1)*
(52) Ay, = ' .
2 6:(—1)F
1
and each component of bk’ ? is given by
(53) bffz = % / (eel’yP;2 (y))l.Jrl dy, fori=1,2,..., N,.
HPez(y)”Lz (J;) /s 2

Since det(Ay,) = 02! and 6; > 1 1, we can conclude that Ay, is invertible and
thus F; is determined uniquely.

Analogously, we can prove that Es is also determined uniquely due to (49¢). The
corresponding linear system is

(54) Ay, aitk =biuk

y zy
for any £; = 0,1,...,k — 1 and i = 1,2,..., Ny, where Ay, is a N, x N, ma-
trix, which has the similar structure as Ay, just replacing #; with 63, and each
component of bf)ly’k

1 )
l1,k x,0 i L
(55) b A Gl /(e 2P} () egpadz, forj=1,2,....N,.

The undetermined coefficients a j in the last component Ejy can be solved from
the last condition (49d) which forms the linear system

(56) (An, @ Ay, )@k = pok,
—k,k 7k, k
aw,l bz,l
Gk P,k
. x,2 — x,2 .
where @k = and bFF = . , with
—k,k Pk ke
az,Ny bw,Ny

(57) by = (e — By — E2)9192 fori=1,...,Ns, j=1,...,N,.

g3
By the elemental properties of Kronecker product of matrices [12], we can obtain
that

det(Ay, ® Ay,) = det(An, )" det(Ay,)N* > 0,

for 6, > % and 0, > %, so Ey is also determined uniquely. This finishes the proof
of this lemma. O

Following [4], we can establish the optimal approximation property of the above
GGR projection under the trivial weight function ¢» = 1. However, to carry out
the local error estimate, we need to set up the sharp approximation property of
the GGR projections with the weight function (15). Here we follow the proof line
of [7], and investigate the structure of coefficient matrix with the weight function.
To bound the weighted approximation error at the corner points, we employ some
properties of the tensor product of matrices.
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Lemma 4.2. Let Wy, be either of the GGR projections Py, g,, Q(;l 1 or Qg a
.5 3
with 01 > & and 02 > 3. Assume z € H*T(Qy,) N H2(Qy,) with s > 0, the GGR

projection error Wﬁz =z — Wyz satisfies
[9W 2| + 1 [ W 2]l
(58) < O™ |z], g+ (100717 + 18205 117) |2l .

where o > 2 is the parameter in the weight function v given by (15), and the
bounding constant C' = C(01,02) > 0 is independent of o, xq, Yo,z and h.

Proof. We still take W), = Py, 9, as an example and keep the same notations as
that in the proof of Lemma 4.1. To prove this lemma, we just need to show

(59)
[WEI? + hllwBIE, < CRE™ 5222 L (1000727 + 10205 27) 2124 ]

due to the approximation property (20). The proof will be proceeded in the follow-
ing three steps.
Step 1. We would like to show that

(60)  WEL?+hlwELR, <CRmnE2l2 0072 .

To this end, we follow the similar arguments as those given in [7], where one-
dimensional case was discussed. Denote 1;; = max, %, Y(z,y) and define

Bk £z 1/)” i *foranyi,jand o = 0,1, -, k—1, where ak ‘2 is determined by the
hnear system (51) Owing to (50a) and the boundedness of Legendre polynomials,
we can obtain

N, Ny k-1 k—1 Ny N,
B+ HwEiR, <ont 333 [y = con? el
i=1 j=1£5=0 L2=0j=11i=1
k—1 Ny
(61) =Ch? Y "> BRI,
22 0] 1

where ||1]|2 means the I3 norm of vector w. To bound ||B_sz2 |l2 sharply, we follow [7]
to split A;,i into two parts, namely

(62) Ay =By, +Cu,,
where

- 1 Cl fr71 E -

1 7!
1 1 : G o-1
63 T B
’ 1 01¢1
L 01
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and
) ¢ G z—2 glcgm—; 7
0 o e G
1 0i 0 01Co
64 Cn, = — |ommmmmmmeeeem e L],
(64) Ne g 0
O , 0
L 0

with ¢ = (—1)F+16,67".
Define ¥, ; = diag(v1;, %2, - .., ¥N,;), then we have
(65)
Bugt = Va3 = Wa JARIES = (W B, W ) (W g B150) 4 (W O B
Since the matrix ¥, ;By, ¥ E has the same structure about the non-zero data as

Bx,, and there is an additional multiplier ¢;, ;/t;, ; among their elements at the
i1-th row and i5-th column which satisfies

(66) wihj < 1/’(95173/)’ S C, 0 S 2-2 _ 7;1 S o — 17 vy
Viy g lza—z1|<ch | (22, Y)

By the property (17), we have

(67) 192,Bn, ¥, 5113 < ClBn, |13 < C.

In addition, by Cauchy-Schwarz inequality, the approximation property of L? pro-
jection, and the property (18), we have

N, 01,y

o ey \?
[0 05215 = [b“ww} Z¢ (*—LJ))

i=1 |Pejz( )||L2(Jj)

< OZ‘/’ HfHLw )y < Chmin(h2s) Z‘/’ 1k |s+1 Oij

=1

Ny
(68) < Ohmin(2k,25) Z |Z|12/}7S+1)K”,

i=1
where O;; is the neighbor elements besides the element boundary (z;, 1, y) in hor-

izontal direction, which has at most two elements. For the trivial weight function
1) = 1, the above inequality is expressed in the form

Ny 2 ) Ny
ku €2H2 _ bf:_éz < Chmm(?k,2s) |Z|§+1,KI~'
J J

i=1 i=1
Moreover, following [7] we can get easily that
(69) ICx, 13 < ICN, loslICr, [l < CIGIP7, 1% ill3 < 1a,jllocl|ayslh < C
Collecting up the above estimates, we obtain that

kL 7k, L 7k .0
1825713 < [[¥z BN, © 1 2H2+H‘I’zgll ICx, 13116257 112

z,7Y% 5

(70) < Chminw{ S o wer ey 107 S o,
=1 1=1
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As a result, we obtain the conclusion (60) by (61) and (70).

Step 2. Repeating the same arguments as Step 1, we can prove

(7)) [[QEBs|* + hllgEal|p, < CR2™M ¥ 125 4102051172124 |-
In this process, the matrix division

(72) Ay =By, +Cy,

is used, where By, and Cy, have the similar structures as By, and Cy, defined in
(63) and (64), just replacing 61 with 6, ¢; with (o = (—1)5+26,65 " and N, with
N,.

“And similarly as (70) we can obtain

N, N,
201,k in(k,
(3 NALHE < ORISR L GRS [+, )
j=1 j=1
201k 0k s 01,k .
where ;)" = W, ,@;')", with ¥; , = diag(i1, iz, - . ., Yin, ) and a;’;" determined
by (54).

Step 3. The main difficulty is to show
(74)
[0 Bl + RlE|[?, < CR2™ %2 |23 ) 4 (1626727 + 18265 127) 1212 .

It follows from (50c) that

Ny Ny N Ny

Bl + nlwEolR, < oSS [abiuy] = on* 5" [654] = o1+

i=1 j=1 i=1 j=1

where g’“k = Wak* with @%F determined by (56) and ¥ = diag(Ve,1, Ve, -, ¥a N,
Thanks to (62), (72), and the elemental properties of Kronecker product of
matrices [12], we have

BRF = (AN, ® Ay,) TP = T(AY ® A;,i)z?’f»’f
_ \IJ[IB%Nm ® By, + By, ® Cyn, + Cn, ®By, +Cu, <§§><CNJ5’“»’c
~ (vBy, @By, v ) (W5H)
+ ¥ [By, @ C, +Cn, © By, +Cn, @ Cy, |B*.

Since the matrix U(By, ® By, )V~ has the same structure about the non-zero
data as By, ® By, and there is an additional multiplier v, j, /4, j, among their
elements at the (j1 (N, — 1) + 41)-th row and (j2(N, — 1) + i2)-th column, which
satisfies

wihjl

7
( 5) wlé ,J2

<

T |we—z1|<oh
ly2—y1|<ch

¢($1,y1)
1/)(1’2,242)‘ =6

for any 0 <io —i3 <o —1and 0 < jy—j1 <o —1, due to the property (17), we
have

1By, ®By,) U3 < OBy, ® By, [ < ClBx, [5Bx, |13 < C.
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In addition, by (57), (50) and the similar argument as (68), we can prove that

[w5RF |13 = ZZ (ibi")?

=1 j=1
Ni Ny N, Ny k—1 N, Ny k-1
SOY Y Whllaion + O Y X [affrv] + €N Y [alsv]
i=1 j=1 1=1 j=145=0 i=1 j=1/¢1=0
Ny Ny E—1 Ny k—1 N,
< Cpminh2e) ZZ|Z|¢ s+1,Ki; +CZ ZH5H2H2+CZ Z”B *113,
=1 j=1 lo=0 j=1 ¢1=01=1

where O;; is the neighbor elements around the corner point (z; 1YL ), which

has at most four elements.
Thus, by (70) and (73), we get

(76) |93 < Oz 22 L 4 (G127 + 16l ) |2l .
Note that the conclusion holds for the trivial weight function ¢ = 1 in the form
”bk k||2 < Ch2mm(lc s |Z|s+17

since the trivial weight function ¢ = 1 can be expressed as the form (15) with
steepness 0 = +oo. In addition, we can easily see that || ¥]|3 < C, and

(77) ICy, ®Bw, 3 <IICx,II3 - IBx, I3 < Clcil*,
(78) By, @ Cw, 13 < IBx,[3- ICw, I3 < Cleaf™,
(79) ICy, ®Cn, I3 < ICx, 13- ICx, I3 < ClGi71Cl*

Therefore we get that
185*13 < | wBN, © By, w3105 43
+ I3 [ICx, © B, I3 + [Bx, @ Cn, |13 + ICx. © Cuv, I3]17* 3

< Cp2min(ks) {|Z|w op1 + (1GP7 + 16172 |s+1:|

This results in the assertion (74).
Finally, collecting up the above estimates leads to (59) and we complete the
whole proof. O

4.2. Proof of Theorem 4.1. In this subsection, we are going to prove Theorem
4.1. As the standard treatment in the finite element analysis, we consider the
splitting of numerical error e = (v — up,p — Pr,q¢ — qn) = N — & with

(80a) N = (M, Mp, M) = (4= Poy 0,0, p = Qg 19,0 — Qy 4,9);
(80b) E - (guagpvé.q) - (Uh - ]P)91,92u7ph - Q9~17%p5 qnh — Q%)@Eq)v
where Py, g,, Qg 1 and Q, g are the GGR projections defined in (46),(47) and
'3 3
(48) respectively.
In order to estimate &,, we would like to set up the corresponding error equation.

Owing to the smoothness assumption (43) of the exact solution, we can obtain the
error equation

(81) (eu,t>vn) + Br(e,xn) =0,
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for any xn = (vn,Th, Sp) € Vh. Noticing the error decomposition (80) yields

1
(82)  (Swtsvn) + Br(&xn) = (Mut, vn) + Br(m,xn) = F (xn) = Y S,

=1
with
St = {(a)esvn) + (Mps7h) + (Ngs 1) + (€N vn) 5
Sz = VLY (1, v4) + VELY (g, vn),
Sz = VEK (1, 1) — Ha (1w, vn),
Si = VEKY (1 sn) — Ha (1, vp).-

Below we would like to estimate them separately. In this process, the GGR projec-
tions will play an important role.
(1) Estimate of S;. Using Cauchy-Schwarz inequality, we get directly that

1

i1 < C [0l + lomal® + loml1? + lmgl?)

-

e onll? e ) + o snll?)
< COnlxall:

where

-

(83) O1 = [I0m)el® + Il + lmp |12 + g |2] .

(2) Estimate of Sy. Taking into account the definitions of the projections @9: 1
’2
and Q, 4 in (47) and (48), we conclude that
3

Ny

Nz'
82 - _\/EZ/J (npvh);va:“r%vydy o \/EZ/I (nqvh);va’i’%dI'
j=1"7i i=1"1i

Using Cauchy-Schwarz inequality leads to
S < CVElYmplin, - Jao, (¥ on) + CVEllYgllr, - Ty,0. (¥~ vn) < CO2Ixnllgs

where

62 = VE[llvmplln, + v, Ir, |

(3) Estimate of Ss. Since the projection errors can not be eliminated complete-
ly, the superconvergence property of 2-d GGR projection has to be suitably
exploited. To this end, we define

(84) ZKij(nu,vh):/ nu(vh)wdxdy—/

01,y,,— 01,1
p J [(%1 Yo, )i+%,y — (! yvz)ifé,y} dy,
ij j

on each element K;;, where n1¥ = 619, + 01t at (iy1,y) for i =
0,1,---,N, — 1, and (77317@/)]\[”%)1/ = (HJ)Ner%,y- Remark that (nu);y
is understood as the projection error for the continuous extension function
of u near the inflow boundary of Q.

We can establish the following superconvergence property for the bilinear
functional Z,;.
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Lemma 4.3. Let the bilinear form Zg, (1., vn) be defined in (84). For
any uw € H*2(Q), there exists a bounding constant C independent of o, u
and h such that

(85) | D Ziy Onron)| < OO [ulyr + (117 + 1617 [ulasa] 97 onll
Ki;j €Qp

holds for any v, € Vi, on the quasi-uniform Cartesian mesh, where |;| =
;0,71 for i = 1,2, and ¢ is the weight function defined in (15).

Proof. Following the proof line of identity (3.40) in Lemma 3.6 of [4], we
can obtain

(86) Zr,; (Mu,vn) =0, Yue PHLQ,), Vo, €V,

where P*+1(€2;,) is made up of all piecewise polynomials of degree at most
k + 1 on each element in £,.

Using Cauchy-Schwarz inequality, the inverse inequality (19) with weight
function ¢!, and Lemma 4.2 with s = 0, we arrive at

C’HSE‘ Z ZKij(nuavh)‘

Ki; €Qp
< el @n)all + Cllmale, I~ onllr,
< C R umall + B2 i, |~ onl
< Clulyr + (1617 + 117l I onll.
Therefore, using (86) we get that
cus <C it {u=xdpa + (1GI7 + 1GI7) = xd ol

XEPkTL(Qp)
(87) < CR Juliass + (GI7 + G Nl 6 o),
due to property (18). Hence we get the desired result of this lemma. 0

Now we split S3 into two terms, namely, S3 = A; + As, where

88) A =vE D> Ziy(nern) =B Y. Zriy(Musvn),

Ki]‘ eQp KijGQh
A2 - Z/ nu Th Nm-‘,-é,y - \/g[nzl’yr;:,_]%,y
+ 1[0, vy I 1y + B1nd Vol )dy

Ny
- Z/J (\/E[(g - PZ29)T;]Nm+%,y —Vellg - Pz2g)7“;]%7y

=177
(89) +21llg — P4 9007 v, 3.4 + Brllo — Pho)ot ], ) du.
In the last step of (89), we have used the relationship (noting that 6, = 1
when i = N,)
01, 01, .
(90) (Peh‘g?u)ii—;y =Py, (ui_t_;y), fort=0,1,---,N,,
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with ]P’g2 being 1-d GGR projection in y-direction which satisfies

(91a) /(Pz2z)vhdy :/ zupdy, Vo, € PRTL(Y),
0 0
(91b) (By,2)55) =240,

forany j =1,2,..., Ny, here 2(02) = 0227+§22+, and 03 = 1 when j = N,.
We point out that the conclusion (90) can be easily verified according to
the definition of GGR projection. Analogous treatment can also be found
in [9]. For the completeness of this paper, we postpone the detailed proof
in the Appendix.
By applying Lemma 4.3, we obtain

(92) (A1l < COs [ VEIrall + Billw ™ vnll] < COslixnll,

where
O3 = W July ks + (117 + |Gl ulira]

Using Cauchy-Schwarz inequality, inverse inequality (19) and € < h we

get that
(93)
|As| < Clle(g = Ph,9) I Laa) [VER 2 [0 rall + T, (¥ 0n)] < COLIxlls,
where I's is the collection of two vertical parts of boundary I', and
04 = [[¥(9 — Py,9) | L2(ry)-
Thus we obtain
(94) |S3] < C[O©3 + O4]|Ixnlz-

(4) Estimate of S;. Following the similar argument as the estimate of Sz, we
can also obtain

(95) 84| < C[O3 + Os][[xnlls-

where
65 - H‘/’(g - leg)”L2(F1)a
where PP§ is 1-d GGR projection in z-direction, which is similarly defined

as P};’Q, and I'y is the collection of two horizontal parts of boundary I'. We
omit the details to save space.

Now we collect up the above estimates, and obtain from (82) that

(96) Ee @l = sup Si=ulS z@

XhE€Vh Hthﬁ

So an application of Lemma 3.5 yields that

(97) (@)1 < Ol + / Zewt}

To obtain the optimal estimate, we need to adjust the parameters xg, yo in the
weight function and establish the following lemma.
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Lemma 4.4. Assume that € < h and o is large enough. Let xg = 1 —
2u10h10g% and yo = 1 — 2usch log% with 1 and pe large enough, then there
holds

(98) > e <contt? vte (0,71,

i=1
where the bounding constant C' > 0 is independent of o,h and €.

The proof is similar as Lemma 4.3 of [7], we put it in the Appendix. Now we
come back to the local error estimate. By Lemma 4.4, we can obtain

(99) [4na ()] < COL < CRF, 1€ [0,T].
Moreover, it follows from (97) that
(100) [9€u(T)I* < Cll€u(0)]* + ChHH2 < Ch?F2,

due to the setting of the initial solution |[1/&,(0)| < || (uo — Hpuo)|| + [[¥n.(0)] <
Ch¥*1 from the properties (20) and (99). Thus using the triangle inequality, we can
derive the weighted L2-norm error estimate ||1e,(T)|| < Ch**1 and the optimal
error estimate

(101) llew(T) | r2(a0) < CR*HY,

in the local domain €2y, since the weight function is not smaller than one in €.
This finishes the proof of Theorem 4.1.

5. Numerical experiments

In this section we present some numerical experiments to verify the convergence
rates of the considered LDG scheme (6) with the GANF (7). For the spatial dis-
cretization, we adopt Q' and Q2 elements on the nonuniform mesh, which is a 10%
random perturbation the coordinates of horizontal lines and vertical lines of the
uniform mesh, with the total number N, = N, = N. For the temporal discretiza-
tion, we adopt the third order explicit total variation diminishing Runge-Kutta
method [18]. The time step is taken as 7 = 0.1h for piecewise linear polynomials,
and 7 = 0.05h for piecewise quadratic polynomials, respectively, where h = 1/N.
The final computing time is set as 7' = 0.1.

We will verify the convergence rates in both the whole domain and the local
region. To compute the local errors, we drop [log(1/h)] and 2|log(1/h)] elements
nearby the outflow boundaries for Q' element and Q2 element, respectively. Here
we have used the floor function |[r| to represent the greatest integer that is less
than or equal to r. As for the GANF (7), four pairs of parameter (01,0s) =
(0.8,0.8),(1.0,1.0), (0.8,1.2),(1.2,1.2) will be considered.

Example 1. We consider problem (1) with 8 = (1,1), e = 107° and ¢ = 0. Let
the exact solution be

—x 1—y

(102) u(z,y,t) = e 'sin(mzy) (1 — e e J(1—e""5).

The initial solution and the source term f can be determined by this solution. It
is obvious that there are boundary layers along sides x =1 and y = 1.

In Table 5 we list the L?-norm errors and convergence orders in the whole domain
and in the local region. From this table, we can observe the optimal convergence
rate in a local domain, but not in the whole domain. This indicates the conclusion
in Theorem 4.1 is sharp.
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Example 2. In this example, we would like to investigate the error performance
of the LDG method with the GANF for nonlinear SP problems. Let ¢ = 1072,

consider
2 2

(103) g + (%)I-i- (%)y—aAu:f,

with a suitably chosen f and initial solution such that the exact solution is the same

s (102). In the design of the LDG method for solving the nonlinear problem (103),
we define the numerical fluxes similarly as (7), namely, on the interior element
interfaces

(104)
(;Llu ;L;D) +35.,y = (%( )01)1} \/_pel Y \/_uelyy)i‘F%vy’ lf mln{ufjvuz} > 07
’ it3, 1

(5( )91,1; \/_pelﬂl \/—u017y)i+%7y, otherwise,
fori=1,---,N, — 1. And on I', we define

(105) (;Ll iL ) 1 — (%92 B \/gp;li_’ _\/gg)%)y5 7 = O7
w Mp )it y = _ '
Sy (3(up ) =79 —uy) — Vepy , —VEG) N, 42 +1g 0= No,

where g is the given Dirichlet boundary condition, the notations 61, 91, ~1 have the
same meaning as before. We can also define the numerical flux (hay, }Alq)z_’j t1ina
similar way, the details are omitted to save space.

The L?norm errors and convergence orders in the whole domain and local region
are listed in Table 5. We can also observe the optimal local error accuracy, but see
bad global error performance.

TABLE 1. L? errors and orders of accuracy on nonuniform mesh for
Example 1.

(01,02) = (0.8,0.8) (01,02) = (1.0,1.0) (01,02) = (0.8,1.2) (01,02) = (1.2,1.2)

N L“-error order LZ-error order L“-error order L“-error order

32 4.14E-02 - 4.14E-02 - 4.14E-02 - 4.14E-02 -
64 3.00E-02 0.46 3.00E-02 0.46 3.00E-02 0.46 3.00E-02 0.46
ol 128  2.09E-02 0.53 2.09E-02 0.53 2.09E-02 0.53 2.09E-02 0.53
256  1.53E-02 0.44 1.53E-02 0.44 1.53E-02 0.44 1.53E-02 0.44
512 1.07E-02 0.52 1.07E-02 0.52 1.07E-02 0.52 1.07E-02 0.52

Global 32 4.13E-02 - 4.13E-02 - 4.13E-02 - 4.13E-02 -
64 2.99E-02 0.47 2.99E-02 0.47 2.99E-02 0.47 2.99E-02 0.47
o2 128  2.07E-02 0.53 2.07E-02 0.53 2.07E-02 0.53 2.07E-02 0.53

256  1.51E-02 0.45 1.51E-02 0.45 1.51E-02 0.45 1.51E-02 0.45
512 1.04E-02 0.54 1.04E-02 0.54 1.04E-02 0.54 1.04E-02 0.54
32 3.04E-04 - 2.14E-04 - 2.46E-04 - 1.82E-04

64 8.51E-05 1.84 5.99E-05 1.84 6.87E-05 1.84 5.09E-05 1.83
ot 128  2.33E-05 1.87 1.65E-05 1.86 1.89E-05 1.86 1.41E-05 1.86
256  6.04E-06 1.95 4.25E-06 1.95 4.87TE-06 1.95 3.61E-06 1.96
512 1.55E-06 1.96 1.09E-06 1.96 1.25E-06 1.96 9.29E-07 1.96

Local 32 6.97E-07 - 8.29E-07 - 8.83E-07 - 9.93E-07 -
64 1.14E-07 2.61 1.35E-07 2.61 1.44E-07 2.61 1.63E-07 2.61

Q2 128 1.98E-08 2.53 2.22E-08 2.61 2.41E-08 2.58 2.69E-08 2.60
256  2.67E-09 2.89 3.11E-09 2.84 3.35E-09 2.85 3.77TE-09 2.84
512 3.56E-10 2.91 4.20E-10 2.89 4.50E-10 2.90 5.09E-10 2.89

6. Concluding remarks

In this paper, we present the local stability and local error estimates of the LDG
scheme with the generalized alternating numerical flux, for the two-dimensional
singularly perturbed problems with outflow boundary layers. Double-optimal er-
ror estimate is obtained for the piecewise tensor product polynomials on quasi-
uniform Cartesian meshes. The technical difficulty lies in establishing the optimal
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TABLE 2. L? errors and orders of accuracy on nonuniform mesh for
Example 2.

(61, 602) = (0.8,0.8) (01,02) = (1.0,1.0)  (01,05) = (0.8,1.2)  (01,02) = (1.2,1.2)

N L“-error order LZ_error order L“-error order L“-error order

32 4.14E-02 - 4.14E-02 - 4.14E-02 - 4.14E-02 -
64 3.00E-02 0.46 3.00E-02 0.46 3.00E-02 0.46 3.00E-02 0.46
ot 128  2.08E-02 0.53 2.08E-02 0.53 2.08E-02 0.53 2.08E-02 0.53
256 1.52E-02 0.45 1.52E-02 0.45 1.52E-02 0.45 1.52E-02 0.45
512 1.06E-02 0.52 1.06E-02 0.52 1.06E-02 0.52 1.06E-02 0.52

Global 32 4.13E-02 - 4.13E-02 - 4.13E-02 - 4.13E-02 -
64 2.98E-02 0.47 2.98E-02 0.47 2.98E-02 0.47 2.98E-02 0.47

o2 128  2.06E-02 0.53 2.06E-02 0.53 2.06E-02 0.53 2.06E-02 0.53
256  1.50E-02 0.46 1.50E-02 0.46 1.50E-02 0.46 1.50E-02 0.46

512 1.02E-02 0.5 1.02E-02 0.55 1.02E-02 0.55 1.02E-02 0.55
32 3.06E-04 - 2.15E-04 - 2.47E-04 - 1.82E-04 -
64 8.54E-05 1.84 6.00E-05 1.84 6.89E-05 1.84 5.10E-05 1.83
ot 128  2.34E-05 1.87 1.65E-05 1.86 1.89E-05 1.86 1.41E-05 1.85
256  6.05E-06 1.95 4.25E-06 1.95 4.88E-06 1.96 3.62E-06 1.96
512 1.55E-06 1.96 1.09E-06 1.97 1.25E-06 1.96 9.30E-07 1.96

Local 32 7.15E-07 - 8.58E-07 - 9.14E-07 - 1.03E-06 -
64 1.16E-07 2.62 1.39E-07 2.63 1.48E-07 2.62 1.68E-07 2.62

o2 128  2.08E-08 2.48 2.26E-08 2.62 2.48E-08 2.58 2.74E-08 2.62
256  2.72E-09 2.94 3.14E-09 2.85 3.40E-09 2.87 3.81E-09 2.85
512 3.58E-10 2.93 4.21E-10 2.90 4.53E-10 2.91 5.11E-10 2.90

approximation property and superconvergence property for the two-dimensional G-
GR projection equipped with the weight function. In the future, we will consider
the LDG method for the singularly perturbed problem with other type layers, such
as parabolic boundary layer, interior layer or corner singularities.
Appendix

In this Appendix, we supplement some technical proofs.

Proof of Lemma 4.4. Using Lemma 4.2 of [7], we can obtain that
(A1) 1 < CR T [0DE gllpaqrs) +1GI7 1D5 gl e

(A.2) O5 < ChMH! [HlﬁDngHLz(rl) + |Cl|g||D§+19||L2(F1)]-
Due to Lemma 4.2 and € < h, it is sufficient to prove that
(A3) |Z|w,]€+1 S Cu CU|Z|]€+1 S Cu fOY z = u7p7q7ut7u:ﬂ7uyaga

where ¢ = max{|(1], |(2|}-

To this end, we take z = u as an example, since the remaining cases can be
proved in the similar way. Let 50 = (0,Z0) x (0,50) with g =1 — p10h log% and
Yo =1— psohlog %, such that

(A4) Qlocal = U Kij CQm = (O, 1— pielog é) X (O, 1 — paelog é)
Kijmﬁo;ﬁ@

This can be done if p;o0 > 2p; (i = 1,2), since € < h. Assume that there exist two
constants hy and mg such that hg® < e < h < hg < 1, then it follows from the
smoothness assumption (44) and the boundedness property of weight function that

25 = Y. l[¥DLD)z|?

itj=k+1
<C Y IDiDzl e + CH* Y IDED) IR @\ 1)
i+j=k+1 i+j=k+1

(A.5) < C 4 Cp2e 2 < 0 4 o2k Mo < o
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if u > (k+ 1)mp. Furthermore, it is easy to see that (7|z|4+1 = 0 when ¢ = 0.
Otherwise, if ¢ # 0, we also have
(A.6)
<20|Z|i+1 _ C2U Z HD;D;Z”2 < CC2U€—2(I€+1) < C<20h82(k+1)m0 <C,
i+j=k+1
by taking o large enough, for example, o > (k + 1)mglog ho/log (. Hence Lemma
4.4 is proved. 0
Proof of (90). Owing to the definition of GGR projection Py, 9, and the defi-
nition of the weighted averages, we have

(A.7) L(Pel,e2U)fi’§7yvh(y)dy :/J Ufjr’;yvh(y)dy, Von(y) € PHH(J;),
J J

(62)
01,y - 01,02
{(P91,92u)i+%7y}j+% - (P91,92u)i+%,j+%
(62)
_ 01,02 _ |00y -
(A-8) ~Yirdes T {ui%,y}ﬁ%’ J=h2 Ny,
for any ¢ =0,1,2,..., N,. This shows that (Pel,ezu)fjr’f , satisfies the same condi-
3
tions as the 1-d GGR projection Py (ufjrf y) Since both of them are polynomials
1,
of degree at most k for the variable y, due to the unique existence of 1-d GGR
projection Py (see Lemma 4.1 of [7]), we conclude that they are equal. O
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