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Abstract. We construct a pair of conforming and inf–sup stable finite element spaces for the two–

dimensional Stokes problem yielding divergence–free approximations on general convex quadrilat-
eral partitions. The velocity and pressure spaces consist of piecewise quadratic and piecewise con-

stant polynomials, respectively. We show that the discrete velocity and a locally post–processed

pressure solution are second–order convergent.
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1. Introduction

In this paper we construct a low–order, conforming, inf–sup stable, and divergence–
free yielding finite element method for the Stokes problem on quadrilateral parti-
tions of Ω ⊂ R2. Schemes satisfying these criteria, in particular the divergence–free
one, have several desirable properties, for example, a decoupling of the velocity and
pressure errors (cf. (22a)), the exact enforcement of several conservation laws [14],
and improved long–time stability and accuracy of time–stepping schemes [4].

In more detail we propose a finite element pair Vh × Wh consisting of piece-
wise polynomials with respect to a quadrilateral partition satisfying the inf–sup
condition:

sup
v∈Vh\{0}

∫
Ω

(div v)q dx

‖∇v‖L2(Ω)
≥ β‖q‖L2(Ω) ∀q ∈Wh,(1)

as well as the divergence–free property:∫
Ω

(div v)q dx = 0 ∀q ∈Wh ⇐⇒ div v ≡ 0 in L2(Ω).(2)

We note that these two properties are antithetical to each other in the sense that (2)
is equivalent to the inclusion divVh ⊆Wh, whereas (1) requires Wh ⊆ PW (divVh),
where PW denotes the L2–projection onto Wh.

The construction of our finite element pairs is motivated by a smooth de Rham
complex (or Stokes complex [15]) given by the sequence of mappings

(3) 0
⊂−→ H2

0 (Ω)
curl−→H1

0 (Ω)
div−→ L2

0(Ω) −→ 0,

where curl = (∂/∂x2,−∂/∂x1)T . If the domain is simply connected, then this com-
plex is exact, i.e., the range of each map is the kernel of the succeeding map. The
exactness property implies that the divergence operator is surjective from H1

0 (Ω)
onto L2

0(Ω), and in addition, implies the existence of a stream function for incom-
pressible flows. To ensure the stability of our finite element method and to construct
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divergence-free approximations, we build an exact subsequence of (3):

0
⊂−→ Σh

curl−→ Vh
div−→Wh −→ 0,(4)

where Σh ⊂ H2
0 (Ω), Vh ⊂ H1

0 (Ω) and Wh ⊂ L2
0(Ω) are finite dimensional spaces

consisting of piecewise polynomials. Note that the implied inclusion divVh ⊆Wh in
(4) yields pointwise divergence–free approximations. In addition, if the subcomplex
(4) is exact, then the mapping div : Vh →Wh is surjective, and thus divVh = Wh.
Along with a uniform bound of the right-inverse, this result implies the inf-sup con-
dition (1). A key feature of this methodology is that the complex provides a guiding
tool to develop a pair Vh ×Wh satisfying inf–sup stability and the divergence–free
criterion. In particular, the H2–conforming relative Σh dictates both the local and
global properties of these spaces. As far as we are aware, all divergence-free yielding
Stokes pairs follow this program, i.e., all finite element pairs Vh ×Wh satisfying
divVh = Wh have an H2–conforming relative satisfying the exact sequence (4) (see,
e.g., [3, 22, 15, 6, 17, 14, 20]).

A disadvantage of divergence–free yielding and conforming finite element pairs
is that they tend to be high–order or require certain meshes to ensure stability
and conformity. For example, on general triangular partitions, and for piecewise
polynomial spaces, the minimal polynomial degree for the velocity space is four [22,
15]. For tensor product meshes, the smallest local velocity space in two dimensions
is Q3,2 × Q2,3 [3, 6, 14, 20, 25], and the construction of these elements does not
extend to general convex quadrilaterals defined by bilinear mappings. On the other
hand, a nonconforming finite element method that imposes the divergence–free
constraint pointwise on each quadrilateral element has recently been done in [26].
The method given there is low–order and is applicable to convex quadrilaterals.
However, due to the nonconformity, the error estimates of this method are still
coupled with a negative scaling of the viscosity.

We address some of these shortcomings by introducing a conforming finite ele-
ment pair that yields divergence–free approximations, and in addition, is relatively
low–order and stable on general shape–regular quadrilateral partitions. In our ap-
proach we take the H2 finite element relative Σh in (4) to be the de Verbeke–Sanders
macro element, a globally C1 piecewise cubic spline [11, 10, 18, 21]. Via the sub-
complex (4) we are then led to a piecewise quadratic (macro) velocity space and
a piecewise constant pressure space. The global dimension of the spaces is com-
parable to the lowest–order Taylor–Hood pair [23], and furthermore, because the
velocity error is decoupled from the pressure, the method still enjoys second–order
accuracy. We also show that a locally computed post-processed pressure solution
has second order accuracy. We mention that the use of macro elements on simplicial
partitions has recently been done in [1, 7]. The work presented here complements
and extends these results to quadrilateral meshes.

The rest of the paper is organized as follows. In Section 2 we set the notation
and give some preliminary results. We define the finite element spaces and provide
a unisolvent set of degrees of freedom in Section 3. In Section 4 we prove that the
Stokes pair is inf–sup stable, and carry out a convergence analysis for the discrete
problem. In addition we propose a local post–processed pressure solution that is
second–order accurate.
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2. Preliminaries

The two-dimensional Stokes problem with no-slip boundary conditions is given
by:

−ν∆u+∇p = f , in Ω,(5a)

divu = 0, in Ω,(5b)

u = 0, on ∂Ω,(5c)

where Ω ⊂ R2 is an open, bounded, polygonal domain, ν > 0 is the viscosity,
f ∈ L2(Ω) is an external force applied to the fluid, and u and p are the velocity and
the pressure of the fluid, respectively. For simplicity, we assume that ν is constant.
The weak formulation for problem (5) reads: Find (u, p) ∈ H1

0 (Ω) × L2
0(Ω) such

that ∫
Ω

ν∇u : ∇v dx−
∫

Ω

(div v)p dx =

∫
Ω

f · v dx, ∀v ∈H1
0 (Ω),(6a) ∫

Ω

(divu)q dx = 0, ∀q ∈ L2
0(Ω),(6b)

where L2
0(Ω) denotes the space of square integrable functions with vanishing mean.

Note that we denote vector–valued functions and vector-valued function spaces in
boldface, e.g., u represents a vector–valued function and H1(Ω) = [H1(Ω)]2.

Let Th denote a shape–regular quadrilateral mesh of Ω where each element in Th
is a convex quadrilateral. The sets of vertices and boundary vertices are given by
Vh and Vb, respectively. For a vertex a ∈ Vh, we let Ta (resp., Ea) denote the set of
quadrilaterals (resp., edges) that have a as a vertex. We further denote by Eba the
set of boundary edges in Ea. For each K ∈ Th, we denote by Kr := {Ki}4i=1 the
set of triangles obtained by drawing in the two diagonals between opposite vertices.
The (interior) point of intersection of these two diagonals is denoted by cK . We
assume that the partition is labeled such thatKi andKi+1 have a common (interior)
edge. The sets of vertices and edges of K are given by VK and EK , respectively.
We set hK and he to be the diameter of K and length of e ∈ EK , respectively,
h := maxK∈Th hK , and note that hK ≈ he due to the shape–regularity of Th.

Let Pk(K) be the space of polynomials on K with degree not exceeding k, and
let

Pk(Kr) =

4∏
i=1

Pk(Ki), and Pk(Th) =
∏
K∈Th

Pk(K)

be the corresponding (discontinuous) piecewise polynomial spaces.
Let K± ∈ Th be two elements in the mesh that share a common edge with

e = ∂K+ ∩ ∂K−. Assuming that the global labeling number of K+ is smaller than
that of K−, we define the jump of a scalar or vector–valued function v as

[v]|e := v+ − v−,

where v± = v|K± . For a boundary edge e = ∂K+ ∩ ∂Ω we set

[v]|e = v+.

Let P1,K : L2(K) → P1(K) denote the L2 projection onto the space of linear
polynomials, i.e.,∫

K

P1,Kv ·w dx =

∫
K

v ·w dx ∀w ∈ P1(K).
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We also set P1 : L2(Ω)→ P1(Th) via P1|K = P1,K for all K ∈ Th. For v ∈Hs(K)
and ` = min{2, s}, the L2 projection satisfies [13]:

‖v −P1,Kv‖L2(K) ≤ ch`K |v|H`(K), ` = min{2, s}.(7)

This result also implies approximation properties of the L2 projection with respect
to the H1 norm.

Lemma 2.1. The local L2 projection satisfies

‖∇(v −P1,Kv)‖L2(K) ≤ Chs−1
K |v|Hs(K), ∀v ∈Hs(K), s = 1, 2.(8)

Proof. Using the triangle inequality and inverse estimates, there holds for arbitrary
w ∈ P1(K),

‖∇(v −P1,Kv)‖L2(K)

≤‖∇(v −w)‖L2(K) + Ch−1
K ‖w −P1,Kv‖L2(K)

≤‖∇(v −w)‖L2(K) + Ch−1
K

(
‖v −w‖L2(K) + ‖v −P1,Kv‖L2(K)

)
.

Standard approximation theory (cf. [13, 8]) and (7) then yield (8). �

3. Finite Element Spaces

To develop a divergence–free conforming pair for the Stokes problem, we first
consider the local C1 macro element constructed by de Verbeke and Sander [21, 11]:

Σ(K) = P3(Kr) ∩H2(K) = P3(Kr) ∩ C1(K).

The dimension of Σ(K) and a unisolvent set of degrees of freedom is given in the
following lemma.

Lemma 3.1. The dimension of Σ(K) is 16, and a function ψ ∈ Σ(K) is uniquely
determined by the degrees of freedom (cf. Figure 1)

Dαψ(a), |α| ≤ 1, a ∈ VK , and

∫
e

∂ψ

∂ne
ds, e ∈ EK ,(9)

where ne denotes the outward unit normal of e.

Proof. A proof of this result is given in [21, 11] (also see [12]), but we provide one
here for completeness.

Since the dimension of P3(K) is 10, we see that dimP3(Kr) = 40. The given data
(9) represents 28 equations. Since the point cK is a singular vertex (with respect
to the partition {Ki}4i=1), the imposed C1 continuity at this point represents 8
additional equations (see [19] for details). Finally the imposed C1 continuity at the
interior edge midpoints represent 4 more, for a total of 40 equations. Therefore it
suffices to show that ϕ ∈ Σ(K) vanishes on (9) only if ϕ ≡ 0.

Let µ ∈ P1(Kr) ∩H1
0 (K) be the unique continuous, piecewise linear polynomial

that vanishes on ∂K and takes the value one at cK . Then if ϕ ∈ Σ(K) vanishes on
(9), we have ϕ = µ2p for some p ∈ P1(Kr) ∩H1(K).

Denote by µi, pi ∈ P1(Ki) as the restrictions of µi and pi to Ki, respectively.
Let `i = ∂Ki∩∂Ki+1 be the common interior edge of triangles Ki and Ki+1. Then,
due to the C1 continuity of ϕ, we find that

∇ϕ|`i =

{
(2µp∇µi + µ2∇pi)|`i ,
(2µp∇µi+1 + µ2∇pi+1)|`i ,

and therefore 2p∇µi + µ∇pi = 2p∇µi+1 + µ∇pi+1 on `i. Note that µ = 0 at the
vertices of K and that ∇µi is parallel to the normal direction of the edge ∂K∩∂Ki,
in particular, ∇µi 6= ∇µi+1. It then follows from the identity

(
2p∇(µi − µi+1) +
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Figure 1. A pictorial description of the local space Σ(K) (left),
V (K) (middle), and W (K) (right). Solid circles indicate function
evaluations, larger circles indicate gradient evaluations, and the
arrows indicate the means of the normal derivative across edges.

µ∇(pi− pi+1)
)
|`i = 0 that p vanishes at the vertices of K, and therefore p = cµ for

some c ∈ R. Thus, ϕ = cµ3. However, a simple calculation shows that µ3 6∈ C1(K),
and so we conclude that c = 0 and ϕ = 0. �

Corollary 3.2. There holds Σ(K) ∩H2
0 (K) = {0}.

Proof. If ϕ ∈ Σ(K) ∩ H2
0 (K), then ϕ vanishes on the degrees of freedom (9). By

Lemma 3.1 we conclude that ϕ ≡ 0. �

Motivated by the smooth de Rham complex (3) and the local space Σ(K), a
natural candidate for the local Stokes pair is (P2(Kr)∩H1(K)),P1(Kr)). Indeed,
we clearly have div : P2(Kr) ∩H1(K) → P1(Kr), and curl : Σ(K) → P2(Kr) ∩
H1(K). Moreover, if v ∈ P2(Kr) ∩H1(K) is divergence–free, then v = curlϕ
for some ϕ ∈ H2(K). Since v is a piecewise quadratic polynomial, we conclude
that ϕ is a piecewise cubic polynomial; thus ϕ ∈ Σ(K). Therefore the kernel of the
divergence operator acting on P2(Kr)∩H1(K) is exactly curl Σ(K). However, the
dimension arguments below show that (P2(Kr) ∩H1(K)),P1(Kr)) is not locally
inf-sup stable, and thus neither is the corresponding global pair.

Lemma 3.3. The space div (P2(Kr)∩H1(K)) has dimension 11. Therefore, div :
P2(Kr)∩H1(K)→ P1(Kr) is not surjective, and thus (P2(Kr)∩H1(K))×P1(Kr)
does not satisfy a local inf–sup condition.

Proof. Set Zr(K) = {v ∈ P2(Kr) ∩H1(K) : div v = 0} to be the kernel of the
divergence operator acting on P2(Kr)∩H1(K). Then by the preceding discussion
we have Zr(K) = curl Σ(K). Since the dimension of P2(Kr) ∩H1(K) is 26, we
have by the rank-nullity theorem and Lemma 3.1,

dim (div (P2(Kr) ∩H1(K))) = dim(P2(Kr) ∩H1(K))− dimZr(K)

= dim (P2(Kr) ∩H1(K))− dim (curl(Σ(K))),

= dim (P2(Kr) ∩H1(K))− dim Σ(K) + 1 = 11.

Because dimP1(Kr) = 12, we conclude that the divergence operator mapping
P2(Kr) ∩H1(K) to P1(Kr) is not surjective. Furthermore, the dimension coun-
t shows that there exists q ∈ P1(Kr) such that

∫
K

(div v)q dx = 0 for all v ∈
P2(Kr) ∩H1(K), and therefore the pair (P2(Kr) ∩H1(K)) × P1(Kr) does not
satisfy a local inf–sup condition. �
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Remark 3.4. By [24, Proposition 2.1], the range of the divergence operator is
characterized as

div (P2(Kr) ∩H1(K)) = {q ∈ P1(Kr) :

4∑
i=1

(−1)iq|Ki
(cK) = 0}.

3.1. The local velocity space. To derive a locally stable finite element based
on the de Verbeke–Sanders element, we simply restrict the range of the divergence
operator and consider the finite element space

V (K) = {v ∈ P2(Kr) ∩H1(K) : div v ∈ P0(K)}.(10)

A unisolvent set of degrees of freedom is given in the next lemma.

Lemma 3.5. The dimension of V (K) is 16, and a function v ∈ V (K) is uniquely
determined by the values

v(a), a ∈ VK , and

∫
e

v ds, e ∈ EK .(11)

Proof. We easily find that the kernel of the divergence operator acting on V (K) is
given by Zr(K) = curl Σ(K). Therefore by the rank–nullity theorem, we have

dimV (K) = dim curl(Σ(K)) + dimP0(K)

= dim Σ(K) + dimP0(K)− 1 = 16.

Since 16 conditions are given in (11) it suffices to show that if v ∈ V (K) vanishes
on (11), then v ≡ 0.

If v ∈ V (K) vanishes on (11), then v ∈ V (K) ∩H1
0 (K) since v is piecewise

quadratic. Therefore by the divergence theorem∫
K

div v dx =

∫
∂K

v · n ds = 0.

Since div v is constant, we conclude that v is divergence–free. Thus, v = curlϕ for
some ϕ ∈ Σ(K), and since v ∈ H1

0 (K), we may assume that ϕ ∈ Σ(K) ∩H2
0 (K).

But then Corollary 3.2 shows that ϕ ≡ 0, and therefore v ≡ 0. �

4. Stability and Convergence Analysis

The local spaces and degrees of freedom lead to the following global spaces for
the Stokes problem:

Vh = {v ∈H1
0 (Ω) : v|K ∈ V (K), ∀K ∈ Th},

Wh = {q ∈ L2
0(Ω) : q|K ∈ P0(K), ∀K ∈ Th}.

We also define the corresponding C1 finite element space as

Σh := {z ∈ H2
0 (Ω) : z|K ∈ Σ(K), ∀K ∈ Th}.

Analogous to the continuous setting (cf. (3)), the finite element spaces form an
exact sequence.

Lemma 4.1. Suppose that the domain is simply connected. Then the sequence (4)
is exact.

Proof. It is clear from the definitions of the finite element spaces that if v ∈ Vh is
divergence–free, then v = curlϕ for some ϕ ∈ Σh.
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Let V̊, E̊, and K denote the number of interior vertices, interior edges, and
quadrilaterals in the mesh Th, respectively. From Lemmas 3.1 and 3.5, we find that
dim Σh = 3V̊ + E̊ and dimVh = 2V̊ + 2E̊. Therefore, by the rank–nullity theorem,

dim (divVh) = dimVh − dim (curl Σh) = dimVh − dim Σh = E̊− V̊.

Using the Euler identity E̊ = K + V̊− 1 on simply connected domains [18, Lemma
4.41], and since clearly dimWh = K − 1, we get dim (divVh) = dimWh. Since
divVh ⊆ Wh, we conclude that divVh = Wh. Therefore the sequence (4) is exact.

�

The proceeding lemma shows that the divergence operator, acting on Vh, is
surjective onto Wh provided that Ω is simply connected. The next result shows
that this property holds on general Lipschitz domains, and in addition, gives a
uniform bound on the right–inverse.

Lemma 4.2. Denote by PW : L2
0(Ω) → Wh the L2–projection onto Wh. Then

there exists a (Fortin) operator ΠV : H1
0 (Ω) → Vh such that div ΠV v = PWdiv v

and ‖∇ΠV v‖L2(Ω) ≤ C‖∇v‖L2(Ω) for all v ∈ H1
0 (Ω). Consequently, Vh ×Wh is

an inf–sup stable finite element pair.

Proof. Define ΠV : H1
0 (Ω)→ Vh such that it satisfies∫

e

ΠV v ds =

∫
e

v ds, ∀e ∈ EK ,∀K ∈ Th,(12a)

ΠV v(a) =
1

|Ta|
∑
K′∈Ta

P1,K′v(a), ∀a ∈ VK \ Vb,∀K ∈ Th,(12b)

ΠV v(a) = 0, ∀a ∈ Vb,(12c)

where |Ta| is the cardinality of the set Ta.
By the divergence theorem and (12a),

(13)∫
K

div (ΠV v) dx =

∫
∂K

(ΠV v) · n ds =

∫
∂K

(v · n)ds =

∫
K

div v dx ∀K ∈ Th.

Thus, div ΠV v = PW (div v).
Next we write, using Lemma 2.1,

‖∇ΠV v‖2L2(Ω) ≤ 2
∑
K∈Th

(‖∇(ΠV v −P1,Kv)‖2L2(K) + ‖∇P1,Kv‖2L2(K))(14)

≤ C‖∇v‖2L2(Ω) + 2
∑
K∈Th

‖∇(ΠV v −P1,Kv)‖2L2(K).

Note that by scaling, and since P1(K) ⊂ V (K), there holds

‖∇(ΠV v −P1,Kv)‖2L2(K) ≈
∑
a∈VK

|ΠV v(a)−P1,Kv(a)|2

+
∑
e∈EK

h−2
e |
∫
e

(ΠV v −P1,Kv) ds|2.(15)
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If a ∈ VK\Vb, then we have by (12b),

|ΠV v(a)−P1,Kv(a)|2 =
∣∣∣ 1

|Ta|
∑
K′∈Ta

(
P1,K′v(a)−P1,Kv(a)

)∣∣∣2
≤ C

|Ta|2
∑
K′∈Ta

|P1,K′v(a)−P1,Kv(a)|2,(16)

where the constant C > 0 depends only on the shape regularity of the mesh.
Now for K,K ′ ∈ Ta, there exists {Ki}mi=0 ⊂ Ta such that K0 = K, Km = K ′,

and Ki and Ki+1 share a common edge. Thus, by the inverse inequality,

|P1,K′v(a)−P1,Kv(a)|2 ≤
m∑
i=0

|P1,Ki+1
v(a)−P1,Ki

v(a)|2(17)

≤
∑
e∈Ea

‖[P1v]‖2L∞(e) ≤ C
∑
e∈Ea

h−1
e ‖[v −P1v]‖2L2(e).

Likewise, if a ∈ VK ∩ Vb, then we have by (12c),

|ΠV v(a)−P1,Kv(a)|2 = |P1,Kv(a)|2 ≤ C
∑
e∈Eba

h−1
e ‖[v −P1v]‖2L2(e).(18)

Combining (17)–(18) we obtain∑
a∈VK

|ΠV v(a)−P1,Kv(a)|2 ≤ C
∑
a∈VK

∑
e∈Ea

h−1
e ‖[v − P1v]‖2L2(e).(19)

Now consider the second term in (15). By (12a) and the Cauchy–Schwarz in-
equality, we have∑

e∈EK

h−2
e |
∫
e

(Πhv −P1,Kv)ds|2 =
∑
e∈EK

h−2
e |
∫
e

(v −P1,Kv)ds|2

≤
∑
e∈EK

h−1
e ‖v −P1,Kv‖2L2(e).(20)

Finally we apply (19)–(20) to (15), sum over K ∈ Th, use scaling arguments and
the shape–regularity of the mesh to get∑

K∈Th

‖∇(ΠV v −P1,Kv)‖2L2(K)

≤C
∑
K∈Th

( ∑
e∈EK

h−1
e ‖v −P1,Kv‖2L2(e) +

∑
a∈VK

∑
e∈Ea

h−1
e ‖[v −P1v]‖2L2(e)

)
≤C

∑
K∈Th

(
h−2
K ‖v −P1,Kv‖2L2(K) + ‖∇(v −P1,K)‖2L2(K)

)
Applying Lemma 2.1 yields

∑
K∈Th ‖∇(ΠV v − P1,Kv)‖2L2(K) ≤ C‖v‖H1(Ω), and

so, by using (14), we conclude that ‖∇ΠV v‖L2(Ω) ≤ C‖∇v‖L2(Ω). �

4.1. Finite Element Method and Convergence Analysis. The finite element
method to compute the Stokes problem reads: Find (uh, ph) ∈ Vh ×Wh such that∫

Ω

ν∇uh : ∇v dx−
∫

Ω

(div v)ph dx =

∫
Ω

f · v dx, ∀v ∈ Vh,(21a) ∫
Ω

(divuh)q dx = 0, ∀q ∈Wh.(21b)
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The discrete inf–sup stability given Lemma 4.2 shows that problem (21) is well–
posed. In addition we have the following error estimates.

Theorem 4.3. There holds, for s = 0, 1, 2,

‖u− uh‖H1(Ω) ≤ Chs|u|Hs+1(Ω),(22a)

‖p− ph‖L2(Ω) ≤ C
[
h|p|H1(Ω) + νhs|u|Hs+1(Ω)

]
,(22b)

where the constant C > 0 is independent of the solution, the discretization param-
eter, and the viscosity.

Proof. Define the discrete kernel:

(23) Zh = {v ∈ Vh : (div v, q) = 0 ∀q ∈Wh} = {v ∈ Vh : div v ≡ 0}.

Restricting (21a) toZh, reduces the problem to finding uh ∈ Zh such that ν(∇uh,∇v)
= (f ,v) for all v ∈ Zh. Now since Zh is divergence–free conforming, we can apply
Cea’s Lemma and the identity Zh = curl Σh to get

‖∇(u− uh)‖L2(Ω) ≤ inf
v∈Zh

‖∇(u− v)‖L2(Ω) = inf
ϕ∈Σh

‖∇(u− curlϕ)‖L2(Ω).

Writing u in terms of its streamfunction, i.e., u = curlψ with ψ ∈ H2
0 (Ω), we have

‖∇(u− uh)‖L2(Ω) ≤ inf
ϕ∈Σh

‖∇(curl(ψ − ϕ))‖L2(Ω) = inf
ϕ∈Σh

‖D2(ψ − ϕ)‖L2(Ω).

Employing the approximation properties of Σh given in [18, Theorem 6.18] then
yields

‖∇(u− uh)‖L2(Ω) ≤ Chs|ψ|Hs+2(Ω) = Chs|u|Hs+1(Ω) s = 0, 1, 2.

Finally the inf–sup condition and standard arguments [5] imply that the error of
the pressure satisfies

‖ph − PW p‖L2(Ω) ≤ ν‖∇(u− uh)‖L2(Ω) ≤ Cνhs|u|Hs+1(Ω).(24)

Applying the triangle inequality and the approximation properties of the L2 pro-
jection then yields (22b). �

4.2. A locally post processed pressure solution. Theorem 4.3 shows that the
velocity and pressure approximations have different orders of convergence with the
pressure solution only converging linearly. In this section, by taking advantage of
the superconvergence property (24), we develop a locally computed post–processed
pressure solution that has the same quadratic convergence as u− uh.

For an element K ∈ Th, let p∗,K ∈ P1(K) be the solution to the following discrete
Poisson problem with Neumann boundary conditions:∫

K

∇p∗,K · ∇q dx =

∫
K

(
ν∆huh + f

)
· ∇q dx ∀q ∈ P1(K)(25a) ∫

K

p∗,K dx =

∫
K

ph dx,(25b)

where the discrete Laplacian ∆h is defined piecewise with respect toK, i.e., ∆huh|Ki

= ∆uh|Ki for i = 1, 2, 3, 4.
Since ∇p∗,K and ∇q are both constant in (25), we can equivalently write

∇p∗,K · ∇q =
1

|K|

∫
K

(
ν∆huh + f

)
· ∇q dx
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for all q ∈ P1(K). By considering q = xi we then deduce that the post–processed
pressure solution is given by the formula

p∗,K = C∗,K +
x

|K|
·
∫
K

(
ν∆huh + f

)
dx(26)

with the constant C∗,K chosen such that
∫
K
p∗,K dx =

∫
K
ph dx.

Theorem 4.4. Suppose that the solution to the Stokes problem satisfies the regu-
larity (u, p) ∈H3(Ω)×H2(Ω). Let p∗ ∈ P1(Th) satisfy (25) on each K ∈ Th, i.e.,
p∗|K = p∗,K , where p∗,K is defined by (26). Then there holds

(27) ‖p− p∗‖L2(Ω) ≤ Ch2(ν|u|H3(Ω) + |p|H2(Ω)).

Proof. As a first step, we claim that
∫
K

(
p − PW p) dx = 0 for all K ∈ Th. To see

this, first note that
∫

Ω
(p − PW p) dx = 0 since p,PW p ∈ L2

0(Ω). Now let K1 ∈ Th
be fixed, and consider K ∈ Th with K 6= K1. Let q|K1

= 1, q|K = −|K1|/|K|, and
zero otherwise. Then q ∈Wh ⊂ L2

0(Ω), and by the definition of the L2 projection,∫
K1

(p− PW p) dx =
|K1|
|K|

∫
K

(p− PW p) dx.

This identity holds for all K ∈ Th, and it follows that

0 =

∫
Ω

(p− PW p) dx =
∑
K∈Th

∫
K

(p− PW p) dx

=
∑
K∈Th

|K|
|K1|

∫
K1

(p− PW p) dx =
|Ω|
|K1|

∫
K1

(p− PW p) dx.

We then conclude that
∫
K

(p− PW p) dx = 0 for all K ∈ Th as claimed.
Next we apply the Poincaré inequality to the difference p − p∗ on an element

K ∈ Th:

(28) ‖p− p∗‖L2(K) ≤ C
(
‖p− p∗‖L2(K) + hK‖∇(p− p∗)‖L2(K)

)
,

where p− p∗ denotes the mean of (p− p∗) over K. Since

p− p∗ = p− p∗ = PW p− ph = PW p− ph,

we obtain

(29) ‖p− p∗‖L2(K) = ‖PW p− ph‖L2(K) ≤ ‖PW p− ph‖L2(K).

On the other hand, by (25) and the Cauchy–Schwarz inequality, we have for all
q ∈ P1(K),

‖∇(p− p∗)‖2L2(K)

=

∫
K

∇(p− p∗) · ∇(p− q) dx+

∫
K

∇(p− p∗) · ∇(q − p∗) dx

=

∫
K

∇(p− p∗) · ∇(p− q) dx+

∫
K

ν(∆h(u− uh) · ∇(q − p∗) dx

≤‖∇(p− p∗)‖L2(K)‖∇(p− q)‖L2(K) + ν‖∆h(u− uh)‖L2(K)‖∇(q − p∗)‖L2(K).

An application of the triangle inequality then yields

‖∇(p− p∗)‖L2(K) ≤ C
(
‖∇(p− q)‖L2(K) + ν‖∆h(u− uh)‖L2(K)

)
∀q ∈ P1(K).

(30)
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Applying the estimates (29)–(30) to (28), summing over K ∈ Th, and then
applying (24) and standard interpolation estimates yield

‖p− p∗‖2L2(Ω) ≤ C(‖ph − Php‖2L2(Ω)

+ inf
q∈P1(Th)

∑
K∈Th

h2
K

(
ν2‖∆h(u− uh)‖2L2(K) + ‖∇(p− q)‖2L2(K)

)
(31)

≤ C
(
h4
(
ν2|u|2H3(Ω) + |p|2H2(Ω)

)
+
∑
K∈Th

h2
Kν

2‖∆h(u− uh)‖2L2(K)

)
.

By the triangle and inverse inequalities, we have for any v ∈ P2(Kr) ∩H1(K),

hK‖∆h(u− uh)‖L2(K)

≤hK‖∆h(u− v)‖L2(K) + C‖∇(uh − v)‖L2(K)

≤hK‖∆h(u− v)‖L2(K) + C
(
‖∇(u− v)‖L2(K) + ‖∇(u− uh)‖L2(K)

)
.

By taking v to be the nodal interpolant of u we have

hK‖∆h(u− uh)‖L2(K) ≤ C
(
h2
K |u|H3(K) + ‖∇(u− uh)‖L2(K)

)
.

Applying this estimate to (31) and applying estimate (22a) then gets

‖p− p∗‖2L2(Ω) ≤ C
(
h4
(
ν2|u|2H3(Ω) + |p|2H2(Ω)

)
+ ν2‖∇(u− uh)‖2L2(Ω)

)
≤ Ch4

(
ν2|u|2H3(Ω) + |p|2H2(Ω)

)
.

Taking the square root of this last expression yields (27). �

5. Implementation Aspects

In this section we describe the construction of the velocity space Vh, and in
particular, how to compute and implement a basis of this space. We note that,
unlike the Taylor–Hood pair, the local velocity space is defined on a physical element
of the mesh, and it is not invariant under bilinear mappings. These restrictions
may suggest that the basis must be solved locally on each quadrilateral of the mesh
(thus leading to sixteen 16× 16 linear systems for each element). Below we discuss
an alternative construction, which, besides being more efficient, may possibly be
extended to isoparametric elements.

Let K be a quadrilateral in the mesh, and let {T1, T2} be two triangles obtained
by splitting K from opposite vertices. Let A = (A1, A2) be the unique vertex

of T2 that is not a vertex of T1. Let T̂ be the reference simplex with vertices
(0, 0), (1, 0), (0, 1), and let F : T̂ → T1 be an affine bijection onto T1. We then set

T̂2 := F−1(T2) and Â = (Â1, Â2) := F−1(A), and define K̂Â := T̂1 ∪ T̂2, which is

a convex quadrilateral with vertices (1, 0), (Â1, Â2), (0, 1), (0, 0); cf. Figure 5. By

construction, F : K̂Â → K is an affine bijection.
Write F (x̂) = Bx̂ + b with B ∈ R2×2 and b ∈ R2. Let {âj}8j=1 be the set

of (exterior) vertices and edge midpoints of K̂Â, and let {v̂(k)
i } ⊂ V (K̂) satisfy

v̂
(k)
i (âj) = ekδi,j for i, j = 1, 2, . . . , 8 and k = 1, 2; that is, {v̂(k)

i } is the canonical

basis of V (K̂Â) induced by Lemma 3.5. We then define v
(k)
i via a modified Piola

transform:

v
(k)
i (x) = B

(
β

(k)
1 v̂

(1)
i (x̂) + β

(k)
2 v̂

(2)
i (x̂)

)
for x̂ ∈ K̂Â,(32)
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Â

Figure 2. Skewed reference element K̂Â with vertices (1, 0), (Â1, Â2), (0, 1), (0, 0).

with (
β

(k)
1

β
(k)
2

)
:= B−1ek,

and x = F (x̂). Clearly v
(k)
i ∈ P2(Kr) ∩H1(K). Moreover, computing the diver-

gence of v
(k)
i we find

div v
(k)
i (x) = β

(k)
1 d̂iv v̂

(1)
i (x̂) + β

(k)
2 d̂iv v̂

(2)
i (x̂) = β

(k)
1 d̂iv v̂

(1)
i + β

(k)
2 d̂iv v̂

(2)
i ,

where the last equality emphasizes that the divergence of v̂
(k)
i is constant on K̂.

Thus, v
(k)
i ∈ V (K). We also find that on the (physical) nodes aj = F (âj),

v
(k)
i (aj) = B

(
β

(k)
1 v̂

(1)
i (âj) + β

(k)
2 v̂

(2)
i (âj)

)
= B

(
β

(k)
1 δi,je1 + β

(k)
2 δi,je2

)
= δi,jB

(
β

(k)
1

β
(k)
2

)
= δi,jek.

Thus, {v(k)
i } is the canonical basis of V (K).

To summarize, to compute the local velocity basis on an element K ∈ Th, we
first take three vertices of K to construct an (inverse) affine mapping and a skewed

reference element which is parameterized by the vertex Â. A basis on the skewed
reference element is computed, and the physical bases are found via the transfor-
mation (32). To finalize our discussion, we describe an efficient way to compute the

basis on the skewed reference element K̂Â.

Â = â3

ĉ4

ĉ5

ĉ1

ĉ2
ĉ3

â8

â2

â4

â6

â7 â1

â5

Figure 3. Labelling of skewed reference quadrilateral

Let {ĉj}4j=1 denote the set of interior edge midpoints of a two–diagonal split of

K̂Â, and let ĉ5 be the point of intersection of the two diagonals; cf. Figure 3. Let
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{ŵi}5i=1 ⊂ P2(K̂Â,r) ∩H1(K̂Â) and {v̂i}8i=1 ⊂ P2(K̂Â,r) ∩H1(K̂Â) satisfy

ŵi(cj) = δi,j , ŵi(aj) = 0,

v̂i(cj) = 0, v̂i(aj) = δi,j .

Thus, {ŵi, v̂i} form the canonical basis of P2(K̂Â,r)∩H1(K̂Â) (the Lagrange basis).

Note that ŵi vanishes on ∂K̂Â, and that {ŵiek, v̂iek} forms the canonical basis of

P2(K̂Â,r) ∩H1(K̂Â).

We view the basis of V (K̂Â) as the the Lagrange sub–basis {v̂iek} “corrected”
by the functions ŵi to enforce the constant divergence constraint. In particular,
Lemma 3.5 implies the following result.

Lemma 5.1. Let {v(k)
i } denote the canonical basis of V (K̂Â). Then, for each i

and k, there exist unique vectors {α(k)
i,j }5j=1 ⊂ R2 such that

v̂
(k)
i = ekv̂i +

5∑
j=1

α
(k)
i,j ŵj .

In particular, the vectors are uniquely determined the following constraint, which
represents a 10× 10 system:

d̂iv v̂
(k)
i = ek · ∇̂v̂i +

5∑
j=1

α
(k)
i,j · ∇̂ŵj ∈ P0(K̂Â).(33)

Remark 5.2. The 10 × 10 system (33) can be easily solved symbolically in terms

of the point Â and hardcoded into a finite element subroutine.

6. Numerical Examples

In this section, we perform some numerical experiments which back up the the-
oretical results in Section 4. In addition, we compare the performance of the pro-
posed method with the reduced (serendipity) Taylor–Hood finite element pair with
grad-div stabilization.

6.1. Convergence Rate Tests. In these series of tests, the domain is the unit
square Ω = (0, 1), the viscosity is ν = 10−2, and the data is chosen such that the
exact solution is given by

u = curlψ, ψ = sin2(3πx1) sin2(3πx2),

p = x1 − x2.
(34)

We compute the finite element method (21) on a sequence of refined meshes,
obtained from a O(h) perturbation of a uniform grid (see Figure 6.1), and report the
errors and rates of convergence in Table 1. The table clearly shows third and second
order convergence of the velocity approximation measured in the L2 and H1 norms,
respectively. In addition, the pressure approximation is first order convergent, and
the post-processed pressure solution is second order convergent. These rates of
convergence agree with the theoretical results established in Theorems 4.3–4.4.

For comparison, the errors using the reduced Taylor–Hood element pair Q̃2−Q1

with grad-div stabilization on the same sequence of meshes are listed in Table 2.
The grad-div stabilization parameter is taken to be one in the tests.

Tables 1–2 show that the errors of the divergence–free yielding method are con-
siderable smaller than the Taylor–Hood method. In addition, we observe a deteri-
oration of the convergence rate of the Taylor–Hood method as the mesh is refined.
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This behavior is expected since the quadrilaterals in the mesh are not affine equiv-
alent [2].

Table 1. Errors and rates of convergence of the divergence-free
yielding method on a sequence of mesh refinements. The exact
solution is given by (34).

h ‖u− uh‖L2 rate ‖∇(u− u)‖
L2 rate ‖p− ph‖L2 rate ‖p− p∗‖L2 rate V ∗

2−2 3.07E+00 8.85E+01 1.56E-01 7.16E-01 1.99E-13

2−3 5.44E-01 2.50 3.06E+01 1.53 6.02E-02 1.38 2.88E-01 1.32 5.49E-13

2−4 6.96E-02 2.97 7.94E+00 1.95 2.72E-02 1.14 5.32E-02 2.43 3.24E-12

2−5 9.24E-03 2.91 2.10E+00 1.92 1.34E-02 1.02 1.09E-02 2.29 3.82E-12

2−6 1.17E-03 2.98 5.35E-01 1.98 6.70E-03 1.00 2.53E-03 2.11 2.37E-11

2−7 1.43E-04 3.03 1.32E-01 2.02 3.34E-03 1.01 5.98E-04 2.08 1.03E-10

2−8 1.78E-05 3.01 3.30E-02 2.00 1.67E-03 1.00 1.48E-04 2.02 2.20E-10

2−9 2.22E-06 3.00 8.24E-03 2.00 8.35E-04 1.00 3.69E-05 2.00 7.04E-10

V ∗ stands for ‖divuh‖L∞

Table 2. Errors and rates of convergence of the reduced Taylor–
Hood method with grad–div stabilization on a sequence of mesh
refinements. The exact solution is given by (34).

h ‖u− uh‖L2 rate ‖∇(u− u)‖
L2 rate ‖p− ph‖L2 rate ‖divuh‖L∞

2−2 5.89E+00 1.17E+02 2.08E+00 6.67E+00

2−3 1.68E+00 1.81 4.63E+01 1.34 1.03E+00 1.02 4.39E+00

2−4 1.56E-01 3.43 8.16E+00 2.50 1.36E-01 2.92 2.27E+00

2−5 1.91E-02 3.03 1.96E+00 2.06 5.40E-02 1.33 1.10E+00

2−6 2.62E-03 2.87 6.55E-01 1.58 4.76E-03 3.51 2.47E-01

2−7 3.95E-04 2.73 2.57E-01 1.35 1.16E-03 2.03 1.27E-01

2−8 7.80E-05 2.34 1.22E-01 1.08 5.06E-04 1.20 7.90E-02

2−9 1.79E-05 2.12 6.00E-02 1.02 2.37E-04 1.09 4.54E-02

Figure 4. The quadrilateral mesh used in Section 6.1 with h = 2−3.

6.2. Non-isothermal Flow Example. In this section, we use the proposed s-
paces to compute a natural convection problem modeled by the Navier–Stokes–
Boussinesq system:

−ν∆u+ (u · ∇)u+∇p = Rae2ϕ,

divu = 0,

−∆ϕ+ u · ∇ϕ = 0.

(35)

Here, ϕ represents the temperature, and Ra is the (rescaled) Rayleigh number,
representing the relative strength of buoyancy forces with respect to thermal and
momentum diffusion [16, 9].
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The domain is taken to be Ω = (0, 1)2\(S1 ∪ S2), where S1 is the triangle
with vertices (1, 1), (0.5, 0.5), (1, 0.5), and S2 is the regular polygon centered at
(15/32, 41/50) and with edge length 1/16. The system of equations is coupled with
velocity no–slip boundary conditions, heating/cooling is applied on the top and
middle horizontal sides

ϕ = 10 on Γ1 := (0, 1)× {1},
ϕ = 0 on Γ2 := (1/2, 1)× {1/2},

and the rest of the boundary is insulated:

∂ϕ

∂n
= 0 on ∂Ω\(Γ1 ∪ Γ2).

We note that large Rayleigh numbers induce a large rotation–free part of the forcing
function in the momentum equations, which has a significant effect on the discrete
solutions if the divergence–free constraint is not sufficiently resolved [16].

Figure 6.2 shows the resulting computing streamlines and temperature profiles
with Ra = 2 × 104 and ν = 3.5 × 10−2 on relative course meshes using the grad–
div stabilized Taylor–Hood finite element pair with 8709 unknowns (left) and the
divergence–free yielding method with 8657 unknowns (middle). In both cases, the
temperature is approximated by the biquadratic Lagrange finite element space. The
numerical experiments clearly show the advantage of the divergence-free yielding
pair, as the method resolves the prominent features of the flow on a relatively course
grid.

Figure 5. Streamlines and pressure profiles of the Boussinesq sys-
tem (35) with ν = 3.5×10−2 and Ra = 2×104. Left: Taylor–Hood
with grad-div stabilization (8709 unknowns); Middle: Divergence-
free yielding method (8657 unknowns); Right: Reference solution
(412k unknowns).

7. Conclusions

In this paper we introduced a stable finite element pair for the Stokes problem
that enforces the divergence–free condition exactly in the method. The key features
of the method are its relative low–order and robustness with respect to the meshes.
In the future we plan on extending these results to the three–dimensional setting.
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