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Abstract. In this article, we propose and develop a time relaxation implementation of the
modular nonlinear filter model of [21]. A complete numerical analysis of the scheme, that includes
the computability of its numerical solutions, its stability, and velocity error estimates, is given.
This is followed by 2D and 3D numerical experiments that show the advantage of the proposed
scheme.
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1. Introduction

The range of size of the velocity eddies is very wide, especially in simulation with
higher Reynolds number. Based on the Kolmogorov theory [16], the computations
have to be done on a very fine mesh to be able to capture all the persistent eddies
and these proper numerical computations are not feasible with the current computer
power. For this reason, numerical regularization and computational stabilizations
have been explored in computational fluid dynamics, [4, 26, 15]. Herein, we study
a regularization that has been proposed by Adams, Stoltz and Kleiser [1, 2, 29, 30].
Let u represent the fluid velocity, h the characteristic mesh width, and δ = O(h)

a chosen length scale, and u
′

denote some representation of the part of u varying
over length scales < O(δ), i.e., the fluctuating part of u. This will be made specific
in Section 2 and 3. The fluid regularization model that we consider, was obtained
by adding a time regularization term, χu

′

to the Navier-Stokes equations (NSE)

ut + u · ∇u + ∇p − ν∆u + χu
′

= f , x ∈ Ω ,(1)

∇ · u = 0, x ∈ Ω .(2)

The term χu
′

is a linear, lower order term and it is intended to drive unresolved
velocity scales to zero exponentially fast. With that aim, χ > 0, and has units
of 1/time. The regularizations of this type have been extensively studied in the
literatures. Adams, Kleiser and Stoltz have performed numerical tests of this time
relaxation model on compressible flows with shocks and on turbulent flows, [28,
29, 30]. Guenanff [11] performed studies on aerodynamic noise. Rosenau [25],
Schochet and Tadmor [27] did studies of (1)-(2) in which the time relaxation model
was developed from a regularized Chapman-Enskog expansion of conservation laws.
In [22], it was shown that at high Reynolds number, solutions to (1)-(2), possess
an energy cascade which terminates at the mesh scale δ with the proper choice of
relaxation coefficient χ. Also, the joint helicity/energy cascade was investigated
in [20]. A standard continuous finite element analysis of the model (1)-(2) was
performed in [10].
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In [24], following the work from [6], it was also studied a continuous finite ele-
ment discretization of (1)-(2) that incorporated three ideas. First idea was to use
incompressible filter (i.e. a Stokes type of filter problem) for better consistency
outside of the periodic domains. Second idea was the efficient implementation of
linearization of Baker [3], that allows to solve for only one linear system per time
step with second order of accuracy. The third idea was the stabilization in time
that is natural for this linearization and which was first introduced in [17].

The goal of this paper is to present the implementation of the time-relaxation
regularization through the nonlinear filter stabilization method of [21]. The attrac-
tive feature of the modular adaptive nonlinear filter model [21] is that it allows
one to incorporate a desired eddy-viscosity model into the legacy codes by solving
an additional Stokes-Darcy type system, as mentioned in [5]. The idea has been
further extended to improve the Leray-α model in [7], and a first order, computa-
tionally efficient implementation has been recently reported in [9]. The proposed
scheme is also easy to incorporate into the existing codes. It requires solution of
the Stokes like system (or just an elliptic problem, since Laplace type of filtering
showed comparable results to Stokes for the few performed numerical experiments),
and changing the coefficient in the mass matrix.

This article is organized the following way. In Section 2 we give a precise defini-
tion of the discrete nonlinear filtering operator and of the generalized fluctuation u

′

.
We also give preliminaries about the finite element framework. Section 3 gives the
scheme and its unconditionally stability. In Section 4 the finite element convergence
error analysis is presented. In Section 5, we present 2D and 3D numerical tests that
show the effectiveness of the nonlinear filters for the time relaxation model.

2. Notation and Preliminaries

In order to discuss the effects of the regularization we introduce the following
notation. The L2(Ω) norm and inner product will be denoted by ‖·‖ and (·, ·).
Likewise, the Lp(Ω) norms and the Sobolev W k

p (Ω) norms are denoted by ‖ · ‖Lp

and ‖ · ‖Wk
p
, respectively. For the semi-norm in W k

p (Ω) we use | · |Wk
p
. Hk is used to

represent the Sobolev space W k
2 , and ‖ · ‖k denotes the norm in Hk. For functions

v(x, t) defined on the entire time interval (0, T ), we define

‖v‖∞,k := sup
0<t<T

‖v(·, t)‖k , and ‖v‖m,k :=

(

∫ T

0

‖v(·, t)‖mk dt

)1/m

.

The following function spaces are used in the analysis:

Velocity Space − X := H1
0 (Ω) ,

Pressure Space − P := L2
0(Ω) =

{

q ∈ L2(Ω) :

∫

Ω

q dΩ = 0

}

,

Divergence− free Space − Z :=

{

v ∈ X :

∫

Ω

q∇ · v dΩ = 0, ∀ q ∈ P

}

.

We denote the dual space of X as X ′, with norm ‖ · ‖−1.

Let Ω ⊂ IRd́ (d́ = 2, 3) be a polygonal domain and let Th be a triangulation of
Ω made of triangles (in IR2) or tetrahedrons (in IR3). Thus, the computational
domain is defined by

Ω = ∪K; K ∈ Th.
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We assume that there exist constants c1, c2 such that

c1h ≤ hK ≤ c2ρK

where hK is the diameter of triangle (tetrahedral) K, ρK is the diameter of the
greatest ball (sphere) included in K, and h = max

K∈Th

hK . Let Pk(K) denote the

space of polynomials on K of degree no greater than k. Then we define the finite
element spaces as follows.

Xh :=
{

v ∈ X ∩ C(Ω̄) : v|K ∈ Pk(K), ∀K ∈ Th

}

,

Ph :=
{

q ∈ P ∩ C(Ω̄) : q|K ∈ Ps(K), ∀K ∈ Th

}

,

Zh := {v ∈ Xh : (q,∇ · v) = 0, ∀q ∈ Ph} .

We assume that the spaces Xh, Ph satisfy the discrete inf-sup condition [12],
namely there exists γ ∈ IR, γ > 0,

(3) γ ≤ inf
qh∈Ph

sup
vh∈Xh

(qh∇ · vh)

‖qh‖ ‖∇vh‖
.

Taylor-Hood elements are an example of such a space with k = 2 and s = 1,
[8, 12, 18].

Let ∆t be the step size for t so that tn = n∆t, n = 0, 1, 2, . . . , NT , with T :=

NT∆t, and dtf
n := f(tn)−f(tn−1)

∆t . We define the following additional norms:

‖|v|‖∞,k := max
0≤n≤NT

‖vn‖k , ‖|v|‖m,k :=

(

NT
∑

n=0

‖vn‖mk ∆t

)1/m

.

Also, we make use of the following approximation properties, [8]:

inf
v∈Xh

‖u− v‖ ≤ Chk+1‖u‖k+1, u ∈ Hk+1(Ω)d́,

inf
v∈Xh

‖u− v‖1 ≤ Chk‖u‖k+1, u ∈ Hk+1(Ω)d́,

inf
r∈Ph

‖p− r‖ ≤ Chs+1‖p‖s+1, p ∈ Hs+1(Ω).

(4)

We define the skew-symmetric trilinear form b∗(·, ·, ·) : X ×X ×X → IR as in
[18]

(5) b∗(u,v,w) :=
1

2
(u · ∇v,w) −

1

2
(u · ∇w,v) .

Note that for u, v, w, ∈ X , with u ∈ Z,

b∗(u,v,w) = (u · ∇v,w) .

The error analysis uses the discrete Gronwall inequality.

Lemma 2.1 (Discrete Gronwall Lemma). Let ∆t, H, and an, bn, cn, dn (for integers
n ≥ 0) be finite nonnegative numbers such that

(6) al +∆t

l
∑

n=0

bn ≤ ∆t

l−1
∑

n=0

dnan +∆t

l
∑

n=0

cn +H for l ≥ 1.

Then for ∆t > 0

(7) al +∆t
l
∑

n=0

bn ≤ exp

(

∆t
l−1
∑

n=0

dn

)(

∆t
l
∑

n=0

cn +H

)

for l ≥ 1.
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Definition 2.1. Define the L2 projection, PZh
: L2(Ω) → Zh, by

(PZh
(v) − v,w) = 0, ∀w ∈ Zh .

2.1. Nonlinear Filtering. The filter we consider herein was first proposed in
[21]. It is based on the physical idea that in laminar regions, or in the regions where
coherent structures persist, little or no filtering is needed because these regions are
resolvable. This idea is implemented through the nonlinear filter

−α2∇ · (a(u)∇u) + u = u ,

where a(u) satisfies:

• 0 ≤ a(u) ≤ 1 for any fluid velocity u(x, t),
• a(u) ≃ 0 selects regions requiring no local filtering,
• a(u) ≃ 1 selects regions requiring O(α) local filtering.

The function a(u) is called an indicator function, and it allows to vary the filtering
radius between 0 and 1, depending on the local flow structures. In the discrete
setting, α = O (h). Herein, we study the following possible choices of indicator
functions.

The Q criterion-based indicator: The Q criterion, developed in [32], is
one the most popular method for eduction of coherent vortices. First, we
define deformation and spin tensors respectively by

∇su :=
1

2
(∇u+∇uT ) and ∇ssu :=

1

2
(∇u−∇uT ).

A persistent and coherent vortex is found in regions where spin dominates
deformation, i.e., where the following is satisfied,

Q(u,u) :=
1

2
(∇ssu : ∇ssu−∇su : ∇su) > 0 .

We define our Q criterion-based indicator function such that Q(u,u) > 0
implies a(u) ≃ 0. One of the ways to implement this is by defining

aQ(u) :=
1

2
−

1

π
arctan

(

α−1 Q(u,u)

|Q(u,u)|+ α2

)

.

Vreman’s eddy viscosity-based indicator: Vreman constructed an eddy
viscosity coefficient formula that vanishes identically for 320 types of flow
structures that are known to be coherent (non turbulent). This is presented
in [31], and it is achieved using only the gradient tensor. First, we define

|∇u|2F =
∑

i,j=1,2,3

(

∂uj

∂xi

)2

,

βi,j :=
∑

m=1,2,3

∂ui

∂xm

∂uj

∂xm
, and

B(u) := β11β22 − β2
12 + β11β33 − β2

13 + β22β33 − β2
23 .

Then, Vreman’s eddy viscosity coefficient equals to

νT = Cα2

√

B(u)

|∇u|4F
if |∇u|F 6= 0 or 0, otherwise ,
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where C is a positive constant. Using that 0 ≤ B(u)
|∇u|4

F

≤ 1, we define

aV (u) :=

√

B(u)

|∇u|4F
.

Synthesized methods: The advantage of this method is that combines two
indicator functions that have different selection criteria. Thus, given indi-
cator functions ai, we construct synthesized indicator functions as

aij(u) := (ai(u)aj(u))
1/2 .

More details on the above indicator functions can be found in [21].

2.1.1. Discrete filtering. Given an indicator function a(·), a fluid velocity u,
an averaging radius α, we define the filtered velocity uh using a selected indicator
function, a(·), as the solution of: Find (uh, λh) ∈ Xh × Ph satisfying

α2(a(u)∇uh,∇vh) + (uh,vh) = (u,vh), ∀vh ∈ Xh,(8)

To impose divergence free of the filtered velocity, we considered Stokes type non-
linear filter defined as: Find (uh, λh) ∈ Xh × Ph satisfying

α2(a(u)∇uh,∇vh) + (uh,vh)− (λh,∇ · vh) = (u,vh), ∀vh ∈ Xh,(9)

(∇ · uh, q) = 0, ∀q ∈ Ph.(10)

Given u ∈ X , the nonlinear filtering step is a linear problem. It is straightforward
to show the well-posedness of (8), and (9)-(10). In particular, the solution satisfies

2

∫

Ω

α2a(u)|∇uh|2dx+ ||uh||2 ≤ ||u||2,

stability estimate and following error estimate.

Theorem 2.1. Let uh be the solution of (9)-(10), and u ∈ Zh. Then
∫

Ω
α2a(u)|∇(u − uh)|2dx+ ||u− uh||2

≤ C inf ũ∈Xh

(∫

Ω α2a(u)|∇(u − ũ)|2dx+ ||u− ũ||2
)

+ Cα4||∇ · (a(u)∇u)||2.

The proofs are given in [7].

3. Time Relaxation Scheme and Stability

This section introduces the scheme studied herein in Algorithm 3.1 and proves
unconditional stability. The chosen time discretization is based on linearly extrap-
olated backward Euler scheme. The time relaxed, discrete approximation to (1)-(2)
on the time interval (0, T ], is given by the following algorithm.

Algorithm 3.1. Let u0
h := PZh

(u0)).

For n = 0, 1, 2, . . . ,M − 1, where M := T
∆t , find un+1

h ∈ Xh, p
n+1
h ∈ Ph, such

that
1

∆t

(

un+1
h − un

h,vh

)

+ b∗
(

un
h ,u

n+1
h ,vh

)

+ ν
(

∇un+1
h ,∇vh

)

−
(

pn+1
h ,∇ · vh

)

+χ
(

un+1
h − un

h

h
,vh

)

=
(

f(tn+1),vh

)

, ∀vh ∈ Xh ,(11)
(

∇ · un+1
h , qh

)

= 0 , ∀qh ∈ Ph .(12)

Lemma 3.1. The scheme (11)-(12) has a unique solution and satisfies

∥

∥uM
h

∥

∥

2
+ χ∆t

∥

∥uM−1
h

∥

∥

2
+ ν∆t

M−1
∑

n=0

∥

∥∇un+1
h

∥

∥

2
≤ C(f ,u0, χ, ν).
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Proof: Let vh = un+1
h in (11), qh = pn+1

h in (12), and add the equations to get

1

∆t

(

un+1
h − un

h,u
n+1
h

)

+ ν
(

∇un+1
h ,∇un+1

h

)

+ χ
(

un+1
h − un

h

h
,un+1

h

)

=
(

f(tn+1),un+1
h

)

.

Standard inequalities give

1

2∆t

(

∥

∥un+1
h

∥

∥

2
− ‖un

h‖
2
)

+ ν
∥

∥∇un+1
h

∥

∥

2
+ χ

∥

∥un+1
h

∥

∥

2

= χ
(

un
h

h
,un+1

h

)

+
(

f(tn+1),un+1
h

)

≤
ν

2

∥

∥∇un+1
h

∥

∥

2
+

1

2ν

∥

∥f(tn+1)
∥

∥

2

−1
+

χ

2

∥

∥

∥
un
h

h
∥

∥

∥

2

+
χ

2

∥

∥un+1
h

∥

∥

2
,

≤
ν

2

∥

∥∇un+1
h

∥

∥

2
+

1

2ν

∥

∥f(tn+1)
∥

∥

2

−1
+

χ

2
‖un

h‖
2 +

χ

2

∥

∥un+1
h

∥

∥

2
,

i.e.,

1

2∆t

(

∥

∥un+1
h

∥

∥

2
− ‖un

h‖
2
)

+
χ

2

(

∥

∥un+1
h

∥

∥

2
− ‖un

h‖
2
)

(13)

+
ν

2

∥

∥∇un+1
h

∥

∥

2
≤

1

2ν

∥

∥f(tn+1)
∥

∥

2

−1
,

Summing over the time steps n = 0 . . .M − 1 gives

1

2∆t

(

∥

∥uM
h

∥

∥

2
−
∥

∥u0
h

∥

∥

2
)

+
χ

2

(

∥

∥uM
h

∥

∥

2
−
∥

∥u0
h

∥

∥

2
)

(14)

+
ν

2

M−1
∑

n=0

∥

∥∇un+1
h

∥

∥

2
≤

1

2ν

M−1
∑

n=0

∥

∥f(tn+1)
∥

∥

2

−1
.

Multiplying by 2∆t, yields

(1 + χ∆t)
∥

∥uM
h

∥

∥

2
+ ν∆t

M−1
∑

n=0

∥

∥∇un+1
h

∥

∥

2
(15)

≤ ν−1∆t

M−1
∑

n=0

∥

∥f(tn+1)
∥

∥

2

−1
+ (1 + χ∆t)

∥

∥u0
h

∥

∥

2
.

Since the scheme is finite dimensional and linear, the existence of the solution is
equivalent to its uniqueness. From (15) it follows that if u0

h = f = 0, then un
h = 0

and therefore, pnh = 0 due to the inf-sup condition.

4. Finite Element Error Analysis

We study the error between the finite element solution of the scheme and solution
of Navier-Stokes equations. We introduce a variational solution of the NSE as: Find
(u(x, t), p(x, t)) satisfying

(ut,v) + (u · ∇u,v) − (p,∇ · v) + ν(∇u,∇v) = (f ,v) , ∀v ∈ X ,(16)

(q,∇ · u) = 0 , ∀q ∈ P ,(17)

u(x, 0) = u0(x) , ∀x ∈ Ω .(18)

Theorem 4.1. Let (u(t), p(t)) be a sufficiently smooth solution of the NSE sat-
isfying no-slip boundary conditions, with given f ∈ L∞

(

0, T ;H−1(Ω)
)

and u0 ∈

H1(Ω). Let (un
h , p

n
h), n = 0, 1, . . . ,M, be the solution of Algorithm 3.1, using
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(Pk, Pk−1)(k ≥ 2) elements. Then, the velocity error en := u(x, tn) − un
h satis-

fies

(19) ‖eN‖2 + ν∆t
N
∑

n=1

‖∇en‖2 ≤ C (ν,u0, f ,u, p)
(

α2h2k + h2k+2 +∆t2
)

.

Proof: Since χ = 0 case is standard, we will only concentrate on the error terms
due to the time relaxation term. For the rest of the proof, abusing the notation,
we will let vh be the discrete filter of a generic function v ∈ X , but with a(un

h)
indicator function, instead of a(v). In particular, this means that the filtering
operation is linear at each time step. Then the error equation becomes

. . .+ χ (en+1 − en,vh) = . . .+ χ
(

u(tn+1)− u(tn),vh

)

(20)

Let Un
n ∈ Xh be the interpolant of the exact solution u(tn). We decompose the

error as en = (u(tn)−Un
h) + (Un

h − un
h) =: ηn +φn

h, then choose the test function

vh = φn+1
h to get

. . .+
χ

2

[

‖φn+1
h ‖2 − ‖φn

h‖
2 + ‖φn+1

h − φn
h‖

2
]

≤ . . .− χ
(

ηn+1 − ηn,φn+1
h

)

+ χ
(

u(tn+1)− u(tn),φ
n+1
h

)

+χ
(

u(tn)− u(tn),φ
n+1
h

)

,

where we made use of the fact that ‖φn
h‖ ≤ ‖φn

h‖, as in the stability proof. Now it
remains to bound the terms on the right hand side of (21). The standard inequalities
yield

χ
(

ηn+1 − ηn,φn+1
h

)

≤ χ
(

‖ηn+1 − ηn‖+ ‖ηn − ηn‖
)

‖φn+1
h ‖

≤ εν‖∇φn+1
h ‖2 + C

(

∆th2k+2‖ut‖
2
L2((tn,tn+1);Hk+1(Ω)) + ‖ηn − ηn‖2

)

.

The term ‖ηn − ηn‖ can be bounded using the Proposition 5.4 of [21], giving

‖ηn − ηn‖ ≤ C
(

h2kα2‖u(tn)‖
2
k+1 + h2k+2‖u(tn)‖

2
k+1

)

.

The remaining two terms are easy to bound. By Taylor series,

χ
(

u(tn+1)− u(tn),φ
n+1
h

)

≤ εν‖∇φn+1
h ‖2 + C∆t‖ut‖

2
L2((tn,tn+1);L2(Ω))

and using the Proposition 5.4 of [21] one more time, we get

χ
(

u(tn)− u(tn),φ
n+1
h

)

≤ εν‖∇φn+1
h ‖2 + C

(

h2kα2‖u(tn)‖
2
k+1 + h2k+2‖u(tn)‖

2
k+1

)

.

Picking ε appropriately, summing over the time steps, Gronwall’s and the triangle
inequality yields the desired result.
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Figure 5.1. coarser mesh for the 2D channel flow over a step.

5. Numerical Experiments

In this chapter we present three numerical experiments which illustrate the
effectiveness of our scheme defined in the Algorithm 3.1. We use the software
FreeFem++ to run the numerical tests, [13]. The Taylor-Hood finite element spaces,
i.e., second order polynomial approximations for velocity and first order polynomial
approximations for pressure, are used for all simulations.

5.1. 2D channel flow over a step. Our first numerical experiment is for a 2D
flow over a forward and backward facing step. We have the same set up as in
[7]. The domain is a 40× 10 rectangular channel with a 1 × 1 step five units into
the channel at the bottom. We assume no-slip boundary conditions on the top and
bottom boundaries, a parabolic infow profile given by (y(10−y)/25, 0)T and a zero-
traction (do-nothing) outflow. The correct behavior is a smooth velocity field away
from the step and for eddies to periodically form and shed behind the step. The
direct NSE results with different mesh sizes have been presented in [7] and when
the mesh size is with 21, 593 DOF, the eddy formation and detachment is well
captured behind the step. We will test our proposed Algorithm 3.1 with χ = 0.1
combined with Stokes filter on coarser mesh with mesh size h = 0.937406 in Figure
5.1 and the time step is ∆t = 0.01, viscosity ν = 1/600 and final time T = 40. The
filter radius δ is the mesh size. The velocity streamlines over speed contour are
shown in Figures 5.2 with different indicator functions a(u) = 1, aV , aQ and aV Q

under the mesh with 4, 892 DOF. We can see from the figures that a(u) = 1 and
Q indicator tend to smooth the solution, not being able to capture more detailed
fluid structures. Vreman filter and VQ-filter capture the correct eddy detachment
behind the step. The contour plots of different indicator functions at final time
T = 40 are shown in Figure 5.3. We see that for Vreman and VQ indicator, filters
are needed throughout the entire domain. For Q filter, we see near the step, there
are filters or no filter, but the rest of the domain has value close to 0.5, which
indicates Q(u, u) = 0 and additional tuning of aQ may be needed for this particular
problem like [7] suggested. Plots on even coarser mesh (h = 2.1135 and 1, 762
DOF) Figure 5.4 is presented in Figure 5.5 with VQ indicator and without time
relaxation model, and we get a good result with our model and VQ indicator that
shows predicted eddy formation and detachment. Without our model, the solution
doesn’t even converge shown in Figure 5.5 bottom plot.

5.2. 2D Flow around a cylinder. The second numerical experiment is for a 2D
flow around a cylinder. This popular benchmark problem has been investigated
in [21] and [33]. The patterns are driven by the change of the pressure near the
cylinder. The domain of this problem is a 2.2 × 0.41 rectangular channel with a
cylinder of radius 0.05 centered at (0.2, 0.2) (taking the bottom left corner of the
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(d) TRM with stokes filter and a(u) = aV Q(u)

Figure 5.2. Velocity solutions for T = 40 for 2D flow over a
step for the Time Relaxation model with χ = 0.1 using different
indicator functions.

rectangle as the origin). The cylinder, top and bottom of the channel are prescribed
no-slip boundary conditions, and the time dependent inflow and outflow profiles are

u1(0, y, t) = u1(2.2, y, t) =
6

0.412
sin(πt/8)y(0.41− y)

u2(0, y, t) = u2(2.2, y, t) = 0.

The viscosity is set as ν = 10−3 and the external force f = 0. Here we use
our Algorithm 3.1 with χ = ∆t with Taylor-Hood element on a triangular mesh
with 14, 868 DOF, with time step ∆t = 0.0005 and filtering radius δ, chosen to
be the average mesh width, with varying indicator functions. The fully resolved
computations of the true Navier-Stokes use more than 100, 000 DOF and even
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Figure 5.3. Contour plots of the Vreman filter, Q-filter and VQ-
filter ( from top to bottom).

Figure 5.4. coarse mesh (1, 762 DOF).

smaller time steps. Figure 5.6 is showing the velocity vector and speed contour for
Vreman indicator and other indicators gave roughly the same results. We compare
the lift and drag reference values computed from our model with the benchmark
reference values in Table 5.1. Our reference values match other literatures [7], [33]
and [35]. We see that our algorithm performs well overall. Moreover, Vreman filter,
Q-filter and VQ indicator filter do give more accurate results than linear filter.

5.3. Comparison between Stokes and Laplace filter. We did a comparison
between Stokes filter and Laplace filter with above two 2D problems. Since Vreman
and VQ indicator gave better results, here we only included Vreman indicator. For
2D channel flow over a step, we use exactly the same set up for both Stokes and
Laplace filter as shown in the first example. The velocity and indicator contour for
Laplace filter are shown in Figure 5.7. Here we can see that comparing to Figure
5.6 produced by Stokes filter with Vreman indicator, we get the same answer with
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Figure 5.5. Velocity solutions for T = 40 for 2D flow over a step
for the Time Relaxation model with χ = 0.1 using VQ indicator
under mesh 1762 DOF(top) (see Figure 5.4) and without Time
Relaxation model under the same mesh(bottom).
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Figure 5.6. Velocity field (top) and speed contour (bottom) for
t = 6 for 2D flow around a cylinder for the Time Relaxation model
with χ = 0.00125 using Vreman indicator.

Table 5.1. Lift, drag, and pressure drop for the flow around a
cylinder experiment with varying indicator functions used in the
filtering.

Indicator DOF cd,max cl,max ∆P

a(u) = 1 14, 868 2.89928 0.465398 −0.102496

aV (u) 14, 868 2.89931 0.470893 −0.109909

aQ(u) 14, 868 2.89986 0.471104 −0.109956

aV Q(u) 14, 868 2.89934 0.471074 −0.109948

John and Rang 2, 347, 776 2.950918381 0.47787543 0.11161567

DNS reference values > 100, 000 [2.93, 2.97] [0.47, 0.49] [−0.115,−0.105]
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Figure 5.7. Velocity contour (top) and Vreman indicator contour
(bottom) with Laplace filter for the Time Relaxation model with
χ = 0.1.

 

 

0

0.5

1

Figure 5.8. Velocity field (top) and speed contour (bottom) for
t = 6 for 2D flow around a cylinder for the Time Relaxation model
with χ = 0.00125 using Vreman indicator.

Laplace filter and Vreman indicator. For the 2D flow around a cylinder, with the
same set up as Stokes filter in the second example, the Laplace also tend to give
the same results. The velocity field and speed contour are given in Figure 5.8. The
lift and drag value computed from Laplace filter with Vreman indicator is

cd,max = 2.89931, cl,max = 0.471143 and ∆p = −0.109966

which are close to the value given by Stokes filter with Vreman indicator in Table
5.1.

5.4. Three dimensional Taylor-Green vortex flow. Our last simulation is
three-dimensional Taylor-Green vortex flow from [34]. The Taylor-Green vortex
flow is the three-dimensional, incompressible flow that evolves from an initially
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Figure 5.9. Normalized kinetic energy for ν = 1/1000 by Time
Relaxation model with χ = 0.001 using Stokes filter and Laplace
filter with Vreman indicator
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Figure 5.10. Normalized enstrophy of Algorithm 3.1 for ν =
1/1000 by Time Relaxation model with χ = 0.001 using Stokes
filter and Laplace filter with Vreman indicator

two-dimensional velocity field given by

(u1, u2, u3)(0) = (sin(x)cos(y)cos(z),−cos(x)sin(y)cos(z), 0),

with periodic boundary conditions on [0, 2π]3. The initial kinetic energy is K(0) =
1
2 ||u(0)||

2 = π3, which should be conserved in Taylor-Green Vortex. To show this,
we plot the normalized kinetic energy K(t)/K(0). We divided the entire domain
into 10 subintervals in all three directions, giving 6000 elements. In the Taylor-
Green vortex flow, we expect a growth of entrophy (defined as ν

2 ||∇u||2)
to be shown by simulation results. We used the time step ∆t = 0.001 and 200

time steps were performed for the viscosity ν = 1/1000. Here, we compare those
two filters Stokes filter and Laplace filter both with Vreman indicators. Figures
5.9 and 5.10 show the normalized energy and normalized enstrophy for Stokes filter
with Vreman indicator and Laplace filter with Vreman indicator, respectively. From
Figures 5.9 and 5.10, we can see that there is not a big difference between using
Stokes filter and Laplace filter. We also show the 3D velocity field by Laplace filter
and Vreman indicator in 5.11.
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(a) 3D velocity field.
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(b) 3D velocity filed from the view at the top
of the domain.

Figure 5.11. 3D velocity filed by Algorithm 3.1 for ν = 1/1000
by Time Relaxation model with χ = 0.001 using Laplace filter with
Vreman indicator

6. Conclusions

In this article, we developed, analyzed and numerically tested a finite element
scheme for the family of time relaxation regularization of NSE given by (1)-(2).
We have extended and improved the work from [10] by incorporating a nonlinear
filtering model. The numerical solutions of the proposed scheme are uncondition-
ally stable, and converge to the true NSE solutions as ∆t, h → 0. The numerical
experiments show the effectiveness of the nonlinear filter over the linear case. We
determined that Vreman and VQ indicator functions perform the best. Also, our
time relaxation model gives comparable results with the simpler Laplace filter in-
stead of Stokes filer.
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