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Abstract. A mantle convection model consisting of the stationary Stokes equations and a time-
dependent convection-diffusion equation for the temperature is studied. The Stokes problem is

discretized with a conforming inf-sup stable pair of finite element spaces and the temperature
equation is stabilized with the SUPG method. Finite element error estimates are derived which
show the dependency of the error of the solution of one problem on the error of the solution of
the other equation. The dependency of the error bounds on the coefficients of the problem is

monitored.
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1. Introduction

The process that occurs in the three-dimensional spherical shell between the crust
and the core of the earth is called mantle convection. In this region, the magma
moves very slowly. The movement is driven by the differences of the temperature
at the hot core and the cool crust. Considering long time intervals, this movement
is usually modeled with an incompressible viscous flow equation. Main features of
this flow model are the high viscosity of order 1020 Pa s [9], the small value of the
thermal diffusivity (order O(10−8 m2

/s) in [9]), and the dependency of the viscosity
on other quantities, like the temperature. In turn, the temperature distribution
is also driven by the movement of the magma, such that the modeling leads to a
coupled problem. Simulations of mantle convection problems are quite challenging.
One has to consider a three-dimensional problem in a very long time interval. With
todays hardware and software capabilities, time intervals of almost 109 years are
simulated [9], which results in performing many time steps. The resolution of
important features, like plumes, requires to use adaptively refined grids. Massively
parallel simulations with dynamic load balancing become necessary. The model (1)
and (2) considered in this paper forms just the basic model. More advanced models
use non-Newtonian fluids or they include a coupling to models for the behavior of
the crust of the earth (solid material) to simulate the evolution of tectonic plates.

In this paper, the same model as in [27] is studied. Let Ω ⊂ Rd, d ∈ {2, 3}, be
bounded with polyhedral Lipschitz boundary ∂Ω. Because of the large viscosity,
the inertial term of the fundamental equations of fluid dynamics, the Navier–Stokes
equations, can be neglected in mantle convection problems and thus, the equations
reduce to the stationary incompressible Stokes equations. These equations with
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variable kinematic viscosity ν (θ) > 0 almost everywhere in Ω are given by

(1)
−2∇ · (ν (θ)D(u)) +∇p = f − β (θ) θ in Ω,

∇ · u = 0 in Ω,
u = 0 on ∂Ω,

where u is the velocity field, the velocity deformation tensor D(u) =
(
∇u+∇uT

)
/2

is the symmetric part of the gradient of u, p is the fluid pressure, and f represents
the body forces. Besides the dependency of the viscosity on the temperature θ, a
further impact of the temperature θ is described by the function β.

The equation for the temperature is time-dependent. It is a convection-diffusion
equation with a nonlinear diffusion term since the thermal diffusivity κ depends on
the temperature

(2)
∂tθ −∇ · (κ (θ)∇θ) + u · ∇θ = g in (0, T ]× Ω,

θ = 0 in (0, T ]× ∂Ω,
θ (0,x) = θ0 (x) in Ω.

Altogether, (1) and (2) form a coupled system of equations. For the sake of easy
implementation and efficiency, algorithms for the numerical solution of (1), (2) may
decouple these problems and linearizations might be applied. Two algorithms in
this spirit are as follows. Given a partition of the time interval into time steps
0 = t0 < t1 < . . . < tN = T :

Algorithm 1.1. Nonlinear problem for the temperature.

(1) the initial condition θ0 is given
(2) compute (u0, p0) with θ0
(3) for i = 1, . . . , N do
(4) compute θi with ui−1 or some other extrapolation,

solving a nonlinear problem
(5) compute (ui, pi) with θi
(6) end

and

Algorithm 1.2. Linear problem for the temperature.

(1) the initial condition θ0 is given
(2) compute (u0, p0) with θ0
(3) for i = 1, . . . , N do
(4) compute θi with θi−1 and ui−1 or some other extrapolations

solving a linear problem
(5) compute (ui, pi) with θi
(6) end

The finite element error analysis presented in this paper will focus on the indi-
vidual equations which are solved in steps 4 and 5.

Finite element analysis of (1), (2) are already presented in [26, 27]. In [26], the
case of constant viscosity (ν = 1) and thermal diffusivity is studied. In addition,
the right-hand side of the Stokes equations depends linearly on the temperature
in this paper. In both papers, the application of continuous piecewise linear (P1)
finite elements for all quantities is considered. This approach requires the use of a
stabilization of the discretization of the Stokes equations since the used pair of finite
element spaces for velocity and pressure does not satisfy a discrete inf-sup condition.
In [26, 27], the method of Brezzi and Pitkäranta [3] is applied. The convection-
diffusion equation (2) is usually convection-dominated. Also this feature requires
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the use of a stabilized method. The method of choice in [26, 27] was the SUPG
method introduced in [4, 16]. Altogether, first order convergence in space and time
was proved in [26, 27] for various norms of velocity, pressure, and temperature.
Thermal convection problems with the stationary or evolutionary Navier–Stokes
equations, instead of the Stokes equations, are studied in [22, 23, 28]. The papers
[23, 28] consider inf-sup stable pairs of finite element spaces for the discretization
of the Navier–Stokes equations and a Galerkin finite element discretization of both
equations is analyzed. In [22], a divergence-conforming approximation of the veloc-
ity is studied. None of the papers mentioned above studies the dependency of the
error bounds on the coefficients of the problem.

In the present paper, finite element pairs that satisfy a discrete inf-sup condition
will be studied. Thus, higher than first order methods are included. Such methods
are used in actual simulations [9]. Also for the temperature equation (2), higher
order finite elements are considered. As in [26, 27], the SUPG stabilization is used.
The dependency of the error bounds on the coefficients of the problem is tracked.
As already mentioned, the finite element error analysis will focus on the individual
problems (1) and (2) and it will study the impact of the error of the numerical
solution of one problem on the error bound for the numerical solution of the other
problem.

Standard notations for Lebesgue and Sobolev spaces and their norms will be used
throughout the paper. In the analysis, C denotes a constant that is independent of
the mesh width and the coefficients of (1), (2).

2. The Stokes problem with variable viscosity

Finite element methods for the Stokes equations with variable viscosity were
analyzed in [18]. This section presents a slight generalization of the analysis which
leads, however, to sharper error bounds provided the solution is sufficiently regular.

2.1. The continuous problem. Let the velocity space be denoted by V =
(
H1

0 (Ω)
)d

and the pressure space by Q = L2
0 (Ω). A variational formulation of (1) reads as

follows: Find (u, p) ∈ (V,Q) satisfying

(3)
(2νD(u),D(v))− (∇ · v, p) = (f − β (θ) θ,v) ,

− (∇ · u, q) = 0

for all (v, q) ∈ (V,Q). It will be assumed that there is a positive constant νmin such
that

(4) 0 < νmin ≤ ν(x)

for almost all x ∈ Ω. With this assumption, it follows that ν−1 ∈ L∞(Ω).
There holds the Poincaré inequality

(5) ∥v∥L2 ≤ C∥∇v∥L2 ∀ v ∈ V.

The space of weakly divergence-free functions is given by Vdiv = {v ∈ V :
(∇ · v, q) = 0, ∀ q ∈ Q}.

The following lemma proves that the weighted norm of the divergence is equiv-
alent to the weighted norm of the deformation tensor.

Lemma 2.1. Let v ∈ H1 (Ω), then it holds

(6) ∥ν1/2∇ · v∥L2 ≤
√
d∥ν1/2D(v)∥L2 .
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Proof. Let v = (v1, v2, . . . , vd)
T
, then using the Cauchy-Schwarz inequality for sums

gives

∥ν1/2∇ · v∥2L2 =

∫
Ω

ν

(
d∑
i=1

(
∂vi
∂xi

))2

dx ≤
∫
Ω

ν

(
d∑
i=1

1

)(
d∑
i=1

(
∂vi
∂xi

)2
)
dx

= d

∫
Ω

ν

(
d∑
i=1

(
∂vi
∂xi

)2
)
dx

≤ d

∫
Ω

ν

 d∑
i=1

(
∂vi
∂xi

)2

+

d∑
i,j=1
i̸=j

1

4

(
∂vi
∂xj

+
∂vj
∂xi

)2

 dx

=
√
d∥ν1/2D(v)∥2L2 .

�

Lemma 2.2 (Korn’s inequality). For all v ∈ V it holds

(7)
ν
1/2
min√
2
∥∇v∥L2 ≤ ∥ν1/2D(v)∥L2 ≤ ∥ν1/2∇v∥L2 .

Proof. The definition of the deformation tensor, triangle inequality, and the fact
that ν (x) is a scalar function yields

∥ν1/2D(v)∥L2 ≤ 1

2

(
∥ν1/2∇v∥L2 + ∥ν1/2∇vT ∥L2

)
= ∥ν1/2∇v∥L2 ,

which gives the right-hand side estimate of (7).
For the left-hand side estimate, Korn’s inequality

(8) ∥∇v∥L2 ≤
√
2∥D(v)∥L2 ∀ v ∈ V,

e.g., see [15], is used. With (8), one obtains

ν
1/2
min√
2
∥∇v∥L2 ≤ ν

1/2
min∥D(v)∥L2 ≤ ∥ν1/2D(v)∥L2 .

�

Remark 2.3. The Korn inequality (7) is a slight improvement in comparison with
the Korn inequality derived in [18] with respect to the right-hand side estimate.
It is an open question whether the left-hand side estimate is improvable such that
∥ν1/2∇v∥L2 appears. Pursuing the same approach that is used for constant viscos-
ity, one finds on the one hand, using integration by parts and the symmetry of the
deformation tensor

−2 (∇ · (νD(v)) ,v) = 2 (νD(v),∇v) = (νD(v),∇v) +
(
ν (D(v))T ,∇v

)
= (νD(v),∇v) +

(
νD(v),∇vT

)
= 2∥ν1/2D(v)∥2L2

and on the other hand

− (∇ · (ν∇v) ,v) = (ν∇v,∇v) = ∥ν1/2∇v∥2L2 .

Since 2 (νD(v),∇v) = (ν∇v,∇v) +
(
ν∇vT ,∇v

)
, it is now sufficient to show that

0 ≤
(
ν∇vT ,∇v

)
. For constant viscosity, one gets, using the identity ∇ ·

(
∇vT

)
=

∇ (∇ · v) and integration by parts, that (∇v,∇v) = (∇ · v,∇ · v) ≥ 0. However,
this approach cannot be applied for non-constant viscosity.
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2.2. Error analysis without temperature impact. Consider a regular, non-
degenerated family {T h} of triangulations of Ω. The mesh cells of a triangulation
are denoted by K, their diameter by hK , and the diameter of the largest ball
inscribed in K by ρK . Let h = maxK∈T h hK . It is assumed that there exists a
constant σ, independent of h and K, such that hK/ρK ≤ σ for all K ∈ T h.

Let V h ⊂ V and Qh ⊂ Q be conforming finite element spaces which fulfill the
discrete inf-sup condition, i.e., there is a constant β independent of the mesh size
parameter h such that

(9) inf
qh∈Qh\{0}

sup
vh∈V h\{0}

(
∇ · vh, qh

)
∥∇vh∥L2∥qh∥L2

≥ β > 0.

Since it will be assumed that the family of meshes is regular, the following inverse
inequality holds

(10) ∥vh∥Wm,p(K) ≤ Cinvh
n−m−d( 1

q−
1
p )

K ∥vh∥Wn,q(K),

for each vh ∈ V h, where 0 ≤ n ≤ m ≤ 1, 1 ≤ q ≤ p ≤ ∞, and hK is the size
(diameter) of the mesh cell K ∈ T h, see, e.g., [7, Thm. 3.2.6].

The finite element formulation of (3) with β = 0 reads as follows: Find
(
uh, ph

)
∈(

V h, Qh
)
satisfying

(11)
2
(
νD(uh),D(vh)

)
−
(
∇ · vh, ph

)
=

(
f ,vh

)
,

−
(
∇ · uh, qh

)
= 0

for all
(
vh, qh

)
∈
(
V h, Qh

)
.

Let V hdiv =
{
vh ∈ V h :

(
∇ · vh, qh

)
= 0 ∀ qh ∈ Qh

}
be the space of discretely

divergence-free functions. From the discrete inf-sup condition (9) it follows that
this space is not empty. Then the finite element velocity from (11) is given by the
problem: Find uh ∈ V hdiv such that

(12) 2
(
νD(uh),D(vh)

)
=
(
f ,vh

)
∀ vh ∈ V hdiv.

Theorem 2.4. Let r, s ∈ [1,∞] with r−1 + s−1 = 1, u ∈
(
W 1,2s (Ω)

)d ∩ V ,

p ∈ L2s (Ω) ∩ Q, and ν ∈ Lr (Ω) satisfying (4), then the following velocity error
estimate is valid:

∥ν1/2D(u− uh)∥L2

≤ 2∥ν∥1/2Lr inf
vh∈V h

div

∥D(u− vh)∥L2s +

√
d

2
∥ν−1∥1/2Lr inf

qh∈Qh
∥p− qh∥L2s .(13)

Proof. To obtain an error equation, consider the continuous formulation (3) for
vh ∈ V hdiv and subtract the discrete equation (12) to get

(14) 2
(
νD(u− uh),D(vh)

)
−
(
∇ · vh, p

)
= 0 ∀ vh ∈ V hdiv.

Since
(
∇ · vh, qh

)
= 0 for all qh ∈ Qh, (14) can be written as

(15) 2
(
νD(u− uh),D(vh)

)
−
(
∇ · vh, p− qh

)
= 0

for all
(
vh, qh

)
∈
(
V hdiv, Q

h
)
. Then, the error is decomposed in two parts: u−uh =

η − ϕh, where η = u − Ih (u) and ϕh = uh − Ih (u) and Ih : V → V hdiv is some

interpolant. Using this error decomposition in (15) and setting vh = ϕh gives

2∥ν1/2D(ϕh)∥2L2 = 2
(
νD(η),D(ϕh)

)
−
(
∇ · ϕh, p− qh

)
.
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Applying the Cauchy–Schwarz inequality on right-hand side of this estimate and
using (6) yields

2∥ν1/2D(ϕh)∥2L2 ≤ 2∥ν1/2D(η)∥L2∥ν1/2D(ϕh)∥L2

+
√
d∥ν1/2D(ϕh)∥L2∥ν−1/2

(
p− qh

)
∥L2 .

Dividing both sides by 2∥ν1/2D(ϕh)∥L2 results in the estimate

(16) ∥ν1/2D(ϕh)∥L2 ≤ ∥ν1/2D(η)∥L2 +

√
d

2
∥ν−1/2

(
p− qh

)
∥L2 .

Then, the application of the triangle inequality and (16) leads to

∥ν1/2D(u− uh)∥L2 ≤ ∥ν1/2D(η)∥L2 + ∥ν1/2D(ϕh)∥L2

≤ 2∥ν1/2D(η)∥L2 +

√
d

2
∥ν−1/2

(
p− qh

)
∥L2 .(17)

Now, the application of the Hölder’s inequality to the first term on the right-hand
side of (17) gives
(18)

∥ν1/2D(η)∥L2 = ∥νD(η) : D(η)∥1/2L1 ≤ ∥ν∥1/2Lr ∥D(η) : D(η)∥1/2Ls = ∥ν∥1/2Lr ∥D(η)∥L2s .

In a similar way, the bound for the last term on the right-hand side of (17) is found
to be

(19) ∥ν−1/2
(
p− qh

)
∥L2 ≤ ∥ν−1∥1/2Lr ∥p− qh∥L2s .

Inserting the bounds (18) and (19) in (17) and taking the infima gives (13). �

Of course, it would be possible to use different Lebesgue coefficients for the
velocity and the pressure in the formulation of this theorem.

For many inf-sup stable pairs of finite element spaces there exists a linear inter-
polation operator Ihdiv : V → V h with the properties

(20)
(
∇ ·
(
v − Ihdiv (v)

)
, qh
)
= 0 ∀ v ∈ V, ∀ qh ∈ Qh,

and

(21) ∥∇
(
v − Ihdiv (v)

)
∥Ls ≤ Chm∥v∥Wm+1,s ∀ v ∈Wm+1,p (Ω) , s ∈ [1,∞],

see [13, Thm. 2.1]. The most notable case where the existence of such an operator
could not be proved with the construction proposed in [13] is the Taylor–Hood pair
of spaces P2/P1 in three dimensions. Since for the solution of (3) it holds u ∈ Vdiv, it
follows from (20) that Ihdiv (u) ∈ V hdiv. Hence, the interpolation Ihdiv (u) can be used
to bound the best approximation error in (13) from above. Moreover, the Stokes
projection defined in [12] can also be used to bound this error. This projection
is discretely divergence-free and it has optimal approximations properties for any
inf-sup stable pair of mixed finite elements.

In addition, to characterize the approximation properties for the space Qh, let
Ih(p) be the Lagrange interpolation of p. The following bound for the best approx-
imation error can be found in [2, Thm. 4.4.4]

(22) ∥p− Ih(p)∥Ls ≤ Chn+1∥p∥Wn+1,s , ∀ p ∈Wn+1,s(Ω), s ∈ [1,∞],

with n+ 1 > d/s if 1 < s ≤ ∞ and n+ 1 ≥ d if s = 1.

Corollary 2.5. Let r, s ∈ [1,∞] with r−1 + s−1 = 1, let u ∈
(
Wm+1,2s (Ω)

)d ∩ V ,

p ∈ Wn+1,2s (Ω) ∩ Q, and ν ∈ Lr (Ω) with m,n ≥ 0. Consider any pair of finite
element spaces consisting of polynomials of degree m for the velocity and degree n
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for the pressure that fits into the analysis presented in [13]. Then, the following
velocity error estimate holds
(23)

∥ν1/2D(u− uh)∥L2 ≤ C
(
hm∥ν∥1/2Lr ∥u∥Wm+1,2s + hn+1∥ν−1∥1/2Lr ∥p∥Wn+1,2s

)
.

Proof. The velocity term on the right-hand side of (13) can be estimated by using
∥D(u− vh)∥L2s ≤ ∥∇

(
u− vh

)
∥L2s , setting vh = Ihdiv (u), and (21). For choosing

qh in the pressure term in the bound (13), one can use the Lagrangian interpolation
and estimate (22). �
Remark 2.6 (Comparison with an error bound from the literature). With different
regularity assumptions, in particular on ν (x), it was proved in [18] that

∥ν1/2D(u− uh)∥L2

≤ C

[
hmν1/2max

(
1 +

(
νmax

νmin

)1/2
)
∥u∥Hm+1 + hn+1ν

−1/2
min ∥p∥Hn+1

]
,(24)

where νmin = minx∈Ω ν (x), νmax = maxx∈Ω ν (x).
Given the assumed regularity, the error bound (23) might be sharper than (24).

This statement will be illustrated by a numerical example.
This example uses the same setup as the example presented in [18]. Let Ω =

(0, 1)
2
and

ϕ (x, y) = αv1000x
2 (1− x)

4
y3 (1− y)

2
,

then the prescribed velocity solution is defined by u = (∂yϕ,−∂xϕ)T . The pressure
solution is given by

p (x, y) = αp

(
π2
(
xy2 cos

(
2πx2y

)
− x2y sin (2πxy)

)
− 1

8

)
.

Simulations were performed with the two viscosity functions

ν1 (x, y) = 10−6 +
(
1− 10−6

)
exp

(
−1013

(
(x− 0.5)

10
+ (y − 0.5)

10
))

,

ν2 (x, y) = 10−6 +
(
1− 10−6

) (
1− exp

(
−1013

(
(x− 0.5)

10
+ (y − 0.5)

10
)))

,

see Figure 1. Whereas ν1 is close to 10−6 in the most part of the domain, ν2
takes mostly values of around 1. But it is ν1,min ≈ ν2,min and ν1,max ≈ ν2,max.
Consequently, the error bound (24) is almost the same for ν1 and ν2. Consider the

error bound (23) for r = 1 and s = ∞. It is ∥ν1∥1/2L1 = 0.09536616752, ∥ν−1
1 ∥1/2L1 =

991.6040647, ∥ν2∥1/2L1 = 0.9954427628, ∥ν−1
2 ∥1/2L1 = 25.86500587 (the computation

of the integrals was performed with Maple).
The Taylor–Hood pair of finite element spaces P2/P1 was used on unstructured

triangular grids, see Figure 2 for the coarsest grid, level 0. On the finest grid, level 8,
there are 9 442 306 degrees of freedom for the velocity and 1 180 929 degrees of
freedom for the pressure. The sparse direct solver umfpack [10] was used for solving
the linear systems of equations. Since sometimes the bad condition number of the
matrices resulted in notable round-off errors, a post-processing with an iterative
solver was performed. This solver was the flexible GMRES(restart) method [25],
with restart= 50, and with a coupled multigrid preconditioner, as described, e.g.,
in [17]. The iteration stopped if the Euclidean norm of the residual vector was less
than 10−12. The simulations were performed with the code MooNMD [19].

Considering the left-hand side of (23) and (24), then there is a small scaling
factor in the case of ν1 and a larger scaling factor in the case of ν2. Two special
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Figure 1. Viscosity functions ν1 and ν2.

Figure 2. The coarsest grid, level 0.

situations will be studied, namely αv = 1, αp = 0 and αv = 0, αp = 1. In the first
situation, the pressure term drops from the right-hand side of (23) and this error
bound is smaller for ν1 than for ν2. The numerical results presented in Figure 3
show that the error itself is also smaller of one order of magnitude on finer grids.

Note that ∥ν1∥1/2L1 is smaller than ∥ν2∥1/2L1 also by one order of magnitude. In the
second situation, a so-called no-flow problem, the velocity term does not appear on
the right-hand side of (23) and the error bound is larger for ν1 than for ν2. Again,
the numerical results behave in the same way. The ratio of the errors on the finest

grid is around 400 whereas the ratio of ∥ν−1
1 ∥1/2L1 and ∥ν−1

2 ∥1/2L1 is only around 40.
Thus, the error bound (23) still underpredicts the difference of the results for ν1
and ν2, but it predicts qualitatively the correct behavior, in contrast to the error
bound (24).

Finally, the general case with respect to αv and αp will be considered. The
constants C in the error bounds (23) and (24) are essentially the result of applying
estimates for the best approximation errors. If one assumes that these constants
are of the same order for both error bounds and that the norms of the solution
are of the same order, too, then they differ only in the factors with the viscosity
function. In the considered example, both factors in (24) are of order O

(
103
)
for

both ν1 and ν2. In contrast, the terms depending on the viscosity in (23) are of
order O

(
10−2

)
and O

(
103
)
for ν1, i.e., only one factor is O

(
103
)
, and of order

O (1) and O (10) for ν2. Hence, under the assumptions from above, the error bound
(23) can be expected to be smaller and therefore sharper.
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Figure 3. Errors ∥ν1/2D(u− uh)∥L2 for the special situations
αv = 1, αp = 0 and αv = 0, αp = 1.

For completeness, the error analysis for the pressure will be presented briefly. It
proceeds in the usual way, e.g., see [17].

Taking s = 1, r = ∞ in (18) and using ∥D(v)∥ ≤ ∥∇v∥ for all v ∈ V , the inf-sup
condition (9) can be written in the form

(25) ∥qh∥L2 ≤ sup
vh∈V h\{0}

(
∇ · vh, qh

)
∥∇vh∥L2

≤
∥ν∥1/2L∞

β
sup

vh∈V h\{0}

(
∇ · vh, qh

)
∥ν1/2D(vh)∥L2

,

which is similar to the form used in [14].

Theorem 2.7. Let all assumptions of Theorem 2.4 be satisfied and in addition
assume that (9) holds, then

∥p− ph∥L2 ≤

(
C(s) +

2
√
d

β
∥ν∥1/2L∞∥ν−1∥1/2Lr

)
inf

qh∈Qh
∥p− qh∥L2s

+
4

β
∥ν∥1/2L∞∥ν∥1/2Lr inf

vh∈V h
∥D(u− vh)∥L2s .(26)

Proof. Subtracting (11) from (3) and introducing an approximation p̃h ∈ Qh of the
pressure yields the error equation

(27)
(
∇ · vh, ph − p̃h

)
=
(
∇ · vh, p− p̃h

)
− 2

(
νD(u− uh),D(vh)

)
for all vh ∈ V h. The terms on the right-hand side of (27) can be bounded by using
the Cauchy–Schwarz inequality and (6)∣∣(∇ · vh, ph − p̃h

)∣∣
≤

(√
d∥ν−1/2(p− p̃h)∥L2 + 2∥ν1/2D(u− uh)∥L2

)
∥ν1/2D(vh)∥L2 .(28)

Dividing both sides by ∥ν1/2D(vh)∥L2 , taking the supremum of (28) for vh ∈ V h,
and using (19) gives

sup
vh∈V h\{0}

|
(
∇ · vh, ph − p̃h

)
|

∥ν1/2D(vh)∥L2

≤
√
d∥ν−1/2(p− p̃h)∥L2 + 2∥ν1/2D(u− uh)∥L2

≤
√
d∥ν−1∥1/2Lr ∥p− p̃h∥L2s + 2∥ν1/2D(u− uh)∥L2 .(29)

The statement of the theorem is now obtained by applying the triangle inequality

∥p− ph∥L2 ≤ ∥p− p̃h∥L2 + ∥ph − p̃h∥L2
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and using (25), (29), and the velocity error bound (13). �

2.3. Error analysis with temperature impact. In the next step, the impact
of the temperature on the Stokes flow is taken into account. A finite element error
analysis of a steady-state coupled Navier–Stokes and temperature system can be
found in [23]. In this system, the temperature impact on the right-hand side is
linear. Optimal order convergence in the H1(Ω)d norm of the velocity and the
L2(Ω) of the pressure was proved for inf-sup stable pairs of finite element spaces.
The dependency of the constant in the error bound on the coefficients of the problem
was not studied.

This section extends the analysis of the previous section to the situation that
there is a special nonlinear temperature impact, as already given in (1), on the
right-hand side of the Stokes equations. The dependency of the viscosity on the
temperature will not be considered explicitly since it will be assumed that ν(θ) pos-
sesses the same regularity as in Section 2.2. Besides the errors ∥ν1/2D(u− uh)∥L2

and ∥p − ph∥L2 , also an estimate of the velocity error in L2(Ω) is provided. The
latter error will appear in the error bound for the temperature.

Consider now the finite element problem: Find
(
uh, ph

)
∈
(
V h, Qh

)
satisfying

(30)
2
(
νD(uh),D(vh)

)
−
(
∇ · vh, ph

)
=

(
f − β

(
θh
)
θh,vh

)
,

−
(
∇ · uh, qh

)
= 0

for all
(
vh, qh

)
∈
(
V h, Qh

)
, where θh is some finite element approximation of the

temperature field.

Theorem 2.8. Let the assumptions of Theorem 2.4 be satisfied and assume that
θ, θh ∈ H1

0 (Ω), β ∈ L6 (Ω) for all admissible temperature fields, and that β is
Lipschitz continuous in this norm

(31) ∥β (θ1)− β (θ2) ∥L6 ≤ C∥θ1 − θ2∥L6

for all admissible temperature fields θ1, θ2 and a constant that is independent of the
temperature fields. Then, it holds

∥ν1/2D(u− uh)∥L2

≤ 2∥ν∥1/2Lr inf
vh∈V h

div

∥D(u− vh)∥L2s +

√
d

2
∥ν−1∥1/2Lr inf

qh∈Qh
∥p− qh∥L2s

+Cν
−1/2
min

(
∥∇θ∥L2 + ∥β

(
θh
)
∥L6

)
∥∇
(
θ − θh

)
∥L2 .(32)

Proof. The proof starts in the same way as the proof of Theorem 2.4. Instead of
(15), one arrives at the equation

2
(
νD(u− uh),D(ϕh)

)
−
(
∇ · ϕh, p− qh

)
=
(
−β (θ) θ + β

(
θh
)
θh,ϕh

)
.

The term on the right-hand side is split into

(33)
((

β
(
θh
)
− β (θ)

)
θ,ϕh

)
−
(
β
(
θh
) (
θ − θh

)
,ϕh

)
.

The first term of (33) is estimated with Hölder’s inequality, the Lipschitz conti-
nuity (31), the Sobolev embedding W 1,1 (Ω) → L3/2 (Ω), the Sobolev embedding
H1 (Ω) → L6 (Ω), Poincaré’s inequality (5), the Cauchy–Schwarz inequality, and
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Korn’s inequality (7)((
β
(
θh
)
− β (θ)

)
θ,ϕh

)
≤ ∥β

(
θh
)
− β (θ) ∥L6∥θ∥L6∥ϕh∥L3/2

≤ C∥θ − θh∥L6∥θ∥L6∥ϕh∥W 1,1

≤ C∥∇
(
θ − θh

)
∥L2∥∇θ∥L2∥∇ϕh∥L1

≤ C|Ω|1/2∥∇
(
θ − θh

)
∥L2∥∇θ∥L2∥∇ϕh∥L2

≤ Cν
−1/2
min ∥∇

(
θ − θh

)
∥L2∥∇θ∥L2∥ν1/2D(ϕh)∥L2 .(34)

The estimate of the second term of (33) is performed with the same tools, yielding(
β
(
θh
) (
θ − θh

)
,ϕh

)
≤ ∥β

(
θh
)
∥L6∥θ − θh∥L6∥ϕh∥L3/2

≤ Cν
−1/2
min ∥β

(
θh
)
∥L6∥∇

(
θ − θh

)
∥L2∥ν1/2D(ϕh)∥L2 .(35)

Now, the proof continuous like the proof of Theorem 2.4, giving the statement of
the theorem. �

Theorem 2.9. Let the assumptions of Theorem 2.8 be satisfied. Then, it holds

∥p− ph∥L2 ≤

(
C(s) +

2
√
d

β
∥ν∥1/2L∞∥ν−1∥1/2Lr

)
inf

qh∈Qh
∥p− qh∥L2s

+
2

β
∥ν∥1/2L∞∥ν∥1/2Lr inf

vh∈V h
∥D(u− vh)∥L2s

+
C

β
∥ν∥1/2L∞ν

−1/2
min

(
∥∇θ∥L2 + ∥β

(
θh
)
∥L6

)
∥∇
(
θ − θh

)
∥L2 .(36)

Proof. The proof proceeds along the lines of the proof of Theorem 2.7. By sub-
tracting (3) and (30), one obtains for all p̃h ∈ Qh and all vh ∈ V h(

∇ · vh, ph − p̃h
)

=
(
∇ · vh, p− p̃h

)
− 2

(
νD(u− uh),D(vh)

)
−
(
β (θ) θ − β

(
θh
)
θh,vh

)
.

The first two terms on the right-hand side are estimated in the same way as in the
proof of Theorem 2.7 and the last term is bounded in the same way as in (33) –
(35). �

Estimates (32) and (36) show that the order of convergence of the left-hand sides
is bounded of the order of convergence of ∥∇

(
θ − θh

)
∥L2 , which is a usual term in

the error bounds for scalar convection-diffusion equations (scaled with the square
root of the diffusivity). The term ∥∇θ∥L2 is usually bounded by a stability estimate
and the term ∥β

(
θh
)
∥L6 is bounded by assumption (and can be even computed).

The impact of the temperature error is scaled by ν
−1/2
min .

Finally, the error ∥u − uh∥L2 will be studied. To this end, consider the dual
Stokes problem Find (ϕf̂ , ξf̂ ) ∈ V ×Q such that for given ξf̂ ∈ L2(Ω)

(37)
−2∇ · (νD(ϕf̂ )) +∇ξf̂ = f̂ in Ω,

∇ · ϕf̂ = 0 in Ω

with homogeneous Dirichlet boundary conditions and its weak form

(38)
2(νD(ϕf̂ ),D(v))− (∇ · v, ξf̂ ) = (f̂ ,v) ∀ v ∈ V,

(∇ · ϕf̂ , q) = 0 ∀ q ∈ Q.
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It is assumed that the mapping

(ϕf̂ , ξf̂ ) 7→ −2∇ · (νD(ϕf̂ )) +∇ξf̂
is an isomorphism from (H2(Ω) ∩ V )× (H1(Ω) ∩Q) to L2(Ω).

Theorem 2.10. Let the assumptions of Theorem 2.8 be satisfied and assume that
β ∈ L2 (Ω) and that β is Lipschitz continuous in with respect to the L2(Ω) norm

(39) ∥β (θ1)− β (θ2) ∥L2 ≤ C∥θ1 − θ2∥L2

for all admissible temperature fields θ1, θ2 and a constant that is independent of the
temperature fields. Then, it holds

∥u− uh∥L2

≤ 2∥ν1/2D(u− uh)∥L2 sup
ξ
f̂
∈L2(Ω)\{0}

1

∥ξf̂∥L2

(
inf

ϕh∈V h
∥ν1/2∇(ϕf̂ − ϕh)∥L2

)
+
√
d∥ν−1∥1/2L∞∥ν1/2D(u− uh)∥L2 sup

ξ
f̂
∈L2(Ω)\{0}

1

∥ξf̂∥L2

(
inf

rh∈Qh
∥ξf̂ − rh∥L2

)
+
√
d inf
qh∈Qh

∥p− qh∥L2 sup
ξ
f̂
∈L2(Ω)\{0}

1

∥ξf̂∥L2

(
inf

ϕh∈V h
∥∇(ϕf̂ − ϕh)∥L2

)
+C

(
∥θ∥L2 + ∥β(θh)∥L2

)
∥θ − θh∥L2 .(40)

Proof. Choosing v = u− uh in (38) gives

(41) (f̂ ,u− uh) = 2
(
νD(ϕf̂ ),D(u− uh)

)
−
(
∇ · (u− uh), ξf̂

)
.

Using the weak form of the Stokes problem and the finite element problem (30),
one gets for ϕh ∈ V hdiv and qh ∈ Qh arbitrary

2
(
νD(u− uh),D(ϕh)

)
= (∇ · ϕh, p− qh) + (−β(θ)θ + β(θh)θh,ϕh).

Inserting this identity in (41) and expanding it with some terms which are zero
leads to

(f̂ ,u− uh) = 2(νD(ϕf̂ − ϕh),D(u− uh))− (∇ · (u− uh), ξf̂ − rh)

+(∇ · (ϕh − ϕf̂ ), p− qh) + (−β(θ)θ + β(θh)θh,ϕh)

for arbitrary rh ∈ Qh. Then, it is straightforward to obtain (40) using the definition
of the L2(Ω) norm, the decomposition (33), and the bound

(−β(θ)θ + β(θh)θh,ϕh) ≤ ∥β(θh)− β(θ)∥L2∥θ∥L2∥ϕh∥L∞

+∥β(θh)∥L2∥θ − θh∥L2∥ϕh∥L∞

≤ (C∥θ∥L2 + ∥β(θh)∥L2)∥θ − θh∥L2∥ϕh∥L∞ .

To conclude, one has to estimate ∥ϕh∥L∞ in terms of ∥ϕf̂∥2, which in turn is

bounded in terms of ∥f̂∥L2 . Denote by wh any approximation of ϕf̂ which is

stable in the L∞(Ω) norm. Then, using the inverse inequality (10), the isomorphism
property, and a Sobolev embedding yields

∥ϕh∥L∞ ≤ ∥ϕh −wh∥L∞ + ∥wh∥L∞ ≤ Cinvh
−d/2∥ϕh −wh∥L2 + ∥wh∥L∞

≤ Ch−d/2h2∥ϕf̂∥H2 + C∥ϕf̂∥L∞ ≤ C∥ϕf̂∥H2 ≤ C∥f̂∥L2 .

�
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Remark 2.11. From estimate (32), it follows that the error bound for
∥ν1/2D(u− uh)∥L2 contains

C(θ, θh)

ν
1/2
min

∥∇
(
θ − θh

)
∥L2

and from (36), one can see that the error bound for ∥p− ph∥L2 contains

C(θ, θh)

ν
1/2
min

∥ν∥1/2L∞∥∇
(
θ − θh

)
∥L2 .

In applications, e.g., [9], ∥ν∥L∞ is larger by several orders of magnitude than
νmin. Hence, the error of approximating the temperature will have a notably
larger impact on the pressure error ∥p − ph∥L2 than on the scaled velocity error
∥ν1/2D(u− uh)∥L2 .

The situation for ∥u − uh∥L2 is more complicated since the dual problem is
defined with ν and thus ξf̂ will depend on the viscosity. Therefore it is hard to

describe the dependency of this error on the error of the temperature since not only
the last term in the error bound (40) depends on ∥θ − θh∥L2 but also the first two
terms depend, via ∥ν1/2D(u− uh)∥L2 , on ∥∇

(
θ − θh

)
∥L2 . Altogether, we could

not obtain a clear description of the impact of the temperature error on ∥u−uh∥L2 .

3. The temperature equation with nonlinear diffusivity

The equation for the temperature is a time-dependent convection-diffusion equa-
tion with a nonlinear diffusion term. In practice, this is convection-dominated. It
is well known that in this situation, the standard finite element method produces
spurious oscillations and the use of a stabilized method is necessary. There are sev-
eral methods that can be applied, see [24], see also [5, 8, 21, 1]. In this paper, as in
[27], the most popular method, the streamline-upwind Petrov–Galerkin (SUPG)
method is studied. An error analysis of this method for transient convection-
reaction-diffusion equations can be found in [20]. As temporal discretization, the
backward Euler scheme is considered.

Compared with [20], there are a few different aspects. First, the reaction field
is missing such that the usual assumption, that reaction minus one half of the
divergence of the convection is bounded from below by a positive constant, does not
hold (see the comments at the end of the section). Second, it cannot be assumed
that the convection field is divergence-free since it is the finite element solution
of a Stokes problem. And third, for technical reasons (application of an inverse
inequality) the situation has to be considered that the thermal diffusivity κ is
approximated by a function κh that belongs to a finite-dimensional space. These
differences give rise to several new technical issues.

3.1. The continuous problem and its discretization. Let Vθ = H1
0 (Ω). A

variational form of the equation for the temperature reads as follows: find θ :
(0, T ] → Vθ such that

(42) (∂tθ, ϕ) + (κ (θ)∇θ,∇ϕ) + (u · ∇θ, ϕ) = (g, ϕ) ∀ ϕ ∈ Vθ.

A Poincaré estimate of form (5) holds for functions from Vθ.
Let the time interval be decomposed in equidistant time steps 0 = t0 < t1 < . . . <

tN = T and denote the length of the time step by ∆t = tn − tn−1, n = 1, . . . , N .
Let V hθ ⊂ Vθ be a conforming finite element space defined on a triangulation T h

of Ω. Because the triangulations are assumed to be regular, an inverse estimate of
type (10) holds for functions from V hθ . Let κh (θ), defined on Vθ, be a piecewise
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polynomial approximation of κ (θ) on T h and let uh = uhn−1 ∈ V h be given.
Then, the backward Euler/SUPG method reads as follows: For n = 1, 2, . . . , N find
θhn ∈ V hθ such that(

θhn − θhn−1

∆t
, ϕh
)
+
(
κh(θ̂h)∇θhn,∇ϕh

)
+

1

2

[(
uh · ∇θhn, ϕh

)
−
(
uh · ∇ϕh, θhn

)]
=

(
gn, ϕ

h
)

+
∑
K∈T h

δK

(
gn −

θhn − θhn−1

∆t
+∇ ·

(
κh(θ̂h)∇θhn

)
− uh · ∇θhn,uh · ∇ϕh

)
K

(43)

for all ϕh ∈ V hθ , where either θ̂h = θhn−1 or θ̂h = θhn and {δK} is the local stabiliza-

tion parameters. The skew-symmetric form of the convective term is used since uh

is in general not weakly divergence-free. For the approximation κh of κ, it will be
assumed that there are constants independent of h with

(44) 0 < κmin ≤ κ
(
t,x, ϕh

)
, κh

(
t,x, ϕh

)
≤ κmax <∞

for all ϕh ∈ V hθ , t ∈ [0, T ], x ∈ Ω.
Method (43) is written in short form(
θhn − θhn−1, ϕ

h
)
+∆t aSUPG

(
θ̂h; θhn, ϕ

h
)
= ∆t

(
gn, ϕ

h
)

+∆t
∑
K∈T h

δK
(
gn,u

h · ∇ϕh
)
K
−∆t

∑
K∈T h

δK
(
θhn − θhn−1,u

h · ∇ϕh
)
K
,(45)

where

aSUPG

(
θ̂h; θhn, ϕ

h
)
=
(
κh(θ̂h)∇θhn,∇ϕh

)
+

1

2

[ (
uh · ∇θhn, ϕh

)
−
(
uh · ∇ϕh, θhn

) ]
∑
K∈T h

δK

(
∇ ·
(
κh(θ̂h)∇θhn

)
− uh · ∇θhn,uh · ∇ϕh

)
K
.

3.2. Error analysis.

Lemma 3.1 (Coercivity of the SUPG form). Let

(46) δK ≤ h2K
C2

invκmax

and assume (44), then it holds

aSUPG

(
ψh;ϕh, ϕh

)
≥ 1

2

∥κh
(
ψh
)1/2 ∇ϕh∥2L2 +

∑
K∈T h

δK∥uh · ∇ϕh∥2L2(K)


=:

1

2
∥ϕh∥2SUPG(ψh)(47)

for all ϕh, ψh ∈ V hθ .

Proof. Choosing the second and the third argument of the SUPG form to be the
same, one finds that the convective term vanishes, due to its skew-symmetry, and
one gets

aSUPG

(
ψh;ϕh, ϕh

)
= ∥κh

(
ψh
)1/2 ∇ϕh∥2L2 +

∑
K∈T h

δK∥uh · ∇ϕh∥2L2(K)

−
∑
K∈T h

δK
(
∇ ·
(
κh
(
ψh
)
∇ϕh

)
,uh · ∇ϕh

)
K
.(48)
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The usual technique for estimating the last term from above includes the application
of the inverse estimate (10). However, the use of this estimates requires that the
term ∇ ·

(
κh
(
ψh
)
∇ϕh

)
belongs to a finite-dimensional space. For this reason,

the piecewise polynomial approximation κh was introduced. One obtains, using
the Cauchy–Schwarz inequality, (44), the inverse estimate (10), Young’s inequality,
and the condition (46) on the stabilization parameter∑

K∈T h

δK
(
∇ ·
(
κh
(
ψh
)
∇ϕh

)
,uh · ∇ϕh

)
K

≤
∑
K∈T h

δKκ
1/2
max∥∇ · (κh

(
ψh
)1/2 ∇ϕh)∥L2(K)∥uh · ∇ϕh∥L2(K)

≤ 1

2

∑
K∈T h

[
C2

invκmax

h2K
δK∥κh

(
ψh
)1/2 ∇ϕh∥2L2(K) + δK∥uh · ∇ϕh∥2L2(K)

]

≤ 1

2

∥κh
(
ψh
)1/2 ∇ϕh∥2L2 +

∑
K∈T h

δK∥uh · ∇ϕh∥2L2(K)

 .

Inserting this upper bound in the last term of (48) gives the statement of the
lemma. �

Lemma 3.2 (Stability of the solution). Let the assumptions of Lemma 3.1 be
satisfied and let in addition

(49) δK ≤ ∆t

4
.

Then, it is for all discrete times tn = n∆t, n = 0, 1, . . . , N

∥θhn∥2L2 +
∆t

2

n∑
j=1

∥θhj ∥2SUPG(θ̂h)
≤ ∥θh0∥2L2 +∆t

(
2

κmin
+∆t

) n∑
j=1

∥gj∥2L2 ,

where in the sum it is either θ̂h = θhj or θ̂h = θhj−1.

Proof. The proof follows the lines of the proof of Theorem 3.1 in [20], using in
particular the relation

(50)
(
θhn − θhn−1, θ

h
n

)
=

1

2

(
∥θhn∥2L2 + ∥θhn − θhn−1∥2L2 − ∥θhn−1∥2L2

)
.

The only difference is the estimate of the first term on the right-hand side of (45),
which has to take into account the absence of a reactive term. Thus, this term is
bounded by using Poincaré’s inequality (5), the Cauchy–Schwarz inequality, and
Young’s inequality in the following way

(51) ∆t
(
gn, ϕ

h
)
≤ ∆t

4
∥κh(θ̂h)1/2∇ϕh∥2L2 +∆t∥κh(θ̂h)−1/2gn∥2L2 .

The first term is then absorbed in the SUPG norm. �

It follows from (49) that the stabilization parameter depends on the length of
the time step. This issue is discussed comprehensively in [20]. In this paper, error
estimates for stabilization parameters independently of the time step could be de-
rived under the assumption that the convection field is stationary. This assumption
cannot be made in the context of the application in mind.

In the sequel, πhθ ∈ V hθ will denote the following elliptic projection

(52)
(
κ(θ(t))∇(πhθ(t)− θ(t)),∇ϕh

)
= 0 ∀ ϕh ∈ V hθ .
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Following [29, Lemma 13.1], there are optimal error bounds for both πhθ and
∂t(π

hθ) = πh(∂tθ). Moreover, the following bound holds for all t [29, Lemma 13.3]

(53) ∥∇πh(θ(t))∥L∞ ≤ C(θ).

Theorem 3.3 (Finite element error estimate.). Let the assumptions of Lemmas 3.1
and 3.2 be satisfied and let the regularities appearing on the right-hand side of the
following estimate be assumed, then the temperature error satisfies

∥θn − θhn∥2L2 +∆t
n∑
j=1

∥θj − θhj ∥2SUPG(θ̂hj )

≤ 2∥θn − πhθn∥2L2 + 2∆t

n∑
j=1

∥θj − πhθj∥2SUPG(θ̂hj )
+ ∥θh0 − πhθ0∥2L2

+C∆t
n∑
j=1

[(
C(θj)

2

κmin
+

h

κmax

)
∥κ(θj)− κh(θ̂h)∥2L2

+

(
C(θj)

2 +
∥∇ · uh∥2L2s

κmin
+

1

δmin
+

∥uh∥2L∞

κmax

)
∥θj − πhθj∥2L2

+

(
∥∇θj∥2L2s

κmin
+

∥θj∥2L∞

κmin
+ max
K∈T h

{δK}∥∇θj∥2L∞

)
∥uj − uh∥2L2

+∥(I − πh)∂tθj∥L2 +∆t

∫ tj

tj−1

∥∂ttθ∥2H1 dτ

]
,(54)

where s > 1 if d = 2 and s ≥ 3/2 if d = 3.

Proof. Let the error at time tn be decomposed as follows θn − θhn =
(
θn − πhθn

)
−(

θhn − πhθn
)
= ηn − ϵhn. An error equation is obtained by subtracting (42) from

(43). A straightforward calculation, noting that a diffusive term vanishes because
the elliptic projection (52) is used, yields

(
ϵhn − ϵhn−1, ϕ

h
)
+∆taSUPG(θ̂

h; ϵhn, ϕ
h) + ∆t

((
κh(θ̂h)− κ(θn)

)
∇πhθn,∇ϕh

)
+∆t

(
un · ∇θn, ϕh

)
− ∆t

2

[ (
uh · ∇πhθn, ϕh

)
−
(
uh · ∇ϕh, πhθn

) ]
= ∆t

(
Thn , ϕ

h
)
−
∑
K∈T h

δK
(
ϵhn − ϵhn−1,u

h · ∇ϕh
)
K
+
∑
K∈T h

δK
(
Thn ,u

h · ∇ϕh
)
K

+∆t
∑
K∈T h

δK

(
∇ ·
(
κh(θ̂h)∇πhθn − κ(θn)∇θn

)
,uh · ∇ϕh

)
K

+∆t
∑
K∈T h

δK
(
un · ∇θn − uh · ∇πhθn,uh · ∇ϕh

)
K

(55)

with the truncation error

Thn =
(
∂tθn − πh (∂tθn)

)
+

(
πh (∂tθn)−

πhθn − πhθn−1

∆t

)
.
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Now, the arguments proceed along the lines of the proof of [20, Theorem 4.1]. Using
Hölder’s inequality and (53) gives((

κ(θn)− κh(θ̂h)
)
∇πhθn,∇ϕh

)
≤ ∥∇πhθn∥L∞∥κ(θn)− κh(θ̂h)∥L2κ

−1/2
min ∥κh(θ̂h)1/2∇ϕh∥L2

≤ C(θn)

κ
1/2
min

∥κ(θn)− κh(θ̂h)∥L2∥κh(θ̂h)1/2∇ϕh∥L2 .

Next, a bound for the convective term will be derived. Using integration by parts
and that un is weakly divergence-free, this term can be split into

(
un · ∇θn, ϕh

)
− 1

2

[ (
uh · ∇πhθn, ϕh

)
−
(
uh · ∇ϕh, πhθn

) ]
=

1

2

((
un · ∇θn, ϕh

)
−
(
uh · ∇πhθn, ϕh

))
−1

2

((
un · ∇ϕh, θn

)
−
(
uh · ∇ϕh, πhθn

))
.(56)

An estimate of the first term on the right-hand side of (56) is derived by using inte-
gration by parts, Hölder’s inequality, the Sobolev imbedding H1(Ω) → L2s/(s−1)(Ω)
which holds for s > 1 if d = 2 and s ≥ 3/2 if d = 3, and the Cauchy–Schwarz in-
equality for sums((
un · ∇θn, ϕh

)
−
(
uh · ∇πhθn, ϕh

))
= ((un − uh) · ∇θn, ϕh) + (uh · ∇(θn − πhθn), ϕ

h)

= ((un − uh) · ∇θn, ϕh)− (∇ · uh, (θn − πhθn)ϕ
h)− (θn − πhθn,u

h · ∇ϕh)
≤ ∥un − uh∥L2∥∇θn∥L2s∥ϕh∥L2s/(s−1) + ∥∇ · uh∥L2s∥θn − πhθn∥L2∥ϕh∥L2s/(s−1)

−
∑
K∈T h

δK

(
θn − πhθn

δK
,uh · ∇ϕh

)
≤ 1

κ
1/2
min

(
∥∇θn∥L2s∥un − uh∥L2 + ∥∇ · uh∥L2s∥θn − πhθn∥L2

)

×∥κh(θ̂h)1/2∇ϕh∥L2 +
1

δ
1/2
min

∥θn − πhθn∥L2

 ∑
K∈T h

δK∥uh · ∇ϕh∥2L2(K)

1/2

.

A bound of the second term of (56) is obtained in a similar way

(
un · ∇ϕh, θn

)
−
(
uh · ∇ϕh, πhθn

)
=

(
(un − uh) · ∇ϕh, θn

)
+
(
uh · ∇ϕh, θn − πhθn

)
≤ ∥θn∥L∞

κ
1/2
min

∥un − uh∥L2∥κh(θ̂h)1/2∇ϕh∥L2

+
1

δ
1/2
min

∥θn − πhθn∥L2

 ∑
K∈T h

δK∥uh · ∇ϕh∥2L2(K)

1/2

.
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The estimate of the diffusion term in (55), which comes from the stabilization,
starts with Hölder’s inequality and the inverse estimate (10)∑

K∈T h

δK

(
∇ ·
(
κh(θ̂h)∇πhθn − κ(θn)∇θn

)
,uh · ∇ϕh

)
K

≤
∑
K∈T h

δKCinvh
−1
K ∥κh(θ̂h)∇πhθn − κ(θn)∇θn∥L2(K)∥uh · ∇ϕh∥L2(K).(57)

Using (53) and the inverse inequality (10) yields

∥κh(θ̂h)∇πhθn − κ(θn)∇θn∥L2(K)

≤ ∥∇πhθn∥L∞∥κh(θ̂h)− κ(θn)∥L2(K) + ∥κ(θn)∥L∞(K)∥∇(θn − πhθn)∥L2(K)

≤ C(θn)∥κh(θ̂h)− κ(θn)∥L2(K) + Cκmaxh
−1
K ∥θn − πhθn∥L2(K).

Inserting this estimate in (57) and using the bound (46) of the stabilization param-
eter gives∑

K∈T h

δK

(
∇ ·
(
κh(θ̂h)∇πhθn − κ(θn)∇θn

)
,uh · ∇ϕh

)
K

≤ C(θn)


 C

κmax

∑
K∈T h

hK∥κh(θ̂h)− κ(θn)∥2L2(K)

1/2

+ ∥θn − πhθn∥L2


×

 ∑
K∈T h

δK∥uh · ∇ϕh∥2L2(K)

1/2

.

For bounding the contribution of the convective term to the stabilization in (55),
the same tools are used as for the previous terms, which leads to∑

K∈T h

δK
(
un · ∇θn − uh · ∇πhθn,uh · ∇ϕh

)
K

≤
[
max
K∈T h

{δ1/2K }∥∇θn∥L∞∥un − uh∥L2 +
∥uh∥L∞

κ
1/2
max

∥θn − πhθn∥L2

]

×

 ∑
K∈T h

δK∥uh · ∇ϕh∥2L2(K)

1/2

.

The bound of the first term with the truncation error in (55) starts with the
Cauchy–Schwarz inequality

(Thn , ϕ
h) ≤ κ

−1/2
min ∥Tnh ∥L2∥κh(θ̂h)1/2∇ϕh∥L2 .

Then, the truncation error can be bounded using the same techniques as in [20,
Eq. (4.3)] to give

∥Thn ∥L2 ≤ ∥(I − πh)∂tθn∥L2 + C

(
∆t

∫ tn

tn−1

∥∂ttθ∥2H1 dτ

)1/2

.
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With similar arguments and using (49), one obtains for the second term with the
truncation error∑

K∈T h

δK
(
Thn ,u

h · ∇ϕh
)
K

≤ C

(
∆t∥(I − πh)∂tθn∥2L2 +∆t2

∫ tn

tn−1

∥∂ttθ∥2H1 dτ

)1/2

×

 ∑
K∈T h

δK∥uh · ∇ϕh∥2L2(K)

1/2

.

Last, note that the second term on the right-hand side of (55) can be absorbed
in the left-hand side by using the first term on the left-hand side and a relation like
(50).

The final steps consist in using a relation of the form (50) and the coercivity (47)
to estimate the first two terms on the left-hand side of (55), by applying Young’s
inequality to all estimates such that the factors that belong to the SUPG norm are
absorbed from the left-hand side, by summing over all discrete times, and then by
applying the triangle inequality with respect to the decomposition of the error. �

Remark 3.4. Estimate (54) provides the information that ∥θn − θhn∥L2 and a
discrete analog of ∥(κh)1/2∇(θ − θh)∥L2(L2) depend on a discrete version of

C(θ)

κ
1/2
min

∥u− uh∥L2(L2).

The term κ
1/2
min can be expected to be very small in applications such that ∥u −

uh∥L2(L2) is scaled with a large factor. However, the term that describes the ap-
proximation of the thermal diffusivity and the interpolation error on the right-hand
side of (54) are scaled with the same factor. From this point of view, all terms are
of equal importance and ∥u− uh∥L2(L2) should be preferably of the same order as

∥θ − πhθ∥L2(L2).

Error estimate (54) requires some interpretations.
The last term on the right-hand side of (54) gives the first order of convergence

with respect to time, as it is expected from the backward Euler scheme.
The error bound is not uniform with respect to the thermal diffusivity. From

the analytical point of view, the reason is that the usual assumption (reaction
minus one half of the divergence of the convection) made for convection-diffusion
problems, see the description at the beginning of Section 3, cannot be made. If
this assumption holds, then the terms whose estimation leads to inverse powers
of the thermal diffusivity in the proof of Theorem 3.3 could be bounded by using
inverse powers of the positive constant that appears in the assumption. A change of
variable as suggested in [11, Remark 1] could be applied to transform the equation
into one of the same type satisfying the assumption. However, since the thermal
diffusivity depends on the temperature, the thermal diffusivity of the new equation
after the change of variables includes an exponential factor of type eαt for α being
a constant and the error bounds have to be carefully revised. For this reason, this
will be subject of future research.

The interpolation errors θj − πhθj and (I − πh)∂tθj appear at many occasions
in the L2(Ω) norm such that a higher order of convergence can be expected for the
respective terms, provided that the solution is sufficiently smooth. However, in the
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second term on the right-hand side, the scaled H1(Ω) norm of the interpolation
error appears. This term gives the order of convergence with respect to the mesh
width.

For an optimal order of convergence, the error ∥uj−uh∥L2 has to be sufficiently
small, i.e., the extrapolation that is used as uh has to be sufficiently accurate. It
is known that appropriate IMEX schemes can be constructed, e.g., see [6].

Finally, the approximation error of the thermal diffusivity has to be considered.
As mentioned above, κh was introduced for technical reasons and in practice, it is

possible to evaluate κ(θ̂h) at the quadrature points. For the term that appears in
the error bound, the triangle inequality yields

(58) ∥κ(θj)− κh(θ̂h)∥L2 ≤ ∥κ(θj)− κh(θj)∥L2 + ∥κh(θj)− κh(θ̂h)∥L2 .

The first term on the right-hand side of (58) measures how good κh approximates
κ. The second term should become small if the arguments of κh are in some sense
close. This situation is given if κh is Lipschitz continuous with respect to the L2(Ω)
norm

∥κh(θ)− κh(θ̃)∥L2 ≤ C∥θ − θ̃∥L2

for all θ, θ̃ ∈ Vθ and a constant C > 0. Considering concretely ∥θj − θ̂h∥L2 , it can

be expected that this error is smaller if θ̂h = θhj , i.e., Algorithm 1.1 is used, than if

θ̂h is some extrapolation from previous discrete times.
The appearance of δ−1

min is already discussed in [20].

4. Summary

This paper studied a model for mantle convection consisting of a coupled prob-
lem of the Stokes equations and a time-dependent convection-diffusion equation. A
finite element analysis was performed for the individual equations, thereby tracking
the dependency of the error bounds on the coefficients of the problem and on the
finite element error coming from the other equation. In the following, realistic mag-
nitudes of the coefficients will be assumed. Then, it was found that the temperature
error possesses a large impact on the pressure error. The concrete dependency of
the L2(Ω) error of the velocity on the temperature error is an open question. On
the other hand, the velocity error in L2(0, T ;L2(Ω)) has a large impact on the
temperature error.

Considering just the order of convergence, then one can derive from the error
estimates (32), (36), and (40) for the Stokes problem optimal orders for the temper-
ature error. Considering the typical situation that the degree of the velocity finite
element space is larger by one than the degree of the pressure finite element space,
which is given, e.g., for Taylor–Hood pairs of finite element spaces, then one should
choose the degree of the temperature finite element space equal to the degree of the
velocity finite element space.
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