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Abstract. We study and compare fully discrete numerical approximations for the Cahn-Hilliard-
Navier-Stokes (CHNS) system of equations that enforce the divergence constraint in different ways,
one method via penalization in a projection-type splitting scheme, and the other via strongly

divergence-free elements in a fully coupled scheme. We prove a connection between these two
approaches, and test the methods against standard ones with several numerical experiments. The
tests reveal that CHNS system solutions can be efficiently and accurately computed with penalty-
projection methods.
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1. Introduction

The Cahn-Hilliard-Navier-Stokes (CHNS) system of equations is a diffuse inter-
face model for the evolution of two-phase, immiscible, incompressible flows with
uniform mass densities. In contrast to those of sharp interface type, the CHNS
model describes a small-thickness transition region (diffuse interface) between the
two immiscible fluids. This allows for convenient simulation of topological transi-
tions such as pinch-off and reconnection of drops [25], without the need to explicitly
track interfaces. In a domain Ω ⊂ Rd, d=2 or 3, with u representing velocity, p
pressure, µ the chemical potential, and ϕ the phase field variable (taking a value
of 1 in the bulk of one fluid and -1 in the bulk of the other), the CHNS system is
given in non-dimensional form by [25]

ϕt +∇ · (ϕu) = ∇ · (M(ϕ)∇µ),(1)

µ = f ′0(ϕ)− ϵ2∆ϕ,(2)

ut + u · ∇u+∇p− ν∆u = −ϵ
−1

We
ϕ∇µ,(3)

∇ · u = 0,(4)

together with initial conditions u0 and ϕ0, and boundary conditions

u|∂Ω = 0, (no slip, no penetration),

∇ϕ · n|∂Ω = 0, (local equilibrium),

∇µ · n|∂Ω = 0, (no flux).

In the system above, ν is the kinematic viscosity (ν−1 = Re, the Reynolds number),
ϵ > 0 is the transition layer width, We is a modified Weber number (measuring the
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strength of the kinetic and surface energies [21]), M(ϕ) is the mobility function,
which for simplicity we will take as M(ϕ) = 1. The function f0(ϕ) =

1
4 (1− ϕ2)2 =

1
4ϕ

4 − 1
2ϕ

2 + 1
4 is the homogeneous free energy density function. We note that the

energy balance of the system is easily shown to be

∂

∂t

(
1

2
∥u∥2 + ϵ

2We
∥∇ϕ∥2 + ϵ−1

We

∫
Ω

f0(ϕ) dx

)
+

(
ν∥∇u∥2 + ϵ−1

We
∥
√
M(ϕ)∇µ∥2

)
= 0.

By redefining the pressure, we can reformulate the system

ϕt +∇ϕ · u = ∇ · (M(ϕ)∇µ),(5)

µ = f ′0(ϕ)− ϵ2∆ϕ,(6)

ut + u · ∇u+∇p− ν∆u =
ϵ−1

We
µ∇ϕ,(7)

∇ · u = 0.(8)

Numerically solving the CHNS system is known to be very challenging for sev-
eral reasons, including the fact that Navier-Stokes and Cahn-Hilliard equations can
by themselves be difficult. For solutions to the coupled system, there are large
spatial derivatives in the small transition regions causing stiff nonlinear systems.
Moreover, the nonlinear algebraic equations resulting from discretization are large
and strongly coupled, which makes it difficult to even ‘get numbers’ in a reasonable
amount of time. Significant progress was recently made in [15], where a cleverly
devised projection method was developed that decouples the pressure and diver-
gence constraint from the system, but while still providing unconditional stability
and (seemingly) second order temporal accuracy. Moreover, further decoupling of
the system was done in the nonlinear iterations at each timestep, which further de-
coupled the system into easily solvable pieces. This scheme was shown to perform
very well in terms of both accuracy and efficiency on a series of test problems.

The purpose of this paper is to study finite element schemes for (1)-(4) that
more strongly enforce the divergence-constraint than what is usually found in the
literature. In particular, we consider a coupled scheme that strongly enforces the
divergence constraint, and a penalty-projection scheme that uses grad-div stabi-
lization to better enforce the divergence constraint. Recent work in [10, 18, 22] has
shown that the error caused in weak enforcement of the divergence constraint used
by typical finite element methods for fluid simulations (e.g., using Taylor-Hood ele-
ments) is exacerbated when the momentum equation forcing has a large irrotational
component [20]. Considering the CHNS system above, the forcing of the momen-

tum equation (3) is observed to be either − ϵ−1

We ϕ∇µ or ϵ−1

We µ∇ϕ, depending on the
definition of the pressure. Since ϵ is small, we can expect the forcing to be large
in general, especially in the diffuse interface region. Moreover, since |ϕ| ≈ 1 except
in transition regions, we can expect the forcing the be nearly irrotational in bulk
flow regions. Thus, the CHNS system seems to fit into a class of problems where
stronger enforcement of the divergence constraint can significantly help solution
accuracy.

There are many ways of reducing the effect of poor divergence-constraint enforce-
ment in discretizations, including using point-wise divergence-free velocity-pressure
elements (e.g., [20, 32, 2, 26, 13, 14, 8]) and using grad-div stabilization. Point-wise
divergence-free elements completely eliminate the problem but come with difficul-
ties such as larger (and discontinuous) pressure spaces, restrictive mesh conditions,



PENALTY-PROJECTION SCHEMES FOR THE CH-NS SYSTEM 651

and the need to use higher order approximating polynomials degrees. Some of
the more popular finite element software packages, like deal.II [3], do not sup-
port such elements. Grad-div stabilization, on the other hand, is easy to imple-
ment in most software packages, and significantly reduces the problem when the
penalization parameter is chosen appropriately [18, 27, 28]. Moreover, grad-div
stabilization can be easily incorporated into projection methods (which are then
called penalty-projection methods [31]). Despite these differences, grad-div sta-
bilization and point-wise divergence-free elements are closely related, and, in the
recent paper [23], the authors proved that, in appropriate discrete settings, for sim-
ulations of single phase Navier-Stokes equations, penalty-projection methods with
large stabilization parameters give almost identical approximations to point-wise
divergence-free element solutions of coupled methods. In this paper, we will extend
the ideas of [23] to schemes for the CHNS system.

This paper is arranged as follows. Section 2 presents notation and some mathe-
matical preliminaries that will simplify the analysis to follows. Section 3 studies first
order schemes, both coupled and projection, and proves that with certain meshes
and element choices, the grad-div stabilized projection method will converge to the
coupled method as the stabilization parameter goes to infinity. Section 4 extends
the work of section 3 to second order schemes. Several numerical experiments are
given that illustrate the theory, and show the effectiveness of the grad-div stabi-
lized projection method with large stabilization parameter. Finally, conclusions are
drawn in section 5.

2. Notation and Mathematical Prelimilaries

We consider an open, bounded, polygonal domain Ω ⊂ Rd, d = 2 or 3, and
denote the usual L2(Ω) norm and inner product by ∥ · ∥ and (·, ·), respectively. All
other norms and inner products will be clearly labeled. For any ψ ∈ L2(Ω), define
the spatial average ψ := |Ω|−1

∫
Ω
ψ dx. We will use the following function spaces:

S := H1(Ω),

X := [H1
0 (Ω)]

d =
{
v ∈ [H1(Ω)]d

∣∣ v|∂Ω = 0
}
,

Q := L2
0(Ω) =

{
q ∈ L2(Ω)

∣∣ q = 0
}
.

Recall that in X, the Poincaré inequality holds: there exists C = C(Ω) > 0 such
that

∥v∥ ≤ C∥∇v∥, ∀ v ∈ X.

This allows us to define (u, v)X := (∇u,∇v) as the inner product on X, and

∥u∥X := ∥∇u∥ as the associated norm. We set H̊1(Ω) = H1(Ω) ∩ L2
0(Ω). Since

(weak and strong) solutions of the Cahn-Hilliard equation are mass conservative,

that is, dt
∫
Ω
ϕ dx = 0, we have ϕ(t) ∈ H̊1(Ω) + ϕ0, for all t ≥ 0. For any

ψ ∈ H̊1(Ω) + ϕ0, there is a constant C = C(Ω) > 0, such that,

∥ψ∥ =
∥∥ψ − ϕ0 + ϕ0

∥∥ ≤
∥∥ψ − ϕ0

∥∥+ ∥ϕ0∥ ≤ C∥∇ψ∥+
√

|Ω| · |ϕ0|.

We will also use the function space

Y :=
{
v ∈ L2(Ω)

∣∣ ∇ · v ∈ L2(Ω) and v · n |∂Ω= 0
}

for the projection-type scheme analysis. Observe that X ⊂ Y .
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2.1. Discretization preliminaries. Let Th = {K} be a conforming triangulation
of Ω, and define

P ⋄
r :=

{
v ∈ L2(Ω)

∣∣ vK ∈ Pr, ∀K ∈ Th
}
, Pr := P ⋄

r ∩ C0(Ω).

Note that P ⋄
r is the “broken” piece-wise polynomial space. We consider discrete

subspaces for the phase variable Sh ⊂ S; the chemical potential, Wh ⊂ S; the
velocity, Xh ⊂ X; and the pressure, Qh ⊂ Q. For simplicity, we will take Sh =
Wh = Pk. This choice will facilitate the higher-order estimates that we will seek
for the Cahn-Hilliard discretization [6, 7, 9]. We want the pair (Xh, Qh) to satisfy
the LBB condition,

inf
q∈Qh

sup
v∈Xh

(∇ · v, q)
∥q∥∥∇v∥

≥ β > 0.

Herein, we will consider Taylor-Hood elements,

(Xh, Qh) = ([Pk]
d ∩X,Pk−1 ∩Q), 2 ≤ k, (Taylor-Hood),

and Scott-Vogelius elements

(Xh, Qh) = ([Pk]
d ∩X,P ⋄

k−1 ∩Q), 2 ≤ k ≤ d, (Scott-Vogelius),

both of which are known to be LBB stable. Scott-Vogelius elements have the
added property that ∇ · Xh ⊂ Qh, which leads to a strong enforcement of the
divergence constraint. We will be clear when we assume that ∇·Xh ⊂ Qh. For LBB
to hold, Scott-Vogelius elements require restrictions on the mesh and polynomial
degrees, the least restrictive of which are that the meshes be created as barycenter
refinements of regular triangulations/tetrahedralizations and that k ≤ d [2, 32].

For the projection-type scheme, we will also utilize the space Yh ⊂ Y , Yh =
[Pk]

d ∩ Y . The polynomial degree k used for Yh will be the same as for Xh. Since
Xh ⊂ Yh, if the LBB condition holds for (Xh, Qh), it must also hold for (Yh, Qh).
Indeed, for any q ∈ Qh,

sup
v∈Yh

(∇ · v, q)
∥∇v∥

≥ sup
v∈Xh

(∇ · v, q)
∥∇v∥

≥ β∥q∥.

Moreover, if Qh = P ⋄
k−1 ∩ Q, then ∇ · Yh ⊂ Qh holds since ∇ · [Pk]

d ⊂ P ⋄
k−1,

and functions in {∇ · Yh} must have zero mean due the no penetration boundary
condition in Yh and the divergence theorem. Thus, since we require the same
polynomial degree for Xh and Yh, for this choice of pressure space we have that
∇ ·Xh ⊂ ∇ · Yh ⊂ Qh.

Define the discrete weakly divergence-free subspace, Vh, via

Vh := {v ∈ Xh | (∇ · v, q) = 0, ∀ q ∈ Qh} .

For the Scott-Vogelius elements, ∇·Xh ⊂ Qh and, consequently, the discrete weakly
divergence-free space is identical to the point-wise divergence-free space in the sense
that

Vh = {v ∈ Xh | ∥∇ · v∥ = 0} .
Define

Rh := V ⊥
h = {v ∈ Xh | (∇v,∇w) = 0, ∀w ∈ Vh } ,

the orthogonal complement of Vh with respect to the X inner product. Thus
Xh = Vh ⊕ Rh. The following lemma from [23] proves the equivalence of the L2

divergence norm and X-norm in Rh:
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Lemma 2.1. Suppose (Xh, Qh) ⊂ (X,Q) satisfies the inf-sup condition, ∇ ·Xh ⊂
Qh, and Xh = Vh ⊕Rh, where Rh = V ⊥

h , as above. Then we have

∥∇vh∥ ≤ CR∥∇ · vh∥, ∀vh ∈ Rh,

where CR is a constant independent of h.

Define the skew-symmetric, trilinear operator B0 : X ×X ×X → R by

B0(u, v, w) :=
1

2
(u · ∇v, w)− 1

2
(u · ∇w, v)

and recall, from e.g. [11], that there exists Cs depending on Ω such that

|B0(u, v, w)| ≤ Cs∥u∥1/2∥∇u∥1/2∥∇v∥∥∇w∥,

for every u, v, w ∈ X.
For the next few estimates, we need the discrete Laplacian, ∆h : Sh → S̊h :=

Sh ∩ L2
0(Ω), which is defined as follows: for any ϕh ∈ Sh, ∆hϕh ∈ S̊h denotes the

unique solution to the problem

(9) (∆hϕh, χ) = −(∇ϕh,∇χ), ∀ χ ∈ Sh.

Some of its properties can be found in [24]. We make important use of the following
discrete Sobolev inequalities [17, 24]:

Proposition 2.1. If Ω is a convex polygonal domain in Rd, d = 2, 3, and Th is a
globally quasi-uniform family of triangulations of Ω, then for all ψh ∈ Sh,

∥ψh∥L∞ ≤ C ∥∆hψh∥
d

2(6−d) ∥ψh∥
3(4−d)
2(6−d)

L6 + C ∥ψh∥L6 ,(10)

∥∇ψh∥L4 ≤ C ∥∆hψh∥
d
4 ∥∇ψh∥

4−d
4 + C ∥∇ψh∥ ,(11)

∥∇ψh∥L6 ≤ C ∥∆hψh∥ + C ∥∇ψh∥ .(12)

for some constant C > 0 that is independent of h.

Here we define two different convection coupling trilinear forms:

B1(ψ, v, χ) := (∇ψ · v, χ),(13)

B2(ψ, v, χ) := (∇ψ · v, χ) + (∇ · v, ψχ).(14)

The B1 trilinear form is commonly used in Cahn-Hilliard type schemes [6, 7], how-
ever, it only allows for mass conservation if the pressure and phase spaces are the
same. The B2 form is more flexible, allowing for mass conservation even when
choosing different pressure and phase spaces. We give bounds for both forms, as
even though we use B2 exclusively in this work. We show here that the upper
bounds are the same for B1 and B2, which will allow us to invoke known theory
from similar works which use the B1 trilinear form. We have the following mass
conservation properties and estimates for these trilinear forms.

Proposition 2.2. Assume that Sh, Xh, Qh, and Vh are defined as above, but that
∇ ·Xh ⊂ Qh does not necessarily hold.

(1) If ψh ∈ Sh ∩Qh and vh ∈ Vh, then

B1(ψh, vh, 1) = 0.

(2) If ψh ∈ Sh, vh ∈ Vh are arbitrary, then

B2(ψh, vh, 1) = 0.
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(3) If ψh ∈ Sh ∩Qh, χh ∈ Sh, and vh ∈ Vh, then

|B1(ψh, vh, χh)| ≤ C∥∇ψh∥ · ∥∇vh∥ · ∥∇χh∥,

and if ψh, χh ∈ Sh, and vh ∈ Vh, then

|B2(ψh, vh, χh)| ≤ C
(
∥∇ψh∥+ |ψh|

)
· ∥∇vh∥ · ∥∇χh∥.

(4) If ψh ∈ Sh ∩Qh, χh ∈ Sh, and vh ∈ Xh, then

|B1(ψh, vh, χh)| ≤ C∥∇ψh∥ · ∥∇vh∥ · ∥χh∥H1 ,

and if ψh, χh ∈ Sh, and vh ∈ Xh, then

|B2(ψh, vh, χh)| ≤ C
(
∥∇ψh∥+ |ψh|

)
· ∥∇vh∥ · ∥χh∥H1 .

(5) If ψh, χh ∈ Sh, vh ∈ Xh and Ω is a convex, polygonal domain, then

|B1(ψh, vh, χh)| ≤ C (∥∆hψh∥+ ∥∇ψh∥) · ∥∇vh∥ · ∥χh∥,

and

|B2(ψh, vh, χh)| ≤ C
(
∥∆hψh∥+ ∥∇ψh∥+

∣∣ψh

∣∣) · ∥∇vh∥ · ∥χh∥.

Proof. (1) If ψh ∈ Sh ∩Qh and vh ∈ Vh, then using Green’s theorem, the property
that vh|∂Ω = 0 and the discrete weak divergence-free property of Vh, we obtain

B1(ψh, vh, 1) = (∇ψh, vh) = −(ψh,∇ · vh) + (ψh, vh · n)∂Ω = 0.

(2) If ψh ∈ Sh, vh ∈ Vh, then again using Green’s theorem and the property that
vh|∂Ω = 0 (but not the discrete weak divergence-free property of Vh), we get that
(15)
B2(ψh, vh, 1) = (∇ψh, vh)+(∇·vh, ψh) = −(ψh,∇·vh)+(ψh, vh·n)∂Ω+(∇·vh, ψh) = 0.

(3) Suppose ψh ∈ Sh ∩Qh,χh ∈ Sh and vh ∈ Vh. By part (a),

B1(ψh, vh, χh) = B1(ψh, vh, χh − χh).

Using Hölder’s inequality, the Sobolev embedding H1(Ω) ↩→ L4(Ω), and the appro-
priate Poincaré inequalities, we have

|B1(ψh, vh, χh)| ≤ ∥∇ψh∥ · ∥vh∥L4 · ∥χh − χh∥L4 ≤ C∥∇ψh∥ · ∥∇vh∥ · ∥∇χh∥.

Next, suppose ψh, χh ∈ Sh (i.e., ψh ∈ Qh need not hold) and vh ∈ Vh. By part (2),

B2(ψh, vh, χh) = B2(ψh, vh, χh − χh).

Using Hölder’s inequality, the Sobolev embedding H1(Ω) ↩→ L4(Ω), and the appro-
priate Poincaré inequalities, we have

|B2(ψh, vh, χh)| ≤ ∥∇ψh∥ · ∥vh∥L4 · ∥χh − χh∥L4 + C∥ψh∥L4 · ∥∇vh∥ · ∥χh − χh∥L4

≤ C
(
∥∇ψh∥+ |ψh|

)
· ∥∇vh∥ · ∥∇χh∥.

(4) This case is similar to (3), except that we can’t invoke (1) or (2), since vh ̸∈ Vh.

(5) Finally, suppose ψh, χh ∈ Sh, vh ∈ Xh. Then using Hölder’s inequality, the
Sobolev embeddings H1(Ω) ↩→ L4(Ω) and H1(Ω) ↩→ L6(Ω), the Poincaré inequali-
ties

∥ϕh∥ ≤ C
(
∥∇ϕh∥+

∣∣ϕh∣∣) , ∥∇ϕh∥ ≤ C∥∆hϕh∥, for all ϕh ∈ Sh,
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and the estimates (10) and (11), we have

|B2(ψh, vh, χh)| ≤ ∥∇ψh∥L4 · ∥vh∥L4 · ∥χh∥+ C∥ψh∥L∞ · ∥∇vh∥ · ∥χh∥

≤ C
(
(∥∇ψh∥ + ∥∆hψh∥)

d
4 ∥∇ψh∥

4−d
4

)
· ∥∇vh∥ · ∥χh∥

+ C

(
∥∆hψh∥

d
2(6−d) ∥ψh∥

3(4−d)
2(6−d)

L6 + C ∥ψh∥L6

)
· ∥∇vh∥ · ∥χh∥

≤ C
(
∥∆hψh∥ + ∥∇ψh∥ +

∣∣ψh

∣∣) · ∥∇vh∥ · ∥χh∥.

The estimate for B1 is similar. �

We will use the following discrete Gronwall inequality in our analysis [16].

Lemma 2.2. (Discrete Gronwall Lemma). Let ∆t,H, and an, bn, cn, dn (for in-
tergers n ≥ 0) be non-negative numbers such that

al +∆t

l∑
n=0

bn ≤ ∆t

l∑
n=0

dnan +∆t

l∑
n=0

cn +H for l ≥ 0,

If ∆tdn < 1 ∀n, then

al +∆t

l∑
n=0

bn ≤ exp

(
∆t

l∑
n=0

dn
1−∆tdn

)(
∆t

l∑
n=0

cn +H

)
.

3. First order schemes for Cahn-Hilliard-Navier-Stokes

We will study, test, and show connections between first order coupled and
penalty-projection schemes for CHNS system. We present these schemes now.

3.1. A first order coupled scheme for CHNS system.

Algorithm 3.1. (Coupled scheme for CHNS system) Given parameters ϵ, We, ν,
and ∆t, find

(ϕ̂n+1
h , µ̂n+1

h , ûn+1
h , p̂n+1

h ) ∈ (Sh, Sh, Xh, Qh)

satisfying for all (χh, ψh, vh, qh) ∈ (Sh, Sh, Xh, Qh),

1

∆t

(
ϕ̂n+1
h − ϕ̂nh, χh

)
+B2

(
ϕ̂nh, û

n+1
h , χh

)
+ (∇µ̂n+1

h ,∇χh) = 0,

(µ̂n+1
h , ψh)− ((ϕ̂n+1

h )3, ψh) + (ϕ̂nh, ψh)− ϵ2(∇ϕ̂n+1
h ,∇ψh) = 0,

1

∆t
(ûn+1

h − ûnh, vh) + ν(∇ûn+1
h ,∇vh) +B0(û

n
h, û

n+1
h , vh)

−(p̂n+1
h ,∇ · vh)−

ϵ−1

We
B2

(
ϕ̂nh, vh, µ̂

n+1
h

)
= 0,

(∇ · ûn+1
h , qh) = 0,

for 0 ≤ k ≤ L− 1, where L = T
∆t .

Following [6, 7], we can prove unconditional unique solvability, unconditional

energy stability, unconditional ℓ∞(0, T ;L∞) stability for ϕ̂h, and convergence for
this scheme. In particular, we can derive optimal-order error estimates for the
variables in the appropriate energy norms.
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Lemma 3.1. Suppose (Xh, Qh) ⊂ (X,Q) satisfies the inf-sup condition, ∇ ·Xh ⊂
Qh, and u

0
h ∈ Vh and ϕ0h ∈ Sh. Then Algorithm 3.1 is uniquely solvable, and its

solutions satisfy

(16) ∥ûLh∥2 + ∥∇ϕ̂Lh∥2 + ∥∆hϕ̂
L
h∥2 + ∥ϕ̂Lh∥2L∞

+∆t

L∑
n=1

(
∥∇ûnh∥2 + γ∥∇ · ûnh∥2 + ∥µ̂n

h∥2H1

)
≤ C(data),

where C depends on problem data, but is independent of h and ∆t. Moreover, if
we assume that Xh = X ∩ [Pk]

d, Qh = Q ∩ P ⋄
k−1, Sh = Pk, and (u, p, ϕ, µ) is a

sufficiently regular, strong CHNS system solution, then

(17)

∥ûLh −u(T )∥2+ ∥∇(ϕ̂Lh −ϕ(T ))∥2+∆t
L∑

n=1

(
∥∇(ûnh − u(tn))∥2 + ∥µ̂n

h − µ(tn)∥2H1

)
≤ C(∆t2 + h2k),

with C dependent on problem data, but is independent of h and ∆t.

Remark 3.1. Observe that the term γ∥∇· ûnh∥2 in estimate (16) is identically zero.

Remark 3.2. The stability bound on ∥ϕ̂h∥ℓ∞(H1) depends linearly on ϵ−2, and
comes directly from the energy stability of the method and our particular scaling
of the energy. The scaling in [6, 9] yields a dependence of ϵ−1. The higher order
stability estimates may depend linearly on ϵ−m for small and modestly-sized positive
integer values m. Hence the estimates are singular with respect to ϵ. We do not
track this dependence upon ϵ here, but see [9] for a related discussion where the
dependences are more carefully tracked.

Proof of Lemma 3.1. The proofs of unique solvability, stability and convergence are
long and technical, however, they follow analogously to the results for the second-
order coupled scheme for CHNS system studied in [7] and first-order coupled scheme
for the Cahn-Hilliard-Stokes system studied in [6]. Thus, we omit the proofs, with
the exception of those concerning stability, since the tools used therein will be used
in later results in this paper.

The stability proof begins with an energy-type stability estimate. Later steps in
the proof will be used to gain regularity. The constants involved in the regularity
upper bounds will be independent of h and ∆t.

Step 1: ûh ∈ ℓ2(0, T ;H1)∩ℓ∞(0, T ;L2), ϕ̂h ∈ ℓ∞(0, T ;H1), and∇µ̂h ∈ ℓ2(0, T ;L2).
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We begin the proof by picking test functions vh = ϵWe∆tûn+1
h , χh = ∆tµ̂n+1

h ,

qh = p̂n+1
h , ψh = ϕ̂n+1

h − ϕ̂nh. This gives(
ϕ̂n+1
h − ϕ̂nh, µ

n+1
h

)
+∆tB2

(
ϕ̂nh, û

n+1
h , µn+1

h

)
+∆t∥∇µ̂n+1

h ∥2 = 0,

ϵ2

2

(
∥∇ϕ̂n+1

h ∥2 − ∥∇ϕ̂nh∥2 + ∥∇(ϕ̂n+1
h − ϕ̂nh)∥2

)
−(µ̂n+1

h , ϕ̂n+1
h − ϕ̂nh) + ((ϕ̂n+1

h )3, ϕ̂n+1
h − ϕ̂nh)− (ϕ̂nh, ϕ̂

n+1
h − ϕ̂nh) = 0,

ϵWe

2

(
∥ûn+1

h ∥2 − ∥ûnh∥2 + ∥ûn+1
h − ûnh∥2

)
+ ϵWeν∆t∥∇ûn+1

h ∥2

−∆tB2

(
ϕ̂nh, û

n+1
h , µ̂n+1

h

)
= 0,

noting that the B0 term dropped due to the skew-symmetry property, and the
pressure term dropped thanks to the discrete mass conservation property. Next, we

add the equations together, and note the cancellation of the B2 and (µ̂n+1
h , ϕ̂n+1

h −
ϕ̂nh) terms. This yields the equation

(18)
ϵ2

2

(
∥∇ϕ̂n+1

h ∥2 − ∥∇ϕ̂nh∥2 + ∥∇(ϕ̂n+1
h − ϕ̂nh)∥2

)
+
ϵWe

2

(
∥ûn+1

h ∥2 − ∥ûnh∥2 + ∥ûn+1
h − ûnh∥2

)
+ ϵWeν∆t∥∇ûn+1

h ∥2

+∆t∥∇µ̂n+1
h ∥2 + ((ϕ̂n+1

h )3 − ϕ̂nh, ϕ̂
n+1
h − ϕ̂nh) = 0.

From [6], we have an identity for the last term in (18),

((ϕ̂n+1
h )3 − ϕ̂nh, ϕ̂

n+1
h − ϕ̂nh)

=
1

4

(
∥(ϕ̂n+1

h )2 − 1∥2 − ∥(ϕ̂nh)2 − 1∥2 + ∥(ϕ̂n+1
h )2 − (ϕ̂nh)

2∥2
)

+
1

2

(
∥ϕ̂n+1

h (ϕ̂n+1
h − ϕ̂nh)∥2 + ∥ϕ̂n+1

h − ϕ̂nh∥2
)
.

Defining E(u, ϕ) := ϵWe
2 ∥u∥2 + ϵ2

2 ∥∇ϕ∥
2 + ∥ϕ2 − 1∥2, we can reduce (18) with the

above identity and dropping positive terms on the left hand side to obtain the
bound

(19) E(ûn+1
h , ϕ̂n+1

h )− E(ûnh, ϕ̂
n
h) + ϵWeν∆t∥∇ûn+1

h ∥2 +∆t∥∇µ̂n+1
h ∥2 ≤ 0.

Summing over time steps gives the bound

E(ûLh , ϕ̂
L
h ) + ϵWeν∆t

L∑
n=1

∥∇ûnh∥2 +∆t
L∑

n=1

∥∇µ̂n
h∥2 ≤ E(û0h, ϕ̂

0
h),

which implies the stated results for ûh and ∇µ̂h, since û
0
h ∈ L2(Ω) and ϕ̂0h ∈ H1(Ω).

For ϕ̂h we have, for any 0 ≤ n ≤ L,

ϵ2∥∇ϕ̂nh∥2 ≤ E(ûnh, ϕ̂
n
h) ≤ E(û0h, ϕ̂

0
h) ≤ C.

Furthermore, since the scheme conserves mass, that is, ϕ̂nh = ϕ̂0h, we observe that

∥ϕ̂nh∥ ≤ ∥ϕ̂nh − ϕ̂nh∥+ ∥ϕ̂nh∥ ≤ C∥∇ϕ̂nh∥+
√
|Ω|
∣∣∣ϕ̂0h∣∣∣ ≤ C,

for all 0 ≤ n ≤ L. Therefore, ∥ϕ̂nh∥H1 ≤ C, for all 0 ≤ n ≤ L.

Step 2: ∆hϕ̂h ∈ ℓ2(0, T ;L2).
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Next, choose ψh = ∆hϕ̂
n+1
h in Algorithm 3.1, then use properties of the discrete

Laplacian, then Cauchy-Schwarz and Young’s inequalities to obtain

ϵ2∥∆hϕ̂
n+1
h ∥2 = (∇µ̂n+1

h ,∇ϕ̂n+1
h ) + ((ϕ̂n+1

h )3 − ϕ̂nh,∆hϕ̂
n+1
h )

≤ 1

2
∥∇µ̂n+1

h ∥2 + 1

2
∥∇ϕ̂n+1

h ∥2 + 1

2ϵ2
∥(ϕ̂n+1

h )3 − ϕ̂nh∥2 +
ϵ2

2
∥∆hϕ̂

n+1
h ∥2.

From the regularity of ϕ̂h already established, we have that

∥(ϕ̂n+1
h )3 − ϕ̂nh∥2 ≤ 2∥ϕ̂n+1

h ∥6L6 + 2∥ϕ̂nh∥2 ≤ C(∥ϕ̂n+1
h ∥6H1 + ∥ϕ̂nh∥2) ≤ C,

and thus

ϵ2∥∆hϕ̂
n+1
h ∥2 ≤ ∥∇µ̂n+1

h ∥2 + C.

Multiplying both sides by ∆t, summing over time steps, and using that ∇µ̂h ∈
ℓ2(0, T ;L2) proves the Step 2 result.

Step 3: µ̂h ∈ ℓ2(0, T ;H1).

It is already established in Step 1 that ∇µ̂h ∈ ℓ2(0, T ;L2), and so it remains to
show µ̂h ∈ ℓ2(0, T ;L2). Choose the test function ψh = µn+1

h in Algorithm 3.1 to
obtain the equation

∥µ̂n+1
h ∥2 = ((ϕ̂n+1

h )3 − ϕ̂nh, µ̂
n+1
h ) + ϵ2(∇ϕ̂n+1

h ,∇µ̂n+1
h ).

Using Cauchy-Schwarz and Young’s inequalities, the bound on the nonlinear term

from Step 2, and the regularity of ϕ̂h proven in Step 1 yields

∥µ̂n+1
h ∥2 ≤ ∥(ϕ̂n+1

h )3 − ϕ̂nh∥2 + ϵ2∥∇ϕ̂n+1
h ∥2 + ∥∇µ̂n+1

h ∥2

≤ C + ∥∇µ̂n+1
h ∥2.

Now multiplying both sides by ∆t, summing over time steps, and using the regu-
larity of ∇µ̂h proven in Step 1 provide the Step 3 result.

Step 4: ∆hϕ̂h ∈ ℓ∞(0, T ;L2) and ϕ̂h ∈ ℓ∞(0, T ;L∞).

This step follows as in [6, 7]. The details are tedious and are skipped for the sake
of brevity. �

3.2. A penalty-projection scheme for the Cahn-Hilliard-Navier-Stokes
system. We also consider herein a projection method for CHNS system. The
scheme is an analogue to the projection method for the NSE: implicit pressure
is removed from the coupled system, and is recovered in an additional step that
uses a Hodge decomposition to break the velocity into a divergence-free part and a
potential part. The pressure is defined as the potential part.

Projection methods are known to be more efficient than coupled methods, since
their two steps are generally much easier to solve than the one step needed in
coupled methods. However, they are also known to be less accurate in general
(although there are many ‘fixes’ available for various settings). One method that
can provide significant improvement is to add grad-div stabilization to the method
to penalize divergence error in step 1 of the projection method. When this is done,
the methods are often called ‘penalty-projection’, and are well studied for Navier-
Stokes equations [1, 4, 19, 23, 30].

The penalty-projection scheme we consider is the one associated with the coupled
scheme in Algorithm 3.1, and is stated below.
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Algorithm 3.2. (Penalty-projection scheme for CHNS system) Given parameters
ϵ, We, ν, and ∆t,

Step 1: Find (ϕn+1
h , µn+1

h , un+1
h ) ∈ (Sh, Sh, Xh) satisfying for all (χh, ψh, vh) ∈

(Sh, Sh, Xh),

1

∆t

(
ϕn+1
h − ϕnh, χh

)
+B2

(
ϕnh, u

n+1
h , χh

)
+ (∇µn+1

h ,∇χh) = 0,

(µn+1
h , ψh)− ((ϕn+1

h )3, ψh) + (ϕnh, ψh)− ϵ2(∇ϕn+1
h ,∇ψh) = 0,

1

∆t
(un+1

h − ūnh, vh) + γ(∇ · un+1
h ,∇ · vh) + ν(∇un+1

h ,∇vh)

+B0(u
n
h, u

n+1
h , vh)−

ϵ−1

We
B2

(
ϕnh, vh, µ

n+1
h

)
= 0.

Step 2: Find (ūn+1
h , pn+1

h ) ∈ (Yh, Qh) such that for every (vh, qh) ∈ (Yh, Qh)

1

∆t
(ūn+1

h − un+1
h , vh)− (pn+1

h ,∇ · vh) = 0,

(∇ · ūn+1
h , qh) = 0.

Remark 3.3. Observe that Xh ⊂ Yh, and if ∇·Yh ⊂ Qh (as it is if Qh = P ⋄
k−1∩Q

and Yh = [Pk]
d ∩ Y ), then ∥∇ · ūn+1

h ∥ = 0.

The penalty-projection scheme above is both uniquely solvable, and uncondi-
tionally stable.

Lemma 3.2. Suppose (Xh, Qh) ⊂ (X,Q) satisfies the inf-sup condition, ∇ ·Xh ⊂
∇ · Yh ⊂ Qh, and u

0
h ∈ Vh and ϕ0h ∈ Sh. Then Algorithm 3.2 is uniquely solvable,

and its solution satifies

(20)

∥uLh∥2+∥∇ϕLh∥2+∥∆hϕ
L
h∥+∥ϕLh∥2L∞ +∆t

L∑
n=1

(
∥∇unh∥2 + γ∥∇ · unh∥2 + ∥µn

h∥2H1

)
≤ C(data),

where C depends on problem data, but is independent of h, ∆t, and γ.

Remark 3.4. In this case, the term γ∥∇ · unh∥2 in estimate (20) is not identically
zero.

Proof of Lemma 3.2. Unique solvability follows similarly to the proofs in [7, 15].
Unconditional stability follows almost exactly as the proof of Lemma 3.1. The only
difference is in Step 1, where the polarization identity gives the left hand side term

∥un+1
h ∥2 − ∥ūnh∥2 + ∥un+1

h − ūnh∥2,

while in the case of the coupled (non-projection) scheme there are no bars (projec-
tions). The third term plays no role in the proof, and it simply gets dropped since
it is positive on the left hand side. Since the bar denotes the L2 projection, we have
that

∥un+1
h ∥2 − ∥unh∥2 ≤ ∥un+1

h ∥2 − ∥ūnh∥2,

and with this small change the proof will follow the same as for Lemma 3.1. �
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We do not prove convergence of the penalty-projection scheme with respect to
h and ∆t, although for any fixed γ > 0, we do expect the reduction in temporal
accuracy that projection methods usually produce, i.e., a reduction to O(∆t1/2)
accuracy with respect to the time step size. We do not foresee any major difficulties
with combining the convergence analysis of the coupled scheme from [7] with the
usual projection method analysis techniques [12, 29, 31] to obtain such a result, but
these details need to be worked out before stating them as facts.

Instead, we prove a different kind of convergence, that is perhaps more relevant
to the CHNS system. We will prove that for a fixed discretization (i.e., fixed mesh
and ∆t) and for certain discretizations of velocity-pressure spaces (such as Scott-
Vogeliue elements, which as we discuss above are natural for this problem), as
γ → ∞, the sequence of solutions produced by Algorithm 3.2 will converge to the
solution of Algorithm 3.1. In practice this will mean that for γ sufficiently large,
the penalty-projection method and coupled method solutions will be very close to
identical. In our tests, even with γ = 10, there is very little difference between
the solutions. Hence, in a sense, one can achieve projection method efficiency and
coupled method accuracy. Such a result has been proven for Navier-Stokes schemes
in [23], and here we extend the ideas to CHNS system.

For the convergence result that follows, we will assume that Scott-Vogelius
velocity-pressure elements are used, i.e., Xh = X ∩ [Pk]

d and Qh = Q∩P ⋄
k−1. This

choice will provide for strongly divergence-free solutions of the coupled scheme, and
the Step 2 solution in the penalty-projection scheme. For this element choice to be
LBB stable, macro-element mesh structures are required for low order elements; for
example, if k = d, then a barycenter refinement of a quasi-uniform triangulation is
a sufficient criteria on the mesh.

To prove this convergence result, we need to assume additional regularity of the
discrete coupled method solution:

(21) max
1≤n≤L

[∥ûnh∥L∞ + ∥∇ûnh∥L3 + ∥µ̂n
h∥H1 ] + ∆t

L∑
n=1

∥p̂nh∥2 ≤ C,

with C independent of h and ∆t (and of course γ since no grad-div stabilization is
used in the coupled scheme). As discussed in [23], due to the convergence result for
the coupled scheme, such an assumption is essentially an assumption on the regu-
larity of the true CHNS system solution, and that h and ∆t are chosen sufficiently
small.

Theorem 3.1. For a given set of problem data, mesh, time step ∆t > 0, and grad-

div stabilization parameter γ ≥ 0, let (ϕ̂n+1
h , µ̂n+1

h , ûn+1
h , p̂n+1

h ) ∈ (Sh, Sh, Xh, Qh) be

the solution to Algorithm 3.1 (the coupled scheme), and (ϕn+1
h , µn+1

h , un+1
h , pn+1

h ) ∈
(Sh, Sh, Xh, Qh) be the solution of Algorithm 3.2 (the penalty-projection scheme).
Further assuming that (Xh, Qh) is a Scott-Vogelius element pair, so that ∇ ·Xh ⊂
Qh, and that the coupled method solution is sufficiently regular so that (21) holds,
the difference in the solutions satisfies

(22)

∥∇(ϕLh − ϕ̂Lh )∥+ ∥uLh − ûLh∥+

(
∆t

L∑
n=1

(∥∇(unh − ûnh)∥2 + ∥∇(µn
h − µ̂n

h)∥2)

)1/2

≤ C(1 + ∆t−1/2)γ−1,
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with C independent of h, ∆t, and γ. Thus on a fixed discretization, we expect
first order convergence of the penalty-projection scheme to the coupled scheme, as
γ → ∞.

Remark 3.1. The negative scaling with respect to ∆t does not appear to be remov-
able when obtaining the scaling with γ−1, although we do obtain a bound in (37)
in the proof which is independent of ∆t, but with scaling γ−1/2. We note that this
negative scaling with respect to ∆t was also present in a related result for Navier-
Stokes schemes in [23], and a mild negative scaling with ∆t was observed in their
computations. Hence we do not expect to be able to eliminate such a scaling in this
case. However, if the Navier-Stokes nonlinear term is removed, then the analysis
is likely improvable so that the negative scaling in ∆t can be removed entirely.

Remark 3.2. The condition number of the penalty-projection scheme will be large
if γ is large, and will tend to ∞ as γ does, since the matrix produced by the grad-div
term is singular. In our tests, γ = 104 essentially yields numerical convergence,
and so we did not take γ larger than this.

Proof of Theorem 3.1. Throughout the proof, C will represent a generic positive
constant independent of h,∆t, γ, and ν (but not ε). Denote

en = unh − ûnh ∈ Xh, not necessarily in Vh,

ēn = ūnh − ûnh ∈ Yh,

enϕ = ϕnh − ϕ̂nh ∈ Sh,

enµ = µn
h − µ̂n

h ∈ Sh.

Begin by subtracting the coupled scheme from the penalty-projection scheme. From
our assumption of Scott-Vogelius elements, ∇ · Xh ⊂ ∇ · Yh ⊂ Qh, which implies
that ∥∇ · ûnh∥ = ∥∇ · ūnh∥ = ∥∇ · ēn∥ = 0. This provides the system of equations,
for all (χh, ψh, vh) ∈ (Sh, Sh, Xh),

1

∆t

(
en+1
ϕ − enϕ, χh

)
+B2(e

n
ϕ, û

n+1
h , χh) +B2(ϕ

n
h, e

n+1, χh) + (∇en+1
µ ,∇χh) = 0,(23)

(en+1
µ , ψh)− ((ϕ̂n+1

h )3 − (ϕn+1
h )3, ψh) + (enϕ, ψh)

−ϵ2(∇en+1
ϕ ,∇ψh) = 0,(24)

1

∆t
(en+1 − ēn, vh) + γ(∇ · en+1,∇ · vh) + ν(∇en+1,∇vh)

−(p̂n+1
h ,∇ · vh) +B0(e

n, ûn+1
h , vh) +B0(u

n
h, e

n+1, vh)

−ϵ
−1

We
B2(e

n
ϕ, vh, µ̂

n+1
h )− ϵ−1

We
B2(ϕ

n
h, vh, e

n+1
µ ) = 0.(25)

Step 1: ∆t
L∑

n=1
∥∇ · en∥2 ≤ Cγ−2, where C is independent of γ, h and ∆t.
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Let χh = ∆ten+1
µ , ψh = en+1

ϕ − enϕ, vh = en+1 in (23)-(25). This gives(
en+1
ϕ − enϕ, e

n+1
µ

)
+∆tB2(e

n
ϕ, û

n+1
h , en+1

µ ) + ∆tB2(ϕ
n
h, e

n+1, en+1
µ )

+∆t∥∇en+1
µ ∥2 = 0,

−(ên+1
µ , en+1

ϕ − enϕ) + ((ϕ̂n+1
h )3 − (ϕn+1

h )3, en+1
ϕ − enϕ)−

(
en+1
ϕ − enϕ, e

n
ϕ

)
+
ϵ2

2

(
∥∇en+1

ϕ ∥2 − ∥∇enϕ∥2 + ∥∇(en+1
ϕ − enϕ)∥2

)
= 0,

1

2∆t

(
∥en+1∥2 − ∥ēn∥2 + ∥en+1 − ēn∥2

)
+ γ∥∇ · en+1∥2

+ν∥∇en+1∥2 − (p̂n+1
h ,∇ · en+1) +B0(e

n, ûn+1
h , en+1)

−ϵ
−1

We
B2(e

n
ϕ, e

n+1, µ̂n+1
h )− ϵ−1

We
B2(ϕ

n
h, e

n+1, en+1
µ ) = 0.

Multiplying the last equation by ϵWe∆t, and then adding the three equations gives

(26)
ϵ2

2

(
∥∇en+1

ϕ ∥2 − ∥∇enϕ∥2 + ∥∇(en+1
ϕ − enϕ)∥2

)
+
ϵWe

2

(
∥en+1∥2 − ∥ēn∥2 + ∥en+1 − ēn∥2

)
+ γϵWe∆t∥∇ · en+1∥2

+ νϵWe∆t∥∇en+1∥2 +∆t∥∇ên+1
µ ∥2 = −ϵWe∆tB0(e

n, ûn+1
h , en+1)

+ ∆tB2(e
n
ϕ, e

n+1, µ̂n+1
h ) +

(
en+1
ϕ − enϕ, e

n
ϕ

)
−∆tB2(e

n
ϕ, û

n+1
h , en+1

µ )

+ ∆t(p̂n+1
h ,∇ · en+1)− ((ϕ̂n+1

h )3 − (ϕn+1
h )3, en+1

ϕ − enϕ).

We now bound the terms on the right hand side. For the first term, Hölder, Sobolev,
and Young inequalities, along with assumptions on the true velocity solution of the
coupled system, produces

ϵWe∆t|B0(e
n, ûn+1

h , en+1)| ≤ CϵWe∆t∥en∥
(
∥ûn+1

h ∥L∞ + ∥∇ûn+1
h ∥L3

)
∥∇en+1∥

≤ CϵWe∆tν−1∥en∥2 + νϵWe∆t

8
∥∇en+1∥2.

Similarly for the second right hand side term, (since en+1 ̸∈ Vh)

∆tB2|(enϕ, en+1, µ̂n+1
h )| ≤ C∆t∥∇enϕ∥ · ∥∇en+1∥ · ∥µ̂n+1

h ∥H1

≤ C
1

ϵWe
ν−1∆t∥∇enϕ∥2 +

νϵWe∆t

8
∥∇en+1∥2.

The third term on the right hand side requires some extra work. We first use the
dual norm on the time difference, which gives(

en+1
ϕ − enϕ, e

n
ϕ

)
≤ C∆t

∥∥∥∥∥e
n+1
ϕ − enϕ

∆t

∥∥∥∥∥
−1,h

∥∇enϕ∥.(27)

Next we need to bound the norm on the time difference in (27). Dividing (23) by
∥∇χh∥ and taking the supremum over all nonzero χh ∈ Sh yields∥∥∥∥∥e

n+1
ϕ − enϕ

∆t

∥∥∥∥∥
−1,h

≤C∥∇ûn+1
h ∥ ·

∥∥∇enϕ∥∥ + C∥∇en+1∥ · ∥∇ϕnh∥ + ∥∇en+1
µ ∥.(28)
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Combining this with (27) provides the estimate(
en+1
ϕ − enϕ, e

n
ϕ

)
≤ C∆t

(∥∥∇enϕ∥∥ + ∥∇en+1∥+ ∥∇en+1
µ ∥

)
∥∇enϕ∥

≤ νϵWe∆t

8
∥∇en+1∥2 + ∆t

4
∥∇en+1

µ ∥2

+C∆t

(
1

νϵWe
+ 1

)
∥∇enϕ∥2.(29)

For the fourth term in (26), we again use Hölder and Sobolev inequalities to find

∆tB2(e
n
ϕ, û

n+1
h , en+1

µ ) ≤ C∆t∥∇enϕ∥ · ∥∇ûn+1
h ∥ · ∥∇en+1

µ ∥

≤ ∆t

4
∥∇en+1

µ ∥2 + C∆t∥∇enϕ∥2.

For the pressure term, Cauchy-Schwarz and Young’s inequalities provide the bound

∆t|(p̂n+1
h ,∇ · en+1)| ≤ γϵWe∆t

2
∥∇ · en+1∥2 + ∆t

2γϵWe
∥p̂n+1

h ∥2.

Finally, for the last term in (26), we proceed by first using the operator norm of
the time difference,
(30)∣∣((ϕ̂n+1

h )3−(ϕn+1
h )3, en+1

ϕ −enϕ)
∣∣ ≤ C∆t

∥∥∥∇((ϕ̂n+1
h )3 − (ϕn+1

h )3
)∥∥∥·∥∥∥∥∥e

n+1
ϕ − enϕ

∆t

∥∥∥∥∥
−1,h

,

and then using the a priori stabilities of ϕ̂h and ϕh from Lemmas 3.1 and 3.2∥∥∥∇((ϕ̂n+1
h )3 − (ϕn+1

h )3
)∥∥∥(31)

≤ 3
(∥∥ϕn+1

h

∥∥2
L∞ + C

∥∥∥∇ϕ̂n+1
h

∥∥∥
L6

∥∥∥ϕ̂n+1
h + ϕn+1

h

∥∥∥
H1

)∥∥∥∇en+1
ϕ

∥∥∥
≤ C

∥∥∥∇en+1
ϕ

∥∥∥
.

(32)

Combining this with (28), we obtain∣∣((ϕ̂n+1
h )3 − (ϕn+1

h )3, en+1
ϕ − enϕ)

∣∣
≤ C∆t∥∇en+1

ϕ ∥
(∥∥∇enϕ∥∥ + ∥∇en+1∥+ ∥∇en+1

µ ∥
)

≤ νϵWe∆t

8
∥∇en+1∥2 + ∆t

4
∥∇en+1

µ ∥2

+C∆t

(
1

νϵWe
+ 1

)
∥∇en+1

ϕ ∥2 + C∆t∥∇enϕ∥2.

Combining the bounds above and using them in (26) yields

ϵ2

2

(
∥∇en+1

ϕ ∥2 − ∥∇enϕ∥2 + ∥∇(en+1
ϕ − enϕ)∥2

)
+(33)

ϵWe

2

(
∥en+1∥2 − ∥ēn∥2 + ∥en+1 − ēn∥2

)
+
γϵWe

2
∆t∥∇ · en+1∥2 + νϵWe

2
∆t∥∇en+1∥2 + ∆t

4
∥∇en+1

µ ∥2

=CϵWe∆tν−1∥en∥2 + C∆t

(
1

νϵWe
+ 1

)
∥∇enϕ∥2

+ C∆t

(
1

νϵWe
+ 1

)
∥∇en+1

ϕ ∥2 + ∆t

2γϵWe
∥p̂n+1

h ∥2.
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Dropping the first order difference terms on the left hand side, noting that ∥ēn∥ ≤
∥en∥ and the n = 0 differences are 0, and summing over time steps provides the
estimate

(34) ϵ2∥∇eLϕ∥2 + ϵWe∥eL∥2 + γϵWe ∆t

L∑
n=1

∥∇ · en∥2

+ νϵWe ∆t

L∑
n=1

∥∇en∥2 +∆t

L∑
n=1

∥∇enµ∥2

≤ CϵWe∆tν−1∥en∥2 + C∆t

(
1

νϵWe
+ 1

) L∑
n=1

∥∇enϕ∥2 +
∆t

2γϵWe

L∑
n=1

∥p̂nh∥2.

Thanks to the Gronwall inequality, we have for ∆t sufficiently small that

(35) ϵ2∥∇eLϕ∥2 + ϵWe∥eL∥2 + γϵWe ∆t
L∑

n=1

∥∇ · en∥2

+ νϵWe ∆t
L∑

n=1

∥∇en∥2 +∆t
L∑

n=1

∥∇enµ∥2

≤ Cγ−1∆t
L∑

n=1

∥p̂nh∥2,

where C is a constant depending only on problem data, and it independent of γ,
h, and ∆t. To finish the proof of claim 1, we drop all terms on the left and side
except the third one, and use that the pressure term is assumed to be bounded,
which yields

∆t
L∑

n=1

∥∇ · en∥2 ≤ Cγ−2.(36)

Note that we also have the bound

(37) ∥∇eLϕ∥2 + ∥eL∥2 +∆t
L∑

n=1

∥∇en∥2 +∆t
L∑

n=1

∥∇enµ∥2 ≤ Cγ−1,

which is less than the scaling predicted the theorem, but with C independent of h,
∆t, and γ.

Step 2: ∆t
L∑

n=1
∥∇en∥2 ≤ O(γ−2) and ∆t

L∑
n=1

∥∇enµ∥2 ≤ O(γ−2).

We use the orthogonal decomposition, Xh = Vh ⊕Rh, to write en := (er)
n + (e0)

n,
where (er)

n ∈ Rh and (e0)
n ∈ Vh. From Step 1 and using norm equivalence in Rh,

we have that

∆t

L∑
n=1

∥∇(er)
n∥2 ≤C2

R∆t

L∑
n=1

∥∇ · (er)n∥2

=C2
R∆t

L∑
n=1

∥∇ · en∥2 ≤ CC2
Rγ

−2.(38)
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Since

∆t
L∑

n=1

∥∇en∥2 = ∆t
L∑

n=1

∥∇(e0)
n∥2 +∆t

L∑
n=1

∥∇(er)
n∥2,

because to the orthogonal decomposition, we have left to bound only ∆t
L∑

n=1
∥∇(e0)

n∥2.

We begin this proof similar to Step 1, but we choose a different test function in
the momentum equation: vh = (e0)

n+1. This annihilates the pressure and grad-div
terms in the momentum equation, and reduces the viscous term due to the orthog-
onality. Then χh = ∆ten+1

µ , ψh = en+1
ϕ − enϕ, vh = (e0)

n+1 in (23)-(25) gives the 3
equations(
en+1
ϕ − enϕ, e

n+1
µ

)
+∆tB2(e

n
ϕ, û

n+1
h , en+1

µ ) + ∆tB2(ϕ
n
h, e

n+1, en+1
µ ) + ∆t∥∇en+1

µ ∥2 = 0,

−(ên+1
µ , en+1

ϕ − enϕ) + ((ϕ̂n+1
h )3 − (ϕn+1

h )3, en+1
ϕ − enϕ)

−
(
en+1
ϕ − enϕ, e

n
ϕ

)
+
ϵ2

2

(
∥∇en+1

ϕ ∥2 − ∥∇enϕ∥2 + ∥∇(en+1
ϕ − enϕ)∥2

)
= 0,

1

∆t

(
en+1 − en, (e0)

n+1
)
+ ν∥∇(e0)

n+1∥2

+B0(u
n
h, e

n+1, (e0)
n+1) +B0(e

n, ûn+1
h , (e0)

n+1)

−ϵ
−1

We
B2(e

n
ϕ, (e0)

n+1, µ̂n+1
h )− ϵ−1

We
B2(ϕ

n
h, (e0)

n+1, en+1
µ ) = 0.

From the skew-symmetry property of B0, notice that

B0(u
n
h, e

n+1, (e0)
n+1) = B0(u

n
h, (er)

n+1, (e0)
n+1).

For the time derivative term in the momentum equation, we first note that

(en+1 − en, (e0)
n+1) = (en+1 − en, (e0)

n+1),

which follows from the projection step since (e0)
n+1 ∈ Vh. Now we can write

1

∆t

(
en+1 − en, (e0)

n+1
)

=
1

∆t

(
en+1 − en, en+1

)
− 1

∆t

(
en+1 − en, (er)

n+1
)

=
1

2∆t

(
∥en+1∥2 − ∥en∥2 + ∥en+1 − en∥2

)
− 1

∆t

(
en+1 − en, (er)

n+1
)
.

Multiplying the momentum equation by ϵWe∆t, using the above identities , and
then adding the three equations gives

(39)
ϵ2

2

(
∥∇en+1

ϕ ∥2 − ∥∇enϕ∥2 + ∥∇(en+1
ϕ − enϕ)∥2

)
+
ϵWe

2

(
∥en+1∥2 − ∥en∥2 + ∥en+1 − en∥2

)
+ νϵWe∆t∥∇(e0)

n+1∥2 +∆t∥∇ên+1
µ ∥2

= −ϵWe∆tB0(e
n, ûn+1

h , (e0)
n+1)− ϵWe∆tB0(u

n
h, (er)

n+1, (e0)
n+1)

+ ∆tB2(e
n
ϕ, (e0)

n+1, µ̂n+1
h )−∆tB2(ϕ

n
h, (er)

n+1, en+1
µ ) +

(
en+1
ϕ − enϕ, e

n
ϕ

)
−∆tB2(e

n
ϕ, û

n+1
h , en+1

µ )−((ϕ̂n+1
h )3−(ϕn+1

h )3, en+1
ϕ −enϕ)+ϵWe

(
en+1 − en, (er)

n+1
)
.

We now bound the terms on the right hand side. Several of these terms are bounded
identical to those of Step 1, but using (e0)

n+1 instead of en+1, and we briefly state
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these bounds below. Specifically, for the first, third, fifth, sixth, and seventh terms
on the right hand side of (39), we use the bounds

ϵWe∆t|B0(e
n, ûn+1

h , (e0)
n+1)| ≤ CϵWe∆tν−1∥en∥2 + νϵWe∆t

8
∥∇(e0)

n+1∥2,

∆tB2|(enϕ, (e0)n+1, µ̂n+1
h )| ≤ C

1

ϵWe
ν−1∆t∥∇enϕ∥2 +

νϵWe∆t

8
∥∇(e0)

n+1∥2,(
en+1
ϕ − enϕ, e

n
ϕ

)
≤ νϵWe∆t

8
∥∇en+1∥2 + ∆t

4
∥∇en+1

µ ∥2

+C∆t

(
1

νϵWe
+ 1

)
∥∇enϕ∥2,

∆tB2(e
n
ϕ, û

n+1
h , en+1

µ ) ≤ ∆t

4
∥∇en+1

µ ∥2 + C∆t∥∇enϕ∥2,

|((ϕ̂n+1
h )3 − (ϕn+1

h )3, en+1
ϕ − enϕ)|

≤ νϵWe∆t

8
∥∇en+1∥2 + ∆t

4
∥∇en+1

µ ∥2

+C∆t

(
1

νϵWe
+ 1

)
∥∇en+1

ϕ ∥2 + C∆t∥∇enϕ∥2.

For the second right hand side term, we first add and subtract ûnh in the first
argument, then use standard bounds on the B0 terms to obtain

ϵWe∆t|B0(u
n
h, (er)

n+1, (e0)
n+1)|

≤ ϵWe∆t
(
|B0(û

n
h, (er)

n+1, (e0)
n+1)|+ |B0(e

n, (er)
n+1, (e0)

n+1)|
)

≤ CϵWe∆t
(
∥∇ûnh∥∥∇(er)

n+1∥∥∇(e0)
n+1∥

+∥en∥1/2∥∇en∥1/2∥∇(er)
n+1∥∥∇(e0)

n+1∥
)

≤ CϵWe∆t
(
C∥∇(er)

n+1∥∥∇(e0)
n+1∥+ ∥∇en∥1/2∥∇(er)

n+1∥∥∇(e0)
n+1∥

)
,

where in the last step we used Lemmas 3.1 and 3.2 and the stability assumption on
ûnh. Now using Young’s inequality provides

ϵWe∆t
∣∣B0(u

n
h, (er)

n+1, (e0)
n+1)

∣∣
≤ νϵWe∆t

8
∥∇(e0)

n+1∥2 + Cν−1ϵWe∆t∥∇(er)
n+1∥2 (1 + ∥∇en∥)

≤ νϵWe∆t

8
∥∇(e0)

n+1∥2 + Cν−1ϵWe∆t∥∇(er)
n+1∥2

(
1 + C∆t−1/2γ−1/2

)
,

with the last step thanks to (37). For the fourth right hand side term of (39), we
use the bounds for B2 from Proposition 2.2, followed by the stability bounds and
Young’s inequality to obtain

∆t
∣∣B2(ϕ

n
h, (er)

n+1, en+1
µ )

∣∣ ≤ C∆t(∥∇ϕnh∥+ |ϕ̄|)∥∇(er)
n+1∥∥∇en+1

µ ∥

≤ ∆t

8
∥∇en+1

µ ∥2 + C∆t∥∇(er)
n+1∥2.

It remains to bound the last right hand side term in (39). Here we utilize Cauchy-
Schwarz, Young, and the Poincare inequalities to find that

ϵWe
∣∣(en+1 − en, (er)

n+1
)∣∣ ≤ ϵWe

2
∥en+1 − en∥2 + C2ϵWe

2
∥∇(er)

n+1∥2.
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Combining the above estimates and inserting them in (39) yields

ϵ2

2

(
∥∇en+1

ϕ ∥2 − ∥∇enϕ∥2 + ∥∇(en+1
ϕ − enϕ)∥2

)
+
ϵWe

2

(
∥en+1∥2 − ∥en∥2

)
+
νϵWe∆t

8
∥∇(e0)

n+1∥2 + ∆t

8
∥∇en+1

µ ∥2

≤CϵWe∆tν−1∥en∥2 + Cν−1ϵWe∆t∥∇(er)
n+1∥2

(
1 + C∆t−1/2γ−1/2

)
+ C

1

ϵWe
ν−1∆t∥∇enϕ∥2 + C∆t∥∇(er)

n+1∥2

+
νϵWe∆t

8
∥∇(er)

n+1∥2 + C∆t

(
1

νϵWe
+ 1

)
∥∇en+1

ϕ ∥2

+ C∆t∥∇enϕ∥2 +
C2ϵWe

2
∥∇(er)

n+1∥2.

(40)

Reducing yields

(41) ϵ2
(
∥∇en+1

ϕ ∥2 − ∥∇enϕ∥2
)
+ ϵWe

(
∥en+1∥2 − ∥en∥2

)
+ νϵWe∆t∥∇(e0)

n+1∥2 +∆t∥∇en+1
µ ∥2

≤ CϵWe∆tν−1∥en∥2 + C∆t∥∇enϕ∥2

+ C
1

ϵWe
ν−1∆t∥∇enϕ∥2 + C∆t

(
1

νϵWe
+ 1

)
∥∇en+1

ϕ ∥2

+ C∆t∥∇(er)
n+1∥2

(
1 + ν−1ϵWe(1 + C∆t−1/2γ−1/2) + νϵWe

)
+ CC2ϵWe∥∇(er)

n+1∥2,

and after summing over time steps, and using that e0 = 0, e0ϕ = 0 and e0µ = 0, and

γ ≥ O(1), we obtain the bound

(42) ϵ2∥∇eLϕ∥2 + ϵWe∥eL∥2 + νϵWe∆t
L∑

n=1

∥∇(e0)
n∥2 +∆t

L∑
n=1

∥∇enµ∥2

≤ CϵWeν−1∆t
L−1∑
n=1

∥en∥2 + C

(
1 +

1

ϵWeν

)
∆t

L∑
n=1

∥∇enϕ∥2

+ C

(
1 +

ϵWe

ν
+
ϵWeγ−1/2

ν∆t1/2
+
ϵ1/2We1/2

ν
+ νϵWe

)
∆t

L∑
n=1

∥∇(er)
n∥2

+
CC2ϵWe

∆t
∆t

L∑
n=1

∥∇(er)
n∥2.

Absorbing the constants into the C’s, but with C remaining independent of h, ∆t,
and γ, and using the bound on (er)

n from above, we have that

(43) ∥∇eLϕ∥2 + ∥eL∥2 +∆t

L∑
n=1

∥∇(e0)
n∥2 +∆t

L∑
n=1

∥∇enµ∥2 ≤

C∆t

L−1∑
n=1

∥en∥2 + C∆t

L∑
n=1

∥∇enϕ∥2 + Cγ−2
(
1 + ∆t−1/2 +∆t−1

)
.
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Table 1. Differences between the divergence-free coupled
solution (denoted with hats) and penalty-projection solutions
with varying γ. We use the notation ∥ · ∥0,k to denote the
L2(0, T ;Hk(Ω)) norm.

γ ∥∇ · uγ∥0,0 rate S∗ rate ∥µγ − µ̂∥0,1 rate ∥uL
γ − ûL∥ rate S∗∗ rate

0 9.16e-2 – 2.60e-2 – 5.458e-4 – 1.032e-2 – 8.697e-3 –
1 5.84e-2 – 1.51e-2 – 4.102e-4 – 7.838e-3 – 7.456e-3 –
10 1.92e-2 0.48 5.37e-3 0.45 1.526e-4 0.43 2.875e-3 0.44 3.132e-3 0.38

102 2.64e-3 0.86 7.72e-4 0.84 2.174e-5 0.85 4.045e-4 0.85 4.559e-4 0.84

103 2.75e-4 0.98 8.09e-5 0.98 2.279e-6 0.98 4.221e-5 0.98 4.778e-5 0.98

104 2.76e-5 1.00 8.123e-6 1.00 2.366e-7 0.98 4.239e-6 1.00 4.914e-6 0.99

S∗ stands for ∥uγ − û∥0,1 and S∗∗ stands for ∥∇(ϕL
γ − ϕ̂L)∥

Now using Gronwall’s inequality, assuming ∆t is sufficiently small, yields

(44) ∥∇eLϕ∥2 + ∥eL∥2 +∆t

L∑
n=1

∥∇(e0)
n∥2 +∆t

L∑
n=1

∥∇enµ∥2 ≤ C(1 + ∆t−1)γ−2.

Combining this with the estimate for (er) completes the proof.
�

3.3. Numerical convergence of the penalty-projection scheme to the cou-
pled scheme as γ → ∞. We now test the predicted convergence rates from The-
orem 3.1 for the convergence of the penalty-projection scheme solutions to the
coupled scheme solution as γ → ∞.

We choose Ω = (0, 1)2 and discretize it uniformly with a h = 1/16 uniform
triangulation, and then apply a barycenter refinement. The element choice is Sh =
P2, and Scott-Vogelius velocity-pressure elements (Xh, Qh) = (P2, P

⋄
1 ), and we

note this velocity-pressure pair is stable on this mesh [2]. Initial conditions and
parameters are chosen as follows, and we note these parameters come from a test
problem in [15]:

∆t = 0.005, T = 0.05, ν = 0.01, ϵ = 0.004, We = 25,M = 1,

u0 = ⟨− sin(πx)2 sin(2πy), sin(πy)2 sin(2πx)⟩,
ϕ0 = 0.24 cos(2πx) cos(2πy) + 0.4 cos(πx) cos(3πy).

We note that µ0 is never needed, as we solve directly for µn+1
h in the scheme.

We impose homogeneous Dirichlet conditions for the velocity u, and homogeneous
Neumann conditions for ϕ and µ.

We compute solutions using the coupled scheme, Algorithm 3.1, and the penalty-
projection scheme, Algorithm 3.2 using varying γ. The differences between the
solutions are shown for each choice of γ in Table 1. First order convergence is
observed in u, µ, and ϕ in the appropriate norms, as γ → ∞, which verifies the
theorem. Observe that with γ = 104, the difference between the coupled scheme
solution and penalty-projection solution is O(10−6) in each of the variables (in these
natural norms).

4. Second order schemes for Cahn-Hilliard-Navier-Stokes

In this section, we extend our study to numerical scheme that are second order in
time. A coupled scheme second order (Crank-Nicolson) analogue to the first order
coupled scheme of the previous section is proposed and studied in [7]. This scheme
is proven in [7] to be unconditionally solvable, unconditionally stable, and optimally
convergent in space and time. A projection method associated with this coupled
scheme is studied in [15], which is more efficient that the coupled scheme, but less
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accurate. In this section, we study a relationship between the coupled scheme in
[7], and a variant of the projection method of [15] which eliminates the pressure
term from the momentum equation and uses grad-div stabilization. After stating
the schemes and associated results, we prove that as the grad-div stabilization
parameter γ → ∞, solutions for the (penalty-)projection scheme converge to the
coupled method solution. In effect, this means that with large γ, the (penalty-
)projection scheme will produce the same accuracy as the coupled scheme.

4.1. Second order coupled and decoupled schemes for the CHNS system.
The second order, Crank-Nicolson type, coupled scheme below is very similar to
one studied in [7].

Algorithm 4.1. (Crank-Nicolson coupled scheme for CHNS system) Given param-

eters ϵ,We, ν, and ∆t, find (ϕ̂n+1
h , µ̂n+1

h , ûn+1
h , p̂n+1

h ) ∈ (Sh, Sh, Xh, Qh) satisfying
for all (χh, ψh, vh, qh) ∈ (Sh, Sh, Xh, Qh),

1

∆t

(
ϕ̂n+1
h − ϕ̂nh, χh

)
+B2(

˜̂
ϕ
n+1/2
h , û

n+1/2
h , χh) + (∇µ̂n+1/2

h ,∇χh) = 0,

(µ̂
n+1/2
h , ψh)−

1

2

((
(ϕ̂nh)

2 + (ϕ̂n+1
h )2

)
ϕ̂
n+1/2
h , ψh

)
+ (

˜̂
ϕ
n+1/2
h , ψh)

−ϵ2(∇ϕ̂n+1/2
h ,∇ψh) = 0,

1

∆t
(ûn+1

h − ûnh, vh) +B0(˜̂u
n+1/2
h , û

n+1/2
h , vh) + ν(∇ûn+1/2

h ,∇vh)

−(p̂
n+1/2
h ,∇ · vh)−

ϵ−1

We
B2(

˜̂
ϕ
n+1/2
h , vh, µ̂

n+1/2
h ) = 0,

(∇ · ûn+1
h , qh) = 0,

where

vn+1/2 :=
vn+1 + vn

2
for v = ûh, ϕ̂h,

and

ṽn+1/2 :=
3vn − vn−1

2
for v = ûh, ϕ̂h.

Remark 4.1. Observe that µ̂
n+1/2
h and p̂

n+1/2
h are pure variables, whereas ϕ̂

n+1/2
h ,

˜̂
ϕ
n+1/2
h , û

n+1/2
h and ˜̂u

n+1/2
h are composite.

We also study a penalty-projection scheme associated with the coupled scheme
above. This scheme is similar to that studied in [15], but here we add a grad-
div stabilization term to the momentum equation, and remove the pressure from
the momentum equation. If no grad-div stabilization is used, then this scheme
would be much less accurate that the second order coupled scheme, since pressure
is completely removed from the momentum equation. However, we will prove that
for large grad-div stabilization parameter γ, solutions found with this scheme will
have the same accuracy as the coupled scheme.

Algorithm 4.2. (2nd-order penalty-projection scheme of CHNS system)
Step 1: Find

(ϕn+1
h , µn+1

h , un+1
h ) ∈ (Sh, Sh, Xh)
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satisfying ∀(χh, ψh, vh) ∈ (Sh, Sh, Xh)

1

∆t

(
ϕn+1
h − ϕnh, χh

)
+B2(ϕ̃

n+1/2
h , u

n+1/2
h , χh) + (∇µn+1/2

h ,∇χh) = 0,

(µ
n+1/2
h , ψh)−

1

2
(
(
(ϕnh)

2 + (ϕn+1
h )2

)
ϕ
n+1/2
h , ψh) + (ϕ̃

n+1/2
h , ψh)

−ϵ2(∇ϕn+1/2
h ,∇ψh) = 0,

1

∆t
(un+1

h − ūnh, vh) + γ(∇ · un+1/2
h ,∇ · vh) + ν(∇un+1/2

h ,∇vh)

+B0(ũ
n+1/2
h , u

n+1/2
h , vh)−

ϵ−1

We
B2(ϕ̃

n+1/2
h , vh, µ

n+1/2
h ) = 0,

Step 2: Find

(ūn+1
h , pn+1

h ) ∈ (Yh, Qh)

such that for every (vh, qh) ∈ (Yh, Qh)

1

∆t
(ūn+1

h − un+1
h , vh)− (pn+1

h ,∇ · vh) = 0,

(∇ · ūn+1
h , qh) = 0.

where

ϕ
n+1/2
h =

1

2
(ϕn+1

h + ϕnh), ϕ̃
n+1/2
h =

3ϕnh − ϕn−1
h

2
,

u
n+1/2
h =

1

2
(un+1

h + ūnh), ũ
n+1/2
h =

3ūnh − un−1
h

2
,

and

Yh ⊂ Y :=
{
v ∈ L2(Ω)

∣∣ ∇ · v ∈ L2(Ω), v · n |∂Ω= 0
}
.

Both schemes above are uniquely solvable and unconditionally energy stable.

Lemma 4.1. Suppose (Xh, Qh) ⊂ (X,Q) satisfies the inf-sup condition, ∇ ·Xh ⊂
∇ · Yh ⊂ Qh, and u

0
h ∈ Vh and ϕ0h ∈ Sh. Then Algorithm 4.1 is uniquely solvable,

and its solution satisfies
(45)

∥ûLh∥2+∥∇ϕ̂Lh∥2+∆t
L−1∑
n=0

(
∥∇ûn+1/2

h ∥2 + γ∥∇ · ûn+1/2
h ∥2 + ∥µ̂n+1/2

h ∥2H1

)
≤ C(data),

where C depends on problem data, but is independent of h, ∆t, and γ. Likewise,
Algorithm 4.2 is uniquely solvable, and its solution satisfies
(46)

∥uLh∥2+∥∇ϕLh∥2+∆t

L−1∑
n=0

(
∥∇un+1/2

h ∥2 + γ∥∇ · un+1/2
h ∥2 + ∥µn+1/2

h ∥2H1

)
≤ C(data),

where C depends on problem data, but is independent of h, ∆t, and γ.

4.2. Convergence of the penalty-projection method to the second order
coupled scheme. Similar to the first order coupled scheme, we need to assume
some additional stability, namely, that there exists a constant C independent of h
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and ∆t, satisfying

(47) max
1≤n≤L

[
∥ûnh∥L∞ + ∥ϕ̂nh∥L∞ + ∥ϕnh∥L∞ + ∥∇ûnh∥L3 + ∥µ̂n−1/2

h ∥H1

]
+∆t

L−1∑
n=0

∥p̂n+1/2
h ∥2 ≤ C.

Remark 4.2. It has been shown in the recent paper [7] that, using a slightly
modified Crank-Nicholson time discretization for the Cahn-Hilliard equation in the

coupled scheme (Algorithm 4.1), one can obtain the unconditional stability ϕ̂h ∈
ℓ∞(0, T ;L∞(Ω)), as for the first-order-in-time coupled scheme. Using this same
treatment in the decoupled scheme, one would expect to obtain ϕh ∈ ℓ∞(0, T ;L∞(Ω)),
unconditionally, as well.

We are now able to state our result for the second order schemes. The proof is
very similar to that of the first order schemes, and so we omit it here for brevity.

Theorem 4.1. For a given set of problem data, mesh, time step ∆t > 0, and grad-

div stabilization parameter γ ≥ 0, let (ϕ̂n+1
h , µ̂n+1

h , ûn+1
h , p̂n+1

h ) ∈ (Sh, Sh, Xh, Qh)
be the solution to Algorithm 3.2 (the 2nd-order coupled scheme), and
(ϕn+1

h , µn+1
h , un+1

h , pn+1
h ) ∈ (Sh, Sh, Xh, Qh) be the solution of Algorithm 4.2 (the

2nd-order penalty-projection scheme). Further assuming that ∇ · Xh ⊂ Qh, the
difference in the solutions satisfies

(48) ∥∇(ϕLh − ϕ̂Lh )∥+ ∥uLh − ûLh∥

+

(
∆t

L−1∑
n=0

(∥∇(u
n+1/2
h − û

n+1/2
h )∥2 + ∥∇(µ

n+1/2
h − µ̂

n+1/2
h )∥2)

)1/2

≤ Cγ−1,

with C dependent of ∆t, but of independent of h, and γ. Thus on a fixed dis-
cretization, we expect first order convergence of the penalty-projection scheme to
the coupled scheme, as γ → ∞.

4.3. Numerical Experiments for second order schemes. We now give results
of three numerical experiments for the second order schemes. Our first experiment
illustrates the convergence theorem, and the second experiment tests both the cou-
pled and the penalty-projection schemes on a shape relaxation problem. Our third
test is for shape deformation in two phase flow in a lid-driven cavity. In all our
tests, we use a Newton iteration to converge the nonlinear problems at each time
step.

4.3.1. Numerical Experiment 1: Convergence rate verification. We now
test the predicted convergence rates from Theorem 4.1 for the convergence of the
penalty-projection scheme solutions to the second order coupled scheme solution as
γ → ∞. The setup and discretization parameters for this problem are identical to
that of the experiment above that verifies Theorem 3.1.

We compute solutions using the second order coupled scheme (Algorithm 4.1),
and the penalty-projection scheme (Algorithm 4.2) using varying γ. The differ-
ences between the solutions are shown for each choice of γ in Table 2. First order
convergence with respect to γ is observed in u, µ, and ϕ in the appropriate norms,
as γ → ∞, which verifies the theorem.
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Table 2. Differences between the divergence-free coupled so-
lution (denoted with hats) and penalty-projection solutions with
varying γ. We use the notation ∥·∥0,k to denote the l2(0, T ;Hk(Ω))
norm.

γ ∥∇ · u∥ rate ∥u− û∥0,1 rate ∥ϕ− ϕ̂∥0,1 rate ∥µ− µ̂∥0,1 rate

0 1.612e-01 – 1.968e-02 – 1.103e-04 – 1.504e-04 –

1 2.039e-02 – 7.552e-03 – 9.726e-05 – 6.004e-05 –

10 2.000e-03 1.008 4.194e-03 0.255 7.932e-05 0.089 3.906e-05 0.187

102 2.732e-03 -0.136 1.302e-03 0.508 3.098e-05 0.408 1.420e-05 0.440

103 5.307e-04 0.712 1.776e-04 0.865 4.153e-06 0.873 1.890e-06 0.876

104 5.702e-05 0.969 1.842e-05 0.984 4.291e-07 0.986 1.951e-07 0.986

4.3.2. Numerical experiment 2: Shape relaxation. Our next experiment
is for shape relaxation of an isolated shape in a two-phase flow system, and for
this test we take M(ϕ) := 0.1

√
(1− ϕ)2 + ϵ2. Even though our analysis assumed

M = 1, this example suggests that our conclusions should be extendible to a more
practical setting. We discretize the domain Ω = (0, 1)2 uniformly with a h = 1/16
uniform triangulation, refine around the small square and then apply a barycenter
refinement, so that (P2, P

⋄
1 ) Scott-Vogelius elements will be stable [2]. We take

ν = 0.01,∆t = 0.02,We = 200, ϵ = 0.005 and the initial condition to be u(0, x) = 0,
no-slip velocity boundary conditions, and zero Neumann boundary conditions for
ϕ and µ. The initial phase shape is a small square with side length 0.2 located in
the middle of a unit square, where we set ϕ0 = 1, and we set ϕ0 = −1 everywhere
else in Ω

We test four schemes for this problem: the coupled scheme using Taylor-Hood
elements, the coupled scheme using Scott-Vogelius elements, the penalty-projection
scheme (using (P2, P

⋄
1 ) elements for the projection step) with γ = 104, and the

projection scheme with (P2, P1) Taylor-Hood elements and γ = 0. The simulation
with the γ = 0 projection scheme failed to give results, as the Newton solver did
not converge on the first time step. The other three schemes did produce solutions,
and we show plots of their predicted phase fields in Figure 2. Plots are shown at
t=0.1, 0.4, and 1.0, and are in good agreement with the known physical solution
that the shape will become a circle, since that is the shape that minimizes the free
energy [15].

For the three schemes that produced solutions, we also plot their velocity energy
1
2∥uh∥

2 with time in Figure 1. Here we observe that the Taylor-Hood coupled
solution’s velocity energy is more than an order of magnitude larger than the other
scheme’s solution. This is due to the fact that Taylor-Hood velocity solution will
be affected by irrotational forcing of the momentum equation, while the other
solutions will not, as they are divergence-free or nearly divergence-free [20]. Once
the shape has relaxed to a circle, the forcing of the momentum equation outside of
the transition region will be purely potential, and thus will only affect the Taylor-
Hood velocity solution.

4.3.3. Numerical experiment 3: 2D Lid driven cavity. Our final experi-
ment is an extension of the previous numerical experiment, but here we prescribe
the velocity on the top boundary (the lid) to be ⟨1, 0⟩ instead of no slip, and use
ν = 0.01. The corresponds to the well known lid driven cavity problem, except here
we again use the same two-phase initial condition as the previous numerical experi-
ment. The rest of the parameters remain the same: ∆t = 0.02,We = 200, ϵ = 0.005,
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Figure 1. Plots of velocity energy 1
2∥uh∥

2 with time, for the
coupled scheme with Scott-Vogelius (SV) and Taylor-Hood (TH)
elements, and the penalty-projection method with γ = 10, 000.

t=0.1 t=0.4 t=1

Figure 2. Shown above are contour plots of the phase fields
for the shape relaxation problem, for the coupled scheme with
Scott-Vogelius elements (top), coupled scheme with Taylor-Hood
elements (middle), and projection scheme with γ = 10, 000 (bot-
tom).

M = 0.1
√
(1− ϕ)2 + ϵ2. The initial velocity is taken to be the Stokes solution for

single phase Stokes with ν = 0.01.
We ran simulations with the same 4 schemes as numerical experiment 2, using

the same barycenter-refined mesh. Once again, the projection scheme with γ = 0
failed, as the nonlinear solver did not converge on the first time step. The other
three methods converged, and plots of their velocity and phase fields are shows in
figure 3. We observe each of the methods give essentially the same prediction of the
relaxed shape in the center of the cavity, and that each method’s phase field exhibits
oscillations at the top boundary. The oscillations in the penalty-projection method
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are significantly smaller than that of the coupled methods. The velocity field of the
penalty-projection method qualitatively matches that of the single phase Navier-
Stokes lid-driven cavity [5], which is expected. However, both coupled schemes have
significant oscillations in the velocity at the lid. Thus, it is safe to conclude the
penalty-projection scheme does the best job on this problem.

Projection method with γ = 104

Coupled method with Scott-Vogelius elements

Coupled method with Taylor-Hood elements

Figure 3. Shown above are contour plots of the phase fields
for the shape relaxation problem, for the projection scheme with
γ = 10, 000 (top), coupled scheme with Scott-Vogelius elements
(middle), and coupled scheme with Taylor-Hood elements (bot-
tom).

5. Conclusions

We have established connections between coupled schemes for Cahn-Hilliard-
Navier-Stokes and their associated penalty-projection schemes, for both first and
second order time stepping schemes. In particular, we proved that in settings
where ∇ · Xh ⊂ Qh and (Xh, Qh) is LBB-stable – obtained e.g., using Scott-
Vogelius velocity-pressure elements on appropriate meshes – as the penalty pa-
rameter γ → ∞, the corresponding penalty-projection solutions converge to the



PENALTY-PROJECTION SCHEMES FOR THE CH-NS SYSTEM 675

coupled method solution. Thus, in practice, one can use the penalty-projection
method with large parameter γ and expect accuracy close to that of the (optimally
accurate) coupled scheme. Numerical experiments were given that illustrated the
convergence theorems. Additionally, two more numerical experiments were given
that tested the penalty-projection method, and showed its effectiveness on prob-
lems of physical interest. In fact, for the lid driven cavity shape deformation test
problem, the penalty-projection method out-performed the coupled scheme.

For future work, it remains an open problem to study the convergence of the
projection method of [15], which is essentially the same as the penalty-projection
method of section 4, except without the grad-div stabilization and that the method
of [15] includes a lagged pressure term in the momentum equation. Additionally, the
development of effective preconditioners for solving the large coupled block linear
systems that arise at each time step of both the projection and coupled schemes
will be critical for solving large 3D problems.
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