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Abstract. The goal of this work is to solve nonlocal diffusion and anomalous diffusion problems

by approximating the nonlocal integral appearing in the integro-differential equation by novel
quadrature rules. These quadrature rules are derived so that they are exact for a nonlocal integral
evaluated at translations of a given radial basis function (RBF). We first illustrate how to derive
RBF-generated quadrature rules in one dimension and demonstrate their accuracy for approxi-

mating a nonlocal integral. Once the quadrature rules are derived as a preprocessing step, we
apply them to approximate the nonlocal integral in a nonlocal diffusion problem and when the
temporal derivative is approximated by a standard difference approximation a system of differ-
ence equations are obtained. This approach is extended to two dimensions where both a circular

and rectangular nonlocal neighborhood are considered. Numerical results are provided and we
compare our results to published results solving nonlocal problems using standard finite element
methods.
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1. Introduction

In recent years, there has been an increased interest in nonlocal continuum mod-
els due to their ability to describe physical phenomena which are not well modeled
by standard partial differential equation (PDE) models. Unlike standard PDE mod-
els, nonlocal models are free of spatial derivatives. Feature interactions are typically
represented by an integral resulting in an integro-differential equation; these inter-
actions are assumed to occur over a finite region governed by a horizon. Nonlocal
models for anomalous diffusion are especially advantageous because the only dif-
ference in the model is the exponent in the kernel of the nonlocal integral. Thus
methods for solving a nonlocal diffusion problem typically can be easily extended
to model anomalous diffusion unlike PDE models. One complication in nonlocal
models is that the region of integration for the nonlocal integral can extend past
the physical domain. Thus so-called volume constraints are imposed in place of the
standard boundary conditions in PDE models. For an overview of the analysis of
nonlocal problems with volume constraints the reader is referred to [1].

In this paper we are interested in nonlocal diffusion and especially in the case of
anomalous diffusion where the spatial spread of a diffusing quantity is not propor-
tional to the square root of time as predicted by the heat equation. Several authors
have investigated the numerical solution of such linear time dependent problems.
For example, in [2, 3] the authors use standard finite element methods to approx-
imate the nonlocal problem when the solution is continuous and discontinuous
Galerkin for a discontinuous solution.
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The computational cost of solving a nonlocal problem is often higher than solv-
ing a local problem. One difficulty is that the bandwidth of the resulting matrix is
typically larger for the nonlocal model due to the nonlocal interactions. Another
difficulty arises when a Galerkin approach is used because the nonlocal integro-
differential equation must be integrated over the spatial domain to obtain the weak
formulation. This requires more complicated quadrature rules than when Galerkin
methods are used to approximate standard PDE models, especially in the case of
anomalous diffusion. In [4] the authors propose a coupled local-nonlocal model to
help alleviate the computational costs of nonlocal problems for large-scale applica-
tions.

Radial basis functions (RBFs) are a class of functions which depend only on the
distance to a fixed point so they are easily used on scattered grids and in higher
dimensions. RBFs have their origins in techniques for performing function inter-
polation and were introduced in 1971 for topological interpolation using scattered
data [5]. Since then they have become a powerful tool for multivariable interpo-
lation problems [6]. Advantages of using RBFs for multivariable interpolation are
their ease in using scattered data, their high rate of convergence and the fact that
they are insensitive to the dimension of the space.

RBFs have been successfully used to solve PDEs from different standpoints. An
RBF-based collocation method for elliptic problems was introduced in [7, 8] in 1990.
Wendland [9] in 1999 used a Galerkin-RBF approach where the approximating func-
tions and test functions were radial basis functions. In [10] the authors introduced
an approach for using finite difference approximations on a scattered grid where
RBFs were used to generate the finite difference stencils and in subsequent works
[11, 12] use these RBF-generated stencils to solve the shallow water equations on
the sphere.

In this work we use RBFs in a novel way to solve nonlocal diffusion problems.
RBFs have been used to solve nonlocal problems when a Galerkin formulation is
employed with RBFs as the approximating functions. See, for example [13, 14, 15].
Here we do not use a Galerkin method but instead approximate the time derivative
by a standard backward difference formula (BDF) and approximate the nonlocal
integral with an RBF-generated quadrature rule. This alleviates the difficulty pre-
viously described when using a Galerkin formulation. These quadrature rules are
derived by extending the procedure of [10] for obtaining RBF-generated finite dif-
ference stencils on scattered grids. It is not feasible to use standard quadrature
rules such as Newton-Cotes rules for approximating the nonlocal integral because
of the singularity in the integrand; in addition, Gaussian quadrature rules are not
practical when solving a nonlocal diffusion problem because each quadrature point
is also a point where the time derivative must be approximated.

The RBF-generated quadrature rules are able to accurately approximate the
singular nonlocal integral and as the number of quadrature points are increased
near spectral accuracy can be obtained. However, conditioning of the matrix for
deriving the quadrature rule becomes an issue when the grid spacing goes to zero;
this conditioning issue is also present when RBFs are used for interpolation.

In § 2 we derive RBF-generated quadrature rules for a nonlocal integral in one
dimension and present numerical results for approximating nonlocal integrals using
these new quadrature rules. In § 3 we apply the RBF-generated quadrature rules
to solve a nonlocal diffusion model in one dimension. In § 4 we extend the approach
to two dimensions and indicate how it can be easily extended to three dimensions.
Here we consider using both the tensor product of one dimensional rules as well as
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deriving new rules in two dimensions. These rules are applied to solving nonlocal
diffusion problems in two dimensions. Numerical results for anomalous diffusion
are presented for both one-dimensional and two-dimensional problems.

2. RBF-generated stencils

In [10] the authors derived RBF-generated finite difference stencils on scattered
grids which allow the number of stencil nodes to remain small without the loss of
accuracy usually associated with scattered node finite difference (FD) formulas. In
this section we extend their approach to derive an RBF-generated quadrature rule
for a nonlocal integral. We then apply the quadrature rules to nonlocal integrals
and illustrate their numerical accuracy.

2.1. Choices of radial basis functions. A radial basis function (RBF) is radi-
ally symmetric about a given point so its value only depends on the distance from
that point. If x̃ is the given point we denote the RBF as ϕ(r) where r = ∥x − x̃∥;
here we use the Euclidean distance which is typical. It is often useful to control the
“flatness” of the RBF by including a so-called shape function ϵ so that to be precise
we should write ϕ(r, ϵ). However, for brevity, we omit the explicit dependence on
the shape parameter unless we want to emphasize this dependence.

In generating the quadrature rules for the nonlocal integral one must select
a specific RBF. There are a myriad of choices but probably the most common
globally-supported RBF used in the literature is the multiquadric where ϕ(r, ϵ) =√

1 + (ϵr)2. Another popular RBF is the Gaussian where ϕ(r, ϵ) = e−(ϵr)2 ; we also

use the inverse multiquadric where ϕ(r, ϵ) = 1/
√
1 + (ϵr)2. All three are global-

supported RBFs and C∞. The Gaussian is a positive definite function so it will be
used in most of the approximations but in § 2.3 we present simulations using all
three RBFs and show that they give comparable results.

Once the specific RBF is chosen, one must choose a value for the shape parameter
ϵ. As ϵ → 0 the flatness of the RBF increases. Lowering the value of the shape pa-
rameter typically increases the accuracy but only until ill-conditioning occurs [16].
Increasing the value of ϵ improves the conditioning of the linear systems but also
increases the error. There has been some work towards choosing an optimal value
for the shape parameter using greedy or genetic algorithms but we will not address
this here. In situations where the linear system for determining the quadrature
weights becomes ill-conditioned, we investigate increasing the shape parameter.

2.2. Derivation. Typically when a finite difference approximation to a derivative
is generated on a uniform grid, we choose the points in the stencil and derive a
formula which exploits the symmetry of the points. On a nonuniform grid typically
many more quadrature points are needed to obtain the same degree of precision as
on a uniform grid. Using the RBF-generated stencils derived in [10] alleviates this
problem.

To derive an RBF-generated finite difference approximation using a specific RBF,
we first choose the points in the stencil and define translations of the given RBF
so that we have an RBF centered at each of the points in the stencil. Then we
require the approximation to be exact for translations of the RBF in lieu of making
it exact for monomials.

For example, assume we want to determine an RBF-generated three-point stencil
for u′′(xi) using the RBF ϕ(r) and the points xi−1, xi, xi+1. Specifically let

u′′(xi) ≈ ci,1u(xi−1) + ci,2u(xi) + ci,3u(xi+1) ,
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where we seek the coefficients ci,j , j = 1, 2, 3. Instead of making this formula exact
for 1, x, x2 we make it exact for the RBFs ϕ(|x−xi−1|), ϕ(|x−xi|), and ϕ(|x−xi+1|).
Enforcing these conditions leads to the three equations

(1) ϕ′′(|xi − xk|) =
i+1∑

j=i−1

ci,jϕ(|xj − xk|), k = i− 1, i, i+ 1 .

As in RBF interpolation, if ϕ(r) is not positive definite then the rule is typically
required to also satisfy some monomials exactly; in the case when the multiquadratic
RBF is chosen the rule is required to satisfy a constant exactly as well as the
interpolation conditions given in (1). See [10] for details. The coefficient matrix for
determining the RBF-generated finite difference approximation is a distance matrix
and is identical to the RBF interpolation matrix. The matrix is symmetric and for
strictly positive definite radial basis functions the matrix is positive definite [17].
The right-hand side requires differentiating the radial basis function which is easily
done if we choose an RBF which is continuously differentiable. On a uniform grid,
as the grid spacing goes to zero, the RBF-generated stencil for u′′(x) approaches
the standard second centered difference stencil.

We now want to extend this approach to derive quadrature rules for a specific
nonlocal integral in one spatial dimension using RBFs. In particular, we consider
the integral

(2) I(u) =
∫ x+δ

x−δ

u(x)− u(z)

|x− z|1+2s
dz ,

where x is a fixed point and δ is the given horizon. Note that the integrand of
(2) is not defined at z = x so we can not choose x as a quadrature point. For N
quadrature points zi and weights wi we have an approximation to I(u) of the form

(3) QN (u) =

N∑
i=1

wi
u(x)− u(zi)

|x− zi|1+2s
.

To determine the quadrature rule, we first choose quadrature points zi ∈ [x −
δ, x + δ]\{x}, i = 1, 2, . . . , N . Next we choose a radial basis function ϕ(r) and
consider the translations ϕ(|z − zi|), i = 1, 2, . . . , N centered at each quadrature
point in the stencil. To derive the weights, we require the approximation QN (u)
to be exact when u is set to each translation of ϕ(r). If the multiquadric RBF
is used for interpolation or generating RBF-FD stencils the approximation is also
required to be exact for constants but we do not have to impose this here because
it is automatically satisfied.

For example, suppose we have a mesh {xj}, j = 1, 2, . . . ,M with xj < xj+1 for all
j and we set x = xi in the definition of I(u). Furthermore, assume we want to derive
a two-point quadrature formula Q2(u) where z1 = xi−1 and z2 = xi+1. We require
the quadrature rule to be exact when u(x) = ϕ(|x−z1|) and u(x) = ϕ(|x−z2|), i.e.,
Q2

(
ϕ(|x− zj |)

)
= I

(
ϕ(|x− zj |)

)
for j = 1, 2. With x = xi these requirements yield

two equations for the unknown weights w1, w2 where the linear system is given by
ϕ(|xi − xi−1|)− ϕ(|xi−1 − xi−1|)

|xi − xi−1|1+2s

ϕ(|xi − xi−1|)− ϕ(|xi+1 − xi−1|)
|xi − xi+1|1+2s

ϕ(|xi − xi+1|)− ϕ(|xi−1 − xi+1|)
|xi − xi−1|1+2s

ϕ(|xi − xi+1|)− ϕ(|xi+1 − xi+1|)
|xi − xi+1|1+2s


w1

w2


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(4) =


∫ xi+δ

xi−δ

ϕ(|xi − xi−1|)− ϕ(|z − xi−1|)
|xi − z|1+2s

dz∫ xi+δ

xi−δ

ϕ(|xi − xi+1|)− ϕ(|z − xi+1|)
|xi − z|1+2s

dz

 .

In general, the entries of the coefficient matrix A for finding the weights in one
dimension using quadrature points {zi} are

(5) Ai,j =
ϕ(|x− zi|)− ϕ(|zj − zi|)

|x− zj |1+2s

for fixed x. For the case of two uniformly spaced quadrature points the coefficient
matrix is symmetric; however for more than two quadrature points, even on a
uniform grid, the matrix is not symmetric. For nonuniformly spaced quadrature
points A is not symmetric. This is in contrast to the RBF interpolation matrix,
or equivalently for the coefficient matrix in deriving RBF-FD stencils, where the
entries are ϕ(|xi − xj |) thus yielding a symmetric matrix whose entries are even
functions. The entries of the coefficient matrix given in (5) are not even and thus
the standard argument for showing invertibility of the RBF interpolation matrix is
not applicable here. However, numerical computations indicate that the matrix is
indeed invertible. When the quadrature points are uniformly spaced about the fixed
point x, then the quadrature weights are symmetric but for scattered quadrature
points they are not.

The entries in the right-hand side vector f for the system to compute the weights
in one dimension are

(6) fi =

∫ x+δ

x−δ

ϕ(|x− zi|)− ϕ(|z − zi|)
|x− z|1+2s

dz .

When an RBF-generated finite difference stencil is derived, the right-hand side of
the system involves the derivative of an RBF which is easily computed but in this
case it involves evaluating a singular, nonlocal integral.

2.3. Numerical results. In this section we apply RBF-generated quadrature
rules to evaluate the one-dimensional nonlocal integral (2). Initially we compare
symmetric two-point, four-point and six-point quadrature rules to approximate the
nonlocal integral when s = 0. When the horizon δ is chosen as a function of h, we
demonstrate that the two-point rule is second order accurate, the four-point rule
is fourth order accurate and the six-point rule is sixth order accurate as h → 0.
On the other hand, if the horizon is fixed so that the interval of integration is
fixed, then as the grid spacing decreases we can include more quadrature points
and the results demonstrate near spectral accuracy. A numerical simulation using
nonuniformly spaced quadrature points is also provided. When s > 0 the problem
becomes more difficult because the right-hand side of the system to be solved for
the weights is harder to accurately approximate. This is discussed and results for
several values of s ∈ (0, 0.9] are presented. To maintain the same convergence rates
as in the case s = 0, the shape parameter is adjusted.

To calculate the quadrature weights a linear system with the right-hand side
vector given by (6) must be solved. In one dimension and s = 0 this can often be
found by using a symbolic algebra package but for s > 0 and higher dimensions this
is not always possible. For the numerical results reported herein the entries in the
right-hand side are computed using an adaptive Gauss quadrature rule. However,
for small values of s when the integration interval [x− δ, x+ δ] is sufficiently large,
a composite Gauss quadrature rule is adequate. In addition, as the quadrature
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Table 1. Approximations to the nonlocal integral (2) using the
two quadrature points x − δ, x + δ and the multiquadic RBF for
two different choices of u(x) with δ = h.

u(x) = x4 − x2 u(x) = sin(πx)
h Weight Rel. Error Rate Rel. Error Rate
1/4 0.125646 6.4296 e-02 2.0620 e-02
1/8 0.062610 1.7178 e-02 1.90 4.6682 e-03 2.14
1/16 0.031265 4.3691 e-03 1.98 1.1308 e-03 2.04
1/32 0.015627 1.0970 e-03 1.99 2.8033 e-04 2.01
1/64 0.007813 2.7456 e-04 2.00 6.9930 e-05 2.00

points fill the interval of integration the coefficient matrix for calculating the weights
becomes ill-conditioned. We discuss this and demonstrate the effect of increasing
the shape parameter to try to alleviate the ill-conditioning. In cases where ill-
conditioning of the system affects the results, we provide the magnitude of K(A),
the condition number of the linear system using the infinity matrix norm. All of
the quadrature weights obtained are positive and their sum, which is the condition
number of the rule, is less than the length of the interval [x − δ, x + δ] = 2δ.
The shape parameter used in calculating the weights was chosen to be one, unless
otherwise indicated.

When calculating the error in the quadrature method, the exact solution must be
known. As with determining the right-hand side of the linear system to calculate the
weights, this can sometimes be found exactly. However, in the results presented
here all exact values for the integral were determined using an adaptive Gauss
quadrature method. All errors reported are relative errors.

In the initial results reported here the multiquadric RBF is used because it is
the most prevalent RBF in the literature. Then these results are compared with
ones using the Gaussian RBF and the inverse multiquadric RBF. The results are
comparable and in the sequel the Gaussian RBF will be used in all simulations
because it is positive definite.

We want to use these quadrature rules to solve a nonlocal diffusion problem, so
we think of setting up a grid and using a subset of these grid points as quadrature
points. We discretize the interval [0, 1] and set the fixed point x to be the midpoint
of the interval, i.e., x = 0.5. The horizon, δ, is either fixed, e.g., δ = 1/8, or if the
grid is uniform with spacing h, the horizon δ is sometimes set as a function of h,
e.g., δ = 2h.

2.3.1. The case s = 0. We first look at approximating the nonlocal integral (2)
using a two-point quadrature rule on a uniform mesh with δ = h. In this case
the 2 × 2 symmetric dense system (4) must be solved once to obtain the weights.
Note that this rule uses the endpoints of the interval [x − δ, x + δ] as quadrature
points just like the trapezoidal rule but, of course, with different weights. However,
when the trapezoidal rule is applied to this nonlocal integral the approximations
fail to converge due to the singularity. In Table 1 we tabulate the relative error
and numerical rate of convergence for the two-point RBF-generated rule when the
multiquadric RBF is used. Because the grid is uniform, the weights are symmetric
so only one is reported. Table 1 provides the results for two choices of u(x). As can
be seen from the table, the numerical rate of convergence is second order as h → 0.
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Table 2. Approximations to the nonlocal integral (2) using the
two quadrature points x − δ, x + δ when u(x) = x4 − x2 and the
Gaussian and inverse multiquadric RBF are used.

Gaussian RBF Inverse Multiquadric RBF
h Weight Rel. Error Rate Weight Rel. Error Rate
1/4 0.1266914 7.3151 e-02 0.1265515 7.1966 e-02
1/8 0.0627365 1.9228 e-02 1.93 0.0628197 5.3139 e-03 1.81
1/16 0.031280e 4.8639 e-03 1.98 0.0312943 5.3139 e-03 1.95
1/32 0.0156288 1.2195 e-03 2.00 0.0156307 1.3392 e-03 1.99
1/64 0.0078130 3.0510 e-04 2.00 0.0078132 3.3547 e-04 2.00

Table 3. Numerical approximations to (2) for u(x) = x4 − x2

using 4 and 6 uniformly spaced quadrature points. The Gaussian
RBF is used.

δ = 2h δ = 3h
h K(A) Rel. Error Rate K(A) Rel. Error Rate
1/8 103 2.2257 e-04 106 1.8940 e-05
1/16 105 1.4906 e-05 3.90 109 3.4452 e-07 5.49
1/32 106 9.4810 e-07 3.98 1011 3.9685 e-09 5.87
1/64 108 6.3806 e-08 3.89 1014 2.7832 e-08 -

Table 2 provides results for u(x) = x4−x2 analogous to those in Table 1 using the
Gaussian RBF and the inverse multiquadric RBF. If one compares these results to
those in Table 1 for the same u(x) we see that the errors are of the same magnitude
and the rates are all second order. Because the Gaussian RBF is positive definite,
we will use this in all subsequent simulations.

Table 3 provides results when four and six uniformly spaced quadrature points
are used to approximate the given nonlocal integral. When four uniformly spaced
quadrature points are used we set δ = 2h with an interval length of 4h and when six
are used δ = 3h for an interval length of 6h. A dense 4× 4 or 6× 6 linear system is
solved to obtain the weights which are symmetric. For brevity, only the results for
u(x) = x4−x2 are provided; similar results were obtained for other choices of u(x).
In addition, the magnitude of the condition number of the coefficient matrix used
in finding the weights is provided. As can be seen from Table 3, the approximation
is fourth order when four quadrature points are used and sixth order when δ = 3h
until the system becomes too ill-conditioned. To alleviate this ill-conditioning, one
may increase the shape parameter as if often done in RBF interpolation but this
also degrades the error as can be seen in Table 4 where we provide the results when
the shape parameter is set to two and to ten for the case of six uniformly spaced
quadrature points.

When implementing these RBF-generated quadrature rules to solve the nonlocal
problem we typically implement them in one of two ways. If δ, which governs
the horizon, is a function of the grid spacing h then we fix the quadrature rule as
h → 0. Numerical results using this approach are presented in Tables 1–4. In other
situations, δ is fixed and doesn’t depend on h. In this case, the quadrature rule
can vary as the grid spacing is decreased. For example, if δ = 1/8 then for h = 1/8
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Table 4. Numerical approximations to (2) for u(x) = x4 −x2 us-
ing 6 uniformly spaced quadrature points and two different choices
of the shape parameter. The Gaussian RBF is used.

ϵ = 2 ϵ = 10
h K(A) Rel. Error Rate K(A) Rel. Error Rate
1/8 104 2.8841 e-04 - 100 6.9487 e-02
1/16 107 6.3667 e-06 5.50 102 3.0140 e-02 1.21
1/32 109 1.0854 e-07 5.87 103 2.3437 e-04 7.01
1/64 1011 1.2596 e-09 6.43 106 6.3763e-06 5.18

Table 5. Numerical approximations to (2) for u(x) = x4 − x2

when δ = 0.125. The number of uniformly spaced quadrature
points in the horizon is increased as h is decreased. The Gaussian
RBF is used with a shape parameter of one.

h No. Quad. Pts. K(A) Rel. Error Rate
1/8 2 100 1.9228 e-02
1/16 4 105 1.4906 e-05 10.33
1/24 6 1011 3.1003 e-08 15.23
1/32 8 1017 3.5437 e-07 -

Table 6. Numerical approximations to (2) for u(x) = x4 − x2

when two nonsymmetric quadrature points are used in the interval
(x− δ, x+ δ) with δ = h. The Gaussian RBF is used with a shape
parameter of one.

h Weights Rel Error Rate
1/6 0.1009728 0.1006130 3.44336 e-02
1/12 0.0501257 0.0501021 8.62528 e-03 2.00
1/24 0.0250216 0.0250202 2.15296 e-03 2.00
1/48 0.0125060 0.0125059 5.07620 e-04 2.08

we use the two-point rule, for h = 1/16 we use the four-point rule, etc. On the
other hand, if one fixes the rule, say the two-point rule, then the errors will not
decrease with h because both the rule and the interval length is fixed. In Table 5
we provide results when δ is fixed and the order of the rule is increased. As can be
seen from the table, spectral convergence is achieved until the quadrature points
fill the interval to the point that the coefficient matrix becomes ill-conditioned.

Lastly, we consider the case of a nonuniform grid; for simplicity we consider a
two-point rule where the interval of integration is [x − δ, x + δ] for δ = h but the
quadrature points are no longer the endpoints of the interval but two grid points
interior to the interval of integration. Depending on the grid, the rule could have,
e.g., one quadrature point to the left of x and two to the right but we consider only
the case where we have one point to each side of x so we can compare with the
results in Table 2. For the grid used here, a uniform grid on [0, 1] is mapped using
sin(πx/2). Because the grid is nonuniform the weights are not symmetric. As can
be seen from Table 6, the results are second order accurate as h → 0 which is the
same as for the uniform grid case.
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2.3.2. The case s > 0. When values of s are chosen which are greater than
zero then a couple of issues arise. First, the nonlocal integral given in (6) for
the right-hand side of the system for calculating the weights is more difficult to
approximate accurately. Figure 1 illustrates the behavior of the integrand in (6)
when the Gaussian RBF is used with x = 0.5, zi = 0.375 for various choices of s.
The second difficulty is that exact values of the nonlocal integral when s > 0, even
for polynomial choices for u(x), are typically not available so that one must resort
to using approximations to compute the exact integral. As the value of s increases,
the difficulty of evaluating a good approximation for the exact integral increases.

s = 0

0.2 0.4 0.6 0.8 1.0

-0.2

0.2

0.4

0.6

s = 0.25

0.2 0.4 0.6 0.8 1.0

-10

10

20

s = 0.5

0.2 0.4 0.6 0.8 1.0

-1000

1000

2000

3000

Figure 1. Comparison of the integrand in (6) for three values of s.

Table 7 demonstrates results for three values of s using a two-point RBF-
generated quadrature rule on a uniform mesh. Comparing to Table 2 we see that we
still get second order accuracy. Unlike the case when s = 0 an adaptive quadrature
rule, rather than a composite rule, must be used to evaluate the right-hand side (6)
to get accurate results. In these examples, the coefficient matrix for solving for the
weights is well conditioned, as in the case for s = 0. For values of s > 0.5, we are
not able to accurately compute the right-hand side of the system for the weights
when ϵ = 1. However, increasing the value of the shape parameter decreases the
severity of the singularity in the integral in the right-hand side (6). The relative
errors and rates for s = 0.6, 0.7, 0.8 and s = 0.9 using ϵ = 5 are given in Table 8. To
get second order accuracy, higher precision arithmetic was required. When more
quadrature points are used so that they become closely packed, the conditioning of
the matrix becomes an issue, as is the case for s = 0.

3. The One-dimensional Nonlocal Diffusion Problem

We consider the specific nonlocal diffusion problem

(7)
∂u(x, t)

∂t
+

2(1− s)

δ2−2s

∫ x+δ

x−δ

u(x, t)− u(z, t)

|x− z|1+2s
dz = f(x, t), ∀(x, t) ∈ Ω× (0, T ] ,
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Table 7. Numerical approximations to (2) for u(x) = x4 − x2

using the two quadrature points x − δ, x + δ when δ = h. The
Gaussian RBF is used with a shape parameter of one.

s = 0.2 s = 0.4 s = 0.5
h Rel Error Rate Rel Error Rate Rel Error Rate
1/8 1.9112 e-02 2.1557e-02 4.2314 e-02
1/16 4.8567 e-03 1.98 5.4662 e-03 1.98 6.4938 e-03 2.70
1/32 1.2191 e-03 1.99 1.3728 e-03 1.99 1.6266 e-03 2.00
1/64 3.0508 e-04 2.00 3.4809 e-04 1.97 4.0684 e-04 2.00

Table 8. Numerical approximations to (2) for u(x) = x4 − x2

using the two quadrature points x − δ, x + δ when δ = h, h =
1/8, 1/16, 1/32, 1/64 for various values of s > 0.5. The Gaussian
RBF is used with a shape parameter of five.

s = 0.6 s = 0.7 s = 0.8 s = 0.9
Rel. Error Rate Rel Error Rate Rel Error Rate Rel Error Rate
0.235 e-00 0.241 e-00 0.246 e-00 0.247 e-00
3.296 e-02 2.56 3.553 e-02 2.76 3.854 e-02 2.67 4.208 e-02 2.55
9.706 e-03 2.02 1.046 e-02 1.76 1.133 e-02 1.77 1.236 e-02 1.77
2.504 e-03 1.95 2.697 e-03 1.96 2.922 e-03 1.96 3.185 e-03 1.96

where Ω = (a, b) ⊂ R is a bounded domain, T a given time, f(x, t) a given source
function, and s ∈ [0, 1). As before, δ > 0 is called the horizon and governs the
interval where interactions occur; specifically at any time t, the point x interacts
with points z in the interval [x− δ, x+ δ]. One major difference in nonlocal models
and standard local models are boundaries. Because the domain of integration in
the nonlocal integral may extend outside of Ω we must know the value of u(x, t)
there. To this end, we define the following regions

(8) Ω = (a, b), Ω′ = (a− δ, b+ δ), Γ = Ω′\Ω = [a− δ, a] ∪ [b, b+ δ] .

Then, we append to (7) the volume constraint

(9) u(x, t) = g(x, t) ∀(x, t) ∈ Γ× (0, T ] ,

where g(x, t) is a given function. In addition, we impose the initial condition

(10) u(x, 0) = u0(x) ∀x ∈ Ω ,

where u0(x) is a given function. In this section we apply the RBF-generated quad-
rature rules from § 2 to approximate the solution to this problem. Where available,
we compare our results with those generated in [3] which uses a finite element (FE)
method for approximating the nonlocal problem.

The advantage of using RBF-generated quadrature rules over higher order quad-
rature rules for the nonlocal integral is that we can set up a system of equations
comparable in size to that obtained using standard methods such as FE. This would
not be possible with higher order quadrature rules because in the nonlocal problem
each quadrature point produces a node where the solution is unknown.

3.1. Approximation. We approximate this nonlocal problem defined by (7), (9),
(10) using a BDF in time and an RBF-generated quadrature rule to approximate
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the nonlocal integral. Because an endpoint of the nonlocal integral may extend
outside of Ω we partition the interval [a− δ, b+ δ] to get

(11) a− δ = x−p < · · · < x−1 < x0 < x1 < · · · < xJ < xJ+1 < · · · < xJ+q = b+ δ

with x0 = a, xJ+1 = b, and J, p, q positive integers. We write a difference equation
at each node xi, i = 1, . . . , J in Ω. For simplicity of exposition we approximate
the time derivative using a first order BDF but it will be clear how to use a higher
order BDF which we implement in the simulations. Assume we are using N points
in the quadrature rule where the quadrature points are a subset of {x−p, . . . , xJ+q}
and Ji denotes the set of N indices of these quadrature points for node xi. Letting
Un
i ≈ u(xi, t

n), we have the difference equation

(12)
Un
i − Un−1

i

∆t
+

2(1− s)

δ2−2s

∑
q∈Ji

wq

Un
i − Un

q

|xi − xq|1+2s
= f(xi, t

n) ,

at the grid point xi; here wq are the known RBF-generated quadrature weights.
Once an RBF-quadrature rule is chosen, the weights can be determined at each
node xi, i = 1, . . . , J as a preprocessing step; however if the grid is uniform, this
only has to be done for a single node.

As an example, suppose we have a uniform grid and set δ = h. In this case we
use a two-point RBF-generated quadrature rule and at each xi, i = 1, . . . , J we
use the quadrature points xi−1 and xi+1. Assuming we have solved for the weights
w1, w2, we have a linear system for the unknown vector (Un

1 , U
n
2 , · · · , Un

J )
T with a

symmetric tridiagonal coefficient matrix A with entries

(13)

Ai,i =
1

∆t
+

2(1− s)

δ2−2s

(
w1

|xi − xi−1|1+2s
+

w2

|xi − xi+1|1+2s

)
Ai,i−1 = Ai,i+1 =

−2(1− s)

δ2−2s

w1

|xi − xi−1|1+2s
.

The ith component of the right-hand side is just f(xi, t
n) + Un−1

i /∆t plus any
terms that come from imposing the volume constraint. From our numerical results
in § 2.3 we expect this scheme to be second order accurate in space.

If we set δ = 2h then we use a four-point quadrature rule with the quadrature
points xi−2, xi−1, xi+1, xi+2. In this case we expect fourth order in space but the
bandwidth of the matrix increases from three to five.

3.2. Numerical results. One difficulty in comparing results for nonlocal prob-
lems is the ability to manufacture exact solutions, i.e., once u(x) is chosen we must
determine the source term f(x, t). If a symbolic algebra package is unable to eval-
uate the nonlocal integral then a technique described in [2] can be used where the
term u(x, t) in the nonlocal integral is written as u(x + ξ, t) and is expanded in
terms of a Taylor series. For choices of u(x, t) which are polynomial in x, this
method can produce exact solutions; in other cases sufficient terms in the Taylor
series expansion must be used.

To compare our results with previously generated finite element approximations
in [3], we consider the example where Ω = (0, 1) and the exact solution u(x, t) =
x2(1 − x2) sin(t). Using the Taylor series approach, we have that when s = 0 the
right-hand side f(x, t) is given explicitly by

(14) f(x, t) = x2(1− x2) cos t+ sin t(−2 + 12x2 + δ2) .
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Table 9. A comparison of the FE and RBF approaches for solving
the nonlocal diffusion problem when s = 0.

RBF approach FE approach
h No. Quad. Pts. Rel.Error Rate Rel. L2 Error Rate
1/8 2 3.259014 e-03 3.3101 e-02
1/16 4 5.959943 e-06 9.09 8.1641 e-03 2.02
1/32 8 1.338944 e-09 12.12 2.0353 e-03 2.00

In all cases the RBF error reported is a relative error measured in the standard
Euclidean vector norm.

In the FE approximations reported in [3] the horizon δ is fixed at 0.125 and
a uniform grid is used. The FE approximations are obtained using continuous
piecewise linear polynomials on a uniform grid, a first order BDF in time and a
5-point Gauss Kronrod quadrature rule to approximate the nonlocal integral over
z and a two-point Gauss quadrature rule to approximate the spatial integral in the
weak form of the equations. Our calculations use a third order BDF due to the
high accuracy of the quadrature rule.

The amount of total computations for the RBF quadrature approach and a FE
approach for approximating the nonlocal diffusion problem can be analyzed from
two different standpoints: the amount of computations needed to find the coefficient
matrix formulation and the amount of computations it takes to solve the resultant
system at each time step. The FE approach requires a quadrature routine for a
nonlocal integral in each nonzero entry of its coefficient matrix and its right-hand
side while the RBF quadrature approach is calculated as a preprocessing step and
results in known coefficients just as when finite differences are used to solve a local
problem. The quadrature rules used in the FE approach are minimized in terms
of number of computations so that the desired convergence rates for the element
being used is reached. In [3], it was shown that higher values of s require higher
order quadrature rules to get optimal accuracy for the element used, for example
with s = .75 a Gauss-Kronrod rule with 20 and 50 quadrature points is needed to
near optimal convergence rates using linear elements.

The amount of computation needed at each time step can be determined by ana-
lyzing the coefficient matrix structure of each approach. In our numerical example,
the horizon is fixed and not a function of h, so if we fix the quadrature rule, e.g.,
the two-point rule, then the error in approximating the nonlocal integral does not
decrease with h. Instead, we employ a rule which incorporates all of the grid points
in [xi−δ, xi+δ]. This does not increase the size of the matrix but it does increase its
bandwidth. The coefficient matrix for the FE case is always tridiagonal; however,
the entries are costly to compute because they involve not only approximating the
spatial integrals but also the nonlocal integral compared with this approach where
the entries in the coefficient matrix are computed using explicit formulas such as
(13).

In Table 9 the FE results are compared with the RBF-generated quadrature
approach for a fixed horizon of δ = 1/8. As expected, the FE approximation
is second order accurate using the L2 norm because continuous piecewise linear
polynomials are used and a backward Euler scheme with ∆t = ∆x2. As can be seen
from the table the RBF-generated quadrature approach yields spectral convergence
as the number of quadrature points are doubled.



640 LYNGAAS AND PETERSON

Table 10. A comparison of the FE and RBF approaches for solv-
ing the nonlocal diffusion problem when s = 0.5.

RBF approach FEM
h No. Quad. Pts. Rel.Error Rate Rel. L2 Error Rate
1/8 2 5.1538 e-03 3.2785 e-02 1.91
1/16 4 4.9830 e-06 6.69 8.1128 e-03 2.01
1/32 8 1.3726 e-09 11.83 2.0275 e-03 2.00

Since we are interested in anamolous diffusion we compare the RBF approach
with the FE results for s = 0.5 reported in [3]. To use the same exact solution as
before we must generate a new source term; for s = 0.5 we have

f(x, t) = x2(1− x2) cos t+ sin t

(
−2 + 12x2 + δ2

2

3

)
.

Once again, the size of the coefficient matrix in each approach is the same and
for two quadrature points both matrices are tridiagonal but the bandwidth of our
coefficient matrix increases as the number of quadrature points increase. However,
the entries in the matrix for our approach are much cheaper to compute.

The error results for the RBF approach in all cases are better than the FE
approach because the FE results we compare against only use linear elements. This
means that while the horizon stays fixed and the spatial discretization decreases the
element size for the FE approach get smaller and the RBF-quadrature approach
adds quadrature points. The convergence of the FE approach is determined by the
type of the element and is second order for linear elements while the RBF approach
decreases error at a spectral rate as quadrature points are added. We do not want
to compare with FE results using higher order piecewise polynomials because they
would increase the number of points in the formulation meaning a larger system
needs to be solved. The matrices from the FE approach with piecewise linear
elements are the same size as those of the RBF approach.

Oftentimes the horizon δ is set as a function of h rather than being fixed as in
Tables 9 and 10. Simulations for the nonlocal diffusion model when the horizon is
set as a function of h are as expected from the results of § 2 and are not presented
here for brevity.

4. Solving the Nonlocal Diffusion Problem in Higher Dimensions

We now turn to solving the nonlocal diffusion problem in Rd for u(x, t). For
simplicity we take d = 2 but it should be obvious from the exposition how to
extend the method to three dimensions. In particular, we seek u(x, t) satisfying

(15)
∂u(x, t)

∂t
+
2(1− s)

δ2−2s

∫
Hx,δ

u(x, t)− u(z, t)

∥x− z∥2+2s
dz = f(x, t), ∀(x, t) ∈ Ω×(0, T ] ,

where ∥ · ∥ denotes the Euclidean norm and Hx,δ denotes the neighborhood of x
containing points which influence the solution at x. As before, we define Ω′ to be
Ω appended with a layer of width δ around it and the region where the volume

constraint u(x, t) = g(x, t) is imposed is Γ = Ω
′\Ω. As in the one-dimensional case,

we first derive RBF-generated quadrature rules for the nonlocal integral. Then
to solve the nonlocal diffusion problem we apply a BDF in time along with our
quadrature rule for the nonlocal integral to get a set of difference equations.
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Before we extend our RBF approach to higher dimensions, we must make a
choice for the neighborhood Hx,δ. In the literature this region is typically defined
as the ball about x of radius δ, i.e., Hx,δ = {z ∈ R2 : ∥x − z∥ ≤ δ} where ∥ · ∥
denotes the standard Euclidean norm. For discretization methods such as finite
elements, this adds some computational difficulties because the nonlocal integral
domain typically requires integration over partial elements. In the RBF-generated
quadrature approach it only requires using a quadrature rule over a circle to evaluate
the terms on the right-hand side of the linear system for the weights. A second
choice for Hx,δ is the rectangular region {z ∈ R2 : ∥x−z∥1 ≤ δ}. For this choice one
may derive quadrature rules in the manner analogous to § 2 for one dimension or
we may consider tensor products of one-dimensional rules. We consider quadrature
rules using both choices for Hx,δ in § 4.1.

In § 4.2 we solve the two-dimensional nonlocal diffusion equation (15) using both
circular and rectangular choices for Hx,δ. In addition, for the case when Hx,δ is a
circle we compare the results to some published finite element simulations.

4.1. RBF-generated quadature rules in two dimensions. In this section we
derive quadrature rules to approximate the two-dimensional nonlocal integral

(16)

∫
Hx,δ

u(x)− u(z)

∥x− z∥2+2s
dz

when Hx,δ is either a circular region about x of radius δ or a square region of side 2δ
centered at x. To derive the quadrature rules directly as we did in one dimension,
we choose an RBF ϕ(r), quadrature points zi ∈ Hx,δ, i = 1, . . . , N and seek an
approximation of the form∫

Hx,δ

u(x)− u(z)

∥x− z∥2+2s
dz ≈

N∑
i=1

wi
u(x)− u(zi)

∥x− zi∥2+2s
.

To determine the weights we require the rule to be exact for translations of ϕ(r) to
each quadrature point zi. Analogous to (5) the entries in the coefficient matrix for
determining the weights are

(17) Ai,j =
ϕ(∥x− zi∥)− ϕ∥zj − zi∥)

∥x− zj∥2+2s

and the terms for determining the right-hand side of the linear system for the
weights are

(18) fi =

∫
Hx,δ

ϕ(∥x− zi∥)− ϕ(∥z− zi∥
∥x− z∥2+2s

dz .

The only difference in the approach for the two choices of the neighborhood Hx,δ

is the quadrature rule used to approximate fi in (18). As in the one-dimensional
case, this matrix is dense and, for most cases, not symmetric. In higher dimensions,
more quadrature points are used resulting in a larger matrix but these weights
can be determined as a preprocessing step when solving the nonlocal problem.
As in one-dimension, the errors in the quadrature weights can be degraded by
(i) not calculating the terms fi in (18) accurately enough, (ii) not obtaining an
accurate enough approximation to the exact integral for comparison and (iii) an
ill-conditioned coefficient matrix. These problems were illustrated in § 2 but can be
more prominent in higher dimensions as more quadrature points and higher values
of s are used.
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Another option for computing the quadrature rule when Hx,δ is a rectangle of
side 2δ centered at x is to use tensor products of one-dimensional rules. This option
is discussed in the next section.

For the results reported for the accuracy of the RBF-generated quadrature rule,
the exact solution u(x) = x2

1x2 is chosen with x = (x1, x2). All errors reported are
relative errors. For the case when Hx,δ is a circular region we use Gauss cubature
formulas to calculate the terms fi in (18) and for the exact solution for comparison
purposes. These rules are designed exclusively for integration domains of a circular
shape; see [18] for details. For the case when Hx,δ is a rectangle we use an adaptive
Gauss quadrature rule.

4.1.1. RBF-generated rules on a rectangle. We first define the neighborhood
Hx,δ to be the square centered at x with side 2δ. When using a rectangular region
for Hx,δ one may consider using either tensor products of one-dimensional rules or
deriving the rules in a direct manner by making them exact for translations of the
RBF. However, when tensor product rules are used, new quadrature rules in one
dimension must be derived for the integral

(19)

∫ x+δ

x−δ

u(x)− u(z)

∥x− z∥2+2s
dz ;

i.e., where the kernel has been modified from (2) to match the exponent in the
kernel of (16). The problem with this approach is that the integrals which must be
calculated for the right-hand side of the linear system for computing the weights
become much more difficult to approximate due to the new exponent in the kernel.
To see this, note that when s = 0 the exponent 2 + 2s in the denominator corre-
sponds to the s = 0.5 case with exponent 1+2s and when s = 0.45 the exponent is
2.9 which corresponds to s = 0.9 case for the results in § 2. So, in practice, we can
only derive tensor product rules for the range 0 ≤ s < 0.5. In 2D, this difficulty
does not occur because we have the Euclidean norm of the difference raised to the
power 2 + 2s instead of the absolute value of the difference to that power. For
small s the tensor product rules behave as expected; that is, if we use the same
quadrature points as when we derive the rule directly, then the rates of convergence
of the tensor product rules matches that of the rules derived in a direct manner.
For this reason, we do not include the tensor product case here.

We first consider the case when δ = h. If we use all of the possible quadrature
points in the rectangle of side 2δ centered at x, then there are eight quadrature
points as illustrated in the right schematic in Figure 2. We also present results
when we use the four quadrature points illustrated in the schematic on the left in
the same figure. The results are tabulated for the s = 0 case for both choices of
quadrature points in Table 11. As can be seen from the table, using four points
in two dimensions yields second order convergence and using all eight quadrature
points produces fourth order convergence. These results correspond to the one-
dimensional results in Tables 2 and 3, respectively. We also present results for
s = 0.1 and s = 0.25 for the four-point rule in Table 12 where second order accuracy
is illustrated. As s increases, the ability to accurately calculate the terms on the
right-hand side of the linear system for calculating the weights is degraded. For
example, for s = 0.1 our adaptive Gauss quadrature scheme calculates the terms to
an error of 10−12 but when s = 0.25 the scheme can only achieve an error of 10−8

before a reasonable minimum step size is reached. The magnitude of this error does
not adversely affect the four-point rule but as more accurate quadrature rules are
used, the effect is seen.
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x

δ = h

x

δ = h

Figure 2. Two choices of quadrature points whenHx,δ is a square
of side 2δ centered x and δ = h.

Table 11. Comparison of the accuracy of the RBF-generated
quadrature rules when δ = h and s = 0 for the two choices of
sets of quadrature points illustrated in Figure 2.

4 quadrature points 8 quadrature points
h Rel.Error Rate Rel. Error Rate
1/8 5.6725 e-02 3.9960 e-03
1/16 5.2226 e-02 0.12 1.1398 e-02 5.13
1/32 1.5526 e-02 1.75 6.2961 e-04 4.18
1/64 4.0229 e-03 1.95 3.8240 e-05 4.04

Table 12. Accuracy of a four-point RBF-generated quadrature
rule to approximate the nonlocal integral when δ = h and s =
0.1, 0.25.

s = 0.1 s = 0.25
h Rel.Error Rate Rel. Error Rate
1/8 6.1082 e-02 6.8756 e-02
1/16 5.3753 e-02 0.18 5.6319 e-02 0.29
1/32 1.5974 e-02 1.75 1.6722 e-02 1.75
1/64 4.1382 e-03 1.95 4.3228 e-03 1.95

When δ = 2h there are a total of 24 possible uniformly spaced quadrature points
which are illustrated in the schematic on the right in Figure 3. However, the
question is whether or not anything is gained by using all of these points. If we
only use the four corner points (x1 ± 2h, x2 ± 2h) then this mimics the case in
Table 11 where second order convergence is achieved. However, from the results
with δ = h, we expect that fourth order convergence can be attained. We consider
two optional choices as illustrated in Figure 3 with eight quadrature points; both
of which achieve fourth order convergence. In Table 13 we only provide results for
the choice of eight quadrature points illustrated in the middle schematic in Figure 3
and for all 24 points. Both choices of quadrature points produce results which are
fourth order accurate but the case with 24 quadrature points has smaller errors
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Table 13. Comparison of the accuracy of two RBF-generated
quadrature rules for s = 0 when the quadrature points are cho-
sen as in the middle and right schematics in Figure 3.

8 quadrature points 24 quadrature points
h Rel.Error Rate K(A) Rel. Error Rate K(A)
1/4 5.5401 e-03 101 4.9779 e-04 106

1/8 6.7329 e-04 3.04 102 3.9980 e-05 3.64 109

1/16 4.6808 e-05 3.85 103 2.6625 e-06 3.91 1013

1/32 2.9989 e-06 3.96 105 2.1007 e-06 0.34 1015

Table 14. Accuracy of an eight-point RBF-generated quadrature
rule to approximate the nonlocal integral when δ = h and s =
0.1, 0.25.

s = 0.1 s = 0.25
h Rel.Error Rate Rel. Error Rate
1/8 3.7458 e-03 4.6831e-04
1/16 5.6256 e-04 2.73 3.6890e-04 0.34
1/32 3.9797 e-05 3.82 1.4939e-05 4.63
1/64 2.6596 e-06 3.90 1.9204 e-03 -

than when only eight quadrature points are used. However, the condition number
K(A) of the coefficient matrix using 24 points for determining the weights grows
much faster than the case with only eight points as can be seen from the table.
Results for two values of s > 0 are illustrated in Table 14 using the eight-point rule
used in Table 13. For the case s = 0.25 the error in approximating the right-hand
side of the linear system is of the order 10−7 which contaminates the error when h
is small enough.

x

δ

x

δ

x

δ

Figure 3. Three choices of quadrature point sets when Hx,δ is a
square of side 2δ centered x and δ = 2h.

4.1.2. RBF-generated rules on a circle. Now we consider the case when the
nonlocal neighborhood Hx,δ is a ball of radius δ about x . Possible quadrature
points when δ = h, δ = 2h and δ = 3h are illustrated in Figure 4. When δ = h
we use four symmetrically placed quadrature points and for δ = 2h we use twelve.
Table 15 provides results for s = 0 using both four and twelve quadrature points.
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Table 15. Comparison of accuracy of four point (δ = h) and
twelve point (δ = 2h) quadrature rules when the integration do-
main is a circle of radius δ centered at x and s = 0.

δ = h δ = 2h
h Rel.Error Rate Rel. Error Rate
1/4 5.0694 e-01 5.2359 e-03
1/8 5.6845 e-02 3.16 4.3977 e-04 3.57
1/16 2.2094 e-02 1.36 3.1605 e-05 3.80
1/32 5.9617 e-03 1.99 2.0457 e-06 3.95

Table 16. Accuracy of the RBF-generated quadrature rules when
δ is fixed at 0.125 and h → 0 for s = 0. Hx,δ is a ball of radius δ
about x.

h No. Quad. Points Rel.Error Rate K(A)
1/8 4 5.8158 e-02 100

1/16 12 5.1590 e-04 6.82 103

1/32 24 9.1757 e-07 9.14 1012

The accuracy is second and fourth order for δ = h and δ = 2h, respectively. Of
course, one may investigate whether all twelve quadrature points are needed when
δ = 2h as we did in the case when Hx,δ is a rectangle. If the horizon is fixed
instead of a function of the grid spacing, then the number of quadrature points can
be increased as the grid spacing decreases. This is illustrated in Table 16.

x

δ

x

δ

x

δ

Figure 4. Quadrature points used when Hx,δ is a ball of radius
δ about x. The figure on the left is the case when δ = h and
four points are used; the case on the right is when δ = 2h and 12
quadrature points are used.

4.2. Nonlocal diffusion problem in two dimensions. In this section we apply
some of the quadrature rules derived in § 4.1 to solve the nonlocal diffusion equation
given in (15) along with volume constraints and an initial condition. Analogous to
the one-dimensional case, we obtain a difference equation by approximating the
nonlocal integral by an RBF-generated quadrature rule and the time derivative by
a high order BDF. The quadrature rule is chosen based upon whether the region
Hx,δ is a circle or a rectangle and the order of accuracy required.
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Table 17. A comparison of the FE and RBF approaches for solv-
ing the nonlocal diffusion problem when s = 0 and u = x1x2t.

RBF approach FE approach
h No. Quad. Pts. Rel.Error Rate Rel. L2 Error Rate
1/8 4 5.4815 e-16 1.7244 e-02
1/16 12 8.4850e-15 4.1271 e-03 2.06
1/32 48 1.0097 e-12 8.1020 e-04 2.35

Table 18. Accuracy of solution to the nonlocal problem when
u(x, t) = x2

1x2t, δ = 2h and s = 0, 0.1, 0.25. A 24 point quadrature
rule is used to approximate the nonlocal integral with ϵ = 8.

s = 0 s = 0.1 s = 0.25
h Rel.Error Rate Rel. Error Rate Rel. Error Rate
1/8 2.02419e-04 - 1.98842e-04 - 1.79318e-03 -
1/16 1.47768e-06 7.10 8.57702e-06 4.54 6.07776e-05 4.89
1/32 2.09035e-07 2.82 1.80505e-07 5.57 5.4471e-07 6.80

In the work [3] the authors present results solving this nonlocal diffusion problem
when u(x, t) = x1x2t using continuous, linear triangular finite elements so we first
compare our results with these. In this case the forcing term for the equation is just
f(x, t) = x1x2 which can be found by the Taylor’s series approach described in § 3.
Here Hx,δ is chosen to be a circle of radius δ about x and δ = 0.125 is fixed. Because
the exact solution is linear in the independent variables, one might expect the FE
approximation to be exact using linear elements but due to the approximation of the
nonlocal integral it is not. However, our RBF-generated quadrature rule approach
is exact. Because δ is fixed we increase the number of quadrature points as h → 0.
These results are illustrated in Table 17 for s = 0. For both approaches the size
of the coefficient matrix is identical but for the RBF approach, as the number of
quadrature points are increased entries in the bandwidth of the matrix are filled
compared with the FE approach. However, for the FE approach entries in the
matrix and right-hand side are computed using numerical quadrature; moreover, the
nonlocal integral requires extra effort because one must determine which elements,
or portions of elements, are included in the integration domain Hx,δ so this greatly
complicates the computations.

When the exact solution to the nonlocal problem is chosen to be even slightly
more complicated, such as u(x, t) = x2

1x2t, then determining the forcing function
f(x, t) becomes unwieldy using the Taylor’s series approach described in § 3. For
this reason, f(x, t) is usually found by calculating the temporal derivative of the
exact solution and then approximating the nonlocal integral by using, e.g., Matlab.
In Table 18 we present results for the eight-point quadrature rule on a rectangle
used in Tables 13,14 for three values of s.

5. Concluding Remarks

In this work we show that using RBF-generated quadrature rules to approximate
the nonlocal integral in the integro-differential equations arising in nonlocal models
is a viable approach. In fact, nearly spectral accuracy can be obtained by increasing
the number of quadrature points with minimal, if any, extra work as compared with
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standard approaches such as finite elements. Both nonlocal diffusion and anomalous
diffusion problems can be solved using this approach. In two dimensions both
circular and rectangular neighborhoods which define the region influencing a point
x are considered and show similar results. The RBF-generated quadrature weights
are determined as a preprocessing step by solving a small, dense system. Difficulties
that arise in determining the weights are the ability to accurately approximate the
integrals appearing on the right-hand side of the system and the possibility of
ill-conditioning of the coefficient matrix as the spacing of the quadrature points
goes to zero. This ill-conditioning is also seen when using RBF interpolation and is
typically handled by increasing the flatness of the radial basis function by increasing
the shape parameter. Accuracy of the right-hand side entries is essential when a
high accuracy quadrature rule is being derived for small grid spacing.
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