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Abstract. In this paper, we study the numerical stability of reduced order models for convection-
dominated stochastic systems in a relatively simple setting: a stochastic Burgers equation with lin-
ear multiplicative noise. Our preliminary results suggest that, in a convection-dominated regime,

standard reduced order models yield inaccurate results in the form of spurious numerical oscilla-
tions. To alleviate these oscillations, we use the Leray reduced order model, which increases the
numerical stability of the standard model by smoothing (regularizing) the convective term with
an explicit spatial filter. The Leray reduced order model yields significantly better results than

the standard reduced order model and is more robust with respect to changes in the strength of
the noise.
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1. Introduction

Reduced order models (ROMs) are commonly used in applications that require
repeated numerical simulations of large, complex systems [35, 55]. ROMs have
been successful in the numerical simulation of various fluid flows [37, 52]. Numer-
ical instability, usually in the form of unphysical numerical oscillations, is one of
the main challenges for ROMs of fluid flows described by the Navier-Stokes equa-
tions (NSE). There are several sources of numerical instability of ROMs for fluid
flows [16], such as (i) the convection-dominated (high Reynolds number) regime,
in which the convection nonlinear term plays a central role [3, 37, 52]; and (ii) the
inf-sup condition, which imposes a constraint on the ROM velocity and pressure
spaces [5, 16]. To mitigate the spurious numerical oscillations created by these
sources of numerical instability, various stabilized ROMs have been proposed (see,
e.g., [2, 3, 4, 5, 6, 8, 17, 26, 33, 40, 54, 56, 62, 64] for such examples). A promising
recent development in this class of methods is regularized ROMs [59, 63], which use
explicit spatial filtering to increase the numerical stability of the ROM approxima-
tion.

Recently, the development of ROMs for systems involving random components
has also received increased attention. For instance, ROMs for partial differential
equations (PDEs) subject to random inputs acting on the boundary as well as PDEs
with random coefficients have been considered in various contexts [22, 24, 29, 44,
13, 14, 23, 34, 61]. However, ROMs for evolutionary PDEs driven by stochastic
processes such as Brownian motion seem to be much less investigated. To our
knowledge, only a few works are available [15]; see also [20], where a new stochastic
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parameterization framework is presented to address a related question of parame-
terizing the unresolved high-frequency modes in terms of the resolved low-frequency
modes.

In this article, we consider ROMs within the context of nonlinear stochastic
PDEs (SPDEs) that are of relevance to fluid dynamics. The main purpose is to
investigate within a simple relevant setting—a stochastic Burgers equation (SBE)
driven by linear multiplicative noise—the stabilization of the standard Galerkin
ROM (G-ROM) in a convection-dominated regime. It is numerically illustrated
that spurious oscillations developed in a G-ROM persist as the noise is turned on,
and the oscillations worsen as the noise amplitude increases. A Leray regularized
ROM (referred to as L-ROM hereafter) is then tested. The L-ROM provides more
accurate modeling of the SBE dynamics by greatly reducing the artificial oscillations
of the G-ROM, especially when the ROM dimension is low; cf. Figs. 3–6. It is
further illustrated that the L-ROM is much more robust than the G-ROM with
respect to the noise amplitude as revealed by the statistics of the corresponding
modeling errors, which have significantly lower mean and variance; cf. Fig. 7.

The rest of the paper is organized as follows. In Section 2, we outline the SBE
to be used in our numerical exploration and derive the corresponding G-ROM and
the L-ROM based on the proper orthogonal decomposition. The performance of
the two ROMs is then tested and compared in Section 3 by placing the SBE in
a convection-dominated regime. Finally, some concluding remarks and potential
future research directions are given in Section 4.

2. Reduced Order Models for a Stochastic Burgers Equation

The viscous Burgers equation and its stochastic versions have been used previ-
ously to test new techniques in reduced order modeling and related contexts; see
among many others [20, 19, 42, 43, 18, 51]. In this paper, we focus on an SBE
driven by linear multiplicative noise, which is presented briefly in Section 2.1. To
fix ideas, the ROMs explored in this paper are derived based on the proper orthog-
onal decomposition. In Section 2.2, we outline the main steps in the derivation of
the proper orthogonal decomposition basis. The standard Galerkin ROM for the
SBE is then derived in Section 2.3. In Section 2.4, we develop the Leray ROM,
which is a regularized ROM that aims at increasing the numerical stability of the
standard ROM for the SBE.

2.1. Stochastic Burgers Equation (SBE). In this paper, we focus on the fol-
lowing stochastic Burgers equation (SBE) driven by linear multiplicative noise:

(1)

du =
(
νuxx − uux

)
dt+ σu ◦ dWt,

u(0, t) = u(1, t) = 0, t ≥ 0,

u(x, 0) = u0(x), x ∈ (0, 1),

where ν is a positive diffusion coefficient, Wt is a two-sided one-dimensional Wiener
process, σ is a positive constant which measures the “amplitude” of the noise,
and u0 is some appropriate initial datum to be specified below. To fix ideas, the
multiplicative noise term σu ◦ dWt is understood in the sense of Stratonovich [53].

SPDEs driven by linear multiplicative noise such as the SBE (1) arise in var-
ious contexts, including turbulence theory or non-equilibrium phase transitions
[9, 27, 50], modeling of randomly fluctuating environment [7] in spatially-extended
harvesting models [36, 21, 57, 58, 49, 48], or simply modeling of parameter distur-
bances [10].
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2.2. Proper Orthogonal Decomposition (POD). We present in this section
a very brief account of the proper orthogonal decomposition (POD). The reader is
referred to, e.g., [37, 52, 60] for more details. The POD starts with the snapshots,
which, in this paper, are numerical approximations of the SBE (1) at different time
instances. The POD seeks a low-dimensional basis that approximates the snapshots
optimally with respect to a certain norm. In this paper, we employ the commonly
used L2-norm (see, e.g., [43] for alternatives). The solution of the minimization
problem is equivalent to the solution of an eigenvalue problem [16]. The POD
subspace of a given dimension r is spanned by the first r POD basis functions,
which are the normalized functions {ϕj}rj=1 that correspond to the first r largest
eigenvalues of the aforementioned eigenvalue problem:

(2) Xr := span{ϕ1, . . . , ϕr}.
Note that the POD functions are orthogonal to each other with respect to the
L2-inner product ⟨·, ·⟩ on the underlying phase space:

(3) ⟨ϕi, ϕj⟩ = δij ,

where δij denotes the Kronecker-delta. Note also that in (3) and the remainder of
the paper, the POD basis functions are considered as continuous functions on the
spatial domain, since they are linear combinations of finite element basis functions.

2.3. Galerkin ROM (G-ROM) for SBE. The derivation of the POD-based
Galerkin ROM (G-ROM) follows the standard Galerkin approximation procedure
with the underlying basis taken to be the POD basis. For the sake of clarity,
we sketch this derivation for the SBE (1) below. Given a positive integer r, the
r-dimensional POD Galerkin approximation ur of the SBE solution u takes the
following form:

(4) ur(X, t;ω) :=
r∑

j=1

aj(t;ω)ϕj(X),

where the time-varying random coefficients {aj(t, ω)}rj=1 are determined by solving:

(5)
⟨
dur, ϕj

⟩
=

⟨(
ν(ur)xx − ur(ur)x

)
, ϕj

⟩
dt+ σ⟨ur, ϕj⟩ ◦ dWt, j = 1, · · · , r.

The above system can be recast into the following more explicit form by using the
expansion of ur given in (4) and the orthogonality property satisfied by the POD
basis functions given in (3):

(6) daj =
[
− ν

r∑
k=1

ak
⟨
(ϕk)x, (ϕj)x

⟩
−

r∑
k,l=1

akal
⟨
ϕk(ϕl)x, ϕj

⟩]
dt+ σaj ◦ dWt,

where j = 1, · · · , r. This system of stochastic differential equations (SDEs) forms
the r-dimensional Galerkin ROM for the SBE (1).

2.4. Leray ROM (L-ROM) for SBE. To investigate fixes for G-ROM’s po-
tential numerical instability in the convection-dominated regime of the SBE (1),
we draw inspiration from the deterministic case and consider regularized ROMs
(Reg-ROMs). These Reg-ROMs belong to the wide class of stabilized ROMs (see,
e.g., [2, 3, 4, 5, 6, 8, 17, 26, 33, 37, 40, 52, 54, 56, 62, 64] for such examples). What
distinguishes the Reg-ROMs from the other stabilized ROMs is that they increase
the numerical stability of the model by using explicit spatial filtering, which is a
relatively new concept in the ROM field [62, 59, 63, 65]. In this study, we will use
the simplest such Reg-ROM, the Leray ROM (L-ROM) [59, 63], which is based on
a specific way of filtering the convective term in the SBE (1) as explained below.
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The Leray model was first used by Leray [46] as a theoretical tool to prove local
existence and uniqueness of weak solutions of the NSE. The Leray model has been
used as a numerical tool in the simulation of convection-dominated deterministic
flows with standard (e.g., finite element) numerical methods [25, 32, 45]. It has
also been used to derive Reg-ROMs for deterministic systems in [59, 63].

The extension of the L-ROM proposed in [59, 63] to the stochastic problem
(1) at hand is straightforward. There is only one crucial difference in its derivation
compared to the derivation of the G-ROM as outlined in Section 2.3, which consists
of replacing the nonlinear term ur(ur)x in (5) by a regularized term ur(ur)x here.
This regularized version, ur, of ur is obtained based on the usage of the following
ROM differential filter (DF)1 : Let δ be the radius of the DF. For a given v ∈ Xr,
find v ∈ Xr such that⟨ (

I − δ2∆
)
v, ϕj

⟩
= ⟨v, ϕj⟩, ∀ j = 1, . . . r ,(7)

where I denotes the identity operator on Xr and ∆ := d2

dx2 denotes the Laplacian
operator subject to homogeneous Dirichlet boundary conditions. Note that for each
given v ∈ Xr, its regularization v ∈ Xr is unique and the DF is thus well defined.
Indeed, if v and w are two different regularized versions of v, then it follows from
(7) that

(8) (I − δ2∆)(v − w) = 0,

which implies that v − w is an eigenfunction of the Laplacian ∆ with a positive
eigenvalue 1/δ2. This contradicts the fact that all eigenvalues of ∆ are negative.
Note also that since the DF is linear, it holds that

(9) v =
r∑

j=1

ajϕj , for each v =
r∑

j=1

ajϕj ∈ Xr,

where the filtered POD mode ϕk, 1 ≤ k ≤ r, is determined via

(10)
⟨ (

I − δ2∆
)
ϕk, ϕj

⟩
= ⟨ϕk, ϕj⟩, ∀ j = 1, . . . r .

With the DF defined above, the r-dimensional L-ROM approximation ur of the
SBE solution u takes the following form:

(11) ur(X, t;ω) :=

r∑
j=1

aj(t;ω)ϕj(X),

where the time-varying random coefficients {aj(t, ω)}rj=1 are determined by solving:

(12)
⟨
dur, ϕj

⟩
=

⟨(
ν(ur)xx − ur(ur)x

)
, ϕj

⟩
dt+ σ⟨ur, ϕj⟩ ◦ dWt, j = 1, · · · , r.

Note that by (9), we have

(13) ur(X, t;ω) =

r∑
j=1

aj(t;ω)ϕj(X).

By using (11) and (13) in (12), we obtain the following r-dimensional L-ROM for
SBE (1):

(14) daj =
[
− ν

r∑
k=1

ak
⟨
(ϕk)x, (ϕj)x

⟩
−

r∑
k,l=1

akal
⟨
ϕk(ϕl)x, ϕj

⟩]
dt+ σaj ◦ dWt,

1Differential filters have been used in the simulation of convection-dominated flows with stan-
dard numerical methods [30, 31]. In reduced order modeling, the DF was first used in [59] and

extended in [63].
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where j = 1, · · · , r.

3. Computational Investigation

In this section, we present a computational investigation of potential numerical
instability of the standard G-ROM (6) for the SBE (1) and of a possible alleviation
of such instability achieved by the L-ROM (14).

It has been observed in a previous study [12] that, for the deterministic Burgers
equation placed in a convection-dominated regime, the G-ROM yields excessive
spurious oscillations, especially when the dimension of the G-ROM is low. Similar
to [12], we set up the numerical experiments for the SBE (1) in a regime with a
small diffusion coefficient (ν = 10−3) and a steep internal layer; see Section 3.1. In
Section 3.2, the emergence of such oscillations is confirmed in the current stochastic
setting as well. The improvement achieved by the L-ROM in the form of significant
reduction of the spurious oscillations is then presented in Section 3.3. Finally,
some preliminary statistical tests are presented in Section 3.4, which also shows the
robustness of the L-ROM with respect to the strength of the noise.

3.1. Setup of the Numerical Experiments. In this section, we present a short
description of the setup of the numerical experiments.

Numerical Discretization of the SBE. The SBE (1) is solved by a semi-implicit
Euler scheme as given in [20, Section 6.1]. For the reader’s convenience, we briefly
describe the numerical discretization below, and refer to [20, Section 6.1] for more
details. We also refer the reader to [1, 11, 15, 38, 39, 47] for other numerical
approximation schemes of nonlinear SPDEs.

At each time step the nonlinearity uux = (u2)x/2 and the noise term σu ◦ dWt

are treated explicitly, and the other terms are treated implicitly. The Laplacian
operator is discretized using the standard second-order central difference approxi-
mation. The resulting semi-implicit scheme reads as follows:

un+1
j − un

j =
(
ν∆du

n+1
j +

σ2

2
un
j − 1

2
∇d

(
(un

j )
2
))

∆t+ σζnu
n
j

√
∆t ,(15)

where un
j is the discrete approximation of u(j∆x, n∆t), ∆x the mesh size of the

spatial discretization, and ∆t the time step. The discretized Laplacian ∆d and the
discretized spatial derivative ∇d in (15) are given by

∆du
n
j =

un
j−1 − 2un

j + un
j+1

(∆x)2
; ∇d

(
(un

j )
2
)
=

(un
j+1)

2 − (un
j )

2

∆x
, j ∈ {1, · · · , Nx−2} .

The boundary conditions in (15) are un
0 = un

Nx−1 = 0, where Nx is the total
number of grid points used for the discretization of the spatial domain [0, 1]. The
ζn in (15) are random variables drawn independently from a normal distribution
N (0, 1). Note that the additional drift term σ2un

j /2 in the RHS of (15) is due to
the conversion of the Stratonovich noise term σu ◦ dWt into its Itô form; see e.g.
[28, Sect. 6.5]. Throughout the paper, the simulations of the SBE (1) are performed
for ∆t = 10−4 and Nx = 1025 so that ∆x ≈ 9.8× 10−4. The diffusion coefficient ν
is set to be 0.001. The values of the parameter σ will be specified below.

Choice of the Initial Data. The initial condition is chosen to be a mollified and
slightly shifted version of the step function used in [42], which is given by

(16) u0(x) =

∫ ∞

−∞
ξ(y)ϕϵ(x− y) dy, x ∈ [0, 1].
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Here, ξ is the step function defined by ξ(x) = 1 if x ∈ (0.05, 0.55) and ξ(x) = 0
otherwise. The mollifier ϕϵ is given by ϕϵ(x) =

1
ϵϕ(

x
ϵ ) with

ϕ(x) =

{
C exp

(
− 1

(1−x2)

)
if |x| < 1,

0 otherwise,

and the normalization constant C is chosen such that
∫ 1

−1
ϕ(x) dx = 1. Throughout

our numerical experiments, the parameter ϵ in the mollifier ϕϵ is set to be ϵ = 0.01.
The modification adopted here is mainly intended to enforce the compatibility

of the initial and boundary condition at the left boundary point (x = 0) and to
avoid any potential regularity issues that may arise in our numerical discretization
of the SBE in (15) due to the discontinuity in the step function.

As will be seen below, by choosing such a step-function like initial profile and
by setting the diffusion constant ν sufficiently small, the SBE exhibits interesting
transient dynamics that will turn out to be a good laboratory to study the potential
instability of the G-ROM; cf. Fig. 1.

Numerical Integration of the ROMs. The discretizations of the G-ROM (6)
and the L-ROM (14) are carried out by using a standard Euler-Maruyama scheme
(see, e.g., [41, p. 305]). For instance, the corresponding G-ROM discretization is
given by:

(17)

an+1
j − anj =

[
− ν

r∑
k=1

ank
⟨
(ϕk)x, (ϕj)x

⟩
+

σ2

2
anj

−
r∑

k,l=1

anka
n
l

⟨
ϕk(ϕl)x, ϕj

⟩]
∆t+ σζna

n
j

√
∆t , j = 1, · · · , r,

where, as in (15), ζn are random variables drawn independently from a normal
distribution N (0, 1), and n = 1, · · · , N , with N being the total number of time
steps.

3.2. G-ROM Results: Spurious Oscillations. In this section, we assess the
performance of the G-ROM in its ability to reproduce the SBE’s spatio-temporal
field for a fixed noise amplitude σ = 0.3 and an arbitrarily fixed realization of the
noise. The statistical relevance of the results presented in this section is confirmed
in Section 3.4.

For this purpose, we first simulate the SBE (1) over the time interval [0, 1]
following the numerical setup presented in Section 3.1 and construct the POD
basis functions used in the derivation of the G-ROM (6). In Fig. 1, the numerically
simulated spatio-temporal field of the SBE (1) as well as the initial profile and the
final time solution profile are plotted.

To construct the POD basis functions used in the derivation of the G-ROM (6),
we collected 101 equally spaced snapshots (without subtracting the centering tra-
jectory) from the simulated SBE spatio-temporal field, and we used the method
of snapshots [60]. For illustration purposes, we plot four POD basis functions in
Fig. 2.

The tests for the G-ROM are carried out with dimension r = 6 as well as r = 10;
the results are plotted in Fig. 3. In both cases, the percentage of the total kinetic
energy contained in the first r modes is already high: 98.5% for r = 6 and 99.3%
for r = 10. Despite such a high percentage of energy captured by the first r POD
modes, the corresponding G-ROM exhibits very strong spurious oscillations, as can
be observed from both the reconstructed spatio-temporal fields and the final-time
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Figure 1. The numerically simulated spatio-temporal field of the
SBE (1) with σ = 0.3 forced by an arbitrary realization of the noise
(left panel), and the initial profile given by (16) with ϵ = 0.01 (right
panel, solid line) as well as the solution profile at time t = 1 (right
panel, dashed line).
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Figure 2. A few POD basis functions constructed from the
spatio-temporal field plotted in Fig. 1.

solution profiles in Fig. 3. On the other hand, an inspection of the evolution of the
projected dynamics onto each POD mode reveals that the G-ROM is performing
actually quite well in modeling the dynamics of the first two modes, while its
performance deteriorates for higher frequency modes; see Fig. 4 for the case r = 6.

For the SBE problem studied here, as the dimension of the G-ROM increases,
the overall accuracy also improves, as can already be seen in Fig. 3. Note also that
the G-ROM performance improves as the diffusion coefficient ν increases (results
not shown). This behavior is expected since increasing ν increases the diffusion
effects, which, in turn, reduces the steepness of the localized internal layer. These
numerical results suggest the convection-dominated regime to be a primary cause
of the G-ROM’s numerical instability observed here, just as in the deterministic
case [12].

3.3. L-ROM Results: Alleviation of G-ROM’s Spurious Oscillations. In
this section, we show that the G-ROM’s spurious oscillations such as those illus-
trated in the previous section can be alleviated by using the L-ROM (14) derived
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Figure 3. Spatio-temporal field, uG :=
∑r

j=1 ajφj , recon-

structed from the numerical simulation of the G-ROM (6) with
dimension r = 6 (left panel) and r = 10 (middle panel). The noise
path is the same as that used to generate the SBE’s spatio-temporal
field plotted in Fig. 1. The corresponding solution profiles at time
t = 1 are shown in the right panel.
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Figure 4. The time series aj , 1 ≤ j ≤ r, as modeled by the
G-ROM (6) with dimension r = 6 (blue curves). Also plotted are
the SBE solution projections onto the first six POD modes (black
curves).

in Section 2.4 when the spatial filtering parameter δ is appropriately calibrated;
cf. (10).

We choose the optimal value of this free parameter δ to be the value that mini-
mizes the L2-error of the corresponding L-ROM in reconstructing the SBE’s spatio-
temporal field. In our numerical experiments, we find the optimal value by trial
and error. To reduce the numerical efforts, especially in view of the statistical test
given in the next section, all the numerical results related to the L-ROM (14) are
obtained for δ = 0.12, which is a nearly optimal δ value for the r = 10 and σ = 0
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case.2 The L-ROM results corresponding to those plotted in Figs. 3 and 4 for the
G-ROM are shown in Figs. 5 and 6, respectively. As can be observed from these
results, the spurious oscillations are indeed significantly reduced in the L-ROM dy-
namics, and an improvement in the modeling of the SBE’s spatio-temporal field is
also achieved.

It is also interesting to note that although the regularization used in the L-
ROM successfully reduces the spurious oscillation observed in the G-ROM’s high-
frequency modes, it leads to a slight deterioration on the modeling of the projected
dynamics onto the first POD mode as can be seen by comparing the upper left
panels of Fig. 6 and Fig. 4. This deterioration is also observed even if the optimal
δ value is used. Of course, the deterioration is reduced when the dimension of the
L-ROM is increased. We intend to further investigate this issue (together with
potential L-ROM improvements) in a separate communication.

Figure 5. Results corresponding to Fig. 3 for the L-ROM (14),
where the spatio-temporal field uL :=

∑r
j=1 ajφj is reconstructed

from the numerical simulation of (14) with dimension r = 6 (left
panel) and r = 10 (middle panel).

3.4. Robustness of the L-ROM results. In this section, we present some fur-
ther numerical results regarding the statistical relevance of the results given in
Sections 3.2 and 3.3. We also investigate the effect of the magnitude of the noise
on the results.

For this purpose, the performances of the G-ROM and L-ROM are assessed by
using the relative L2-errors computed as follows:

E(ω) =

√∫ 1

0

∫ 1

0
|u(x, t;ω)− ur(x, t;ω)|2 dx dt√∫ 1

0

∫ 1

0
|u(x, t;ω)|2 dxdt

× 100%,(18)

where for each sample path ω, (x, t) 7→ u(x, t;ω) denotes the solution field to the
SBE (1), and (x, t) 7→ ur(x, t;ω) :=

∑r
j=1 aj(t;ω)ϕj(x) denotes the reconstructed

field from the solution to either the G-ROM (6) or the L-ROM (14) with dimension
r.

We consider 13 noise magnitude σ values equally spaced between 0 and 0.6. For
each of these σ values, we perform 3000 numerical simulations of the fine resolution

2We have checked that, under the parameter setting used to generate Figs. 5 and 6, the δ value

we chose (δ = 0.12) is close to the optimal δ values for both the r = 6 and the r = 10 cases.
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Figure 6. The time series aj , 1 ≤ j ≤ r, as modeled by the
L-ROM (14) with dimension r = 6 (red curves). Also plotted are
the SBE solution projections onto the first six POD modes (black
curves).

discretization of the SBE (to obtain u) and the two ROMs (to obtain ur). The
dimension of the ROMs is chosen to be r = 10, and the parameter δ used in the
differential filter involved in the L-ROM (14) is fixed to be 0.12 (cf. Section 3.3).
In Fig. 7, the ensemble averages of the relative errors are plotted; the error bars
indicate the standard deviations.3 This figure shows that the L-ROM is not only
more accurate but also more robust to noise variations than the G-ROM. Indeed,
for the larger σ values in Fig. 7, the standard deviations of the relative L2-errors of
the G-ROM are significantly larger than those of the L-ROM as indicated by the
corresponding error bars.

Finally, we mention that for the simulation of the G-ROM and L-ROM, instead
of updating the POD basis for each σ value and for each realization of the noise, we
have fixed the POD basis to be the one constructed from the spatio-temporal field
of the SBE at σ = 0 (i.e., the deterministic Burgers equation). We made this choice
based on the observation that the POD bases for different σ (within the explored
range [0, 0.6]) and different noise paths actually resemble the POD basis for the
σ = 0 case, which is a feature that is possibly specific to the linear multiplicative
noise. When the POD basis is updated for each noise path and each σ, we obtain
results that are similar to those plotted in Fig. 7, although the standard deviations
of the G-ROM errors are slightly reduced and the standard deviations of the L-ROM
errors are slightly increased.

4. Conclusions and Outlook

Numerical instability is a significant challenge for standard ROMs of determinis-
tic convection-dominated fluid flows. A natural question is how (if at all) this chal-
lenge translates to ROMs of stochastic fluid flows. In this paper, we took a modest
step toward investigating this question by performing a computational study of the
SBE (1) with a small diffusion coefficient (ν = 10−3) and in the presence of a steep
internal layer. The numerical results suggested that standard (Galerkin) ROMs

3We checked that the statistical results plotted in Fig. 7 have already converged by comparing

the results estimated from 1500 sample points of the relative errors for each of the σ values.
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Figure 7. Relative L2-errors of the G-ROM (6) and the L-
ROM (14) as computed via (18) for r = 10. The errors are com-
puted for 13 values of the noise amplitude parameter σ equally
spaced between 0 and 0.6. An ensemble simulation of size 3000 is
carried out for the SBE (1) and the two ROMs (6) and (14) for each
σ value. The ensemble averages of the relative errors are plotted.
The error bars indicate the standard deviations. The parameter δ
of the differential filter used in the L-ROM (14) is fixed to be 0.12
for all the simulations.

display spurious numerical oscillations in this convection-dominated regime. To
alleviate these oscillations, we tested the L-ROM, which is a regularized ROM that
uses explicit spatial filtering to smooth (regularize) the convective term in the SBE.
The L-ROM results were significantly more accurate than the G-ROM results. In
particular, the G-ROM numerical oscillations were significantly decreased by the
L-ROM; compare Figs. 3 and 4 with Figs. 5 and 6. Furthermore, the L-ROM re-
sults were less sensitive to noise magnitude variations than the G-ROM results; see
Fig. 7.

We emphasize that much more work remains to be done for a clear understand-
ing of the potential numerical instability of ROMs and possible remedies of such
instability for convection-dominated stochastic flows. For example, it is interesting
to explore whether the results of this computational study are valid for other types
of noise (e.g, additive noise or correlated additive and multiplicative noise) and
more realistic settings (e.g., 3D fluid flows modeled by the NSE). Furthermore, it
is also interesting to investigate the performance of other regularized ROMs (e.g.,
the evolve-then-filter ROM [63]) and stabilized ROMs.

Another important research direction is the investigation of the robustness of
the proposed ROMs. For example, it would be interesting to use more systematic
approaches (such as numerical analysis [33]) to determine general scalings for the
model parameters, such as the spatial filtering parameter δ used in the L-ROM.
One could also perform thorough sensitivity studies of these ROMs with respect
to model parameters, such as the number of basis functions (r) or the filtering
parameter (δ).

Finally, it is worth mentioning that besides regularizing the nonlinear terms, one
could also consider rectifying the projected nonlinearity by parameterizing in cer-
tain way the unresolved dynamics. Recently, an approach in that direction has been
developed, which is based on a new concept called stochastic parameterizing mani-
fold (PM) [20]. The PM approach has been applied to derive useful ROMs in various
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contexts including noise-induced large excursions and optimal control [20, 18]. It
has also been applied to derive stochastic closures with striking performance for a
stochastic Burgers-type equation driven by additive noise in a parameter regime
where steep gradients are present in the solution profiles [19]. The combination of
regularized ROMs studied here with the PM approach of [20, 19] constitutes thus
a natural extension that is worth pursuing.
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