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Abstract. We consider a fluid-structure interaction (FSI) problem that consists of a viscoelastic
fluid flow and a linear elastic structure. The system is formulated as (i) a monolithic problem,
where the matching conditions at the moving interface are satisfied implicitly, and (ii) a parti-

tioned problem, where the fluid and structure subproblems are coupled by Robin-type bound-
ary conditions along the interface. Numerical algorithms are designed based on the Arbitrary
Lagrangian-Eulerian (ALE) formulation for the time-dependent fluid domain. We perform nu-

merical experiments to compare monolithic and partitioned schemes and study the effect of stress
boundary conditions on the inflow portion of moving interface.
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1. Introduction

Fluid-structure interaction (FSI) problems are multi-physics problems involving
fluid flows and deformable structures. Such problems are widely used in engineering
and biological applications where a surrounding or internal fluid interacts with a
movable structure. In general, such FSI problems are solved by either a monolithic
or a partitioned approach. The monolithic approach solves the entire problem
within one complex system considering fluid and structure together while treating
the interface conditions implicitly. The partitioned approach, on the other hand,
decouples the interaction system into two subproblems and uses local solvers. The
interface-matching conditions are explicit as a bridge of the two subproblems. A
monolithic algorithm requires a large memory storage and a special solver, but
avoids the stability issue existing in many partitioned algorithms. When densities
of the fluid and structure are close, explicit staggered approaches often fail and
even implicit staggered methods may become unstable due to the added mass effect
[8, 13, 16, 18, 30].

Much work has been done with both monolithic and partitioned approaches for
Newtonian FSI problems where the fluid viscosity is constant. Fluids of interest in
some FSI problems include blood, air in the bronchial passages, paint, latex, and
other industrial polymers. There are some difficulties of simulating a fluid which
is non-Newtonian in nature since the shear stress of fluid is not proportional to
the shear rate. In simulations of blood flow, Newtonian models have been used
and have performed well in most cases where a larger vessel is considered such as
the aorta. However, it is well known that blood flow through small caliber vessels
shows non-Newtonian behavior, therefore demanding a more accurate and realistic
model [2, 4, 5, 15, 19, 21, 25, 28, 29].
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Unlike Newtonian FSI, which have been thoroughly elucidated [6, 7, 11, 12],
few analytical and numerical studies have been undertaken for interaction of non-
Newtonian fluids and elastic solids. Shear-thinning viscoelastic fluid models are
presented and numerically tested for a blood flow in [3, 5]. Chan et al. considered
Carreau fluid and power law fluid for FSI problems and compared the numerical re-
sults of the two different fluid models [9]. An energy estimate and numerical results
using a splitting method is presented by J.Janela et al. for a generalized Newto-
nian shear-thinning FSI problem [19], and an extended study was performed by the
same authors for several absorbing boundary conditions [20]. Relevant numerical
studies considering a viscoelastic flow through a flexible channel were done by Chen
et al. [10], and a mass-spring-dashpot prototype model was also examined by the
same authors. In our recent work [23, 24], we have analyzed quasi-Newtonian FSI
problems for stability and finite element error estimates.

In this paper, we consider a viscoelastic fluid where a separate hyperbolic differ-
ential constitutive equation is required to describe the complicated stress-deformation
relation. Difficulties arise from both analytical and computational aspects due to
the hyperbolic character and the lack of a stabilizing term for the stress. It is well
known that for a viscoelastic fluid, a stress boundary condition on the inflow bound-
ary must be imposed to ensure the well-posedness of the model equations. When a
partitioned scheme is considered for simulating viscoelastic FSI, an extra difficulty
is encountered due to (i) the movement of inlet and outlet boundaries along the
interface of two substructures and (ii) the lack of information on the stress along
the moving boundary. There are a few studies on viscoelastic FSI problems by
partitioned methods in the literature [3, 5, 10]; however, no numerical methods or
discussion have been reported to handle stress boundary conditions on the inter-
face. In this work, we simulate the viscoelastic FSI problem using a monolithic and
a partitioned algorithm and investigate how the stress boundary condition affects
the FSI system.

The paper is organized as follows. Section 2 introduces model equations of
the fluid-structure system with initial and boundary conditions. The matching
conditions for the two dynamics on the interface are also provided in this section.
In Section 3, we provide a monolithic and a partitioned formulation in the ALE
framework. The last section presents numerical experiments and comparison of
numerical results by algorithms discussed in Section 3.

2. Models Equations and Framework

Figure 1. Fluid-Structure interaction domain.
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The FSI system considered consists of a viscoelastic fluid and an isotropic linear

elastic structure as shown in Figure 1. Let Ωf
t be the moving fluid domain at t in

Rd, d = 2, 3, with the boundary Γf
t := Γf

D,0 ∪ Γf
D ∪ ΓIt , where ΓIt is the moving

interface boundary. Let Ωs be a fixed domain for the structure described in terms
of the Lagrangian frame of reference. The boundary of the structure is denoted as
Γs
t := Γs

N ∪ Γs
D ∪ ΓIt .

We consider the FSI system where the fluid equations are given by the Johnson-
Segalman viscoelastic model equations

σ + λ

(
∂σ

∂t
+ u · ∇σ + gβ(σ,∇u)

)
− 2αD(u) = 0 in Ωf

t ,(1)

ρf

(
∂u

∂t
+ u · ∇u

)
−∇ · σ − 2(1− α)∇ ·D(u) +∇p = ff in Ωf

t ,(2)

∇ · u = 0 in Ωf
t ,(3)

where σ denotes the extra stress tensor, u the velocity vector, p the pressure of
fluid, Re the Reynolds number, and λ is the Weissenberg number defined as the
product of the relaxation time and a characteristic strain rate. In (1) and (2),
D(u) := (∇u + ∇uT )/2 is the rate of the strain tensor, α is a number such that
0 < α < 1 which may be considered to be the fraction of viscoelastic viscosity, and
f is the body force. In (1), gβ(σ,∇u) is defined by

(4) gβ(σ,∇u) :=
1− β

2
(σ∇u+∇uTσ)− 1 + β

2
(∇uσ + σ∇uT )

for β ∈ [−1, 1]. Note that (1) reduces to the Oldroyd-B model for the case β = 1.
The structure is described by an isotropic linear elastic structure as

ρs
∂2η

∂t2
− 2νs∇ ·D(η)− λ̄∇(∇ · η) = fs in Ωs,(5)

where η is the displacement of structure and ρs and fs are the density and body
force of the structure, respectively. νs and λ are the Lamé parameters defined as

(6) νs =
E

2(1 + r)
, λ̄ =

rE

(1− 2r)(1 + r)
,

where E is the Young’s Modulus of the structure and r is its Poisson ratio.
Initial and boundary conditions for u and σ are given as follows:

u(x, 0) = u0, σ(x, 0) = σ0 in Ωf
0 ,(7)

η(x, 0) = η0, ηt(x, 0) = η̇0 in Ωs,(8)

u = uD on Γf
D,(9)

u = 0 on Γf
D,0,(10)

σ = σD on Γf
inlet,(11)

2νsD(η)ns + λ̄(∇ · η)ns = 0 on Γs
N ,(12)

η = 0 on Γs
D.(13)

In (11) Γf
inlet is a portion of Γf

D, where the normal velocity of fluid is negative.
The moving interface ΓIt is determined by the displacement η at time t. Based on
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the continuity of the velocity and the stress force, the matching conditions on the
interface are

∂η

∂t
= u on ΓIt ,(14)

(σ + 2(1− α)D(u)− pI)nf = −(2νsD(η) + λ̄(∇ · η))ns on ΓIt ,(15)

where nf and ns are the outward unit normal vectors to Ωf
t and Ωs, respectively.

For any time t ∈ (0, T ], we define a bijective mapping Ψt which maps the refer-

ence domain Ωf
0 to the physical domain Ωf

t ,

(16) Ψt : Ω
f
0 → Ωf

t , Ψt(y) = x(t,y) ,

where x and y are the spatial coordinates in Ωf
t and Ωf

0 , respectively. We refer to
x as the Eulerian coordinate and y as the Arbitrary Lagrangian Eulerian (ALE)
coordinate. The ALE formulation for (1)-(5) is then given by

σ + λ

(
∂σ

∂t
|y +(u− z) · ∇xσ + gβ(σ,∇xu)

)
− 2αDx(u) = 0 in Ωf

t ,(17)

Re

(
∂u

∂t
|y +(u− z) · ∇xu

)
−∇x · σ − 2(1− α)∇x ·Dx(u)(18)

+∇xp = ff in Ωf
t ,

∇x · u = 0 in Ωf
t ,(19)

ρs
∂2η

∂t2
− 2νs∇ ·D(η)− λ̄∇ · (∇ · η) = fs in Ωs,(20)

where z := ∂x
∂t |y is the domain velocity and ∂σ

∂t |y, ∂u
∂t |y are the ALE derivatives

of σ and u, respectively. See [23, 24] for details.
Define the function spaces

U0 := {v ∈ H1(Ωf
0 ) : v = 0 on Γf

D ∪ Γf
D,0},

Q0 := L2(Ωf
0 ),

Σ0 := {τ ∈ L2(Ωf
0 ) : τ ij = τ ji, τ = 0},

Ut := {v : v = v ◦Ψ−1
t for v ∈ U0} ,

Qt := {q : q = q ◦Ψ−1
t for p ∈ Q0} ,

Σt := {τ : τ = τ ◦Ψ−1
t for τ ∈ Σ0} ,

S := {ξ ∈ H1(Ωs) : ξ = 0 on Γs
D}.

Using Reynolds transport theorem

(21)

(
∂ϕ

∂t
|y, v

)
Ωf

t

=
d

dt
(ϕ, v)Ωf

t
− (ϕ∇x · z, v)Ωf

t
,
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we obtain the variational formulation of the FSI system: find (u, p,σ,η) satisfying
(9), (11) and

(σ, τ )Ωf
t
+ λ

d

dt
(σ, τ )Ωf

t
+ λ (−σ(∇x · z) + ((u− z) · ∇x)σ, τ )Ωf

t
(22)

+λ (gβ(σ,∇xu), τ )Ωf
t
− 2α (Dx(u), τ )Ωf

t
= 0 ∀τ ∈ Σt ,

Re
d

dt
(u,v)Ωf

t
+Re (−u(∇x · z) + (u− z) · ∇xu, v)Ωf

t
+ (σ, Dx(v))Ωf

t
(23)

+2(1− α)(Dx(u), Dx(v))Ωf
t
− (p,∇x · v)Ωf

t

= (f ,v)Ωf
t
+ ((σ + 2(1− α)Dx(u)− pI)nf ,v)ΓIt

∀v ∈ Ut ,

(q,∇x · u)Ωf
t
= 0 ∀q ∈ Qt ,(24)

ρs(
∂2η

∂t2
, ξ) + 2νs(D(η), D(ξ)) + λ̄(∇ · η,∇ · ξ)(25)

= (fs, ξ) +
(
(2νsD(η) + λ̄(∇ · η))ns, ξ

)
ΓI0

∀ξ ∈ S .

By introducing the coupled test function space

Ũt × S̃ := {(v, ξ) ∈ Ut × S : v |ΓIt
=

(
∂ξ

∂t
◦Ψ−1

t

)
|ΓIt

}

and using (15), the monolithic scheme of the weak formulation is written as

ρs(
∂2η

∂t2
, ξ)Ωs + 2νs(D(η),D(ξ))Ωs + λ̄(∇ · η,∇ · ξ)Ωs(26)

+λ

[
d

dt
(σ, τ )Ωf

t
− (σ(∇x · z), τ )Ωf

t
+ (((u− z) · ∇x)σ, τ )Ωf

t

+(gβ(σ,∇xu), τ )Ωf
t

]
+Re

[
d

dt
(u,v)Ωf

t
− (u(∇x · z),v)Ωf

t
+ ((u− z) · ∇xu,v)Ωf

t

]
+A((σ,u), (τ ,v))Ωf

t
− (p,∇x · v)Ωf

t
+ (q,∇x · u)Ωf

t

= (ff ,v)Ωf
t
+ (fs, ξ)Ωs ∀(v, q, τ , ξ) ∈ Ũt ×Qt ×Σt × S̃ ,

whereA((u,σ), (v, τ )) := (σ, τ )−2α (Dx(u), τ )+(σ, Dx(v))+2(1−α) (Dx(u), Dx(v)).
We notice that there is no issue on a stress boundary condition on the interface in
the monolithic scheme. However, we will need a boundary condition on the inflow
portion of the interface when a partitioned scheme for (22)-(25) is considered. A
streamline upwind Petrov-Galerkin (SUPG) method is applied to stabilize the con-
stitutive equation for the fluid and the fully discretized formulation is obtained by
the backward Euler method.

3. Partitioned Scheme

We consider a partitioned algorithm where the FSI problem is split into two sep-
arate subproblems, where the fluid subproblem requires a stress boundary condition
in addition to the standard boundary conditions for a decoupled FSI system. The
two subproblems are coupled through conditions on the interface. The most basic
partitioned transmission condition is the Dirichlet-Neumann algorithm, by which
the fluid subproblem is solved with the Dirichlet boundary condition,

u =
∂η

∂t
on ΓIt ,
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and the structure subproblem is solved with the Neumann boundary condition

(2νsD(η) + λ̄(∇ · η))ns = −(σ + 2(1− α)D(u)− p)nf on ΓIt .

There are also other transmission conditions based on the velocity and stress con-
tinuity matching conditions, but many of them require a large number of iterations
to converge when fluid and structure densities are similar [8].

In our work we consider a linear combination of Dirichlet and Neumann condi-
tions, which have shown good convergence properties with use of iterations between
subproblems of Newtonian FSI systems [1, 14].
Algorithm

For n=0,1,...do until the final time step
Initial guess of ηn+1

0

for k=0,1,... do until convergence
1. Solve the fluid subproblem with Robin boundary condition

σn+1
k+1 + λ

(
∂σn+1

k+1

∂t
|y +(un+1

k+1 − zn+1
k ) · ∇xσ

n+1
k+1 + gβ(σ

n+1
k+1 ,∇xu

n+1
k+1)

)
−2αDx(u

n+1
k+1) = 0 in Ωf

tn+1
k

Re

(
∂un+1

k+1

∂t
|y +(un+1

k+1 − zn+1
k ) · ∇xu

n+1
k+1

)
−∇x · σn+1

k+1 − 2(1− α)∇x ·Dx(u
n+1
k+1) +∇xp

n+1
k+1 = ff in Ωf

tn+1
k

∇x · un+1
k+1 = 0 in Ωf

tn+1
k

wfu
n+1
k+1 + (σn+1

k+1 + 2(1− α)D(un+1
k+1)− pn+1

k+1)nf

=

(
wf

∂ηn+1
k

∂t
− (2νsD(ηn+1

k ) + λ(∇ · ηn+1
k ))ns

)
◦Ψ−1

tn+1
k

on ΓI
t
n+1
k

.

2. Solve the structure subproblem with the Robin boundary condition

ρs
∂2ηn+1

k+1

∂t2
− 2νs∇ ·D(ηn+1

k+1)− λ̄∇(∇ · ηn+1
k+1) = fs in Ωs

ws

ηn+1
k+1

∆t
+ (2νsD(ηn+1

k+1) + λ(∇ · ηn+1
k+1))ns

=
(
wsu

n+1
k+1 − (σn+1

k+1 + 2(1− α)D(un+1
k+1)− pn+1

k+1)nf

)
◦Ψtn+1

k
on ΓI0 .

3. Update ΓI
t
n+1
k

, zn+1
k ,Ψtn+1

k
using ηn+1

k+1 .

The algorithm presented above applies the general Robin-Robin boundary con-
dition, where wf , ws are combination parameters for the transmission conditions.
With an appropriate choice of wf and ws, we can obtain mixed schemes such as
Dirichlet-Neumann, Dirichlet-Robin, Robin-Neumann etc. In our numerical ex-
periments presented in the next section, we use the optimal values of parameters
analyzed in [14].

4. Numerical Test

4.1. Convergence Test. The viscoelastic fluid subproblem of the algorithm re-
quires an appropriate stress boundary condition for the inflow portion of boundary.
In our setting, the inflow portion consists of both the inlet Γinlet and the inflow
portion (when u · n < 0) on the deformable interface (Figure 2).
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Figure 2. Viscoelastic Fluid Boundary.

Three different strategies regarding the stress boundary condition are considered
for numerical approximations:

(1) monolithic scheme: no stress boundary condition is imposed on the in-
flow portion of the interface since the interface terms are canceled in the
monolithic formulation;

(2) decoupled scheme with the do-nothing stress boundary condition: no stress
boundary condition is imposed on the inflow portion of the interface;

(3) decoupled scheme with the Dirichlet stress boundary condition: the inflow
stress boundary condition is imposed using the exact solution.

We perform the convergence test for both monolithic and partitioned algorithms.
Since we are interested in convergence outcomes of the FSI problem, we make the
assumption that the system has infinitesimal displacements of the fluid domain and
the structure, but with non-negligible velocity at the interface. Parameters chosen
for the simulations are: ρf = 1/0.35, ρs = 1.9, β = 0, α = 0.5, ws = 31.83,

wf = 722.55, νs = 3 and λ = 4.5. The splitting parameters ws, wf for the Robin-
Robin condition are chosen based on the result in [14].

Initial conditions, body forces, and boundary conditions are appropriately given
such that the exact solutions on the computational domain Ωf = [0, 1]× [0, 1] and
Ωs = [0, 1]× [1, 1.2] are

u =

[
cos(x+ t)sin(y + t) + sin(x+ t)cos(y + t)
−sin(x+ t)cos(y + t)− cos(x+ t)sin(y + t)

]
,

p = 2(sin(x+ t)sin(y + t)− cos(x+ t)cos(y + t)) + 2νscos(x+ t)sin(y + t),

σ =

[
σ11 0
0 σ22

]
,
σ11 = sin(x+ t)sin(y + t) + cos(x+ t)cos(y + t),
σ22 = −σ11,

η =

[
sin(x+ t)sin(y + t)
cos(x+ t)cos(y + t)

]
.

The finite element pair (Q2,Q1) is used to solve the fluid equations, while Q2,
Q1 finite elements are used for the structure displacement and the discrete ALE
mapping, respectively. Errors are computed over one time step starting from t = 0.1
with decreasing h and ∆t = 10−5.

In this test, we observe expected convergence rates by both the monolithic and
decoupled schemes. However, we note that optimal convergence rates are lost if no
stress boundary condition is imposed for the decoupled scheme. Considering these
results, we investigate the effect of stress boundary conditions in a physical setting
in the following simulation.

4.2. Hemodynamic simulation. The experiments presented in this section con-
sist of simulating a viscoelastic FSI system with various Weissenberg numbers and
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Table 1. Fluid convergence outcomes for monolithic viscoelastic FSI.

h ∥un − utrue∥L2 Rate ∥un − utrue∥H1 Rate ∥σn − σtrue∥L2 Rate
1/8 4.739e-004 - 5.016e-003 - 4.957e-003 -
1/16 6.437e-005 2.88 1.481e-003 1.76 1.641e-003 1.86
1/32 8.159e-006 2.98 3.996e-004 1.89 4.189e-004 1.97
1/64 9.782e-007 3.06 9.852e-005 2.02 1.040e-004 2.01

Table 2. Convergence outcomes for the partitioned scheme with
no stress boundary condition.

h ∥un − utrue∥H1 Rate ∥σn − σtrue∥L2 Rate
1/8 6.688e-003 - 6.830e-003 -
1/16 1.496e-003 2.16 1.684e-003 2.03
1/32 3.953e-004 1.92 4.181e-004 2.01
1/64 1.378e-004 1.51 1.341e-004 1.64

Table 3. Convergence outcomes for the partitioned scheme with
Dirichlet stress boundary condition.

h ∥un − utrue∥H1 Rate ∥σn − σtrue∥L2 Rate
1/8 5.503e-003 - 5.037e-003 -
1/16 1.057e-003 2.38 1.143e-003 2.14
1/32 2.698e-004 1.97 3.063e-004 1.90
1/64 6.561e-005 2.04 7.397e-005 2.05

comparing the effects of different stress boundary conditions on fixed and moving
inflow boundaries. We consider a blood flow problem reported in [22, 27], where
modeling parameters in the structure equation are consistent with blood flow in a
human body. The reference domain for the fluid subsystem has height 1 cm and
length 6 cm. The structure domain has height 0.1 cm and length 6 cm. The den-

uN = 0

uD = 0

Ωs = [0, 6]× [1, 1.1] ηD = 0ηD = 0

ηN = 0

uN = b(t) Ωf
0 = [0, 6]× [0, 1]

ΓIt0

Figure 3. Domain and boundary conditions for numerical experiment.

sity of the structure, ρs, is 1.1 g/cm3. The Young’s Modulus of the structure, E, is

3× 106 dyne/cm
2
, and its Poisson ratio, r, is 0.3. The Lamé parameters λ and νs

are defined as in (6). The remaining parameters are the same as in the convergence
test.

A force b(t) is applied to the left fluid boundary (Fig. 3) at t sec, where

b(t) =

{
(−103(1− cos 2πt

.025 ), 0) dyne/cm
2
, t ≤ 0.025

(0, 0), 0.025 < t < T.
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Figure 4. Pressure profile on the fluid domain with λ = 0.9.

The function b(t) defines the stress on the inlet denoted by uN . For numerical tests,
we impose the Neumann condition on both the inflow and outflow boundaries as
in the references above. For any fixed time, the constitutive equation (1) could be
reduced to

σ + λ (u · ∇σ + gβ(σ,∇u))− 2αD(u) = 0 in Ωf
t .(27)
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Figure 5. Pressure profile on the fluid domain with λ = 0.06.

Along the fixed inflow boundary on the left, the boundary condition for stress could
be approximated by the steady-state constitutive equation of (27) as

σ11 =
−αλ(β + 1)u2

1,y

(β2 − 1)λ2u2
1,y − 1

,(28)

σ12 =
−αu1,y

(β2 − 1)λ2u2
1,y − 1

,(29)

σ22 =
−αλ(β − 1)u2

1,y

(β2 − 1)λ2u2
1,y − 1

,(30)
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where u1,y = ∂u1

∂y is computed using the solution of the previous iteration step,

un+1
k [17]. Also, along the moving inflow boundary portion of the interface, we use

the previous time step solution σn for the stress boundary condition, and we use
homogeneous Dirichlet or Neumann boundary conditions for all other boundaries
(Fig. 3). We expect no inflow of the fluid along the interface until the fluid domain
starts to shrink after being maximally expanded due to the force b. Therefore, no
stress boundary condition is needed until that time because σ should be computed
as one of the unknown functions. The volume force for the fluid and structure are
f(t) = (0, 0) dyne/cm2, and the simulation begins at rest.

Figure 6. Structure displacement at t=0.02, 0.04, 0.06, 0.08s with
λ = 0.9.

The first test is performed with the Weissenberg number λ = 0.9. Figure 4
presents the pressure profile given by the partitioned algorithm with the Dirichlet
stress boundary condition imposed on the inflow portion through a sequence of
increasing times t=0.02, 0.04, 0.06, 0.08s.

The corresponding vertical structure displacements (scaled by 10) given by the
different schemes are compared in Figure 6. Since the monolithic scheme does not
have the stress boundary issue on the interface, we compare results given by the
partition scheme with and without the Dirichlet stress boundary condition against
results given by the monolithic scheme. The difference among the three cases is
obvious from the graphs, and we observe that the partition scheme outcome is
improved with the Dirichlet stress boundary condition imposed.

In order to investigate the effects of the stress boundary condition for a fluid close
to being Newtonian, we do similar experiments for a smaller Weissenberg number
λ = 0.06, which is used to simulate blood flow in [26, 28]. The corresponding
pressure profile is presented in Figure 5, where a similar pattern to Figure 4 is
observed. We also notice that the pressure decreases with the smaller Weissenberg
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Figure 7. Structure displacement at t=0.02, 0.04, 0.06, 0.08s with
λ = 0.06.

Figure 8. Structure displacement at t=0.02, 0.04, 0.06, 0.08s with
λ = 2.

number λ. For the purpose of comparison we also simulate with the relatively large
Weissenberg number λ = 2, where the viscoelastic behavior is more significant.
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Figure 9. Structure displacement at t=0.02, 0.04, 0.06, 0.08s with
different λ values.

The structure deformations under different schemes when λ = 0.06, 2 are pre-
sented in Figure 7 and Figure 8, respectively. With the small Weissenberg number,
the deformation difference is still visible but not significant. When the Weissenberg
number is high, on the other hand, the difference between the algorithms is more
obvious. In fact, with λ = 2, we can not obtain a steady solution without the stress
condition imposed, as observed in Figure 8 where an oscillation occurs.

The vertical structure deformations under the monolithic scheme with λ = 0.06,
0.9 and 2 are compared in Figure 9. It is observed that the displacement is more
significant for higher Wessenberg numbers.

5. Conclusion

We considered both monolithic and partitioned algorithms for a viscoelastic fluid-
structure interaction problem. For the partition algorithm, a Robin-Robin trans-
mission condition is applied for coupling two subproblems, where the fluid problem
is approximated with and without stress boundary conditions on the inflow por-
tion of the moving fluid boundary. Numerical tests were performed to investigate
the performance of the algorithms and to compare the effects of stress boundary
conditions for the viscoelastic FSI problem. The partition algorithm without stress
boundary conditions failed to obtain the optimal convergence rate in the conver-
gence test. In the blood flow simulation, the partitioned algorithm with the stress
boundary condition yielded a more accurate numerical solution, in particular, when
the viscoelastic property of the fluid was significant.
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