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Abstract. This paper presents two algorithms for calculating an ensemble of solutions to laminar

natural convection problems. The ensemble average is the most likely temperature distribution
and its variance gives an estimate of prediction reliability. Solutions are calculated by solving

two coupled linear systems, each involving a shared coefficient matrix, for multiple right-hand

sides at each timestep. Storage requirements and computational costs to solve the system are
thereby reduced. Stability and convergence of the method are proven under a timestep condition

involving fluctuations. A series of numerical tests, including predictability horizons, are provided

which confirm the theoretical analyses and illustrate uses of ensemble simulations.

Key words. Natural convection, Ensemble calculation, Uncertainty quantification, Finite ele-
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1. Introduction

Ensemble calculations are essential in predictions of the most likely outcome
of systems with uncertain data, e.g., weather forecasting [13], ocean modeling [15],
turbulence [12], etc. Ensemble simulations classically involve J sequential, fine mesh
runs or J parallel, coarse mesh runs of a given code. This leads to a competition
between ensemble size and mesh density. We develop linearly implicit timestepping
methods with shared coefficient matrices to address this issue. For such methods,
it is more efficient in both storage and solution time to solve J linear systems with
a shared coefficient matrix than with J different matrices.

Prediction of thermal profiles is essential in many applications [1, 8, 17, 18].
Herein, we extend [6] from isothermal flows to temperature dependent natural con-
vection. We consider two natural convection problems enclosed in mediums with:
non-zero wall thickness [3] and zero wall thickness; Figure 1 illustrates a
typical setup. The latter problem is often utilized as a thin wall approximation.

Consider the Thick wall problem. Let Ωf ⊂ Ω be polyhedral domains in
Rd(d = 2, 3) with boundaries ∂Ωf and ∂Ω, respectively, such that dist(∂Ωf ,∂Ω)
> 0. The boundary ∂Ω is partitioned such that ∂Ω = Γ1 ∪ Γ2 with Γ1 ∩ Γ2 =
∅ and |Γ1| > 0. Given u(x, 0;ωj) = u0(x;ωj) and T (x, 0;ωj) = T 0(x;ωj) for
j = 1, 2, ..., J , let u(x, t;ωj) : Ω × (0, t∗] → Rd, p(x, t;ωj) : Ω × (0, t∗] → R, and
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T (x, t;ωj) : Ω× (0, t∗]→ R satisfy

ut + u · ∇u− Pr∆u+∇p = PrRaγT + f in Ωf ,(1)

∇ · u = 0 in Ωf ,(2)

Tt + u · ∇T −∇ · (κ∇T ) = g in Ω,(3)

u = 0 on ∂Ωf , u = 0 in Ω− Ωf , T = 0 on Γ1 and n · ∇T = 0 on Γ2.(4)

Here n denotes the usual outward normal, γ denotes the unit vector in the direction
of gravity, Pr is the Prandtl number, Ra is the Rayleigh number, and κ = κf in
Ωf and κ = κs in Ω−Ωf is the thermal conductivity of the fluid or solid medium.
Further, f and g are the body force and heat source, respectively.

Let < u >n:= 1
J

∑J
j=1 u

n and u′
n

= un− < u >n. To present the idea, sup-
press the spatial discretization for the moment. We apply an implicit-explicit time-
discretization to the system (1) - (4), while keeping the coefficient matrix indepen-
dent of the ensemble members. This leads to the following timestepping method:

un+1 − un

∆t
+ < u >n ·∇un+1 + u′

n · ∇un

−Pr4un+1 +∇pn+1 = PrRaγTn+1 + fn+1,(5)

∇ · un+1 = 0,(6)

Tn+1 − Tn

∆t
+ < u >n ·∇Tn+1 + u′

n · ∇Tn − κ∆Tn+1 = gn+1.(7)

Consider the Thin wall problem. The main difference is a “u1” term on the r.h.s
of the temperature equation (10) absent in (3). This apparently small difference
in the model produces a significant difference in the stability of the approximate
solution. In particular, a discrete Gronwall inequality is used which allows for the
loss of long-time stability; see Section 4 below. Consider:

ut + u · ∇u− Pr∆u+∇p = PrRaγT + f in Ω,(8)

∇ · u = 0 in Ω,(9)

Tt + u · ∇T −∇ · (κ∇T ) = u1 + g in Ω,(10)

u = 0 on ∂Ω, T = 0 on Γ1, n · ∇T = 0 on Γ2,(11)

where u1 is the first component of the velocity. If we again momentarily disregard
the spatial discretization, our timestepping method can be written as:

un+1 − un

∆t
+ < u >n ·∇un+1 + u′

n · ∇un − Pr4un+1 +∇pn+1 = PrRaγTn + fn+1,

(12)

∇ · un+1 = 0,(13)

Tn+1 − Tn

∆t
+ < u >n ·∇Tn+1 + u′

n · ∇Tn − κ∆Tn+1 = un1 + gn+1.(14)

By lagging both u′ and the coupling terms in the method, the fluid and thermal
problems uncouple and each sub-problem has a shared coefficient matrix for all
ensemble members.
Remark: The formulation (12) - (14) arises, e.g., in the study of natural convection
within a unit square or cubic enclosure with a pair of differentially heated vertical
walls. In particular, the temperature distribution is decomposed into θ(x, t) =
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Figure 1. Domain and boundary conditions for (a) thick walled
(b) thin walled double pane window problem benchmark.

T (x, t) + φ(x), where φ(x) = 1 − x1 is the linear conduction profile and T (x, t)
satisfies homogeneous boundary conditions on the corresponding pair of vertical
walls.

In Section 2, we collect necessary mathematical tools. In Section 3, we present
algorithms based on (5) - (7) and (12) - (14). Stability and error analyses follow in
Section 4. We end with numerical experiments and conclusions in Sections 5 and
6. In particular, two stable, convergent ensemble algorithms are presented. These
algorithms can be used to efficiently compute an ensemble of solutions to (1) - (4)
and (8) - (11) and estimate predictability horizons. The ensemble average is shown
to produce a better estimate of the energy in the system, for a test problem, than
any member of the ensemble.

2. Mathematical Preliminaries

The L2(Ω) inner product is (·, ·) and the induced norm is ‖·‖. Define the Hilbert
spaces,

X := H1
0 (Ω)d = {v ∈ H1(Ω)d : v = 0 on ∂Ω},

Q := L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω

qdx = 0},

W := {S ∈ H1(Ω) : S = 0 on Γ1}, V := {v ∈ X : (q,∇ · v) = 0 ∀q ∈ Q}.

The explicitly skew-symmetric trilinear forms are denoted:

b(u, v, w) =
1

2
(u · ∇v, w)− 1

2
(u · ∇w, v) ∀u, v, w ∈ X,

b∗(u, T, S) =
1

2
(u · ∇T, S)− 1

2
(u · ∇S, T ) ∀u ∈ X, ∀T, S ∈W.

They enjoy the following continuity results and properties.
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Lemma 1. There are constants C1, C2, C3, C4, C5, and C6 such that for all u,v,w
∈ X and T,S ∈W , b(u, v, w) and b∗(u, T, S) satisfy

b(u, v, w) =

∫
Ω

u · ∇v · wdx+
1

2

∫
Ω

(∇ · u)v · wdx,

b∗(u, T, S) =

∫
Ω

u · ∇TSdx+
1

2

∫
Ω

(∇ · u)TSdx,

b(u, v, w) ≤ C1‖∇u‖‖∇v‖‖∇w‖,

b(u, v, w) ≤ C2

√
‖u‖‖∇u‖‖∇v‖‖∇w‖,

b∗(u, T, S) ≤ C3‖∇u‖‖∇T‖‖∇S‖,

b∗(u, T, S) ≤ C4

√
‖u‖‖∇u‖‖∇T‖‖∇S‖,

b(u, v, w) ≤ C5‖∇u‖‖∇v‖
√
‖w‖‖∇w‖,

b∗(u, T, S) ≤ C6‖∇u‖‖∇T‖
√
‖S‖‖∇S‖.

Proof. The proof of the first two identities is a calculation. The next four results
follow from applications of Hölder and Sobolev embedding inequalities; see Lemma
2.2 on p. 2044 of [14]. We will prove the last two results for d = 3; for d = 2 they
are improvable. For all u,v,w ∈ X,

|(u · ∇v, w)| ≤ C‖u‖L6‖∇v‖‖w‖L3

≤ C‖∇u‖‖∇v‖
√
‖w‖‖∇w‖,

where Hölder, Ladyzhenskaya and Gagliardo-Nirenberg inequalities were used, re-
spectively. Using the above result and inequalities and the first identity in Lemma
1,

|b(u, v, w)| = |(u · ∇v, w) +
1

2

∫
Ω

(∇ · u)v · wdx|

≤ |(u · ∇v, w)|+ |1
2

∫
Ω

(∇ · u)v · wdx|

≤ C‖∇u‖‖∇v‖
√
‖w‖‖∇w‖+ C‖∇ · u‖‖v‖L6‖w‖L3

≤ C‖∇u‖‖∇v‖
√
‖w‖‖∇w‖+ C‖∇u‖‖∇v‖

√
‖w‖‖∇w‖

≤ C‖∇u‖‖∇v‖
√
‖w‖‖∇w‖.

In similar fashion, there is a C = C(Ω) such that

|b∗(u, T, S)| ≤ |(u · ∇T, S)|+ |1
2

∫
Ω

(∇ · u)TSdx|

≤ C‖∇u‖‖∇T‖
√
‖S‖‖∇S‖+ C‖∇ · u‖‖T‖L6‖S‖L3

≤ C‖∇u‖‖∇T‖
√
‖S‖‖∇S‖+ C‖∇u‖‖∇T‖

√
‖S‖‖∇S‖

≤ C‖∇u‖‖∇T‖
√
‖S‖‖∇S‖.

�
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The weak formulation of system (1) - (4) is: Find u : [0, t∗]→ X, p : [0, t∗]→ Q,
T : [0, t∗]→W for a.e. t ∈ (0, t∗] satisfying for j = 1, ..., J :

(ut, v) + b(u, u, v) + Pr(∇u,∇v)− (p,∇ · v) = PrRa(γT, v) + (f, v) ∀v ∈ X,
(15)

(q,∇ · u) = 0 ∀q ∈ Q,(16)

(Tt, S) + b∗(u, T, S) + κ(∇T,∇S) = (g, S) ∀S ∈W.(17)

Similarly, the weak formulation of system (8) - (11) is: Find u : [0, t∗] → X,
p : [0, t∗]→ Q, T : [0, t∗]→W for a.e. t ∈ (0, t∗] satisfying for j = 1, ..., J :

(ut, v) + b(u, u, v) + Pr(∇u,∇v)− (p,∇ · v) = PrRa(γT, v) + (f, v) ∀v ∈ X,
(18)

(q,∇ · u) = 0 ∀q ∈ Q,(19)

(Tt, S) + b∗(u, T, S) + κ(∇T,∇S) = (u1, S) + (g, S) ∀S ∈W.(20)

2.1. Finite Element Preliminaries. Consider a regular, quasi-uniform mesh
Ωh = {K} of Ω with maximum triangle diameter length h. Further, for the system
(1) - (4), suppose that ∂Ωf and ∂Ω−∂Ωf lie along the meshlines of the triangulation
of Ω. Let Xh ⊂ X, Qh ⊂ Q, and Wh ⊂ W be conforming finite element spaces
consisting of continuous piecewise polynomials of degrees j, l, and j, respectively.
Moreover, assume they satisfy the following approximation properties ∀1 ≤ j, l ≤
k,m:

inf
vh∈Xh

{
‖u− vh‖+ h‖∇(u− vh)‖

}
≤ Chk+1|u|k+1,(21)

inf
qh∈Qh

‖p− qh‖ ≤ Chm|p|m,(22)

inf
Sh∈Wh

{
‖T − Sh‖+ h‖∇(T − Sh)‖

}
≤ Chk+1|T |k+1,(23)

for all u ∈ X ∩Hk+1(Ω)d, p ∈ Q ∩Hm(Ω), and T ∈ W ∩Hk+1(Ω). Furthermore,
we consider those spaces for which the discrete inf-sup condition is satisfied,

(24) inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)

‖qh‖‖∇vh‖
≥ β > 0,

where β is independent of h. The space of discretely divergence free functions is
defined by

Vh := {vh ∈ Xh : (qh,∇ · vh) = 0,∀qh ∈ Qh}.

The space V ∗h , dual to Vh, is endowed with the following dual norm

‖w‖V ∗h := sup
vh∈Vh

(w, vh)

‖∇vh‖
.

The discrete inf-sup condition implies that we may approximate functions in V well
by functions in Vh,

Lemma 2. Suppose the discrete inf-sup condition (24) holds, then for any v ∈ V

inf
vh∈Vh

‖∇(v − vh)‖ ≤ C(β) inf
vh∈Xh

‖∇(v − vh)‖.

Proof. See Chapter 2, Theorem 1.1 on p. 59 of [9]. �
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We will also assume that the mesh and finite element spaces satisfy the standard
inverse inequality [5]:

‖∇χ1,2‖ ≤ Cinv,1,2(αmin)h−1‖χ1,2‖ ∀χ1 ∈ Xh, ∀χ2 ∈Wh,

where αmin denotes the minimum angle in the triangulation. Two discrete Gronwall
inequalities will play a role in the upcoming analysis.

Lemma 3. (Discrete Gronwall Lemma). Let ∆t, H, an, bn, cn, and dn be finite
nonnegative numbers for n ≥ 0 such that

aN + ∆t

N∑
0

bn ≤ ∆t

N∑
0

dnan + ∆t

N∑
0

cn +H.

Suppose that ∆tdn < 1 ∀n. Then,

aN + ∆t

N∑
0

bn ≤ exp
(
∆t

N∑
0

dn
1−∆tdn

)(
∆t

N∑
0

cn +H
)
.

Proof. See Lemma 5.1 on p. 369 of [11]. �

Lemma 4. (Discrete Gronwall Lemma). Let ∆t, H, an, bn, cn, and dn be finite
nonnegative numbers for n ≥ 0 such that for N ≥ 1

aN + ∆t

N∑
0

bn ≤ ∆t

N−1∑
0

dnan + ∆t

N∑
0

cn +H,

then for all ∆t > 0 and N ≥ 1

aN + ∆t

N∑
0

bn ≤ exp
(
∆t

N−1∑
0

dn
)(

∆t

N∑
0

cn +H
)
.

Proof. See Lemma 5.1 on p. 369 of [11]. �

The discrete time analysis will utilize the following norms ∀ − 1 ≤ k <∞:

|||v|||∞,k := max
0≤n≤N

‖vn‖k, |||v|||p,k :=
(
∆t

N∑
n=0

‖vn‖pk
)1/p

.

3. Numerical Scheme

Denote the fully discrete solutions by unh, pnh, and Tnh at time levels tn =
n∆t, n = 0, 1, ..., N , and t∗ = N∆t. Given (unh, p

n
h, T

n
h ) ∈ (Xh, Qh,Wh), find

(un+1
h , pn+1

h , Tn+1
h ) ∈ (Xh, Qh,Wh) satisfying, for every n = 0, 1, ..., N , the fully

discrete approximation of the Thick wall problem:

(25) (
un+1
h − unh

∆t
, vh) + b(< uh >

n, un+1
h , vh)

+ b(u′
n
h, u

n
h, vh) + Pr(∇un+1

h ,∇vh)− (pn+1
h ,∇ · vh)

= PrRa(γTn+1
h , vh) + (fn+1, vh) ∀vh ∈ Xh,

(qh,∇ · un+1
h ) = 0 ∀qh ∈ Qh,(26)
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(27) (
Tn+1
h − Tnh

∆t
, Sh) + b∗(< uh >

n, Tn+1
h , Sh)

+ b∗(u′
n
h, T

n
h , Sh) + κ(∇Tn+1

h ,∇Sh)

= (gn+1, Sh) ∀Sh ∈Wh.

Thin wall problem:

(28) (
un+1
h − unh

∆t
, vh) + b(< uh >

n, un+1
h , vh)

+ b(u′
n
h, u

n
h, vh) + Pr(∇un+1

h ,∇vh)− (pn+1
h ,∇ · vh)

= PrRa(γTnh , vh) + (fn+1, vh) ∀vh ∈ Xh,

(29) (qh,∇ · un+1
h ) = 0 ∀qh ∈ Qh,

(30)

(
Tn+1
h − Tnh

∆t
, Sh) + b∗(< uh >

n, Tn+1
h , Sh) + b∗(u′

n
h, T

n
h , Sh) + κ(∇Tn+1

h ,∇Sh)

= (un1 , Sh) + (gn+1, Sh) ∀Sh ∈Wh.

Remark: The treatment of the nonlinear terms in the time discretizations (5) -
(7) and (12) - (14) leads to a shared coefficient matrix independent of the ensemble
members.

4. Numerical Analysis of the Ensemble Algorithm

We present stability results for the aforementioned algorithms under the follow-
ing timestep condition:

C†∆t

h
max

1≤j≤J
‖∇u′nh‖2 ≤ 1,(31)

where C† ≡ C†(|Ω|, αmin, κ, Pr). In Theorems 1 and 2, the nonlinear stability of
the velocity, temperature, and pressure approximations are proven under condition
(31) for the thick wall (25) - (27) and thin wall problems (28) - (30), respectively.
Remark: Stability of the numerical approximations can also be proven under:
JC†∆t
h < ‖∇u′nh‖2 >≤ 1. If C†/J ≥ 1, then JC† can be replaced with C†.

4.1. Stability Analysis.

Theorem 1. Consider the Thick wall problem (25) - (27). Suppose f ∈ L∞(0, t∗;
H−1(Ω)d), g ∈ L∞(0, t∗;H−1(Ω)). If (25) - (27) satisfy condition (31), then

‖TNh ‖2 + ‖uNh ‖2 +
1

2

N−1∑
n=0

(
‖Tn+1

h − Tnh ‖2 + ‖un+1
h − unh‖2

)
+ κ∆t‖∇TNh ‖2 + Pr∆t‖∇uNh ‖2

≤ 2∆tPrRa2C2
PF,1

N−1∑
n=0

(∆t

κ

n∑
k=0

‖gk+1‖2−1 + ‖T 0
h‖2 + κ∆t‖∇T 0

h‖2
)

+
2∆t

Pr

N−1∑
n=0

‖fn+1‖2−1 + ‖u0
h‖2 + Pr∆t‖∇u0

h‖2 + ‖T 0
h‖2 + κ∆t‖∇T 0

h‖2.
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Further,

β∆t

N−1∑
n=0

‖pn+1
h ‖ ≤ C∆t

N−1∑
n=0

(
C1‖∇ < uh >

n ‖‖∇un+1
h ‖+ C1‖∇u′

n
h‖‖∇unh‖

+ Pr‖∇un+1
h ‖+ PrRaCPF,1‖Tn+1

h ‖+ ‖fn+1‖−1

)
.

Proof. Let Sh = Tn+1
h in equation (27) and use the polarization identity. Multiply

by ∆t on both sides and rearrange. Then,

1

2

{
‖Tn+1

h ‖2 − ‖Tnh ‖2 + ‖Tn+1
h − Tnh ‖2

}
+ κ∆t‖∇Tn+1

h ‖2

= ∆t(gn+1, Tn+1
h )−∆tb∗(u′

n
h, T

n
h , T

n+1
h ).(32)

Use Cauchy-Schwarz-Young on ∆t(gn+1, Tn+1
h ),

∆t(gn+1, Tn+1
h ) ≤ ∆t

2ε
‖gn+1‖2−1 +

∆tε

2
‖∇Tn+1

h ‖2.(33)

Consider −∆tb∗(u′
n
h, T

n
h , T

n+1
h ). Add and subtract −∆tb∗(u′

n
h, T

n
h , T

n
h ), use skew-

symmetry, Lemma 1, the inverse inequality, and the Cauchy-Schwarz-Young in-
equality. Then,

| −∆tb∗(u′
n
h, T

n
h , T

n+1
h )| = | −∆tb∗(u′

n
h, T

n
h , T

n+1
h − Tnh )|

(34)

≤ ∆tC6‖∇u′
n
h‖‖∇Tnh ‖

√
‖Tn+1

h − Tnh ‖‖∇(Tn+1
h − Tnh )‖

≤
∆tC6C

1/2
inv,2

h1/2
‖∇u′nh‖‖∇Tnh ‖‖Tn+1

h − Tnh ‖

≤ C2
6Cinv,2∆t2

h
‖∇u′nh‖2‖∇Tnh ‖2 +

1

4
‖Tn+1

h − Tnh ‖2.

Using (33) and (34) in (32) leads to

1

2

{
‖Tn+1

h ‖2 − ‖Tnh ‖2 + ‖Tn+1
h − Tnh ‖2

}
+ κ∆t‖∇Tn+1

h ‖2 ≤ ∆t

2ε
‖gn+1‖2−1

+
∆tε

2
‖∇Tn+1

h ‖2 +
C2

6Cinv,2∆t2

h
‖∇u′nh‖2‖∇Tnh ‖2 +

1

4
‖Tn+1

h − Tnh ‖2.

Let ε = κ, add and subtract κ∆t
2 ‖∇T

n
h ‖2 to the l.h.s. Regrouping terms leads to

1

2

{
‖Tn+1

h ‖2 − ‖Tnh ‖2
}

+
1

4
‖Tn+1

h − Tnh ‖2 +
κ∆t

2

{
‖∇Tn+1

h ‖2 − ‖∇Tnh ‖2
}

+
κ∆t

2
‖∇Tnh ‖2

[
1− 2C2

6Cinv,2∆t

κh
‖∇u′nh‖2

]
≤ ∆t

2κ
‖gn+1‖2−1.

By hypothesis,
2C2

6Cinv,2∆t
κh ‖∇u′nh‖2 ≤ 1. Thus,

1

2

{
‖Tn+1

h ‖2 − ‖Tnh ‖2
}

+
1

4
‖Tn+1

h − Tnh ‖2 +
κ∆t

2

{
‖∇Tn+1

h ‖2 − ‖∇Tnh ‖2
}

≤ ∆t

2κ
‖gn+1‖2−1.
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Sum from n = 0 to n = N − 1 and put all data on the right hand side. This yields

1

2
‖TNh ‖2 +

1

4

N−1∑
n=0

‖Tn+1
h − Tnh ‖2 +

κ∆t

2
‖∇TNh ‖2

≤ ∆t

2κ

N−1∑
n=0

‖gn+1‖2−1 +
1

2
‖T 0

h‖2 +
κ∆t

2
‖∇T 0

h‖2.(35)

Therefore, the l.h.s. is bounded by data on the r.h.s. The temperature approxima-
tion is stable.

We follow an almost identical form of attack for the velocity as we did for the
temperature. Let vh = un+1

h ∈ Vh in (25) and use the polarization identity. Multi-
ply by ∆t on both sides and rearrange terms. Then,

(36)
1

2

{
‖un+1

h ‖2 − ‖unh‖2 + ‖un+1
h − unh‖2

}
+ ∆tPr‖∇un+1

h ‖2

= −∆tb(u′
n
h, u

n
h, u

n+1
h ) + ∆tPrRa(γTn+1

h , un+1
h ) + ∆t(fn+1, un+1

h ).

Use the Cauchy-Schwarz-Young inequality on ∆tPrRa(γTn+1
h , un+1

h ) and ∆t(fn+1,

un+1
h ) and note that |γ| = 1,

∆tPrRa(γTn+1
h , un+1

h ) ≤
∆tPr2Ra2C2

PF,1

2ε
‖Tn+1

h ‖2 +
∆tε

2
‖∇un+1

h ‖2,(37)

∆t(fn+1, un+1
h ) ≤ ∆t

2ε
‖fn+1‖2−1 +

∆tε

2
‖∇un+1

h ‖2.(38)

Using skew-symmetry, Lemma 1, the inverse inequality, and the Cauchy-Schwarz-
Young inequality on ∆tb(u′

n
h, u

n
h, u

n+1
h ) leads to

| −∆tb(u′
n
h, u

n
h, u

n+1
h )| ≤ C2

5Cinv,1∆t2

h
‖∇u′nh‖2‖∇unh‖2 +

1

4
‖un+1

h − unh‖2.(39)

Using (37), (38), and (39) in (36) leads to

1

2

{
‖un+1

h ‖2 − ‖unh‖2 + ‖un+1
h − unh‖2

}
+ Pr∆t‖∇un+1

h ‖2+

≤
∆tPr2Ra2C2

PF,1

2ε
‖Tn+1

h ‖2 +
∆t

2ε
‖fn+1‖2−1

+ ∆tε‖∇un+1
h ‖2 +

C2
5Cinv,1∆t2

h
‖∇u′nh‖2‖∇unh‖2 +

1

4
‖un+1

h − unh‖2.

Let ε = Pr/2, add and subtract Pr∆t
2 ‖∇u

n
h‖2 to the l.h.s., and regroup terms.

Then,

1

2

{
‖un+1

h ‖2 − ‖unh‖2
}

+
1

4
‖un+1

h − unh‖2 +
Pr∆t

2

{
‖∇un+1

h ‖2 − ‖∇unh‖2
}

+
Pr∆t

2
‖∇unh‖2

[
1− 2C2

5Cinv,1∆t

Prh
‖∇u′nh‖2

]
≤ ∆tPrRa2C2

PF,1‖Tn+1
h ‖2 +

∆t

Pr
‖fn+1‖2−1.
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By hypothesis,
2C2

5Cinv,1∆t
Prh ‖∇u′nh‖2 ≤ 1. Thus,

1

2

{
‖un+1

h ‖2 − ‖unh‖2
}

+
1

4
‖un+1

h − unh‖2 +
Pr∆t

2

{
‖∇un+1

h ‖2 − ‖∇unh‖2
}

≤ ∆tPrRa2C2
PF,1‖Tn+1

h ‖2 +
∆t

Pr
‖fn+1‖2−1.

Summing from n = 0 to n = N − 1 and putting all data on r.h.s. yields

(40)
1

2
‖uNh ‖2 +

1

4

N−1∑
n=0

‖un+1
h − unh‖2 +

Pr∆t

2
‖∇uNh ‖2

≤ ∆tPrRa2C2
PF,1

N−1∑
n=0

‖Tn+1
h ‖2 +

∆t

Pr

N−1∑
n=0

‖fn+1‖2−1

+
1

2
‖u0

h‖2 +
Pr∆t

2
‖∇u0

h‖2.

Together with the stability of the temperature approximation, the l.h.s. is bounded
above by data; that is, the velocity approximation is stable. Adding (35) and (40)
and mutliplying by 2 yields the result. We now prove stability of the pressure
approximation. We first form an estimate for the discrete time derivative term.

Consider (25), isolate (
un+1
h −un

h

∆t , vh), let 0 6= vh ∈ Vh, and multiply by ∆t. Then,

(41) (un+1
h − unh, vh) = −∆tb(< uh >

n, un+1
h , vh)−∆tb(u′

n
h, u

n
h, vh)

−∆tPr(∇un+1
h ,∇vh) + ∆tPrRa(γTn+1

h , vh) + ∆t(fn+1, vh).

Applying Lemma 1 to the skew-symmetric trilinear terms and the Cauchy-Schwarz
and Poincaré-Friedrichs inequalities to the remaining terms yields

| −∆tb(< uh >
n, un+1

h , vh)| ≤ C1∆t‖∇ < uh >
n ‖‖∇un+1

h ‖‖∇vh‖,(42)

| −∆tb(u′
n
h, u

n
h, vh)| ≤ C1∆t‖∇u′nh‖‖∇unh‖‖∇vh‖,(43)

| −∆tPr(∇un+1
h ,∇vh)| ≤ Pr∆t‖∇un+1

h ‖‖∇vh‖,(44)

|∆tPrRa(γTn+1
h , vh)| ≤ PrRa∆t‖Tn+1

h ‖‖vh‖
≤ PrRaCPF,1∆t‖Tn+1

h ‖‖∇vh‖,(45)

|∆t(fn+1, vh)| ≤ ∆t‖fn+1‖−1‖∇vh‖.(46)

Apply the above estimates in (41), divide by the common factor ‖∇vh‖ on both
sides, and take the supremum over all 0 6= vh ∈ Vh. Then,

(47) ‖un+1
h − unh‖V ∗h ≤ C1∆t‖∇ < uh >

n ‖‖∇un+1
h ‖+ C1∆t‖∇u′nh‖‖∇unh‖

+ Pr∆t‖∇un+1
h ‖+ PrRaCPF,1∆t‖Tn+1

h ‖+ ∆t‖fn+1‖−1.

Reconsider equation (25). Multiply by ∆t and isolate the pressure term,

(48)

∆t(pn+1
h ,∇ · vh) = (un+1

h − unh, vh) + ∆tb(< uh >
n, un+1

h , vh) + ∆tb(u′
n
h, u

n
h, vh)

+ Pr∆t(∇un+1
h ,∇vh)− PrRa∆t(γTn+1

h , vh)−∆t(fn+1, vh).
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Apply (42) - (46) on the r.h.s terms. Then,

(49) ∆t(pn+1
h ,∇ · vh)

≤ (un+1
h − unh, vh) +

(
C1∆t‖∇ < uh >

n ‖‖∇un+1
h ‖+ C1∆t‖∇u′nh‖‖∇unh‖

+ Pr∆t‖∇un+1
h ‖+ PrRaCPF,1∆t‖Tn+1

h ‖+ ∆t‖fn+1‖−1

)
‖∇vh‖.

Divide by ‖∇vh‖ and note that
(un+1

h −un
h ,vh)

‖∇vh‖ ≤ C‖un+1
h − unh‖V ∗h [7]. Take the

supremum over all 0 6= vh ∈ Xh,

(50)

∆t sup
0 6=vh∈Xh

(pn+1
h ,∇ · vh)

‖∇vh‖
≤ C

(
C1∆t‖∇ < uh >

n ‖‖∇un+1
h ‖+C1∆t‖∇u′nh‖‖∇unh‖

+ Pr∆t‖∇un+1
h ‖+ PrRaCPF,1∆t‖Tn+1

h ‖+ ∆t‖fn+1‖−1

)
.

Use the discrete inf-sup condition (24),

(51) β∆t‖pn+1
h ‖ ≤ C

(
C1∆t‖∇ < uh >

n ‖‖∇un+1
h ‖+ C1∆t‖∇u′nh‖‖∇unh‖

+ Pr∆t‖∇un+1
h ‖+ PrRaCPF,1∆t‖Tn+1

h ‖+ ∆t‖fn+1‖−1

)
.

Summing from n = 0 to n = N − 1 yields stability of the pressure approximation,
built on the stability of the temperature and velocity approximations. �

Theorem 2. Consider the Thin wall problem (28) - (30). Suppose f ∈ L∞(0, t∗;
H−1(Ω)d) and g ∈ L∞(0, t∗;H−1(Ω)). If (28) - (30) satisfy condition (31), then

‖TNh ‖2 + ‖uNh ‖2 +
1

2

N−1∑
n=0

(
‖Tn+1

h − Tnh ‖2 + ‖un+1
h − unh‖2

)
+ κ∆t‖∇TNh ‖2 + Pr∆t‖∇uNh ‖2

≤ exp(2Ct∗)
{

∆t

N−1∑
n=0

(
1

Pr
‖fn+1‖2−1 +

1

κ
‖gn+1‖2−1) + ‖u0

h‖2 + ‖T 0
h‖2

+ Pr∆t‖∇u0
h‖2 + κ∆t‖∇T 0

h‖2
}
.

Further,

β∆t

N−1∑
n=0

‖pn+1
h ‖ ≤ C

N−1∑
n=0

(
C1∆t‖∇ < uh >

n ‖‖∇un+1
h ‖+ C1∆t‖∇u′nh‖‖∇unh‖

+ Pr∆t‖∇un+1
h ‖+ PrRaCPF,1∆t‖Tnh ‖+ ∆t‖fn+1‖−1

)
.
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Proof. Add equations (28) and (30), let Sh = Tn+1
h ∈Wh and vh = un+1

h ∈ Vh and
use the polarization identity. Then,

1

2∆t

{
‖Tn+1

h ‖2 − ‖Tnh ‖2 + ‖Tn+1
h − Tnh ‖2

}
+

1

2∆t

{
‖un+1

h ‖2 − ‖unh‖2 + ‖un+1
h − unh‖2

}
(52)

+ κ‖∇Tn+1
h ‖2 + Pr‖∇un+1

h ‖2 + b(u′
n
h, u

n
h, u

n+1
h ) + b∗(u′

n
h, T

n
h , T

n+1
h )

=PrRa(γTnh , u
n+1
h ) + (un1h, T

n+1
h ) + (fn+1, un+1

h ) + (gn+1, Tn+1
h ).

Apply similar techniques and estimates as in the proof of Theorem 1,

1

2

{
‖Tn+1

h ‖2 − ‖Tnh ‖2 +
1

2
‖Tn+1

h − Tnh ‖2
}

+
1

2

{
‖un+1

h ‖2 − ‖unh‖2 +
1

2
‖un+1

h − unh‖2
}

+
κ∆t

2

{
‖∇Tn+1

h ‖2 − ‖∇Tnh ‖2
}

+
Pr∆t

2

{
‖∇un+1

h ‖2 − ‖∇unh‖2
}

+
κ∆t

2
‖∇Tnh ‖2

{
1− 2∆tC2

6Cinv,2
κh

‖∇u′nh‖2
}

(53)

+
Pr∆t

2
‖∇unh‖2

{
1− 2∆tC2

5Cinv,1
Prh

‖∇u′nh‖2
}

≤ ∆tPrRa2C2
PF,1‖Tnh ‖2 +

∆tC2
PF,2

κ
‖unh‖2 +

∆t

Pr
‖fn+1‖2−1 +

∆t

κ
‖gn+1‖2−1.

Using the timestep condition, multiplying by 2, taking a maximum over constants
in the first two terms on the r.h.s. and summing from n = 0 to n = N − 1 leads to,

(54) ‖TNh ‖2 + ‖uNh ‖2 +
1

2

N−1∑
n=0

(
‖Tn+1

h − Tnh ‖2 + ‖un+1
h − unh‖2

)
+ κ∆t‖∇TNh ‖2 + Pr∆t‖∇uNh ‖2

≤ C∆t

N−1∑
n=0

{
‖Tnh ‖2 + ‖unh‖2

}
+ 2∆t

N−1∑
n=0

{ 1

Pr
‖fn+1‖2−1 +

1

κ
‖gn+1‖2−1

}
+ ‖u0

h‖2 + ‖T 0
h‖2 + Pr∆t‖∇u0

h‖2 + κ∆t‖∇T 0
h‖2.

Lastly, apply Lemma 4. Then,

(55) ‖TNh ‖2 + ‖uNh ‖2 +
1

2

N−1∑
n=0

(
‖Tn+1

h − Tnh ‖2 + ‖un+1
h − unh‖2

)
+ κ∆t‖∇TNh ‖2 + Pr∆t‖∇uNh ‖2

≤ exp(Ct∗)
{

2∆t

N−1∑
n=0

(
1

Pr
‖fn+1‖2−1 +

1

κ
‖gn+1‖2−1) + ‖u0

h‖2 + ‖T 0
h‖2

+ Pr∆t‖∇u0
h‖2 + κ∆t‖∇T 0

h‖2
}
.

Thus, numerical approximations of velocity and temperature are stable. Stability
of the pressure approximation follows by similar arguments as in Theorem 1. �
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Remark: Theorem 1 implies long-time stability of the approximate solutions.
Application of Lemma 4 in Theorem 2 leads to the loss of long-time stability due
to the exponential growth factor, in t∗.

4.2. Error Analysis. Denote un, pn, and Tn as the true solutions at time tn =
n∆t. Assume the solutions satisfy the following regularity assumptions:

u ∈ L∞(0, t∗;X ∩Hk+1(Ω)), T ∈ L∞(0, t∗;W ∩Hk+1(Ω)),

ut, Tt ∈ L∞(0, t∗;Hk+1(Ω)), utt, Ttt ∈ L∞(0, t∗;L2(Ω)),(56)

p ∈ L∞(0, t∗;Q ∩Hm(Ω)).

The errors are denoted

enu = un − unh, enT = Tn − Tnh , enp = pn − pnh.

Definition 1. (Consistency error). The consistency errors are defined as

τu(un; vh) =
(un − un−1

∆t
− unt , vh

)
, τT (Tn;Sh) =

(Tn − Tn−1

∆t
− Tnt , Sh

)
.

Lemma 5. Provided u and T satisfy the regularity assumptions (56), then ∀r > 0

|τu(un; vh)| ≤
C2
PF,1Cr∆t

2

ε
‖utt‖2L∞(tn−1,tn;L2(Ω)) +

ε

r
‖∇vh‖2,

|τT (Tn;Sh)| ≤
C2
PF,2Cr∆t

2

ε
‖Ttt‖2L∞(tn−1,tn;L2(Ω)) +

ε

r
‖∇Sh‖2.

Proof. These follow from the Cauchy-Schwarz-Young inequality, Poincaré-Friedrichs
inequality, and Taylor’s Theorem with integral remainder. �

Theorem 3. For (u,p,T) satisfying (1) - (5), suppose that (u0
h, p

0
h, T

0
h ) ∈ (Xh, Qh,Wh)

are approximations of (u0, p0, T 0) to within the accuracy of the interpolant. Further,
suppose that condition (31) holds. Then there exists a constant C such that

‖eNT ‖2+‖eNu ‖2+
1

2

N−1∑
n=0

(
‖en+1
T −enT ‖2+‖en+1

u −enu‖2
)
+
κ∆t

2
‖∇eNT ‖2+

Pr∆t

2
‖∇eNu ‖2

≤ C
{

∆t inf
vh∈Xh

(
|||∇(u− vh)|||2∞,0 + |||(u− vh)t|||2∞,0

)
+ ∆t inf

Sh∈Wh

(
|||∇(T − Sh)|||2∞,0 + |||(T − Sh)t|||2∞,0

)
+ ∆t inf

qh∈Qh

|||p− qh|||2∞,0 + ∆t3 + ∆t‖∇η0‖2 + ∆t‖∇ζ0‖2 + ‖η0‖2

+ ‖ζ0‖2 + ‖e0
T ‖2 + ‖e0

u‖2 + ∆t‖∇e0
T ‖2 + ∆t‖∇e0

u‖2
}
.
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Proof. The true solutions satisfy for all n = 0, 1, ...N :

(
un+1 − un

∆t
, vh) + b(un+1, un+1, vh) + Pr(∇un+1,∇vh)

−(pn+1,∇ · vh) = PrRa(γTn+1, vh)(57)

+(fn+1, vh) + τu(un+1; vh) ∀vh ∈ Xh,

(qh,∇ · un+1) = 0 ∀qh ∈ Qh,(58)

(
Tn+1 − Tn

∆t
, Sh) + b∗(un+1, Tn+1, Sh) + κ(∇Tn+1,∇Sh)

= (gn+1, Sh) + τT (Tn+1;Sh) ∀Sh ∈Wh.(59)

Subtract (59) and (27), then the error equation for temperature is

(
en+1
T − enT

∆t
, Sh) + b∗(un+1, Tn+1, Sh)− b∗(unh − u′

n
h, T

n+1
h , Sh)− b∗(u′nh, Tnh , Sh)

(60)

+κ(∇en+1
T ,∇Sh) = τT (Tn+1, Sh) ∀Sh ∈Wh.

Letting enT = (Tn − T̃n)− (Tnh − T̃n) = ζn − ψnh and rearranging give,

(
ψn+1
h − ψnh

∆t
, Sh) + κ(∇ψn+1

h ,∇Sh)

= (
ζn+1 − ζn

∆t
, Sh) + κ(∇ζn+1,∇Sh)− τT (Tn+1, Sh)

+ b∗(un+1, Tn+1, Sh)− b∗(unh − u′
n
h, T

n+1
h , Sh)− b∗(u′nh, Tnh , Sh) ∀Sh ∈Wh.

Set Sh = ψn+1
h ∈Wh. This yields

(61)
1

2∆t

{
‖ψn+1

h ‖2 − ‖ψnh‖2 + ‖ψn+1
h − ψnh‖2

}
+ κ‖∇ψn+1

h ‖2

=
1

∆t
(ζn+1 − ζn, ψn+1

h ) + κ(∇ζn+1,∇ψn+1
h )

− τT (Tn+1, ψn+1
h ) + b∗(un+1, Tn+1, ψn+1

h )

− b∗(unh − u′
n
h, T

n+1
h , ψn+1

h )− b∗(u′nh, Tnh , ψn+1
h ).

Add and subtract b∗(un+1, Tn+1
h , ψn+1

h ), b∗(un, Tn+1
h , ψn+1

h ), and b∗(u′
n
h, T

n+1 −
Tn, ψn+1

h ). Then,

1

2∆t

{
‖ψn+1

h ‖2 − ‖ψnh‖2 + ‖ψn+1
h − ψnh‖2

}
+ κ‖∇ψn+1

h ‖2(62)

=
1

∆t
(ζn+1 − ζn, ψn+1

h ) + κ(∇ζn+1,∇ψn+1
h )

+ b∗(un+1, ζn+1, ψn+1
h ) + b∗(un+1 − un, Tn+1

h , ψn+1
h ) + b∗(ηn, Tn+1

h , ψn+1
h )

− b∗(φnh, Tn+1
h , ψn+1

h ) + b∗(u′
n
h, ζ

n+1, ψn+1
h )

− b∗(u′nh, ζn, ψn+1
h ) + b∗(u′

n
h, ψ

n
h , ψ

n+1
h )

+ b∗(u′
n
h, T

n+1 − Tn, ψn+1
h )− τT (Tn+1, ψn+1

h ).

Follow analogously for the velocity error equation. Subtract (57) and (25), split
the error into enu = (un − ũn) − (unh − ũn) = ηn − φnh, let vh = φn+1

h ∈ Vh, add
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and subtract b(un+1, un+1
h , φn+1

h ), b(un, un+1
h , φn+1

h ), and b(u′
n
h, u

n+1 − un, φn+1
h ).

Then,

1

2∆t

{
‖φn+1

h ‖2 − ‖φnh‖2 + ‖φn+1
h − φnh‖2

}
+ Pr‖∇φn+1

h ‖2 =
1

∆t
(ηn+1 − ηn, φn+1

h )

(63)

+ Pr(∇ηn+1,∇φn+1
h )− (pn+1 − qn+1

h ,∇ · φn+1
h ) + PrRa(γζn+1, φn+1

h )

− PrRa(γψn+1
h , φn+1

h ) + b(un+1, ηn+1, φn+1
h )

+ b(un+1 − un, un+1
h , φn+1

h ) + b(ηn, un+1
h , φn+1

h )

− b(φnh, un+1
h , φn+1

h ) + b(u′
n
h, η

n+1, φn+1
h )− b(u′nh, ηn, φn+1

h ) + b(u′
n
h, φ

n
h, φ

n+1
h )

+ b(u′
n
h, u

n+1 − un, φn+1
h )− τu(un+1, φn+1

h ).

Our goal now is to estimate all terms on the r.h.s. in such a way that we may hide
the terms involving unknown pieces ψkh into the l.h.s. The following estimates are
formed using Lemma 1 in conjunction with the Cauchy-Schwarz-Young inequality,

|b∗(un+1, ζn+1, ψn+1
h )| ≤ C3‖∇un+1‖‖∇ζn+1‖‖∇ψn+1

h ‖

≤ CrC
2
3

ε3
‖∇un+1‖2‖∇ζn+1‖2 +

ε3
r
‖∇ψn+1

h ‖2,(64)

|b∗(ηn, Tn+1
h , ψn+1

h )| ≤ C3‖∇ηn‖‖∇Tn+1
h ‖‖∇ψn+1

h ‖

≤ CrC
2
3

ε5
‖∇ηn‖2‖∇Tn+1

h ‖2 +
ε5
r
‖∇ψn+1

h ‖2,(65)

|b∗(u′nh, ζn+1, ψn+1
h )| ≤ C3‖u′

n
h‖‖ζn+1‖‖ψn+1

h ‖

≤ CrC
2
3

ε7
‖∇u′nh‖2‖∇ζn+1‖2 +

ε7
r
‖∇ψn+1

h ‖2,(66)

|−b∗(u′nh, ζn, ψn+1
h )| ≤ C3‖∇u′

n
h‖‖∇ζn‖‖∇ψn+1

h ‖

≤ CrC
2
3

ε8
‖∇u′nh‖2‖∇ζn‖2 +

ε8
r
‖∇ψn+1

h ‖2.(67)

Applying Lemma 1, the Cauchy-Schwarz-Young inequality, and Taylor’s theorem
yields,

|b∗(un+1 − un, Tn+1
h , ψn+1

h )|
≤C3‖∇(un+1 − un)‖‖∇Tn+1

h ‖‖∇ψn+1
h ‖(68)

≤CrC
2
3

ε4
‖∇(un+1 − un)‖2‖∇Tn+1

h ‖2 +
ε4
r
‖∇ψn+1

h ‖2

≤CrC
2
3∆t2

ε4
‖∇Tn+1

h ‖2‖∇ut‖2L∞(tn,tn+1;L2(Ω)) +
ε4
r
‖∇ψn+1

h ‖2,

|b∗(unh, Tn+1 − Tn, ψn+1
h )|

≤C3‖∇unh‖‖∇(Tn+1 − Tn)‖‖∇ψn+1
h ‖(69)

≤CrC
2
3∆t2

ε10
‖∇unh‖2‖∇Tt‖2L∞(tn,tn+1;L2(Ω)) +

ε10

r
‖∇ψn+1

h ‖2.
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Apply Lemma 1 and the Cauchy-Schwarz-Young inequality twice. This yields

|−b∗(φnh, Tn+1
h , ψn+1

h )| ≤ C4

√
‖φnh‖‖∇φnh‖‖∇T

n+1
h ‖‖∇ψn+1

h ‖

≤ C4CT (j)
√
‖φnh‖‖∇φnh‖‖∇ψ

n+1
h ‖(70)

≤ C4CT ε6
2

‖∇ψn+1
h ‖2 +

C4CT δ6
4ε6

‖∇φnh‖2 +
C4CT
4ε6δ6

‖φnh‖2.

Use Lemma 1, the inverse inequality, and the Cauchy-Schwarz-Young inequality
yielding

|∆tb∗(u′nh, ψnh , ψn+1
h )| = |∆tb∗(u′nh, ψnh , ψn+1

h − ψnh)|(71)

≤ ∆tC6‖∇u′
n
h‖‖∇ψnh‖

√
‖ψn+1

h − ψnh‖‖∇(ψn+1
h − ψnh)‖

≤
∆tC6C

1/2
inv,2

h1/2
‖∇u′nh‖‖∇ψnh‖‖ψn+1

h − ψnh‖

≤ C2
6Cinv,2∆t

2hε9
‖∇u′nh‖2‖∇ψnh‖2 +

ε9
2
‖ψn+1

h − ψnh‖2.

The Cauchy-Schwarz-Young inequality, Poincaré-Friedrichs inequality and Taylor’s
theorem yield

| 1

∆t
(ζn+1 − ζn, ψn+1

h )| ≤
C2
PF,2Cr

ε1
‖ζt‖2L∞(tn,tn+1;L2(Ω)) +

ε1
r
‖∇ψn+1

h ‖2.(72)

Lastly, use the Cauchy-Schwarz-Young inequality,

|κ(∇ζn+1,∇ψn+1
h )| ≤ Crκ

2

ε2
‖∇ζn+1‖2 +

ε2
r
‖∇ψn+1

h ‖2.(73)

Similar estimates follow for the r.h.s. terms in (63), however, we must treat an
additional pressure term and error term,

|−(pn+1 − qn+1
h ,∇ · φn+1

h )| ≤
√
d‖pn+1 − qn+1

h ‖‖∇φn+1
h ‖

≤dCr
ε14
‖pn+1 − qn+1

h ‖2 +
ε14

r
‖∇φn+1

h ‖2,(74)

|PrRa(γζn+1, φn+1
h )| ≤

Pr2Ra2C2
PF,1C

2
PF,2Cr

ε15
‖∇ζn+1‖2 +

ε15

r
‖∇φn+1

h ‖2,(75)

|−PrRa(γψn+1
h , φn+1

h )| ≤
Pr2Ra2C2

PF,1Cr

ε16
‖ψn+1

h ‖2 +
ε16

r
‖∇φn+1

h ‖2.(76)
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Applying the estimates and Lemma 5 into the temperature and velocity error equa-
tions (62), (63) and multiplying by ∆t:

1

2

{
‖ψn+1

h ‖2 − ‖ψnh‖2 + ‖ψn+1
h − ψnh‖2

}
+ κ∆t‖∇ψn+1

h ‖2(77)

≤
∆tCrC

2
PF,2

ε1
‖ζt‖2L∞(tn,tn+1;L2(Ω)) +

∆tε1
r
‖∇ψn+1

h ‖2

+
Crκ

2∆t

ε2
‖∇ζn+1‖2 +

∆tε2
r
‖∇ψn+1

h ‖2

+
C2

3Cr∆t

ε3
‖∇un+1‖2‖∇ζn+1‖2 +

∆tε3
r
‖∇ψn+1

h ‖2

+
CrC

2
3∆t3

ε4
‖∇Tn+1

h ‖2‖∇ut‖2L∞(tn,tn+1;L2(Ω))

+
∆tε4
r
‖∇ψn+1

h ‖2 +
CrC

2
3∆t

ε5
‖∇ηn‖2‖∇Tn+1

h ‖2

+
∆tε5
r
‖∇ψn+1

h ‖2 +
C4CT∆tε6

2
‖∇ψn+1

h ‖2

+
C4CT∆tδ6

4ε6
‖∇φnh‖2 +

C4CT∆t

4ε6δ6
‖φnh‖2

+
CrC

2
3∆t

ε7
‖∇u′nh‖2‖∇ζn+1‖2 +

∆tε7
r
‖∇ψn+1

h ‖2

+
CrC

2
3∆t

ε8
‖∇u′nh‖2‖∇ζn‖2 +

∆tε8
r
‖∇ψn+1

h ‖2

+
C2

6Cinv,2∆t2

hε9
‖∇u′nh‖2‖∇ψn+1

h ‖2 +
ε9
2
‖ψn+1

h − ψnh‖2

+
CrC

2
3∆t3

ε10
‖∇u′nh‖2‖∇Tt‖2L∞(tn,tn+1;L2(Ω)) +

∆tε10

r
‖∇ψn+1

h ‖2

+
C2
PF,2Cr∆t

3

ε11
‖Ttt‖2L∞(tn,tn+1;L2(Ω)) +

ε11

r
‖∇ψn+1

h ‖2,

and

1

2

{
‖φn+1

h ‖2 − ‖φnh‖2 + ‖φn+1
h − φnh‖2

}
+ Pr∆t‖∇φn+1

h ‖2(78)

≤
∆tCrC

2
PF,1

ε12
‖ηt‖2L∞(tn,tn+1;L2(Ω)) +

∆tε12

r
‖∇φn+1

h ‖2 +
CrPr

2∆t

ε13
‖∇ηn+1‖2

+
∆tε13

r
‖∇φn+1

h ‖2 +
dCr∆t

ε14
‖pn+1 − qn+1

h ‖2 +
∆ε14

r
‖∇φn+1

h ‖2

+ ∆tPr2Ra2C2
PF,1C

2
PF,2Cr

( 1

ε15
‖∇ζn+1‖2 +

1

C2
PF,2ε16

‖ψn+1
h ‖2

)
+

∆t

r

( 1

ε15
‖∇φn+1

h ‖2 +
1

ε16
‖∇φn+1

h ‖2
)

+
C1Cr∆t

ε17
‖∇un+1‖2‖∇ηn+1‖2 +

∆tε17

r
‖∇φn+1

h ‖2
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+
CrC

2
1∆t3

ε18
‖∇un+1

h ‖2‖∇ut‖2L∞(tn,tn+1;L2(Ω))

+
∆tε18

r
‖∇φn+1

h ‖2 +
CrC1∆t

ε19
‖∇ηn‖2‖∇un+1

h ‖2

+
∆tε19

r
‖∇φn+1

h ‖2 +
C2Cu∆tε20

2
‖∇φn+1

h ‖2 +
C2Cu∆tδ20

4ε20
‖∇φnh‖2

+
C2Cu∆t

4ε20δ20
‖φnh‖2 +

CrC
2
1∆t

ε21
‖∇u′nh‖2‖∇ηn+1‖2 +

∆tε21

r
‖∇φn+1

h ‖2

+
CrC1∆t

ε22
‖∇u′nh‖2‖∇ηn‖2 +

∆tε22

r
‖∇φn+1

h ‖2

+
C2

5Cinv,1∆t2

hε23
‖∇u′nh‖2‖∇φn+1

h ‖2 +
ε23

2
‖φn+1

h − φnh‖2

+
CrC1∆t3

ε24
‖∇u′nh‖2‖∇ut‖2L∞(tn,tn+1;L2(Ω))

+
∆tε24

r
‖∇φn+1

h ‖2 +
C2
PF,1Cr∆t

3

ε26
‖utt‖2L∞(tn,tn+1;L2(Ω)) +

∆ε26

r
‖∇φn+1

h ‖2.

Combine (77) and (78), choose free parameters appropriately, use condition (31),
and take the maximum over all constants on the r.h.s. Then,

1

2

(
‖ψn+1

h ‖2 − ‖ψnh‖2
)

+
1

4
‖ψn+1

h − ψnh‖2 +
κ∆t

4

(
‖∇ψn+1

h ‖2 − ‖∇ψnh‖2
)(79)

+
1

2

(
‖φn+1

h ‖2 − ‖φnh‖2
)

+
1

4
‖φn+1

h − φnh‖2 +
Pr∆t

4

(
‖∇φn+1

h ‖2 − ‖∇φnh‖2
)

≤C
{

∆t‖ζt‖2L∞(tn,tn+1;L2(Ω)) + ∆t‖∇ζn+1‖2 + ∆t‖∇un+1‖2‖∇ζn+1‖2

+ ∆t3‖∇Tn+1
h ‖2‖∇ut‖2L∞(tn,tn+1;L2(Ω)) + ∆t‖∇ηn‖2‖∇Tn+1

h ‖2

+ ∆t‖φnh‖2 + ∆t‖ψn+1
h ‖2 + ∆t‖∇u′nh‖2‖∇ζn+1‖2 + ∆t‖∇u′nh‖2‖∇ζn‖2

+ ∆t3‖∇u′nh‖2‖∇Tt‖2L∞(tn,tn+1;L2(Ω)) + ∆t3‖Ttt‖2L∞(tn,tn+1;L2(Ω))

+ ∆t‖pn+1 − qn+1
h ‖2 + ∆t‖ηt‖2L∞(tn,tn+1;L2(Ω)) + ∆t‖∇ηn+1‖2 + ∆t‖∇ζn+1‖2

+ ∆t‖∇un+1‖2‖∇ηn+1‖2 + ∆t3‖∇un+1
h ‖2‖∇ut‖2L∞(tn,tn+1;L2(Ω))

+ ∆t‖∇ηn‖2‖∇un+1
h ‖2 + ∆t‖∇u′nh‖2‖∇ηn+1‖2

+ ∆t‖∇u′nh‖2‖∇ηn‖2 + ∆t3‖∇u′nh‖2‖∇ut‖2L∞(tn,tn+1;L2(Ω))

+ ∆t3‖utt‖2L∞(tn,tn+1;L2(Ω))

}
.

Multiply by 2, sum from n = 0 to n = N − 1, apply Lemma 3, and renorm. Then,

‖ψNh ‖2 + ‖φNh ‖2 +
1

2

N−1∑
n=0

(
‖ψn+1

h − ψnh‖2 + ‖φn+1
h − φnh‖2

)
+
κ∆t

2
‖∇ψNh ‖2 +

Pr∆t

2
‖∇φNh ‖2

≤C
{

(2 + ‖∇un+1‖2 + 2‖∇u′nh‖2)∆t|||∇ζ|||2∞,0
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+ (1 + ‖∇Tn+1
h ‖2 + ‖∇un+1‖2 + ‖∇un+1

h ‖2 + 2‖∇u′nh‖2)∆t|||∇η|||2∞,0
+ ∆t|||ζt|||2∞,0 +

(
‖∇Tn+1

h ‖2 + ‖∇un+1
h ‖2 + ‖∇u′nh‖2

)
∆t3|||∇ut|||2∞,0

+ ∆t3‖∇u′nh‖2|||∇Tt|||
2
∞,0 + ∆t3|||Ttt|||22,0

+ ∆t|||p− qh|||2∞,0 + ∆t|||ηt|||2∞,0 + ∆t3|||utt|||2∞,0
}

+ ‖ψ0
h‖2

+
κ∆t

2
‖∇ψ0

h‖2 + ‖φ0
h‖2 +

Pr∆t

2
‖∇φ0

h‖2

≤C
{

∆t|||∇ζ|||2∞,0 + ∆t|||∇η|||2∞,0 + ∆t|||ζt|||2∞,0 + ∆t3|||∇ut|||2∞,0 + ∆t3|||∇Tt|||2∞,0

+ ∆t|||p− qh|||2∞,0 + ∆t|||ηt|||2∞,0 + ∆t3|||utt|||2∞,0
}

+ ‖ψ0
h‖2 +

κ∆t

2
‖∇ψ0

h‖2 + ‖φ0
h‖2 +

Pr∆t

2
‖∇φ0

h‖2.

Take infimums over Xh, Qh, and Wh. Apply the triangle inequality, then

‖eNT ‖2 + ‖eNu ‖2 +
1

2

N−1∑
n=0

(
‖en+1
T − enT ‖2 + ‖en+1

u − enu‖2
)

+
κ∆t

2
‖∇eNT ‖2 +

Pr∆t

2
‖∇eNu ‖2

≤ C
{

∆t inf
vh∈Xh

(
|||∇(u− vh)|||2∞,0 + |||(u− vh)t|||2∞,0

)
+ ∆t inf

Sh∈Wh

(
|||∇(T − Sh)|||2∞,0 + |||(T − Sh)t|||2∞,0

)
+ ∆t inf

qh∈Qh

|||p− qh|||2∞,0 + ∆t3 + ∆t‖∇η0‖2 + ∆t‖∇ζ0‖2 + ‖η0‖2

+ ‖ζ0‖2 + ‖e0
T ‖2 + ‖e0

u‖2 + ∆t‖∇e0
T ‖2 + ∆t‖∇e0

u‖2
}
.

�

Remark: If PrRa(γTn+1
h , vh) is replaced with PrRa(γTnh , vh) in equation (25),

the additional timestep restriction (due to Lemma 3) can be dropped.

The same result holds, with a different constant, for the thin wall problem.

Theorem 4. For (u,p,T) satisfying (9) - (13), suppose that (u0
h, p

0
h, T

0
h ) ∈ (Xh, Qh,

Wh) are approximations of (u0, p0, T 0) to within the accuracy of the interpolant.
Further, suppose that condition (31) holds. Then there exists a constant C such
that

‖eNT ‖2 + ‖eNu ‖2 +
1

2

N−1∑
n=0

(
‖en+1
T − enT ‖2 + ‖en+1

u − enu‖2
)

+
κ∆t

2
‖∇eNT ‖2 +

Pr∆t

2
‖∇eNu ‖2

≤ C
{

∆t inf
vh∈Xh

(
|||∇(u− vh)|||2∞,0 + |||(u− vh)t|||2∞,0

)
+ ∆t inf

Sh∈Wh

(
|||∇(T − Sh)|||2∞,0 + |||(T − Sh)t|||2∞,0

)
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+ ∆t inf
qh∈Qh

|||p− qh|||2∞,0 + ∆t3 + ∆t‖∇η0‖2 + ∆t‖∇ζ0‖2 + ‖η0‖2

+ ‖ζ0‖2 + ‖e0
T ‖2 + ‖e0

u‖2 + ∆t‖∇e0
T ‖2 + ∆t‖∇e0

u‖2
}
.

Proof. We follow the same methodology as in Theorem 3. The error equations for
velocity and temperature are

(80) (
en+1
u − enu

∆t
, vh)− b(unh − u′

n
h, u

n+1
h , vh)− b(u′nh, unh, vh)

+ Pr(∇en+1
u ,∇vh)− (en+1

p ,∇ · vh)

= PrRa
{

(γTn+1, vh)− (γTnh , vh)
}

+ τu(un+1, vh) ∀vh ∈ Xh,

(81) (
en+1
T − enT

∆t
, Sh) + b∗(un+1, Tn+1, Sh)− b∗(unh − u′

n
h, T

n
h , Sh)

− b∗(u′nh, Tnh , Sh) + κ(∇en+1
T ,∇Sh)

= (un+1
1 , Sh)− (un1h, Sh) + τT (Tn+1, Sh) ∀Sh ∈Wh.

Add and subtract PrRa(γTn, vh) in (80) and (un1 , Sh) in (81). Then,

(82)

(
en+1
u − enu

∆t
, vh)−b(unh−u′

n
h, u

n
h, vh)−b(u′nh, unh, vh)+Pr(∇en+1

u ,∇vh)−(en+1
p ,∇·vh)

= PrRa
{

(γ(Tn+1 − Tn), vh)− (γenT , vh)
}

+ τu(un+1, vh) ∀vh ∈ Xh,

(83) (
en+1
T − enT

∆t
, Sh) + b∗(un+1, Tn+1, Sh)− b∗(unh − u′

n
h, T

n
h , Sh)

− b∗(u′nh, Tnh , Sh) + κ(∇en+1
T ,∇Sh)

= (un+1
1 − un1 , Sh)− (enu1, Sh) + τT (Tn+1, Sh) ∀Sh ∈Wh.

Estimate the new terms using similar techniques as in Theorem 3:

|PrRa(γ(Tn+1 − Tn), vh

≤
Pr2Ra2C2

PF,1Cr

ε26
‖Tn+1 − Tn‖2 +

ε26

r
‖∇vh‖2(84)

≤
Pr2Ra2C2

PF,1Cr∆t
2

ε26
‖Tt‖2L∞(tn,tn+1;L2(Ω)) +

ε26

r
‖∇vh‖2,
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|PrRa(γenT , vh)| = |PrRa(γζn, vh)− PrRa(γψnh , vh)|(85)

≤
Pr2Ra2C2

PF,1Cr

ε27
(‖ζn‖2 + ‖ψnh‖2) +

2ε27

r
‖∇vh‖2,

|(un+1
1 − un1 , Sh)| ≤

C2
PF,2Cr

ε28
‖un+1

1 − un1‖2 +
ε

r
‖∇Sh‖2(86)

≤
C2
PF,2Cr∆t

2

ε28
‖ut‖2L∞(tn,tn+1;L2(Ω)) +

ε28

r
‖∇Sh‖2,

|(enu1
, Sh)| = |(ηn1 , Sh)− (φn1h, Sh)|

≤
Pr2Ra2C2

PF,1Cr

ε29
(‖ηn‖2 + ‖φnh‖2) +

2ε29

r
‖∇Sh‖2.(87)

Apply estimates similar to those in Theorem 3 as well as the above estimates,
multiply by 2∆t, sum from n = 0 to n = N − 1. Further, apply Lemma 4, triangle
inequality and arrive at the result. �

Corollary 1. Suppose the assumptions of Theorem 1 hold. Further suppose that
the finite element spaces (Xh,Qh,Wh) are given by P2-P1-P2 (Taylor-Hood), then
the errors in velocity and temperature satisfy

‖eNT ‖2+‖eNu ‖2+
1

2

N−1∑
n=0

(
‖en+1
T −enT ‖2+‖en+1

u −enu‖2
)
+
κ∆t

2
‖∇eNT ‖2+

Pr∆t

2
‖∇eNu ‖2

≤ C(∆th4 + ∆th6 + ∆t3 + ∆t‖∇η0‖2 + ∆t‖∇ζ0‖2 + ‖η0‖2

+ ‖ζ0‖2 + ‖e0
T ‖2 + ‖e0

u‖2 + ∆t‖∇e0
T ‖2 + ∆t‖∇e0

u‖2).

Corollary 2. Suppose the assumptions of Theorem 1 hold. Further suppose that
the finite element spaces (Xh,Qh,Wh) are given by P1b-P1-P1b (MINI element),
then the errors in velocity and temperature satisfy

‖eNT ‖2+‖eNu ‖2+
1

2

N−1∑
n=0

(
‖en+1
T −enT ‖2+‖en+1

u −enu‖2
)
+
κ∆t

2
‖∇eNT ‖2+

Pr∆t

2
‖∇eNu ‖2

≤ C(∆th2 + ∆th4 + ∆t3 + ∆t‖∇η0‖2 + ∆t‖∇ζ0‖2 + ‖η0‖2

+ ‖ζ0‖2 + ‖e0
T ‖2 + ‖e0

u‖2 + ∆t‖∇e0
T ‖2 + ∆t‖∇e0

u‖2).

5. Numerical Experiments

In this section, we illustrate the stability and convergence of the numerical
scheme described by (28) - (30) using Taylor-Hood (P2-P1-P2) elements to ap-
proximate the average velocity, pressure, and temperature. The numerical experi-
ments include the double pane window benchmark problem of de Vahl Davis [20], a
convergence experiment and predictability exploration with an analytical solution
adopted from [23] devised through the method of manufactured solutions. The
software used for all tests is FreeFem++ [10].

5.1. Stability condition. The constant appearing in condition (31) is estimated
by pre-computations for the double pane window problem appearing below. We set
C† = 1. The first condition is used and checked at each iteration. If violated, the
timestep is halved and the iteration is repeated. The timestep is never increased.



ENSEMBLE TIMESTEPPING ALGORITHMS FOR NATURAL CONVECTION 545

Figure 2. Variation of the local Nusselt number at the hot (left)
and cold walls (right).

The condition is violated three times during the computation of the double pane
window problem with Ra = 106 in Section 5.3.

5.2. Perturbation generation. The bred vector (BV) algorithm of Toth and
Kalnay [19] is used to generate perturbations in the double pane window problem
and in exploring predictability. The BV algorithm produces a perturbation with
maximal separation rate. We set J = 2 and d = 2 in all experiments. An initial
random positive/negative perturbation pair was generated ±ε = ±(ε1, ε2, ε3) with
εi ∈ (0, 0.01) ∀i = 1, 2, 3; that is, a pair of initial perturbations for each component
of velocity and temperature. Utilizing the scheme (28) - (30), denote the control
and perturbed numerical approximations χnh and χnp,h, respectively. Then, a bred

vector bv(χ; εi) is generated via:
Step one: Given χ0

h and εi, put χ0
p,h = χ0

h + εi. Select time reinitialization

interval δt ≥ ∆t and let tk = kδt with 0 ≤ k ≤ k∗ ≤ N .
Step two: Compute χkh and χkp,h. Calculate bv(χk; εi) = εi

‖χk
p,h−χ

k
h‖

(χkp,h − χkh).

Step three: Put χkp,h = χkh + bv(χk; εi).
Step four: Repeat Step two with k = k + 1.
Step five: Put bv(χ; εi) = bv(χk

∗
; εi).

A positive/negative perturbed initial condition pair is generated via χ± = χ0 +
bv(χ;±εi). We let δt = ∆t = 0.001 and k∗ = 5.

5.3. The double pane window problem. The first numerical experiment is the
benchmark problem of de Vahl Davis [20]. The problem is the two-dimensional flow
of a fluid in an unit square cavity with Pr = 0.71 and κ = 1.0. Both velocity com-
ponents (i.e. u = 0) are zero on the boundaries. The horizontal walls are insulated
and the left and right vertical walls are maintained at temperatures T (0, y, t) = 1
and T (1, y, t) = 0, respectively; see Figure 1b. We let 103 ≤ Ra ≤ 106. The ini-
tial conditions for velocity and temperature are generated via the BV algorithm in
Section 5.2,

u±(x, y, 0) := u(x, y, 0;ω1,2) = (1 + bv(u1;±ε1), 1 + bv(u2;±ε2))T ,

T±(x, y, 0) := T (x, y, 0;ω1,2) = 1 + bv(T ;±ε3).

Both f(x, t;ωj) and g(x, t;ωj) are identically zero for j = 1, 2. The finite element
mesh is a division of [0, 1]2 into 642 squares with diagonals connected with a line
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within each square in the same direction. The stopping condition is

max
0≤n≤N−1

{‖un+1
h − unh‖
‖un+1

h ‖
,
‖Tn+1

h − Tnh ‖
‖Tn+1

h ‖
}
≤ 10−5

and initial timestep ∆t = 0.001. The timestep was halved three times to 0.000125
to maintain stability for Ra = 106. Several quantities are compared with bench-
mark solutions in the literature. These include the maximum vertical velocity
at y = 0.5, maxx∈Ωh

u2(x, 0.5, t∗), and maximum horizontal velocity at x = 0.5,
maxy∈Ωh

u1(0.5, y, t∗). We present our computed values for the mean flow in Ta-
bles 1 and 2 alongside several of those seen in the literature. Furthermore, the local
Nusselt number is calculated at the cold (+) and hot walls (-), respectively, via

Nulocal = ±∂T
∂x

.

The average Nusselt number on the vertical boundary at x = 0 is calculated via

Nuavg =

∫ 1

0

Nulocaldy.

Figure 2 presents the plots of Nulocal at the hot and cold walls. Table 3 presents
computed values of Nuavg alongside several of those seen in the literature. Figures 3
and 4 present the velocity streamlines and temperature isotherms for the averages.
All results are seen to be in good agreement with the benchmark values in the
literature [4, 16,20,21,23].

Table 1. Comparison of maximum horizontal velocity at x = 0.5
together with mesh size used in computation for the double pane
window problem.

Ra Present study Ref. [20] Ref. [16] Ref. [21] Ref. [4] Ref. [23]

104 16.18 (64×64) 16.18 (41×41) 16.10 (71×71) 16.10 (101×101) 15.90 (11×11) 16.18 (64×64)

105 34.72 (64×64) 34.81 (81×81) 34 (71×71) 34 (101×101) 33.51 (21×21) 34.74 (64×64)

106 64.80 (64×64) 65.33 (81×81) 65.40 (71×71) 65.40 (101×101) 65.52 (32×32) 64.81 (64×64)

Table 2. Comparison of maximum horizontal velocity at y = 0.5
together with mesh size used in computation for the double pane
window problem.

Ra Present study Ref. [20] Ref. [16] Ref. [21] Ref. [4] Ref. [23]

104 19.60 19.51 19.90 19.79 19.91 19.62
(64×64) (41×41) (71×71) (101×101) (11×11) (64×64)

105 68.53 68.22 70 70.63 70.60 68.48
(64×64) (81×81) (71×71) (101×101) (21×21) (64×64)

106 215.96 216.75 228 227.11 228.12 220.44
(64×64) (81×81) (71×71) (101×101) (32×32) (64×64)

5.4. Numerical convergence study. In this section, we illustrate the conver-
gence rates for the proposed algorithm (28) - (30). The unperturbed solution is
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Table 3. Comparison of average Nusselt number on the vertical
boundary at x = 0 together with mesh size used in computation
for the double pane window problem.

Ra Present study Ref. [20] Ref. [16] Ref. [21] Ref. [4] Ref. [23]

104 2.24 (64×64) 2.24 (41×41) 2.08 (71×71) 2.25 (101×101) 2.15 (11×11) 2.25 (64×64)

105 4.52 (64×64) 4.52 (81×81) 4.30 (71×71) 4.59 (101×101) 4.35 (21×21) 4.53 (64×64)

106 8.87 (64×64) 8.92 (81×81) 8.74 (71×71) 8.97 (101×101) 8.83 (32×32) 8.87 (64×64)

given by

u(x, y, t) = (10x2(x− 1)2y(y − 1)(2y − 1) cos(t),

− 10x(x− 1)(2x− 1)y2(y − 1)2 cos(t))T ,

T (x, y, t) = u1(x, y, t) + u2(x, y, t),

p(x, y, t) = 10(2x− 1)(2y − 1) cos(t),

with κ = Pr = 1.0, Ra = 100, and Ω = [0, 1]2. The perturbed solutions are given
by

u(x, y, t;ω1,2) = (1 + ε1,2)u(x, y, t),

T (x, y, t;ω1,2) = (1 + ε1,2)T (x, y, t),

p(x, y, t;ω1,2) = (1 + ε1,2)p(x, y, t),

where ε1 = 1e − 2 = −ε2 and both forcing and boundary terms are adjusted
appropriately. The perturbed solutions satisfy the following relations,

< u >= 0.5
(
u(x, y, t;ω1) + u(x, y, t;ω2)

)
= u(x, y, t),

< T >= 0.5
(
T (x, y, t;ω1) + T (x, y, t;ω2)

)
= T (x, y, t),

< p >= 0.5
(
p(x, y, t;ω1) + p(x, y, t;ω2)

)
= p(x, y, t).

The finite element mesh is a Delaunay triangulation generated from m points on
each side of Ω. We calculate errors in the approximations of the average velocity,
temperature and pressure with the L∞(0, t∗;L2(Ω)) and L∞(0, t∗;H1(Ω)) norms.
Rates are calculated from the errors at two successive m1,2 or ∆t1,2 via

log2(eχ(m1)/eχ(m2))

log2(m1/m2)
,

log2(eχ(∆t1)/eχ(∆t2))

log2(∆t1/∆t2)
,

respectively, with χ = u, T, p. We first illustrate spatial convergence. We isolate the
spatial error by first choosing a fixed timestep ∆t = 0.0001 and setting the final time
t∗ = 0.001. The parameter m is varied between 4, 8, 16, 32, 64, and 128. Results
are presented in Table 4. Third order convergence is observed in velocity and
temperature and second order convergence in pressure in the L∞(0, t∗;L2(Ω)) norm
and second order convergence in velocity and temperature in the L∞(0, t∗;H1(Ω))
norm.

Temporal convergence is illustrated by choosing a fixed m = 64 and setting the
final time t∗ = 1. The timestep is varied between 4, 8, 16, 32, 64, 128. Table
5 confirms first order convergence in velocity, temperature, and pressure in the
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Figure 3. Comparison of the energy in the system (left) and vari-
ance of each velocity and temperature ensemble member (right).

Figure 4. Comparison of average effective Lyapunov exponent for
temperature (left) and velocity (right).

L∞(0, t∗;L2(Ω)) norm and in velocity and temperature in the L∞(0, t∗;H1(Ω))
norm.

Table 4. Errors and rates for average velocity, temperature, and
pressure in corresponding norms.

1
m

E1 Rate E2 Rate E3 Rate E4 Rate E5 Rate

4 0.0013409 - 0.0376324 - 2.49E-04 - 0.0100481 - 0.427751 -
8 3.68E-04 1.87 0.0162059 1.22 3.03E-05 3.04 0.0017153 2.55 0.0256596 4.06
16 5.56E-05 2.73 0.00443669 1.87 4.95E-06 2.61 4.82E-04 1.83 0.0048202 2.41
32 6.35E-06 3.13 9.80E-04 2.18 5.71E-07 3.12 1.07E-04 2.18 1.10E-03 2.13
64 8.67E-07 2.87 2.70E-04 1.86 8.13E-08 2.81 3.01E-05 1.82 2.70E-04 2.02
128 1.06E-07 3.04 6.63E-05 2.03 9.56E-09 3.09 7.08E-06 2.09 6.58E-05 2.04

E1 stands for |||< uh > −u|||∞,0, E2 stands for |||∇ < uh > −∇u|||∞,0, E3 stands for |||< Th > −T |||∞,0,

E4 stands for |||∇ < Th > −∇T |||∞,0, E5 stands for |||< ph > −p|||∞,0.

5.5. Exploration of predictability. Consider the problem with manufactured
solution in Section 5.4. However, instead of specifying the perturbations on the
initial conditions, the BV algorithm in Section 5.2 yields

u±(x, y, 0) := u(x, y, 0;ω1,2) = (u1(x, y, 0) + bv(u1;±ε1), u2(x, y, 0) + bv(u2;±ε2))T ,

T±(x, y, 0) := T (x, y, 0;ω1,2) = T (x, y, 0) + bv(T ;±ε3).
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Table 5. Errors and rates for average velocity, temperature, and
pressure in corresponding norms.

1
∆t

E1 Rate E2 Rate E3 Rate E4 Rate E5 Rate

4 0.0069807 - 0.0524076 - 1.12E-04 - 0.00079805 - 0.122182 -
8 0.0036989 0.92 0.0277725 0.92 6.78E-05 0.73 4.81E-04 0.73 0.0647005 0.92
16 0.001898 0.96 0.0142518 0.96 3.66E-05 0.89 2.60E-04 0.89 0.0331928 0.96
32 9.61E-04 0.98 0.00721454 0.98 1.89E-05 0.95 1.35E-04 0.94 0.0168049 0.98
64 4.83E-04 0.99 0.00363088 0.99 9.62E-06 0.98 7.02E-05 0.95 0.00846082 0.99
128 2.42E-04 1.00 0.00182511 0.99 4.85E-06 0.99 3.81E-05 0.89 0.0042531 0.99

Figure 5. Comparison of δ-predictability horizons for tempera-
ture (left) and velocity (right).

The forcing functions and boundary conditions are left unperturbed. Further, the
Rayleigh number is varied between 102 and 104. The initial timestep is 0.001
and final time t∗ = 0.5. Herein, we will define energy, variance, average effective
Lyapunov exponent [2], and δ-predictability horizon [2].

Definition 2. The energy is given by

Energy := ‖T‖+
1

2
‖u‖2.

The variance of χ is

V (χ) :=< ‖χ‖2 > −‖ < χ > ‖2 =< ‖χ′‖2 > .

The relative energy fluctuation is

r(t) :=
‖χ+ − χ−‖2

‖χ+‖‖χ−‖
,

and the average effective Lyapunov exponent over 0 < τ ≤ t∗ is

γτ (t) :=
1

2τ
log
(r(t+ τ)

r(t)

)
,

with 0 < t+ τ ≤ t∗. The δ-predictability horizon is

tp :=
1

γt∗(0)
log
( δ

‖(χ+ − χ−)(0)‖

)
.

Figure 3 presents the energy and variance of the approximate solutions withRa =
104. The variance of the perturbed solutions indicates that they do not deviate
much from the mean and therefore not much from each other. This seems to explain,
in part, why the energy associated with these solutions is similar. Interestingly, the
energy associated with the unperturbed and mean computed solutions sit atop of
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Figure 6. Streamlines for Ra = 103, 104, 105, and 106, from left
to right, respectively.

Figure 7. Isotherms for Ra = 103, 104, 105, and 106, from left to
right, respectively.

one another; that is, the mean leads to a superior estimate than either member of
the ensemble. It seems that the BV algorithm generated a positive/negative initial
condition pair leading to two solutions whose average approximates the unperturbed
solution well.

Figures 4 and 5 present γt∗(t) and tp for mean temperature and velocity approx-
imations for 102 ≤ Ra ≤ 104 and ‖(χ+ − χ−)(0)‖ ≤ δ ≤ 0.15. The approximated
effective Lyapunov exponent γt∗(0) and tp are negative for both velocity and tem-
perature for all Rayleigh numbers indicating a predictable flow. However, γt∗(t)
changes sign for temperature and velocity at approximately t = 0.11 for Ra = 104

indicating a loss of predictability.

6. Conclusion

We presented two algorithms for calculating an ensemble of solutions to two
laminar natural convection problems. These algorithms addressed the competition
between ensemble size and resolution in simulations. In particular, both algorithms
required the solution of a single matrix equation, at each time step, with multiple
right hand sides. Stability and convergence were proven and numerical experiments
were performed to illustrate these properties.
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