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Abstract. The third stage of Fourier analysis is considered herein. A generalized Fourier series
is considered with real valued, locally integrable functions.
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The third stage of Fourier Analysis is concerned with generalized Fourier series
of the form

(o)
(1) > akexpfifi(t)},

k=1
in which a, € C, k > 1, while f;(t) : R — R, k > 1, are real valued functions, at
least locally integrable on R: fi € L}, (R, R).

The first stage and the second correspond to the choice of linear fi(t) = Axt,
Ar € R, leading to the periodic functions when Ay = kw, w > 0, k > 0, and to the
Bohr almost periodic functions when \; € R are arbitrary.

Ouly for nonlinear fj(¢) one can obtain generalized Fourier series characterizing
oscillatory functions, of a more general nature than those in the first of second
stages.

A tool helping us to construct series like (1) is the Poincaré mean value of a
function, on the real line R. The formula used by Poincaré (Nouvelles Méthodes de
la Mécanique Céleste, 1892-3) is

¢
) M{f} = lim (26)"" / Fat

with f: R — C a locally integrable function for which the limit exists.

All classes/spaces of almost periodic functions (Bohr, Stepanov, Besicovitch)
consist of elements for which the mean value in (2) exists (finite!).

The following formula, as noticed by Poincare, is valued for A € R:

L

(3) elim (25)_1/ exp{iAt}dt = {1’ A=0
—00 )

0, A#O.
Formula (3) is sort of an orthogonality condition, since it implies
1, j=k

0, j#Ek.
where {A; : k> 1} C R is a sequence with distinct terms.

¢
(4) lim (2¢)* /J exp{(Ar — A;)t}dt = {

{— 00
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In order to construct series like (1), it appears possible to obtain solutions, if
any, of the functional equation in A(¢),

1, At)=0
0, A(t) #0.

£— 00

4
(5) lim (20)"1 /_ espliA(O}r = {

with A(t) real valued and locally integrable on R.

We have, so far, examples of function classes/spaces providing solutions to (5),
infinitely many. The first space appears to be due to V.F. Osipov, in the book Al-
most Periodic Functions of Bohr-Fresnel (Russian), University of Sankt Petersburg
Press, 1992, who has constructed such a space, in which case

Me(t) = at? + ut
a = const. € R, k > 1. Osipov’s construction, according to his statement, has
been inspired by a seminal paper of N. Wiener (Acta Mathematica, vol. 55, 1930),
to whom the Fresnel waves, w(t) = exp{i(at? + ut)}, are attributed. Using these
waves, Osipov constructed this space, called by him the space of a.p. functions of
Bohr-Fresnel.

The functions in this space, obviously of oscillatory type, correspond to general-
ized Fourier series of the form

(6) Z ay exp{i(at® + \gt)},

k=1

with « depending on the function to be represented by (6) a real number and
A € R, k> 1, distinct.
The Parseval equation holds

l
(7) zw Jim (20)”" / QIO

where
(8) F#) ~ 7 frexpli(at® + Akt)},
k=1
and
)
) i = Jlim (20)"! / F(#) exp{—i(at? + Ae)}dt, & > 1,
—00 )

Other properties for the Bohr-Fresnel functions hold true, similar to those en-
countered for the Bohr almost periodic function: an example is the approximation
(uniformly on R) of these functions by generalized trigonometric polynomials with
exponents in the class of functions of the form at? + ut, 4 € R (each taking a finite
number of values).

The second space of generalized oscillatory functions has been constructed by Ch.
Zhang (J. Fourier Analysis, vol. 12(2006); also IEEE Trans. AC, vol. 49(2004)).
The construction is reproduced in one of our papers [3] and relies on the properties
of a function algebra whose element are generalized polynomials of the form

k
(10) Aelt) =D it t >0,
j=1

where ¢; € C, j =1,2,...,k, and A (t) of the form (10), ¢; € C, a1 > ... > ap > 0,
k>1.
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The space of Zhang, denoted SLP(R,C) is the closure, under uniform conver-
gence on R, of the set of polynomials like

m k
(11) > arexp{ipi(t)}, pr(t) = ch)‘j (t).

A detailed study is conducted by Zhang, showing that this new space of oscillatory
functions satisfies the Bochner property (the relative compactness of the set of
”translations”).

A more general space than SLP(R,C), denoted by B3(R,C), has been con-
structed in our paper, mentioned above. It is analogue of the Besicovitch space
B2(R, ), consisting of almost periodic functions, but much larger.

An important step in constructing new spaces in the third stage of Fourier Anal-
ysis is to find solutions to equation (5), i.e.,

4 _
(12) Jim (20) [ N0~ {(1) ig#g

The problem has been approached in two different manners.

First, to check its validity, for functions A(t) of various form (mostly, polynomi-
als), a path which has been followed by Ch. Zhang and his students.

The second approach, used by the author in [3], [2], [4], consists in viewing A(t)
as the restriction to R of an entire or meromorphic function, and applying the
Cauchy’s residues formula

¢
(13) / eMDdt = 2mi " resA(z) + lim [A(0) — A(=0)],
iy _ £— 00
|z| <t
where A’(z) = exp{iA(2)}, Imz > 0, and £ sufficiently large.
A detailed discussion will be carried out in a forthcoming paper, condition (13)
following from A(¢) — A(—¥¢) = o({), £ — oo.
Generalized trigonometric series of the form (GTS)

(o)
(14) > arexp{ir(t)}, t € R,

k=1
or just finite sections of them, have been encountered in describing oscillatory mo-
tions in various dynamical systems (man made or from nature, society). When
Ak (t) = Agt, for some real A, one obtains the almost periodic case we have briefly
discussed above. Otherwise, we will generally assume that A\g(¢) are some real
valued functions depending on ¢ € R (t-time), at least locally integrable on R.
Anyhow, a series like (14), if convergent in some sense, represents an oscillatory
function (or, an oscillating function?).

Under various sets of assumptions, we can organize classes of GTS, of the form

(14), in vector spaces endowed with adequate norms (even Banach spaces). A few
examples will easily lead to such spaces.

(1) Assume that we impose the absolute convergence of the series

oo

(15) Z la;| < oo

j=1
which implies the uniform convergence on R of the series (14). It is easy

to see that (15) also assures the fact that the class of GTS (14) forms a
Banach space, with the norm indicated in the left hand side of (15). If we
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(18)
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assume also that A\;(¢), j > 1, are in L;,.(R, C), then we obtain as sum of
(14) a measurable function. If continuity is assumed on A;(t), j > 1, then
one obtains continuity of the sum. Further, if the assumption is that of
almost periodicity (Bohr) for the generalized exponents A;(t), 7 > 1, then
the sum will be almost periodic (Bohr).

Let us assume now that we want to organize (as a Banach space) the class
of series (14), which satisfy the weaker condition than (15), namely

(o)
Z la;|* < o0.
j=1

In our paper [1], the following result has been proven: to each series from
(14), satisfying condition (16), one can associate a function f € L2 (R,C),
such that

o

¢

lim (2¢)~! 2ds = i|2.

Jim 207 [ 1) Pds = 3 o
Jj=1

The function f, the limit, is not unique. Indeed, to f one can add any

function g, such that

14
lim (ze)—l/ lg(s)[2ds = 0.
£—00 )

One can take f(t) = exp{—|t|}, t € R. The quantity
1/2

£
Flse = nggo e[ If(s)IQdS]

is only a seminorm on the space of those f € L? (R,C), such that the
right hand side in the above formula is finite. The Banach space associated
to the seminormed space is the factor space taken with respect to the zero
manifold, i.e., consisting of those elements with zero seminorm (see (18)
above). This factor space is a Banach space and it is denoted by B3 (R, C).
As shown in Corduneanu [2], we assume that the sequence of generalized

exponents is satisfying the ”orthogonality” conditions

YA .
1, j=k
1im2£*1/ exp{i(Ak(t) — A; ()}t =< ’
Jim (207 [ expliO(t) - X (1) {07 o
The main problem/task in constructing new spaces of oscillatory functions
is the finding of sequences {\;(t); j > 1}, satisfying (19) relations. Further
approaches are also possible.
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