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Abstract. A statistical turbulence model is proposed for ensemble cal culations with two 
uids
coupled across a 
at interface, motivated by atmosphere-oc ean interaction. For applications, like
climate research, the response of an equilibrium climate st ate to variations in forcings is important
to interrogate predictive capabilities of simulations. Th e method proposed here focuses on the
computation of the ensemble mean-
ow 
uid velocities. In pa rticular, a closure model is used for
the Reynolds stresses that accounts for the 
uid behavior at the interface. The model is shown to
converge at long times to statistical equilibrium and an ana logous, discrete result is shown for two
numerical methods. Some matrix assembly costs are reduced w ith this approach. Computations
are performed with monolithic (implicit) and partitioned c oupling of the 
uid velocities; the former
being too expensive for practical computing, but providing a point of comparison to see the e�ect
of partitioning on the ensemble statistics. It is observed t hat the partitioned methods reproduce
the mean-
ow behavior well, but may introduce some long-tim e statistical bias.
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1. Introduction

Ensemble calculations with global circulation models (GCMs) are an impor-
tant component of climate variability studies. Many long-time integra tions are
performed to assess the average near-surface temperature change in response to
changes in forcings for the climate system at radiative equilibrium. There are mul-
tiple sources of uncertainty in calculated responses. For a given computational
model, some studies focus on parametric uncertainty (see [8], 9.2.2.2). One way
to mitigate cost is to apply statistical models for simulation responses that require
only a modest number of uncertain parameters and ensemble members, for example
in perturbed physics ensemble methods (e.g. [22]). Given a moderate number of en-
sembles, this paper investigates another possible cost-reductionmeasure. Based on
the work of Jiang, Kaya and Layton [10], a method is proposed hereinto compute
ensemble-mean 
ow states e�ciently, by using a conventional (statistical) turbu-
lence model (CTM). CTM models (like RANS [1] or k � � [20]) seek to reduce the
number of degrees of freedom required to resolve mean 
uid behavior. The method
has the additional bene�t of reducing some matrix-assembly costsfor the ensemble
computations.

The focus is on atmosphere-ocean interaction (AOI). A key aspect of many AOI
models is to avoid resolving the boundary layers, instead relying on boundary con-
ditions that conserve 
uxes across the layers. In order to reduce the problem down
but retain this key mathematical detail, Connors, Howell and Layton investigated
a model of two incompressible 
uids coupled across a 
at interface [5]. A similar
model is adopted here, since it provides a convenient setting in whichto incorporate
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the work of Jiang, Kaya and Layton. However, it is necessary to account for the
special dynamics in AOI introduced by the di�erences in vertical versus horizontal
scaling, and also by the interface boundary conditions.

1.1. A conventional turbulence model for coupled 
uids. Consider an en-
semble of velocities and pressures for 
ows in the atmosphere and ocean (domains

 A ; 
 O � Rd, d = 2 ; 3, respectively), satisfying

@t u j � D A (u j ) + u j � r u j + r pj = fA j on 
 A � (0; T ];(1)

r � u j = 0 on 
 A � (0; T ];(2)

u j (x; t = 0) = u0
j (x) on 
 A ;(3)

@t v j � D O (v j ) + v j � r v j + r qj = fO j on 
 O � (0; T ];(4)

r � v j = 0 on 
 O � (0; T ];(5)

v j (x; t = 0) = v0
j (x) on 
 O :(6)

Here, DA (u j ) and DO (v j ) are viscosity terms. Let D (u) represent anyd� d tensor
or matrix, with entries D (u) ij , 1 � i; j � d. De�ne a decomposition by

(7)

D (u) = D (u)H + D (u)? ;

�
D (u)H �

ij
=

�
(D (u)) ij for i = 1 ; : : : ; d � 1; j = 1 ; : : : ; d;

0; otherwise
�
D (u)? �

ij =
�

(D (u)) ij for i = d; j = 1 ; : : : ; d;
0; otherwise

Now let D (u) = ( r u + r uT )=2 be speci�cally the viscous part of the Cauchy stress
tensor. The di�usion terms are decomposed into horizontal and vertical terms:

DA (u j ) = 2 r �
�
� A

H D (u j )H + � A
? D (u j )? �

;(8)

DO (v j ) = 2 r �
�
� O

H D (v j )H + � O
? D (v j )? �

:(9)

The constants � A
H > 0 and � O

H > 0 are horizontal di�usion parameters, whereas
� A

? > 0 and � O
? > 0 are (constant) vertical di�usion parameters. The horizontal

scale is much larger than the vertical scale for atmosphere-oceansimulations. Due
to the nature of 
ow features that result from this scale discrepancy, it is typi-
cal in practice to treat horizontal and vertical di�usion processes di�erently (see,
e.g. [21, 23]). While many other aspects of typical atmosphere-ocean models are
not included here, the above model retains the necessary mathematical features for
the investigation in this paper. Boundary conditions are discussed later.

We assume that j = 1 ; : : : ; J and de�ne the ensemble average, saya, of any
collection of J objects aj by

(10) a � < a j > �
1
J

JX

j =1

aj :

A model for the ensemble-averaged mean 
ow is

@t u � D A (u) + u � r u + r p � r � R(u; u) = fA on 
 A � (0; T ];(11)

r � u = 0 on 
 A � (0; T ];(12)

u(x; t = 0) = u0(x) on 
 A ;(13)

@t v � D O (v ) + v � r v + r q � r � R(v ; v) = fO on 
 O � (0; T ];(14)

r � v = 0 on 
 O � (0; T ];(15)

v(x; t = 0) = v0(x) on 
 O ;(16)
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where the (yet to be closed) Reynolds stresses are denoted by

R(u; u) � < u j >< u j > � < u j u j > :

The key is what happens at the interface between the 
uids, which are coupled
across a 
at interface, � I . The coupling is based on the so-called \rigid-lid" hy-
pothesis that has often been used for atmosphere-ocean coupling; that small-scale

uctuations can be eliminated by using a 
at ocean surface model and still capture
the correct long-time statistical behavior. Also, the boundary layers of the atmo-
sphere and ocean are not resolved but are instead replaced by using formulae for the
bulk transfer of physical 
uxes between the 
uids. A full descript ion of the prim-
itive equations of the coupled atmosphere-ocean system and theirmathematical
analysis is found in the papers of Lions, Temam and Wang [16, 17, 18].

Let the outward-pointing normal vectors of unit length on the boundaries of 
 A

and 
 O be denoted by n̂A and n̂O , respectively. A generic unit vector �̂ is also
used, de�ned by �̂ = ( � 1; 0) (d = 2) or �̂ = ( � 1; � 2; 0) (d = 3). On the interface
the 
uids cannot penetrate and the transfer of horizontal momentum across the
boundary layers is represented using a slip-with-friction condition:

(17)
u j � n̂A = v j � n̂O = 0 ;

� � A � A
? n̂A � r u j � �̂ = � O � O

? n̂O � r v j � �̂ = � A � j ju j � v j j (u j � v j ) � �̂

on � I � (0; T ]. The parameters � A > 0 and � O > 0 are densities. The friction pa-
rameters� j > 0 are calculated in practice from bulk 
ux formulae that involve other
variables not considered in the above model, but which may be viewed as introduc-
ing additional sources of uncertainty. These parameters will be time dependent,
but for simplicity their dependence on x is neglected in this paper. Furthermore,
these values should remain bounded away from zero and in�nity. It isassumed
herein that � j (t) 2 C1 (0; 1 ) and

(18) 0 < � 0 � � j (t) < � 1 < 1 ; j = 1 ; : : : ; J;

for all t 2 [0; 1 ), where � 0 and � 1 are independent of time andj .
Upon ensemble averaging of (17), we see

(19)
u � n̂A = v � n̂O = 0 ;

� � A � A
? n̂A � r u � �̂ = � O � O

? n̂O � r v � �̂ = � A h� j ju j � v j j (u j � v j )i � �̂ ;

which adds another consideration for the closure problem, since (for example)

h� j ju j � v j j (u j � v j )i � �̂ 6= � ju � v j (u � v ) � �̂ :

The focus of this paper is the computation of ensembles for the coupled 
uid-

uid model, for which purpose it shall not be necessary to derive a theoretical
boundary condtion for the mean-
ow transfer of momentum across the interface.
It shall be shown that only individual realizations ( u j ; v j ) will need to be computed,
for which purpose it su�ces to apply the correct boundary conditio ns (17). Then
the identities (19) will hold automatically at each discrete time level. The closure
problem associated with the mean-
ow transfer of momentum across the interface
is left as an interesting open problem for purposes of theoretical analysis.
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Table 1. Choices for turbulent mixing lengths and turbulent energies.

f� A
H f� A

? f� O
H f� O

?

l � t < j(uH
j )0j > � t < j(u?

j )0j > � t < j(vH
j )0j > � t < j(v?

j )0j >
k0 � A

2 < j(uH
j )0j2 > � A

2 < j(u?
j )0j2 > � O

2 < j(vH
j )0j2 > � O

2 < j(v?
j )0j2 >

The critical issue is to model the behavior of the Reynolds stresses. Apply the
eddy viscosity (EV) hypothesis away from boundaries and approximate

r � R(u; u) � D A
T (u) + model pressure terms, in 
 A(20)

DA
T (u) � 2r �

�
f� A

H D (u)H + f� A
? D (u)?

�

and r � R(v ; v) � D O
T (v ) + model pressure terms, in 
 O ;(21)

DO
T (v ) � 2r �

�
f� O

H D (v)H + f� O
? D (v)?

�
:

Here, f� A
H ; f� O

H ; f� A
? ; f� O

? are turbulent viscosities in the bulk atmosphere and
ocean. Their dependence on turbulent 
uctuations shall be prescribed via the
Kolmogorov-Prandtl relationship

� T =
p

2�l
p

k0;(22)

where � T denotes a turbulent viscosity parameter, � is a tuning parameter, l is
a subscale mixing length andk0 is the kinetic energy associated with turbulent

uctuations.

The key is to choosel and k0 such that these values will naturally vanish near
boundaries, but away from boundaries they yield reasonable results to model sub-
scale di�usion. First, de�ne 
uctuations a0

j for data a1; : : : ; aJ by

a0
j � aj � < a j >; j = 1 ; : : : ; J:

Velocities will be decomposed into horizontal and vertical components:

u j = uH
j + u?

j ; v j = vH
j + v?

j ;

where uH
j ; vH

j are the horizontal components andu?
j ; v?

j are the vertical compo-
nents. Then the turbulent viscosities are speci�ed by choosingl and k0 as shown
in Table 1. The choices forl represent the (average) distance a turbulent, subscale
feature moves (either horizontally or vertically) in a time � t, shown in [9] to yield
good results. The values fork0 represent the (average) kinetic energy density of a
subscale eddy.

Note that on boundaries where a no-slip condition is imposed, these choices
of turbulent viscosities will automatically vanish. If a no-penetratio n condition
is imposed, such as at the atmosphere-ocean interface with rigid lid,the vertical
component of velocity still vanishes and thus drives the values off� A

? and f� O
? to

zero. As a result, from (20)-(21) it follows that

n̂A � R(u; u) � 2f� A
? n̂A � D (u)? = 0

and n̂O � R(v ; v) � 2f� O
? n̂O � D (v)? = 0

on � I . This is consistent with the behavior of the Reynolds stresses at the interface:

n̂A � R(u; u) = < n̂A � u j >< u j > � < (n̂A � u j ) u j > = 0

and n̂O � R(v ; v) = < n̂O � v j >< v j > � < (n̂O � v j ) v j > = 0 on � I :
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2. Mathematical preliminaries

Coordinates in space are denoted byx = ( x1; : : : ; xd). The domains are rectan-
gles (d = 2) or boxes (d = 3) of the form

(23)


 A = (0 ; L 1) � (0; HA ) and 
 O = (0 ; L 1) � (� HO ; 0) (d = 2)


 A = (0 ; L 1) � (0; L 2) � (0; HA )

and 
 O = (0 ; L 1) � (0; L 2) � (� HO ; 0) (d = 3) :

The values HA > 0 and HO > 0 represent the height of 
 A and the depth of

 O . The domain width in the lateral directions are 0 < L 1; L 2. The domains are
coupled across their shared interface �I = 
 A \ 
 O , which lies in the planexd = 0.
Other boundaries are

(24)

� t = @
 A \ f xd = HA g (top of atmosphere)

� b = @
 O \ f xd = � HO g (bottom of ocean)

� A
L = @
 A n (� t [ � I ) (lateral atmosphere boundaries)

� O
L = @
 O n (� b [ � I ) (lateral ocean boundaries):

The velocities and pressures are denoted by

(25)
u j = ( u1;j ; : : : ; ud;j ) : 
 A ! Rd; pj : 
 A ! R;

v j = ( v1;j ; : : : ; vd;j ) : 
 O ! Rd; qj : 
 O ! R:

Periodic lateral boundary conditions are chosen. At the atmosphere top and ocean
bottom, a no-slip condition is imposed for the velocities:

(26) u j = 0 on � t � (0; T ] and v j = 0 on � b � (0; T ]:

The ensemble-mean 
ows then have the same lateral, top and bottom boundary
conditions.

Remark 1. At the atmosphere top, the usual boundary conditions would be no-
penetration and no-tangential-stress (also called \no-
ux"). However, the no-slip
condition is used herein to simplify the analysis and presentation.

Some preliminary notation and results will be used for purposes of analysis.

De�nition 1. Standard L 2-inner-products are de�ned on each domain by

(u; eu)A �
Z


 A

u � eu dx and (v ; ev )O �
Z


 O

v � ev dx:

De�nition 2.

kukp;2 �

 Z T

0
kukp

! 1=p

; 1 � p < 1 ;

kuk1 ;2 � ess sup0� t � T ku(t)k:
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De�nition 3. Weak spaces for the velocities and pressures are de�ned with respect
to the above boundary condtions.

X A � cl(H 1 )d

�
u 2

�
C1 (
 A )

� d
j u(x i ) = u(x i + L i ); 1 � i < d; u = 0 on � t [ � I

�
:

X O � cl(H 1 )d

�
v 2

�
C1 (
 O )

� d
j v (x i ) = v(x i + L i ); 1 � i < d;

v = 0 on � b; vd = 0 on � I

�
:

PA � clH 1

�
p 2 C1 (
 A ) j

Z


 A

p dx = 0 ; p(x i ) = p(x i + L i ); 1 � i < d
�

:

PO � clH 1

�
q 2 C1 (
 O ) j

Z


 O

q dx = 0 ; q(x i ) = q(x i + L i ); 1 � i < d
�

:

Divergence-free subspaces are needed for the velocities.

De�nition 4.

VA � f u 2 X A j (r � u; p)A = 0 ; 8p 2 PA g(27)

VO � f v 2 X O j (r � v ; q)O = 0 ; 8q 2 PO g(28)

Due to the boundary conditions on � I , it is necessary to work with the space
L 3(� I ). It is well-known that traces of functions in X A and X O are well-de�ned in
this sense (seee.g. [6]). The next de�nition provides a compact notation.

De�nition 5.

kukI �
� Z

� I

juj3 d� I

� 1=3

:

De�nition 6. Given functions u; ~u 2 (H 1(
 A ))d and v; ~v 2 (H 1(
 O ))d, some
bilinear forms are de�ned as follows.

aA (u; ~u) � 2� A
H

Z


 A

D (u)H : r ~u dx + 2 � A
?

Z


 A

D (u)? : r ~u dx(29)

faA (u; ~u) � 2
Z


 A

f� A
H D (u)H : r ~u dx + 2

Z


 A

f� A
? D (u)? : r ~u dx(30)

aO (v ; ~v ) � 2� O
H

Z


 O

D (v)H : r ~v dx + 2 � O
?

Z


 O

D (v)? : r ~v dx(31)

faO (v ; ~v ) � 2
Z


 O

f� O
H D (v)H : r ~v dx + 2

Z


 O

f� O
? D (v)? : r ~v dx:(32)

Lemma 1. Given functions (~u; ~v ) 2 ((H 1(
 A ))d; (H 1(
 O ))d) and (u; v) 2 (VA ; VO ),
it holds that

aA (u; ~u) = � A
H

Z


 A

(r u)H : (r ~u)H dx + � A
?

Z


 A

(r u)? : (r ~u)? dx

aO (v ; ~v ) = � O
H

Z


 O

(r v )H : (r ~v )H dx + � O
?

Z


 O

(r v )? : (r ~v )? dx:

Proof. It su�ces to take u 2 C1 (
 A ) \ VA and v 2 C1 (
 O ) \ VO , since these
subspaces are dense. Use the decomposition (7) and

(r u)H : (r ~u)? = 0 = ( r ~u)H : (r u)?
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to write

aA (u; ~u) = 2 � A
H

Z


 A

D (u)H : r ~u dx + 2 � A
?

Z


 A

D (u)? : r ~u dx

= � A
H

Z


 A

(r u)H : (r ~u)H +
�
r uT � H

: (r ~u)H dx

+ � A
?

Z


 A

(r u)? : (r ~u)? +
�
r uT � ?

: (r ~u)? dx:

Integrate by parts to show that for each i = 1 ; : : : ; d,

X

j =1 ;:::;d

Z


 A

@x i uj @x j ~ui dx = �
Z


 A

@x i

0

@
X

j =1 ;:::;d

@x j uj

1

A ~ui dx = 0 ;

sinceu 2 VA ) r � u = 0. It follows that

� A
H

Z


 A

�
r uT � H

: (r ~u)H dx = 0 = � A
?

Z


 A

�
r uT � ?

: (r ~u)? dx;

and therefore

aA (u; ~u) = � A
H

Z


 A

(r u)H : (r ~u)H dx + � A
?

Z


 A

(r u)? : (r ~u)? dx:

A similar analysis holds with v and ~v . �

An application of the Poincar�e-Friedrich inequality is used for the velocity spaces.
The factor of 2 that appears in (34) below is for convenience in laterapplication.

Lemma 2. There exists a constant� 1 > 0 such that

(33) � 1
�

kr uk2 + kr vk2	
� aA (u; u) + aO (v ; v );

for any u 2 VA and v 2 VO . Furthermore, there exists a constant� 2 > 0 such that

(34) 2� 2
�

kuk2 + kvk2	
� � 1

�
kr uk2 + kr vk2	

;

for any u 2 VA and v 2 VO .

Proof. It is clear from Lemma 1 that the constant � 1 can be de�ned by

� 1 = min
�

� A
H ; � A

? ; � O
H ; � O

? 	
:

The rest follows from the observation that the Poincar�e-Friedrich inequality holds
on each domain 
 A and 
 O . �

The polarization identity is useful to decompose vector products of the form
(u � v) � u into positive and negative parts.

Lemma 3 (Polarization identity) . Given equal-size vectorsu and v,

2(u � v) � u = juj2 + ju � v j2 � j v j2:

Ensembles of products can be manipulated using the next result to represent
them in terms of 
uctuations and ensemble averages.

Lemma 4 (Product ensemble identities). Given two sets of scalarsaj and bj ,
j = 1 ; : : : ; J , it follows

(35) < a j bj > = < a 0
j b0

j > + ab:

For two sets of vectorsaj and b j , j = 1 ; : : : ; J , it holds that

(36) < aj � b j > = < a0
j � b0

j > + a � b:
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Proof. Since the averaging operator< � > distributes across addition andj -independent
scalars can be pulled out,

< a j bj > = < a 0
j b0

j > + < a 0
j b > + < ab0

j > + < ab >

= < a 0
j b0

j > + < a 0
j > b + a < b0

j > + ab:

Then (35) follows from noting that 
uctuations average to zero;

< a 0
j > = < b0

j > = 0 :

The proof of (36) is similar. �

The following result will help later to study the e�ects of the nonlinear friction
terms on the mean 
ow.

Lemma 5. Given a set of vectorsaj , j = 1 ; : : : ; J , it holds that


(jaj j aj )0 � a0

j

�
� 0:

Proof. Application of (36) gives

(37)



(jaj j aj )0 � a0

j

�
= hjaj j aj � aj i � hj aj j aj i � haj i

=
D

jaj j3
E

� hj aj j aj i � haj i :

A lower bound may be found by �rst applying the Triangle and Minkowsk i inequal-
ities to show that

jhjaj j aj ij =
1
J

�
�
�
�
�
�

JX

j =1

jaj j aj

�
�
�
�
�
�

�
1
J

JX

j =1

jaj j2 �
1
J

0

@
JX

j =1

1

1

A

1=3 0

@
JX

j =1

jaj j3

1

A

2=3

=

0

@1
J

JX

j =1

jaj j3

1

A

2=3

=
D

jaj j3
E2=3

:

Similarly, it holds that

jhaj ij =
1
J

�
�
�
�
�
�

JX

j =1

aj

�
�
�
�
�
�

�
1
J

JX

j =1

jaj j �
1
J

0

@
JX

j =1

1

1

A

2=3 0

@
JX

j =1

jaj j3

1

A

1=3

=

0

@1
J

JX

j =1

jaj j3

1

A

1=3

=
D

jaj j3
E1=3

:

The desired lower bound in (37) follows from the above results, via Cauchy-Schwarz:

jhjaj j aj i � haj ij �
D

jaj j3
E1=3 D

jaj j3
E2=3

=
D

jaj j3
E

)


(jaj j aj )0 � a0

j

�
�

D
jaj j3

E
�

D
jaj j3

E
= 0 :

�

The following monotonicity result is used later to analyze convergence of ensem-
bles to statistical equilibrium.

Lemma 6 (Friction monotonicity) . De�ne T : Rd ! Rd by T(x) = jx jx, for all
x 2 Rd, d 2 N. Then T 2 C1(Rd; Rd) and

(38) (T(x) � T (y)) � (x � y ) �
1
4

jx � y j3; 8 x; y 2 Rd:
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Proof. At any point x, the derivative DT (x) : Rd ! Rd is a linear map, de�ned for
all arguments y 2 Rd by

(39) DT (x)(y) �
�

0; if x = 0
x �y
jx j x + jx jy ; otherwise.

It is a standard exercise in real analysis to verify this formula and that T 2
C1(Rd; Rd).

It remains to show (38) . Given two vectorsx; y 2 Rd, de�ne a = y � x. Without
loss of generality,a 6= 0. One may write

(T(y) � T (x)) � (y � x) =
Z 1

0

d
ds

T(x + sa) � a ds =
Z 1

0
DT (x + sa)(a) � a ds:

Note that x + sa = 0 is possible for at most one distinct value ofs, so we may
ignore this case in the above integral. It follows from (39) that

(T (y) � T (x)) � (y � x) =
Z 1

0

(x + sa) � a
jx + saj

(x + sa) � a + jx + saja � a ds

=
Z 1

0

j(x + sa) � aj2

jx + saj
+ jx + sajjaj2 ds

� j aj2
Z 1

0
jx + saj ds �

1
4

jaj3:

The last inequality is equivalent to arguments in [11], page 131. �

Remark 2. The value 1=4 that appears in (38) is probably not sharp.

3. Evolution of the model variance

Three sources of model uncertainties are considered: initial conditions, forcing
terms and the friction parameters � j . Let k � k denote the standardL 2-norm; the
domain is inferred by context. An arbitrary set of vector function s w j , j = 1 ; : : : ; J ,
are discussed on a generic domain.

De�nition 7 (Variance). The variances are given by

V (w j ) �
D

kw j k2
E

� k wk2 ;

V (( r w j )H ) �
D



 (r w j )H



 2

E
�




 (r w)H




 2

;

and V(r w ?
j ) �

D


 (r w j )?




 2

E
�




 (r w)?




 2

:

Note that the variance measures 
uctuations:

Lemma 7.

(40)
V (w j ) =

D


 w 0

j




 2

E
� 0; V (( r w j )H ) =

D


 (( r w j )H )0




 2

E
� 0;

V (( r w j )? ) =
D



 (( r w j )? )0



 2

E
� 0:

Proof. Let 
 denote the domain for w j . Apply (36) as follows:
D

kw j k2
E

=
� Z



w j � w j dx

�
=

Z



hw j � w j i dx =

Z






w 0

j � w 0
j

�
dx +

Z



w � w dx

=
� Z




�
�w 0

j

�
�2

dx
�

+
Z



jw j2 dx =



kw 0

j k2�
+ kwk2;
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which implies that

V (w j ) =
D



 w 0
j




 2

E
:

The remainder of the proof is analogous. �

Given that strong model solutions exist for each realization, then an energy
equality will be satis�ed for each realization and for the mean 
ows. These equations
can then be used to describe the evolution of the model variance.

Lemma 8. Given strong solutions(u j ; pj ) and (v j ; qj ) to the model equations(1)-
(6) with boundary conditions described above, the following energy equations are
satis�ed for j = 1 ; : : : ; J :

d
dt

�
ku j k2 +

� O

� A
kv j k2

�
+ aA (u j ; u j ) +

� O

� A
aO (v j ; v j )(41)

+
Z

� I

� j ju j � v j j3 d� I =
Z


 A

fA j � u j dx +
� O

� A

Z


 O

fO j � v j dx;

d
dt

�
kuk2 +

� O

� A
kvk2

�
+

Z

� I

h� j ju j � v j j(u j � v j )i � (u � v ) d� I(42)

+ aA (u; u) +
� O

� A
aO (v ; v ) =

Z


 A

fA � u dx +
� O

� A

Z


 O

fO � v dx

�
Z


 A

R(u; u) : r u dx �
� O

� A

Z


 O

R(v; v) : r v dx:

Proof. Multiply through (1) by u j and integrate over 
 A . Also multiply through (4)
by � O v j =� A and integrate over 
 O , adding the two equations together. Given the
boundary condtions, it is easily shown that

Z


 A

u j � r u j � u j dx =
Z


 O

v j � r v j � v j dx = 0 =
Z


 A

r pj � u j dx =
Z


 O

r qj � v j dx:

For the di�usion terms, note that

�
Z


 A

DA (u j ) � u j dx �
� O

� A

Z


 O

DO (v j ) � v j dx = aA (u j ; u j ) +
� O

� A
aO (v j ; v j )

+
Z

� I

� j ju j � v j j(u j � v j ) � u j d� I �
Z

� I

� j ju j � v j j(u j � v j ) � v j d� I

= aA (u j ; u j ) +
� O

� A
aO (v j ; v j ) +

Z

� I

� j ju j � v j j3 d� I :

The rest is standard to derive (41). For (42) one multiplies through (11) by u and
through (14) by � O v=� A . Then follow the above procedure, applying the ensemble-
averaged boundary conditions. �
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Theorem 1 (Variance evolution). Given an ensemble of strong model solutions,
the model variance must satisfy the integral equation

V (u j (T )) +
� O

� A
V (v j (T )) +

Z T

0
� A

H V ((r u j (T ))H ) dt +
Z T

0
� A

? V ((r u j (T ))? ) dt

+
� O

� A

Z T

0
� O

H V ((r v j (T ))H ) dt +
� O

� A

Z T

0
� O

? V ((r v j (T ))? ) dt

+
Z T

0

Z

� I



f � j ju j � v j j(u j � v j )g0 � (u j � v j )0� d� I dt

= V (u0
j ) +

� O

� A
V (v0

j ) +
Z T

0

Z


 A



fA

0
j � u0

j

�
+

� O

� A

Z T

0

Z


 O



fO

0
j � v0

j

�

+
Z T

0

Z


 A

R(u; u) : r u dx dt +
� O

� A

Z T

0

Z


 O

R(v; v) : r v dx dt:

Proof. Integrate (41)-(42) in time and take the ensemble-average of the realization
energy equations. Subtracting this from the time-integral of the mean-
ow energy
equation and applying De�nition 7 yields

V (u j (T )) +
� O

� A
V (v j (T )) +

Z T

0
� A

H V ((r u j (T ))H ) dt +
Z T

0
� A

? V ((r u j (T ))? ) dt

+
� O

� A

Z T

0
� O

H V ((r v j (T ))H ) dt +
� O

� A

Z T

0
� O

? V ((r v j (T ))? ) dt

+
Z T

0

Z

� I



� j ju j � v j j3

�
� h � j ju j � v j j(u j � v j )i � (u � v ) d� I dt

= V (u0
j ) +

� O

� A
V (v0

j ) +
Z T

0

Z


 A

�

fA j � u j

�
� fA � u

�
dx dt

+
� O

� A

Z T

0

Z


 O

�

fO j � v j

�
� fO � v

�
dx dt

+
Z T

0

Z


 A

R(u; u) : r u dx dt +
� O

� A

Z T

0

Z


 O

R(v; v) : r v dx dt:

Apply (36) to the forcing terms:


fA j � u j

�
� fA � u =



fA

0
j � u0

j

�
and



fO j � v j

�
� fO � v =



fO

0
j � v0

j

�
:

In order to handle the interface terms, set
 j = � j ju j � v j j(u j � v j ) and w j = u j � v j .
It holds that

Z T

0

Z

� I



� j ju j � v j j3

�
� h � j ju j � v j j(u j � v j )i � (u � v ) d� I dt

=
Z T

0

Z

� I




 j � w 0

j

�
d� I dt =

Z T

0

Z

� I




 0

j � w 0
j

�
d� I dt:

The last step holds since



 � w 0

j

�
= 
 �



w 0

j

�
= 0. The desired result follows by

combining the above equations. �

As a corollary, it may be shown that when perturbations are only introduced
through the initial conditions, the Reynolds stresses must have a dissipative e�ect
on the mean 
ow. This yields a proof (under certain conditions) of the so-called
Boussinesq assumptionthat partially motivates the closure models (20)-(21). This
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analysis was performed in [10], but their analysis did not account for the extra
coupling terms present with the atmosphere-ocean problem.

Corollary 1. Assume strong realizations(u j ; pj ) and (v j ; qj ) exist and the forc-
ing terms satisfy fA j 2 L 1 (0; T ; L 2(
 A )) and fO j 2 L 1 (0; T ; L 2(
 O )) , for j =
1; : : : ; J . If � 0

j = 0 and fA
0
j = fO

0
j = 0 for j = 1 ; : : : ; J , then

lim inf
T !1

�
1
T

Z T

0

Z


 A

R(u; u) : r u dx dt

+
� O

� A

1
T

Z T

0

Z


 O

R(v; v) : r v dx dt
�

� 0:

Proof. The assumptions on the forcing terms imply further that the variance sat-
is�es V (u j ) 2 L 1 (0; T ; L 2(
 A )) and that V (v j ) 2 L 1 (0; T ; L 2(
 O )), for all j , by
standard arguments. Since also� 0

j = 0 and fA
0
j = fO

0
j = 0, Theorem 1 implies that

V (u j (T )) +
� O

� A
V (v j (T )) +

Z T

0
� A

H V ((r u j (T ))H ) dt +
Z T

0
� A

? V ((r u j (T ))? ) dt

+
� O

� A

Z T

0
� O

H V ((r v j (T ))H ) dt +
� O

� A

Z T

0
� O

? V ((r v j (T ))? ) dt

+
Z T

0

Z

� I

�


fj u j � v j j(u j � v j )g0 � (u j � v j )0� d� I dt

= V (u0
j ) +

� O

� A
V (v0

j ) +
Z T

0

Z


 A

R(u; u) : r u dx dt +
� O

� A

Z T

0

Z


 O

R(v; v) : r v dx dt:

Multiply through by 1 =T and note that

1
T

V(u j (T )) = O
�

1
T

�
;

1
T

V (v j (T )) = O
�

1
T

�
;

1
T

V (u0
j ) = O

�
1
T

�
;

1
T

V (v0
j ) = O

�
1
T

�
:

Also, taking aj = u j � v j in Lemma 5 yields

1
T

Z T

0

Z

� I

�


fj u j � v j j(u j � v j )g0 � (u j � v j )0� d� I dt � 0:

The remaining variance terms are non-negative by Lemma 7. �

Remark 3. It is expected that Corollary 1 would still hold if the data 
uctuations
� 0

j , fA
0
j and fO

0
j are small enough (in an appropriate sense), or vanish quickly

enough asT ! 1 .

4. Leray-regularized realizations and properties

The model realizations shall employ a Leray-type regularization. That is, the
ensemble averaging operator< � > is assumed to have a smoothing e�ect on the
mean 
ow, so that replacement of the convecting velocity in the nonlinear term of
a realization will result in a regularized model, in the sense of Leray, [14, 15]. The
realizations satisfy

@t u j � D A (u j ) � D A
T (u j ) + u � r u j + r pj = fA j on 
 A � (0; T ];(43)

@t v j � D O (v j ) � D O
T (v j ) + v � r v j + r qj = fO j on 
 O � (0; T ]:(44)
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The notation for the realizations is reused here. The incompressibility, initial and
boundary conditions are unchanged from before.

Note that upon taking the ensemble-average of (43)-(44) the mean 
ow satis�es

@t u � D A (u) � D A
T (u) + u � r u + r p = fA on 
 A � (0; T ];

@t v � D O (v ) � D O
T (v ) + v � r v + r q = fO on 
 O � (0; T ]:

Comparison with (11)-(16) reveals that the mean 
ow for the Leray-regularized
ensemble di�ers from that of the standard NSE model ensemble onlydue to the
closures (20)-(21) for the Reynolds stress terms.

In ensemble calculations for this regularized model, matrices for theconvection
terms will not depend on the particular ensemble member. In practice, ensemble
members would be advanced one time step in serial fashion, requiringone ensemble
averaging (a negligible cost) plus the recomputation of convection terms once per
time step. The matrix assembly cost is thus reduced signi�cantly in proportion to
the (possibly large) ensemble size, as compared with standard ensemble methods.
The resulting savings in run time will depend on the particular implementation and
is left to future study.

Remark 4. The mean 
ow still satis�es (19) on � I . This is not closed for the
mean 
ow, so the realizations are a coupled system ofJ equations. Existence of
unique, strong solutions is assumed herein, in order to discuss algorithmic ideas. A
time-stepping method is applied later that decouples theseequations numerically.

Unique, strong solutions for the realization equations are assumedto exist here-
after and to satisfy the following variational problem. For 1 � j � J , (u j ; pj ) : t !
(X A ; PA ) and (v j ; qj ) : t ! (X O ; PO ) satisfy (for a.e. t 2 (0; T ])

(@t u j ; eu)A + ( u � r u j ; eu)A + aA (u j ; eu) + faA (u j ; eu) � (pj ; r � eu)A

+ � j

Z

� I

ju j � v j j(u j � v j ) � eu d� I = ( fA j ; eu)A ; 8eu 2 X A(45)

(r � u j ; ~p)A = 0 ; 8~p 2 PA ;(46)

(@t v j ; ev)O + ( v � r v j ; ev )O + aO (v j ; ev ) + faO (v j ; ev ) � (qj ; r � ev)O

�
� A

� O
� j

Z

� I

ju j � v j j(u j � v j ) � ev d� I = ( fO j ; ev)O ; 8ev 2 X O(47)

(r � v j ; ~q)O = 0 ; 8~q 2 PO ;(48)

with u j (t = 0) = u0
j and v j (t = 0) = v0

j . Here, it is assumed also thatr � u0
j =

r � v0
j = 0 and that u j 2 L 4(0; T ; X A ) and v j 2 L 4(0; T ; X O ). The time derivatives

satisfy @t u j 2 L 2(0; T ; X A
� ) and @t v j 2 L 2(0; T ; X O

� ). This way to de�ne strong
solutions is consistent with [13].

Lemma 9 (Long-time stability) . Assume(u j ; pj ), (v j ; qj ) are strong solutions of
the realization equations for 1 � j � J and let the turbulent viscosity coe�cients
be constants. If fA j 2 L 1 (0; 1 ; L 2(
 A )) and fO j 2 L 1 (0; 1 ; L 2(
 O )) , then for
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0 < t < 1 ,

ku j (t)k2 +
� O

� A
kv j (t)k2 + � 1

Z t

0
e� � 2 ( t � � )

�
kr u j (� )k2 +

� O

� A
kr v j (� )k2

�
d�

+ 2
Z t

0
e� � 2 ( t � � ) � j k(u j � v j )( � )k3

I d�

� e� � 2 t
�

ku0
j k2 +

� O

� A
kv0

j k2
�

+
1 � e� � 2 t

(� 2)2

�
lim

T !1
kfA j k2

1 ;2 +
� O

� A
lim

T !1
kfO j k2

1 ;2

�
:

It follows that u j 2 L 1 (0; 1 ; L 2(
 A )) and v j 2 L 1 (0; 1 ; L 2(
 O )) .

Proof. De�ne w j =
p

� O v j =
p

� A . It follows from (45)-(48) that

1
2

d
dt

�
ku j k2 + kw j k2	

+ aA (u j ; u j ) + faA (u j ; u j ) + aO (w j ; w j ) + faO (w j ; w j )

+ � j ku j � v j k3
I = ( fA j ; u j )A +

� O

� A
(fO j ; v j )O � k fA j kku j k +

� O

� A
kfO j kkv j k:

Since the turbulent viscosity parameters are constants, the analysis of Lemma 1
and Lemma 2 may be applied to show that

faA (u j ; u j ) + faO (w j ; w j ) � 0:

Bound the remaining viscous terms below by applying Lemma 2. The result is

1
2

d
dt

�
ku j k2 + kw j k2	

+ � 2
�

ku j k2 + kw j k2	
+

� 1

2

�
kr u j k2 + kr w j k2	

+ � j ku j � v j k3
I � k fA j kku j k +

� O

� A
kfO j kkv j k:

Bound the right-hand side above using Young's inequality:

1
2

d
dt

�
ku j k2 + kw j k2	

+ � 2
�

ku j k2 + kw j k2	
+

� 1

2

�
kr u j k2 + kr w j k2	

+ � j ku j � v j k3
I �

1
2� 2

�
kfA j k2 +

� O

� A
kfO j k2

�
+

� 2

2

�
ku j k2 + kw j k2	

)
1
2

d
dt

�
ku j k2 + kw j k2	

+
� 2

2

�
ku j k2 + kw j k2	

+
� 1

2

�
kr u j k2 + kr w j k2	

+ � j ku j � v j k3
I �

1
2� 2

�
kfA j k2 +

� O

� A
kfO j k2

�
:

The remainder of the proof follows by using an integration factor. �

The next result is needed to discuss convergence to statistical equilibrium.

Lemma 10. Let the mapping � ! e� � 2 ( t � � ) f (� ) 2 L 1(0; t) satisfy
Z t

0
e� � 2 ( t � � ) jf (� )j d� � C < 1

for all 0 < t < 1 , where � 2 > 0 and C > 0 are independent of� and t. Given any
g 2 L 1 (0; 1 ) such that lim supt !1 jg(t)j = 0 , it holds that

lim sup
t !1

Z t

0
e� � 2 ( t � � ) jg(� )jj f (� )j d� = 0 :
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Proof. Without loss of generality, assumekgkL 1 > 0. Let � > 0 be arbitrary.
Given 0 < s < t ,

Z t

0
e� � 2 ( t � � ) jg(� )jj f (� )j d� � k gkL 1 e� � 2 ( t � s)

Z s

0
e� � 2 (s� � ) jf (� )j d�

+ sup
s� � � t

jg(� )j
Z t

s
e� � 2 ( t � � ) jf (� )j d� � CkgkL 1 e� � 2 ( t � s) + C sup

s� � � t
jg(� )j:

Chooses so large that sups� � �1 jg(� )j < �= (2C) and then choose anyt � (� ) > s so
large that

e� � 2 ( t � s) � e� � 2 ( t � � s) <
�

2CkgkL 1
;

for all t � t � . It follows that

0 � sup
t � t �

Z t

0
e� � 2 ( t � � ) jg(� )jj f (� )j d� < �;

which is the desired result. �

Theorem 2. Let the turbulent viscosity coe�cients be constants. Assume that for
all 1 � j � J , fA j 2 L 1 (0; 1 ; L 2(
 A )) , fO j 2 L 1 (0; 1 ; L 2(
 O )) and also that

(49) lim sup
t !1

kfA
0
j (t)k = lim sup

t !1
kfO

0
j (t)k = lim sup

t !1
� 0

j (t) = 0 :

Given (u i ; pi ), (v i ; qi ) and (u j ; pj ), (v j ; qj ) are any strong solutions of the realiza-
tion equations with 1 � i; j � J , it holds that

(50) lim sup
t !1

�
k(u i � u j )( t)k2 +

� O

� A
k(v i � v j )( t)k2

�
= 0

and

(51) lim sup
t !1

Z t

0
e� � 2 ( t � � )

�
kr (u i � u j )( � )k2 +

� O

� A
kr (v i � v j )( � )k2

�
d� = 0 :

Proof. De�ne a = u i � u j and b = v i � v j . It follows from (45)-(48) that

1
2

d
dt

kak2 +
Z

� I

� i ju i � v i j(u i � v i ) � a d� I �
Z

� I

� j ju j � v j j(u j � v j ) � a d� I

+ aA (a; a) + faA (a; a) =
�
fA i � fA j ; a

�
A :

Next, decompose the data� i , � j , fA i and fA j in terms of 
uctuations and means,
then insert above and rearrange terms to see that

1
2

d
dt

kak2 +
Z

� I

� ju i � v i j(u i � v i ) � a d� I �
Z

� I

� ju j � v j j(u j � v j ) � a d� I

+ aA (a; a) + faA (a; a) =
�
fA

0
i � fA

0
j ; a

�
A

�
Z

� I

� 0
i ju i � v i j(u i � v i ) � a d� I +

Z

� I

� 0
j ju j � v j j(u j � v j ) � a d� I :
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On the domain 
 O an analogous equation is derived and added to the above result,
which leads to

1
2

d
dt

�
kak2 +

� O

� A
kbk2

�
+ aA (a; a) + faA (a; a) +

� O

� A
aO (b; b) +

� O

� A
faO (b; b)

+
Z

� I

� ju i � v i j(u i � v i ) � (a � b) d� I �
Z

� I

� ju j � v j j(u j � v j ) � (a � b) d� I

= �
Z

� I

� 0
i ju i � v i j(u i � v i ) � (a � b) d� I +

Z

� I

� 0
j ju j � v j j(u j � v j ) � (a � b) d� I

+
�
fA

0
i � fA

0
j ; a

�
A

+
� O

� A

�
fO

0
i � fO

0
j ; b

�
O

:

The interface terms on the left are treated by applying the monotonicity result
Lemma 6, with x = u i � v i and y = u j � v j . Then x � y = a � b and

Z

� I

� ju i � v i j(u i � v i ) � (a � b) d� I �
Z

� I

� ju j � v j j(u j � v j ) � (a � b) d� I

=
Z

� I

� (jx jx � j y jy ) � (a � b) d� I =
Z

� I

� (jx jx � j y jy ) � (x � y ) d� I

�
1
4

Z

� I

� jx � y j3 d� I =
1
4

Z

� I

� ja � bj3 d� I � 0:

Next, bound the viscous terms below by applying Lemma 2. Upon combining the
above results, it holds that

1
2

d
dt

�
kak2 +

� O

� A
kbk2

�
+ � 2

�
kak2 +

� O

� A
kbk2

�
(52)

+
� 1

2

�
kr ak2 +

� O

� A
kr bk2

�
�

�
kfA

0
i k + kfA

0
j k

�
kak +

� O

� A

�
kfO

0
i k + kfO

0
j k

�
kbk

+ j� 0
i j

Z

� I

ju i � v i j2ja � bj d� I + j� 0
j j

Z

� I

ju j � v j j2ja � bj d� I :

Young's inequality is used to bound

�
kfA

0
i k + kfA

0
j k

�
kak +

� O

� A

�
kfO

0
i k + kfO

0
j k

�
kbk(53)

�
2

� 2

�
kfA

0
i k

2 + kfA
0
j k2 +

� O

� A
kfO

0
i k

2 +
� O

� A
kfO

0
j k2

�
+

� 2

2

�
kak2 +

� O

� A
kbk2

�
:

The interface terms on the right of (52) require more work. First, note that

ja � bj = jx � y j � j u i � v i j + ju j � v j j:

It follows from Young's inequality that

j� 0
i j

Z

� I

ju i � v i j2ja � bj d� I + j� 0
j j

Z

� I

ju j � v j j2ja � bj d� I

�
5
3

j� 0
i j

Z

� I

ju i � v i j3 d� I +
5
3

j� 0
j j

Z

� I

ju j � v j j3 d� I

+
1
3

j� 0
i j

Z

� I

ju j � v j j3 d� I +
1
3

j� 0
j j

Z

� I

ju i � v i j3 d� I :
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Next, use the positivity requirement (18) to bound

j� 0
i j

Z

� I

ju i � v i j2ja � bj d� I + j� 0
j j

Z

� I

ju j � v j j2ja � bj d� I

�
5j� 0

i j + j� 0
j j

3� 0
� i

Z

� I

ju i � v i j3 d� I +
5j� 0

j j + j� 0
i j

3� 0
� j

Z

� I

ju j � v j j3 d� I :

This result and (53) provide an upper bound for the right-hand sideof (52). After
some algebra, one obtains

d
dt

�
kak2 +

� O

� A
kbk2

�
+ � 2

�
kak2 +

� O

� A
kbk2

�
+ � 1

�
kr ak2 +

� O

� A
kr bk2

�

�
4

� 2

�
kfA

0
i k

2 + kfA
0
j k2 +

� O

� A
kfO

0
i k

2 +
� O

� A
kfO

0
j k2

�

+ 2
5j� 0

i j + j� 0
j j

3� 0
� i ku i � v i k3

I + 2
5j� 0

j j + j� 0
i j

3� 0
� j ku j � v j k3

I

An integration factor may be used here to �nd that

(54)

ka(t)k2 +
� O

� A
kb(t)k2 + � 1

Z t

0
e� � 2 ( t � � )

�
kr a(� )k2 +

� O

� A
kr b(� )k2

�
d�

� e� � 2 t
�

ka(0)k2 +
� O

� A
kb(0)k2

�

+
4

� 2

Z t

0
e� � 2 ( t � � )

�
kfA

0
i k

2 + kfA
0
j k2 +

� O

� A
kfO

0
i k

2 +
� O

� A
kfO

0
j k2

�
d�

+
2

3� 0

Z t

0
e� � 2 ( t � � ) (5j� 0

i j + j� 0
j j)� i ku i � v i k3

I d�

+
2

3� 0

Z t

0
e� � 2 ( t � � ) (5j� 0

j j + j� 0
i j)� j ku j � v j k3

I d�:

Due to (49) and the boundedness of the datafA j and fO j , it holds that

� ! g1(� ) � k fA
0
i (� )k2 + kfA

0
j (� )k2 +

� O

� A
kfO

0
i (� )k2 +

� O

� A
kfO

0
j (� )k2 2 L 1 (0; 1 )

such that lim sup� !1 jg1(� )j = 0. Therefore, Lemma 10 may be applied withg = g1

and f (� ) = 1 to show that

lim sup
t !1

Z t

0
e� � 2 ( t � � )

�
kfA

0
i k

2 + kfA
0
j k2 +

� O

� A
kfO

0
i k

2 +
� O

� A
kfO

0
j k2

�
d� = 0 :

In order to show that the interface terms also vanish in the limit, �rs t note that
due to Lemma 9, for any 1� j � J

� ! f (� ) � e� � 2 ( t � � ) � j (� )k(u j � v j )( � )k3
I

satis�es the assumptions of Lemma 10. Due to (49) and the uniformboundedness
of the data � i and � j , it then follows from Lemma 10 that

lim sup
t !1

Z t

0
e� � 2 ( t � � ) (5j� 0

i j + j� 0
j j)� i ku i � v i k3

I d�

= lim sup
t !1

Z t

0
e� � 2 ( t � � ) (5j� 0

j j + j� 0
i j)� j ku j � v j k3

I d� = 0 :

The desired results are now evident from (54). �
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5. Numerical methods and variance analysis

CTM realizations are to be computed using three methods that di�er only in the
treatment of the coupling across the interface. One method usesimplicit coupling of
velocities, called themonolithic method, which is analogous to solving atmosphere
and ocean equations simultaneously as one large system. In practice, partitioned
methods are commonly used, which decouple the velocities for the atmosphere and
ocean systems. Monolithic coupling is used here only to provide a benchmark point
of comparison for the partitioned methods.

The partitioned methods are based on the work by Connors, Howelland Lay-
ton [5], and they provide unconditional numerical stability. The proof of stability
is omitted for brevity, but it is a simple consequence of combining [10], Theorem
4.6 and [5], Lemma 3.1. However, with a partitioned method the frictiondoes not
automatically satisfy the monotonicity property (see Lemma 6), which may inhibit
convergence to equilibrium. For comparison, one of the two partitioned variants
calculates the friction based on the approximation

� j ju j � v j j(u j � v j ) � � j ju � v j(u j � v j );

which changes the mean 
ow and realizations, but is proved to guarantee conver-
gence to statistical equilibrium.

5.1. Numerical methods to approximate realizations. Let 
 A and 
 O have
associated conforming, triangular or tetrahedral meshes with mesh sizeshA and
hO , respectively, de�ned as the maximum diameter of a mesh element. Conforming
�nite element spaces are de�ned by using Taylor-Hood pairs, resulting in spaces
( eX A ; ePA ) and ( eX O ; ePO ). These elements are known to satisfy the so-called inf-sup
or LBB condition (see [7, 2]) and have enjoyed wide-spread use for 
uid com-
putations. A uniform time step is used with size � t > 0. Given a function
g(t) 2 C[0; 1 ), let gn � g(tn = n� t) denote an approximation at the discrete
time levels n = 0 ; 1; : : :. De�ne explicitly skew-symmetrized trilinear forms for the
convection terms by

cA (u; u j ; ~u) �
1
2

Z


 A

u � r u j � ~u dx �
1
2

Z


 A

u � r ~u � u j dx

and cO (v ; v j ; ~v ) �
1
2

Z


 O

v � r v j � ~v dx �
1
2

Z


 O

v � r ~v � v j dx:

De�ne functions � n
j and � n

j on � I by

� n
j � � j (tn )jun

j � vn
j j and � n

j � � j (tn )jun � vn j;

for 1 � j � J and all n. The three coupling approaches are referred to as M
(monolithic) and then P1 and P2 (partitioned). The friction terms ar e de�ned as
follows.

I A
�
un +1

j ; vn +1
j ; un

j ; vn
j

�
=

8
>><

>>:
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�
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j

�
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p
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j
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j �

q
� n � 1
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j

�
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p
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j
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j �

q
� n � 1

j vn
j

�
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I O
�
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j

�
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8
>><

>>:
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j

�
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j � un +1
j

�
(M)

p
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j
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j vn +1
j �

q
� n � 1

j un
j

�
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p
� n

j

� p
� n

j vn +1
j �

q
� n � 1

j un
j

�
(P2)
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Table 2. Choices for turbulent mixing lengths and turbulent energies.

f� A
H f� A

?

l � t < j(E (uH
j )n +1 )0j > � t < j(E (u?

j )n +1 )0j >
k0 � A

2 < j(E (uH
j )n +1 )0j2 > � A

2 < j(E (u?
j )n +1 )0j2 >

f� O
H f� O

?

l � t < j(E (vH
j )n +1 )0j > � t < j(E (v?

j )n +1 )0j >
k0 � O

2 < j(E (vH
j )n +1 )0j2 > � O

2 < j(E (v?
j )n +1 )0j2 >

Note that the coupling is linearized with both methods. Also, extrapolation is used
to linearize the convecting velocity for e�ciency. To this end, given numbers gn ,
n = 0 ; 1; : : :, de�ne E(g)n +1 � 2gn � gn � 1. Then numerical approximations for
the realizations are sought by �nding (un

j ; pn
j ) 2 ( eX A ; ePA ) and (vn

j ; qn
j ) 2 ( eX O ; ePO )

satisfying

(55)

1
2� t

�
3un +1

j � 4un
j + un � 1

j ; eu
�

A
+ cA (E (u)n +1 ; un +1

j ; eu)

+ aA (un +1
j ; eu) + faA (un +1

j ; eu) � (pn +1
j ; r � eu)A

+
Z

� I

I A
�
un +1

j ; vn +1
j ; un

j ; vn
j

�
� eu d� I

+ 
 A
�
r � un +1

j ; r � eu
�

A
= ( fA

n +1
j ; eu)A ; 8eu 2 eX A

(r � un +1
j ; ~p)A = 0 ; 8~p 2 ePA ;

(56)

1
2� t

(3vn +1
j � 4vn

j + vn � 1
j ; ev )O + cO (E (v)n +1 ; vn +1

j ; ev )

+
� A

� O

Z

� I

I O
�
un +1

j ; vn +1
j ; un

j ; vn
j

�
� ev d� I

+ aO (vn +1
j ; ev) + faO (vn +1

j ; ev) � (qn +1
j ; r � ev )O

+ 
 O
�
r � vn +1

j ; r � ev
�

O
= ( fO

n +1
j ; ev )O ; 8ev 2 eX O

(r � vn +1
j ; ~q)O = 0 ; 8~q 2 ePO ;

with initial data u0
j 2 eX A and v0

j 2 eX O . The constants 
 A > 0 and 
 O > 0 are
known as \grad-div stabilization parameters" and help to improve mass conserva-
tion (see e.g. [3, 19]), since Taylor-Hood elements do not admit a divergence-free
velocity space. Values for these parameters are to be determinedby experiment.
The turbulent viscosity coe�cients are chosen as shown in Table 2.

Note that the coe�cients for these linear systems do not depend on j except for
the terms for the 
ux coupling over � I . But these latter terms only a�ect a relatively
small number of the total matrix entries. Furthermore, the part itioned methods are
linearized; compared to nonlinear methods applied to the true realization equations,
the approach in this paper is very fast to run.

5.2. Evolution of variance for the methods. In order to simplify the analysis
in this section, variance is only introduced through the initial conditio ns. In general,
it is expected that the variance for the discrete approximations M and P2 will vanish
as time evolves so long as the 
uctuations� 0

j , fA
0
j and fO

0
j vanish fast enough in

time. However, for method P1 this behavior may be inhibited and it is not known
if the variance vanishes at long times.
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Lemma 11. Let � j = � > 0 for all j = 1 ; : : : ; J . For methods M and P2, there
exist numbersRn � 0 and Sn � 0 for n = 1 ; : : : ; N , which depend on the method,
such that

(57)

Z

� I

D
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�
un +1

j ; vn +1
j ; un

j ; vn
j

�
�
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j
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�
�
vn +1

j

� 0
E

d� I

= Sn +1 + Rn +1 � Rn ; n = 1 ; : : : ; N � 1:

Proof. De�ne S1 = 0 for both methods. For method M, the relevant coupling terms
satisfy
Z

� I

D
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It follows from Lemma 5 that

�
Z

� I
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j

�	 0
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�
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� 0
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for n = 1 ; : : : ; N � 1. For method M, take Rn = 0 for all n.
Note that for method P2, the numbers � n

j satisfy � n
j = � (tn )jun � vn j, which

does not depend onj . Then the interface terms satisfy
Z
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d� I :

The polarization identity may be applied to write the above terms in the form
Sn +1 + Rn +1 � Rn , where

Rn +1 =
1
2

Z
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� n
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� �
�
�
�
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2
+

d� I � 0:

�

It can be shown that Lemma 11 need not hold in a purely algebraic sense for
method P1. As a result, spurious variance might be created numerically for method
P1 through the coupling terms and inhibit convergence to statistical equilibrium.
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Theorem 3. Let the turbulent viscosities be constants. Assume� 0
j = 0 , fA

0
j = 0

and fO
0
j = 0 identically, for all j . Then the discrete solutions for methods M and

P2 satisfy

lim
n !1

�
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+
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�
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�
r vn
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�
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= 0 ;

for all j .

Proof. Insert ~u = un +1
j and ~q = pn +1

j in (55), apply the polarization identity,
multiply through by � t and take the ensemble average to see that
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:

On the other hand, take the ensemble average of (55) before inserting ~u = u. Then
similar arguments may be used to show that
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Now subtract this from the previous equation and apply Lemma 7 and(36) to see
that
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Note that the forcing terms cancel by assumption. The analogoussteps may be
applied with (56) and the result added to (58). For the viscous terms, bound below
using Lemma 7 and Lemma 2. For a more compact notation, de�ne
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In summary, it holds that
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Next, apply Lemma 11 for the interface terms, sum over the time index and multiply
through by 4. The result is
(59)

! N + � N + 4� t R N + 2� t
N � 1X

n =1

�
2Sn +1 + 2
 n +1 +

1
2

� n +1 + � 2! n +1 + � 1� n +1
�

� � 1 + ! 1 + 4� t R 1:

In the limit as N ! 1 , it is necessary that

lim
n !1

! n = lim
n !1

� n = 0 :

This is the desired result. �

6. Computational testing

Here, heat transport is considered under conditions of (approximate) radiative
equilibrium, as an example of an important process in AOI research [8].Based
on Theorem 2, it is likely that the conclusions of Theorem 3 still hold when ensem-
bles are run with uncertainty in forcings, fA j and fO j , and friction coe�cients, � j .
The statistical convergence of the CTM methods is investigated in this section.

The methods M, P1 and P2 will be tested in 2D domains 
A = [0 ; 10L ] � [0; L ]
and 
 O = [0 ; 10L ] � [� L; 0], whereL = 500 is a length scale in meters. The compu-
tational meshes in both domains are uniform Delaunay-Voronoi triangulations with
mesh sizeh = 50

p
2 (meters). Time steps are uniform, with size � t = 5 (seconds).

These parameters are �xed throughout the computations below.

6.1. Heat convection model background state. A background 
ow state is
computed in order to provide a uniform point of comparison for the CTM models.
Whereas ensemble indices take on valuesj = 1 ; 2; : : :, the background state will be
associated with indexj = 0. Buoyancy-driven forcings for the momentum are used,
which take the form

fA 0 =


0; � g(1 � � A (� 0 � � 0))

�
and fO 0 =



0; � g(1 � � O ( 0 �  0))

�
:

Here, � 0 and  0 are temperatures in Kelvin (K ), g = 9 :81m � s� 2 is gravitational
acceleration and� A = 3 :43� 10� 3 (K � 1), � O = 2 :07� 10� 4 (K � 1) are coe�cients of
thermal expansion for air and sea water. The temperature averages over domains

 A and 
 O are denoted by� 0 and  0, respectively.
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The temperatures will be numerically approximated as solutions of the heat
convection model

@t � 0 � � A � � 0 + u0 � r � 0 = 0 on 
 A � (0; T ];

@t  0 � � O �  0 + v0 � r  0 = 0 on 
 O � (0; T ];

with initial conditions discussed later. The (positive, constant) parameters � A

and � O are thermal di�usivity parameters. These values are de�ned in terms
of the Prandtl numbers (see [12]) for air (P rA ) and seawater (P rO ) by setting
� A = � A

H =P rA and � O = � O
H =P rO . The solutions are horizontally periodic, as

described for the velocity and pressure variables. No heat 
ux is allowed through
the bottom of 
 O . Heat may be transferred across the 
uid-
uid interface and
through the model top (top of 
 A ), according to the boundary conditions

� cA � A � A r � 0 � n̂A = C ir (� 0 � 285); on � t ;

� cA � A � A r � 0 � n̂A = Q; on � I ;

and cO � O � O r  j � n̂O = Q; on � I ;

with heat 
ux Q on the interface consisting of three parts:

Q = 30(1 � Calb )(1 + cos(( x � 150)�= 150)) (solar radiative 
ux)

+ C ir (� 0 �  0) (longwave radiative 
ux)

+ Csen ju0 � v0j(� 0 �  0) (sensible heat 
ux) :

The constants cA and cO are the speci�c heats of air and seawater, respectively.
The condition on the model top drives the temperature toward the value 285K by
allowing heating (or cooling) if � 0 is below (or above) this value. The net heat 
ux
Q can be either upward or downward, depending on the net solar radiative 
ux and
the relative temperatures across the interface. The parameterCalb is the albedo of
the ocean. The solar heating is allowed to vary in space, otherwise even heating in
these tests would inhibit circulation.

The numerical approximation for temperature uses globally-continuous, piece-
wise quadratic �nite elements in space and BDF-2 in time, analogous tomethod M
for the coupling terms, except that the velocities are also extrapolated there;

ju0 � v0 j(� 0 �  0)jt = t n +1 � j E (un +1
0 ) � E (vn +1

0 )j(� n +1
0 �  n +1

0 ):

This decouples the temperature and velocity at each time step. A similar method
was studied in [4] and shown to be numerically stable; the main di�erence is the
BDF-2 time stepping, which can be analyzed as in [10]. The temperature �elds are
only computed as described here for the background state. Perturbed temperature
�elds are discussed later.

6.2. Model spin-up. A spin-up step was used to generate initial conditions for
subsequent testing, with the goal of �rst bringing the background state near ra-
diative equilibrium. This was achieved by starting with zero initial velocit y and
pressure, and uniform temperatures of 285K in 
 A and 300K in 
 O . Method M
was used to spin up the background state. Parameter values are shown in Table 3.

During spin-up, solar heating induces buoyancy-driven currents.The lower do-
main loses heat into the upper domain, due to the initial temperaturedi�erential.
Since heat in the upper domain can radiate through the model top, the average
temperatures in both domains stabilize. The problem was run for 20,000 time
steps. Upon completion, the time-rate of change of average temperature in each
subdomain was found to be below 10� 7 in size. Although the system achieves an
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Table 3. Physical parameter values in SI units for the background state.

� A
H � A

? � O
H � O

? P rA P rO 
 A 
 O

1 20 1=15 20=15 0:713 7:2 1000 1000

� A � O cA cO � 0 C ir Csen Calb

1:2041 1025:0 1004:9 3993:0 0:5 6:0322 0:0011 0:1

approximate radiative equilibrium, the dynamics are not steady, as may be seen by
looking at the total kinetic energies over time. These are given by

� A

2

Z


 A

juj2 dx and
� O

2

Z


 O

jv j2 dx;

shown in Figure 1. The time step size is constrained by the faster dynamics in 
 A .

Figure 1. Kinetic energy during spin-up for the last 500 time
steps in domains 
 A (left) and 
 O (right). The system is approx-
imately at radiative equilibrium, but not stationary.

Temperature and velocity streamlines are shown in Figure 2. Although the sys-
tem is quite simple compared to an atmosphere-ocean simulation, some similarities
exist. Faster convective currents persist in 
A , compared to those in 
 O . The ki-
netic energy in 
 O is still considerable, as a result of the larger density,� O � � A �103.
A test could be done with a wider range of 
ow scales by decreasing the kinematic
viscosities or by increasing the length scale,L . The parameter choices in this report
are limited by the computational cost.

Figure 2. Streamlines and temperatures in 
A (top) and 
 O

(bottom) are shown for the initial conditions generated via spin-up.
The 
ow exhibits a moderate range of 
ow scales.
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6.3. Convergence to statistical equilibrium. The calculation of mean-
ow
kinetic energy (an example quantity of interest) and the convergence to statistical
equilibrium are investigated with the CTM methods M, P1 and P2. Uncertainty is
introduced through the Boussinesq forcing and the friction parameter. The initial
conditions, shown in Figure 2, are not perturbed and do not contribute to the
model variance. The constant parameters in Table 3 are used here. Ten-member
ensembles are used, with uncertain data expressed in terms of thenumbers

� j =
�

� j; j = 1 ; : : : ; 5
j � 5; j = 6 ; : : : ; 10

:

The friction parameters are � j = � 0 + 0 :01� j h(t) � 0, j = 1 ; : : : ; 10. Note that
P 10

j =1 � j = 0. The mean friction parameter is thus � = � 0.
The simulation is run for 2000 time steps, which yields a �nal time of 105 s. The

function h(t) is given by

0 � h(t) =
t2

2:5 � 107 exp(2 � t=2500)� 1;

which satis�es 0 � h(t) � h(5000) = 1 and decays toh(105) � 10� 14, so that (49)
will hold.

Perturbed forcings are constructed to induce small-scale velocity
uctuations.
The background temperature �elds are perturbed to drive the 
ows, according to

fA j =


0; � g(1 � � A (� 0 � � 0 + (5 � 10� 5)� j h(t)2 cos(� x= 250) sin(� y= 250)))

�

fO j =


0; � g(1 � � O ( 0 �  0 + (5 � 10� 6)� j h(t)2 cos(� x= 250) sin(� y= 250)))

�
:

The full heat convection model is only used to calculate the background state
(j = 0) at each time step. The ensemble only includesj = 1 ; : : : ; 10, which are
perturbations of the background state. The forcings for the ensemble members
do not depend on the velocitiesu j or v j , since this would present a fundamental
deviation from the theory in this paper. The relative sizes of perturbations for � j ,
fA j and fO j re
ect an attempt to balance out the contributions to model varia nce
from these sources.

In addition to the CTM methods, a straight ensemble calculation is included
here for comparison. That is, the numerical method equivalent to method M, but
without using the mean-
ow velocity for the convection terms and without any
turbulent viscosity. Variance calculations in the L 2-norm are shown in Figure 3,
and kinetic energy is shown in Figure 4. For the CTM methods, the turbulent
viscosities were calculated using (22) with� = 1 :0 in 
 A , � = 0 :5 in 
 O , and l ,
k0 de�ned in Table 2. These � values were found to be roughly optimal for the
mean-
ow kinetic energy using method M to match the mean-
ow kinetic energy
without CTM as best as possible.

The model variance is consistent amongst CTM methods, but reduced compared
to the variance without CTM, and vanishing in all cases. This is consistent with
the implication of Theorem 2 and with Theorem 3. The kinetic energy is only
shown on time intervals where variance is signi�cant; details are hardto see on
the global time scale. The CTM methods all track the reference mean-
ow kinetic
energy (without CTM) very well, in particular when the mean 
ow devia tes signif-
icantly from the background state. When the variance is small, the mean-
ow and
background energies nearly coincide, but the partitioned methodspredict a slightly
di�erent result in these regions, shown in Figure 5. Methods P1 and P2 predict the
same energy when the variance in small, which is expected since thesemethods are
equivalent when the variance is zero.
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Figure 3. The variance (L 2-norm) in domains 
 A (left) and 
 O

(right). As expected, the CTM methods have reduced the variance.

Figure 4. The background state and mean-
ow kinetic energies
in domains 
 A (left) and 
 O (right). The CTMs closely track the
mean-
ow behavior as it deviates from the background state.

Figure 5. The background state and mean-
ow kinetic energies
in domains 
 A (left) and 
 O (right). The model variances are
very small for the range of times shown here. The kinetic energy
of the background state coincides with that of the mean-
ow states
without CTM and with method M, but methods P1 and P2 display
a slightly di�erent behavior.

Since the di�erence between the monolithic and partitioned methodsis only the
numerical coupling, the results suggest that the coupling method can introduce
a statistical bias. In scienti�c AOI codes, this sort of bias would be challenging
to quantify since (1) monolithic coupling is not available and (2) the coupling
frequency is limited, due to the computational cost. Method P1 is more interesting
than methods M or P2, for practical purposes. Aside from the issue of a statistical
bias, the results shown here indicate that method P1 may (with parameter tuning)
do a good job of reproducing mean-
ow statistics.
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7. Conclusions

A statistical turbulence model was proposed for ensemble calculations with two
coupled 
uids that enables some reduction in matrix assembly costs.The closure
model accounts for the behavior of the Reynolds stress terms atthe interface.
The analyses of [10] were extended to account for the 
uid couplingconditions,
showing a proof of the Boussinesq hypothesis and squeezing of 
uidtrajectories
with the turbulence model. Some numerical methods were proposed, including
implicit and partitioned coupling, and it was proved for two methods th at the
discrete variance must vanish at long times. The analogous proof for the third
partitioned method, which is of the most practical interest, is not known. But in
computations this method was observed to predict almost exactly the same behavior
as the other methods. Furthermore, the computations indicate an excellent ability
for the turbulence methods to reproduce the correct ensemble mean-
ow behavior.
The partitioned methods may introduce a statistical bias at long times, which was
small in the computational example.
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