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Abstract. A statistical turbulence model is proposed for ensemble cal culations with two uids
coupled across a at interface, motivated by atmosphere-oc ean interaction. For applications, like
climate research, the response of an equilibrium climate st ate to variations in forcings is important
to interrogate predictive capabilities of simulations. Th e method proposed here focuses on the
computation of the ensemble mean- ow uid velocities. In pa rticular, a closure model is used for
the Reynolds stresses that accounts for the uid behavior at  the interface. The model is shown to
converge at long times to statistical equilibrium and an ana logous, discrete result is shown for two
numerical methods. Some matrix assembly costs are reduced w ith this approach. Computations
are performed with monolithic (implicit) and partitioned c oupling of the uid velocities; the former
being too expensive for practical computing, but providing  a point of comparison to see the e ect
of partitioning on the ensemble statistics. It is observed t hat the partitioned methods reproduce
the mean- ow behavior well, but may introduce some long-tim e statistical bias.
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1. Introduction

Ensemble calculations with global circulation models (GCMs) are an impo-
tant component of climate variability studies. Many long-time integrations are
performed to assess the average near-surface temperaturbange in response to
changes in forcings for the climate system at radiative equilibrium. There are mul-
tiple sources of uncertainty in calculated responses. For a given cgputational
model, some studies focus on parametric uncertainty (see [8], 9.2.2.20ne way
to mitigate cost is to apply statistical models for simulation response that require
only a modest number of uncertain parameters and ensemble memise for example
in perturbed physics ensemble methodsd.g. [22]). Given a moderate number of en-
sembles, this paper investigates another possible cost-reductioneasure. Based on
the work of Jiang, Kaya and Layton [10], a method is proposed hereirto compute
ensemble-mean ow states e ciently, by using a conventional (statistical) turbu-
lence model (CTM). CTM models (like RANS [1] or k [20]) seek to reduce the
number of degrees of freedom required to resolve mean uid behaw. The method
has the additional bene t of reducing some matrix-assembly costdor the ensemble
computations.

The focus is on atmosphere-ocean interaction (AOI). A key aspamf many AOI
models is to avoid resolving the boundary layers, instead relying on bandary con-
ditions that conserve uxes across the layers. In order to redue the problem down
but retain this key mathematical detail, Connors, Howell and Layton investigated
a model of two incompressible uids coupled across a at interface [b A similar
model is adopted here, since it provides a convenient setting in whicto incorporate
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the work of Jiang, Kaya and Layton. However, it is necessary to acount for the
special dynamics in AOI introduced by the di erences in vertical versus horizontal
scaling, and also by the interface boundary conditions.

1.1. A conventional turbulence model for coupled uids. Consider an en-
semble of velocities and pressures for ows in the atmosphere andcean (domains
A, o RY d=2;3, respectively), satisfying

(1) @uj D a(up)+u; rup+rp = fajon A (0;T];

(2) r-ui = 0on Ao (0;TI;

3) Uj(x;t=0) = uf(x)on a;

(4) @V]‘ D O(Vj)+ Vi I Vj +r g = ij on o (O;T];

(5) r-vi = 0on o (0;T];

(6) vi(x;t=0) = vl(x)on o:

Here, Da (uj) and Do (v} ) are viscosity terms. Let D (u) represent anyd d tensor
or matrix, with entries D(u); , 1 i;j d. De ne a decomposition by

D(u)= D)™ + D(u)?;
(D(u))ij fori=21;::5;d 1, =1;:::;d;

H —
(7) D)™y = 0; otherwise
> _ (D)) fori=d;j=1;::d
D™ = 0; otherwise

Now let D(u) = (r u+r u")=2 be speci cally the viscous part of the Cauchy stress
tensor. The di usion terms are decomposed into horizontal and vetical terms:

(8) Da(uj) 2r APDU™ + A7D(Y)?
9) Do(vj) = 2r o"D(v)" + o7 D(vj)?

The constants A" > 0and oM > 0 are horizontal di usion parameters, whereas
A’ >0and o” > 0 are (constant) vertical di usion parameters. The horizontal
scale is much larger than the vertical scale for atmosphere-oceasimulations. Due
to the nature of ow features that result from this scale discrepancy, it is typi-
cal in practice to treat horizontal and vertical di usion processes di erently (see,
e.g. [21, 23]). While many other aspects of typical atmosphere-ocean atels are
not included here, the above model retains the necessary matheatical features for

the investigation in this paper. Boundary conditions are discussed leer.

collection of J objectsa; by
1 X

I

A model for the ensemble-averaged mean ow is
11) @u D pA(u)+u ru+rpr R(u;u)

(10) a <aj> a:

faon Ao (0;TI

(12) r u = 0on o (0;T];
(13) u(x;t=0) = uo(x)on a;

(24) @ Do(v)+v rv+rqgr R(v;v) = foon o (0;T];
(15) r-v = 0on o (0;T];

(16) v(x;t=0) = vpo(x)on o;
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where the (yet to be closed) Reynolds stresses are denoted by
R(u;u) <uj>< u; > <ujuj>:

The key is what happens at the interface between the uids, which ae coupled
across a at interface, |. The coupling is based on the so-called \rigid-lid" hy-
pothesis that has often been used for atmosphere-ocean couginthat small-scale
uctuations can be eliminated by using a at ocean surface model anl still capture
the correct long-time statistical behavior. Also, the boundary layers of the atmo-
sphere and ocean are not resolved but are instead replaced by ugiformulae for the
bulk transfer of physical uxes between the uids. A full description of the prim-
itive equations of the coupled atmosphere-ocean system and theimathematical
analysis is found in the papers of Lions, Temam and Wang [16, 17, 18].

Let the outward-pointing normal vectors of unit length on the boundaries of A
and o be denoted by, and fo, respectively. A generic unit vector ~ is also
used, dened by = ( 1;0) (d=2)or » =( 1; 2;0) (d=3). On the interface
the uids cannot penetrate and the transfer of horizontal momentum across the
boundary layers is represented using a slip-with-friction condition:

Uj A = Vi o =0;
@7 N A ° a_ . .
A A RA T U = oo fio ry; = A iy vii(uyoovy)

on | (0;T]. The parameters o > 0 and o > O are densities. The friction pa-
rameters j > O are calculated in practice from bulk ux formulae that involve other

variables not considered in the above model, but which may be viewedsaintroduc-
ing additional sources of uncertainty. These parameters will be tine dependent,
but for simplicity their dependence on x is neglected in this paper. Furthermore,
these values should remain bounded away from zero and in nity. It isassumed
herein that j(t) 2 C! (0;1 ) and

(18) 0< o j()< 1 <1; =159

forallt2 [0;1 ), where o and ; are independent of time and;j .
Upon ensemble averaging of (17), we see

u fa = v o =0;
(29) N A 2 A . . -
A A Ap TU = oo’ fAg rv = ahjjup o ovijQu vy

which adds another consideration for the closure problem, since ¢f example)
hijjup  vii(uyp vp)i ~6 ju vi(u v) "™

The focus of this paper is the computation of ensembles for the cqled uid-
uid model, for which purpose it shall not be necessary to derive a tlkeoretical
boundary condtion for the mean- ow transfer of momentum across the interface.
It shall be shown that only individual realizations (u; ; vj ) will need to be computed,
for which purpose it su ces to apply the correct boundary conditio ns (17). Then
the identities (19) will hold automatically at each discrete time level. The closure
problem associated with the mean- ow transfer of momentum acras the interface
is left as an interesting open problem for purposes of theoreticalraalysis.
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Table 1. Choices for turbulent mixing lengths and turbulent energies.

H 7 H >
fa fa fo fo
T t<juny> | t<ju)d> | t<jovhI> | t<j(v))9>

©f 5 < it > | 5 <iw)¥> | 5 <> | g <iv])P>

The critical issue is to model the behavior of the Reynolds stressesApply the
eddy viscosity (EV) hypothesis away from boundaries and approxinate

(20) r R(u;u) D a'(u)+ model pressure terms, in A
Da ' (u) 2r  fAPD@W)M + fa°D(U)?

(21) and r R(v;v) D o' (v)+ model pressure terms, in o;
Do (V) 2r fo"DW)H + fo  D(V)?

Here, fal;fo";fa”;fo’ are turbulent viscosities in the bulk atmosphere and
ocean. Their dependence on turbulent uctuations shall be presgbed via the
Kolmogorov-Prandtl relationship

22) TP

where T denotes a turbulent viscosity parameter, is a tuning parameter, | is
a subscale mixing length andk® is the kinetic energy associated with turbulent
uctuations.

The key is to choosel and k° such that these values will naturally vanish near
boundaries, but away from boundaries they yield reasonable resudtto model sub-

§|p@,

scale di usion. First, de ne uctuations ai° for data a;;:::;a; by
& o <a;>j =100

Velocities will be decomposed into horizontal and vertical componets:
up=uf +u’; vy = vl +v7;

i i i i
whereuf';vf! are the horizontal components andu; ;v; are the vertical compo-
nents. Then the turbulent viscosities are speci ed by choosing and k° as shown
in Table 1. The choices forl represent the (average) distance a turbulent, subscale
feature moves (either horizontally or vertically) in a time t, shown in [9] to yield
good results. The values fork® represent the (average) kinetic energy density of a
subscale eddy.

Note that on boundaries where a no-slip condition is imposed, thesehoices
of turbulent viscosities will automatically vanish. If a no-penetration condition
is imposed, such as at the atmosphere-ocean interface with rigid lidthe vertical
component of velocity still vanishes and thus drives the values ofA? and fo? to

zero. As a result, from (20)-(21) it follows that
Aa R(u;u) 2fa°Ax D(u)? =0
and fo R(Viv) 2fc’fAo D(v)”? =0
on . This is consistent with the behavior of the Reynolds stresses at ta interface:
Na R(u;u) = <fha uj><u;> < (ha uj)u; >=0
and Aig R(v;v) = <hAp v;j><vVv;> < (g vj)v;>=0 on ;:
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2. Mathematical preliminaries

gles d = 2) or boxes (d = 3) of the form

A=0;L1) (O;Ha) and o0 =(0;L1) ( Ho:;0) (d=2)
(23) Aa=0;L1) (O;L2) (O;HA)
and o =(0;L1) (O;L2) ( Ho;0) (d=3):

The valuesHp > 0 and Ho > O represent the height of A and the depth of
o. The domain width in the lateral directions are 0 < L 1;L,. The domains are

coupled across their shared interface; = A\ o, which lies in the planexq = 0.
Other boundaries are
t= @ a\f Xqg= Hag (top of atmosphere)

b= @ o \f Xg Hog (bottom of ocean)

24
(24) =@an( [ ) (lateral atmosphere boundaries)

A
L
‘L) =@on( p[ 1) (lateral ocean boundaries)

The velocities and pressures are denoted by
(25)

Periodic lateral boundary conditions are chosen. At the atmosphee top and ocean
bottom, a no-slip condition is imposed for the velocities:

(26) uy=0on  (0;T]andv; =0on , (O;T]:

The ensemble-mean ows then have the same lateral, top and bottm boundary
conditions.

Remark 1. At the atmosphere top, the usual boundary conditions wouldebno-
penetration and no-tangential-stress (also called \no- ux"). However, the no-slip
condition is used herein to simplify the analysis and presesation.

Some preliminary notation and results will be used for purposes of aalysis.

De nition 1.  Standard L ?-inner-products are de ned on each domain by

Z Z
(u;e)a u edx and (v;e)o v edx:

A o

De nition 2.

I -
ZT 1_p

kukp: 2 kukP ;1 p<1;
0

kuki .o esssup ; tku(t)k:
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De nition 3.  Weak spaces for the velocities and pressures are de ned with respt
to the above boundary condtions.

Xa  Clgnys U2 C(a) “juti)= u@q+Li); 1 i<d; u=0on [
Xo clure v2 C (o) “ivii)= v + L) 1 i<d;

v=0on pvg=00n
Z
Pa cly:r p2Cr( A)j pdx =0; p(xj)= p(xi + Li); 1 i<d
ZA
Po cly: g2C'(o)j q&k=0;q(x)=qx+L); 1 i<d
(o]

Divergence-free subspaces are needed for the velocities.

De nition 4.
(27) Va fu2Xaj(r u;p)a =0; 8p2 Pag
(28) Vo f v2Xoj(r v;9o0=0; 892 Pog

Due to the boundary conditions on |, it is necessary to work with the space
L3( ). Itis well-known that traces of functions in Xa and X are well-de ned in
this sense (see.g. [6]). The next de nition provides a compact notation.

De nition 5.
Z 1=3
kuk juid |
|

De nition 6.  Given functions u;a 2 (HX( A)9 and v;v 2 (H( 0))9 some
bilinear forms are de nefl as follows.

z
(29) an(u;tr) 2 A" DWW :radx+2 A7 D(u)? :r wdx
z A z
(30) &a(u;) 2 fA"D@U)" :irwdx+2 fa’D(U)? i1 wdx
Az Az
(3l) ao(v:¥) 2" DMW" irvdx+2 o7 D(v)? :r wdx
z ° z °
(32) &o(v;w) 2  fo'D(W)™ irwdx+2 fo’ D(v)? :r wdx:
(o) (o)

Lemma 1. Given functions (&;%) 2 (HX( A))9(HY( o))% and(u;v) 2 (Va;Vo),

it holds that
Z Z

an(u;tt) = A" uw e dx+ A7 (ru)? :(r &)? dx

z* zZ*
ao(Vi¥)= o VT irwdx+ o7 (rv)? i (rw)? dx:
[e] (o)
Proof. It suces to take u 2 C' ( A)\ Va andv 2 C* ( o)\ Vo, since these
subspaces are dense. Use the decomposition (7) and

ruwrw)?=0=(rew):(ru)’
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to write
Z Z
ap(u;tr) =2 AN DWH :radx+2 A7 D(u)? :r adx
AZ A
= AN cw et rdm e dx
A Z
?
+ A7 ru’rw + ru’ 7 w? dx:
A
Integrate by parts to show that for eachi =1;;::;d, 1
x £ z X
@ U@ t dx = @ @ @ UjA & dx =0;
j=1;u5d A A j=1;u:d
sinceu 2 VA2 r u = 0. It follows that 7
Af ruT e dx=0= A7 ruT 7 w)? dx;
A A
and therefore 7 7

aa(u;)= A" rw ! dx+ A7 (ruw? (rw)? dx:

A similar analysis holds with v and v.

An application of the Poincae-Friedrich inequality is used for the velocity spaces.
The factor of 2 that appears in (34) below is for convenience in lateapplication.

Lemma 2. There exists a constant 1 > 0 such that

(33) 1 kr uk®+ kr vk?  aa(u;u)+ ao(v;v);
forany u 2 Va andv 2 V. Furthermore, there exists a constant , > 0 such that
(34) 2 5 kuk?®+ kvk? 1 kr uk?+ kr vk?

forany u 2 Vo andv 2 V.

Proof. It is clear from Lemma 1 that the constant ; can be de ned by
— i H. ?. H. ?

i1=mn a7 A o5 o0

The rest follows from the observation that the Poincae-Friedrich inequality holds
on each domain 5o and o.

The polarization identity is useful to decompose vector products 6 the form
(u v) u into positive and negative parts.
Lemma 3 (Polarization identity) . Given equal-size vectoras and v,
2 V) u=jui+ju vj? j vjx

Ensembles of products can be manipulated using the next result toapresent
them in terms of uctuations and ensemble averages.

Lemma 4 (Product ensemble identities) Given two sets of scalarsa; and b,

(35) <ajh >=<aP > +ab:

(36) <a by>=<a b)>+a b:
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Proof. Since the averaging operatok > distributes across addition andj -independent
scalars can be pulled out,

<ajh > :<aj°q°> + <aj°b>+ <abj°> + <ab>
:<aj°q°> + <aj°>b+ a<b?> +ab:
Then (35) follows from noting that uctuations average to zero;
<a)>=<b>=0:
The proof of (36) is similar.

The following result will help later to study the e ects of the nonlinear friction
terms on the mean ow.

(ajia)’ & o
Proof. Application of (36) gives
(ja,-ja,—)O a’ = hgjja ai hj ajjai hai
(37) PTo At
= jaj° hjajai hai:

A lower bound may be found by rst applying the Triangle and Minkowsk i inequal-
ities to show that

0 11:30 12:3
T 1 ¥, 1 X X
higjagii = 3 jaia jajj? 3 1A @ jaj°A
j=1 j=1 j=1 j=1
0 1,4
11X oF2=3
=@ igitA = jgj
j=1
Similarly, it holds that
0 1,30 1=3
oo X 1% 1 X X
eyii =3 a0 Jal § 1A @ jaj’A
]:1 j:]_ j:]_ j:l
0 1.5
11X - Ei=s
=@ ja’A = jaj’

The desired lower bound in (37) follows from the above results, via Cachy-Schwarz:
D 3E1=3 D E,.; D 3E
jhiajjaji hajij  jajj c jaj] = Ja]

) Gayig)® a® g’ jaj® =o:

The following monotonicity result is used later to analyze convergene of ensem-
bles to statistical equilibrium.

Lemma 6 (Friction monotonicity) . Dene T : R ! RY by T(x) = jxjx, for all
x 2 RY, d2 N. Then T 2 C}(R¢;RY) and

(39) TG TO) (& y) zix yi%  8xiy2RS
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Proof. At any point x, the derivative DT (x) : R9! RY is a linear map, de ned for
all argumentsy 2 RY by
0; if x=0
(39) DT ()(y) %x + jXjy; otherwise.
It is a standard exercise in real analysis to verify this formula and that T 2
C'(RY; RY).
It remains to show (38) . Given two vectorsx;y 2 R%, denea=y x. Without
loss of generality,a 6 0. One may write
Z, q Z 4
(Ty) T(xX)) (y x)= d_sT(X + sa) ads= DT (x + sa)(a) ads:
0 0
Note that x + sa = 0 is possible for at most one distinct value ofs, so we may
ignore this case in the above integral. It follows from (39) that

Z1 (x + sa) a
(T@y) Tx) (y x)= “X*sa

1 2
- x* s a7 sajiaitds
0 JX+ Sa|
Z 1

(x+sa) a+ jx+ saja ads

2
0
The last inequality is equivalent to arguments in [11], page 131.

o . . 1
j aj jX + sajds Zjaﬁ:
Remark 2. The value 1=4 that appears in (38) is probably not sharp.
3. Evolution of the model variance

Three sources of model uncertainties are considered: initial cortibns, forcing
terms and the friction parameters ;. Let k k denote the standardL?-norm; the
are discussed on a generic domain.

De nition 7 (Variance). The variaIE)ces areE given by

V(W) kwi k> k wk®;
D 2E 2
V((r wj)™) (r w;)" (rw)* %
D 2 2
and V(r w/) (r wj)? (rw)? “:

Note that the variance measures uctuations:
Lemma 7. D E D E
vw)= o wP? o v w)") = (rwp)™)° o
(40) D ,E
V(rw))= (rw)?)° T o
Proof. Let denote the domain for w;. Apply (36) as follows:
D E Z Z Z y4
kwik* = wi wjdx = hwy wjidk= w) w) dx+  w wodx
Z z
w) Zdx +  jwjldx = kwPk? + kwk?;
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which implies that

D E
Viw)) = w}

The remainder of the proof is analogous.

Given that strong model solutions exist for each realization, then & energy
equality will be satis ed for each realization and for the mean ows. These equations
can then be used to describe the evolution of the model variance.

Lemma 8. Given strong solutions(u;; p;) and (v ;g ) to the model equations(1)-
(6) with boundary conditions described above, the following ergy equations are

d
(41) g kU K2+ 2kvik? +aa(ujiuj)+ —ao(vj;vj)
z A z Az
+ jjuj viitd g = faj ujdx+ -2 fo; vjdx;
| Z A A [e]
(42) % kuk? + —Zkvk2 +  hjju vjj(up  vy)i o (uov)d
'z Z
+aa (u;u) + —an(v;v): fa udx+ 2 fo vdx
Z A ZA A o
R(u;u):r udx el R(v;v):r vdx:
A A (o)

Proof. Multiply through (1) by u; and integrate over A . Also multiply through (4)
by ovVvj= a and integrate over o, adding the two equations together. Given the
boundary condtions, it is easily shown that
Z Z VA VA
uj ruj ujdx= Vi rvj vjdx=0= rp udx= rg vjox:
A [¢] A [e]

For the di usion terms, note that

Z Z
Da(uj) ujdx -2 Do(vj) vjdx=aa(uj;uj)+ —ao(Vj;v;)
A A (o) A
Z Z
+ pjup o vij(up o vy) ujd pjup o vij(upovy) vid
I I Z
= aa(uj;uj) + —/(if:lo(Vj;Vi)+ jjui o vgitd o

The rest is standard to derive (41). For (42) one multiplies through (11) by u and
through (14) by ov= . Then follow the above procedure, applying the ensemble-
averaged boundary conditions.
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Theorem 1 (Variance evolution). Given an ensemble of strong model solutions,
the model variance must satisfy the integral equation
Z ¢ Z:
V(uj (T)) + _ZV(Vj (T) + ATV((rup (M) dt+ A7 V((r uj(T)7)dt
. 0 . 0
+ = oMV v M) Mdtr > 0TV v (T)7) dt
0

t fijui o viiup o vi)d® (uj  vp)° d o dt
' Z.:Z Z.:Z
= V(@ud)+ 2V(v0)+ fal uf + 2 fo? v?
A 0 A A 0 o
Z+Z Z:Z
+ R(u;u):r udxdt+ -2 R(v;V):r v dxdt:
0 A A 0 o
Proof. Integrate (41)-(42) in time and take the ensemble-average of th realization
energy equations. Subtracting this from the time-integral of the mean- ow energy
equation and applying De nition 7 yields

Z- Z.
V(u;(T)) + —:)V(Vj (T) + AP V((rup(T)F)dt+ A7 V((rup(T)?)dt
. 0 . 0
= oMV v M)y der = V(v (T)7) dt
A A 0
A
+ jjUj ij3 h jjUj ij(Uj Vj)i (u v)d , dt
' Z.:Z
— 0 o 0
= V(up)+ —=V(vj) + fa; uj fa u dxdt
A A
z.7 °
+—O ij Vi fo v dxdt
A 0 o
zZ,7 zZ.:2
+ R(u;u):r udxdt+ -2 R(V;V):r v dxdt:
0 A A 0 o
Apply (36) to the forcing terms:
faj uj fa u= fA]-O u’ and fo; v; fo v= fojo v
In order to handle the interface terms, set ; = jju; v;j(u; vj)andw; = u; vj.
It holds that
zZ.:Z
i vii®oh iy vy vp)i (uov)d g dt
' Z.Z Z.2
= powp d o dt= P wpod,dt
0 | 0 I
The last step holds since  w = w? = 0. The desired result follows by

combining the above equations.

As a corollary, it may be shown that when perturbations are only introduced
through the initial conditions, the Reynolds stresses must have a sipative e ect
on the mean ow. This yields a proof (under certain conditions) of the so-called
Boussinesq assumptiorthat partially motivates the closure models (20)-(21). This
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analysis was performed in [10], but their analysis did not account for he extra
coupling terms present with the atmosphere-ocean problem.

Corollary 1. Assume strong realizations(u;;pj) and (v;j;g) exist and the forc-
ing terms satisfy fa; 2 L* (0;T;L?( a)) and fo; 2 L* (0;T;L3( o)), for j =

L d.oIf 2=0andfaf = fo; =0 for j =1;:::;J, then

R(u;u):r udxdt

olZTZ

— = R(v;v):r vdxdt 0:
AT o

Proof. The assumptions on the forcing terms imply further that the variance sat-

ises V(uj) 2 LY (0;T;L%( a)) and that V(v;) 2 LY (0;T;L?( o)), forall j, by

standard arguments. Since also 1-0 =0and fAj = fojo =0, Theorem 1 implies that

Z ¢ Z+
V(uj(T))+ —EV(Vj () + APV((r up(T))dt+ A7 V((ru(T)?)dt
Z-: 0 Z: 0
2 oMV m)Mde+ = o V((r vi(T)?) dt
A A 0
Y4
+ fiup  vij(up o vi)d® (U vp)° d g dt
° 7.7 7.7
= V(ud)+ V() + R(u;u):r udxdt+ -2 R(V;V) : r v dx dt:
A 0 A A 0 o

Multiply through by 1 =T and note that

1 1 1 1
SVEi(M)=0 T ; ZV(M=0 = ;
1 o _ 1 1 o _ 1
?V(uj)— ) T ?V(vj)— o =
Also, taking & = u; v; in Lemma 5 yields
1212
T, fiug viju vi)d® (i vi)° ddt o
|

The remaining variance terms are non-negative by Lemma 7.

Remark 3. It is expected that Corollary 1 would still hold if the data uctuations
JQ, fAJQ and foj0 are small enough (in an appropriate sense), or vanish quickl

enough asT !'1
4. Leray-regularized realizations and properties

The model realizations shall employ a Leray-type regularization. That is, the
ensemble averaging operatok > is assumed to have a smoothing e ect on the
mean ow, so that replacement of the convecting velocity in the norinear term of
a realization will result in a regularized model, in the sense of Leray, [1415]. The
realizations satisfy

@3) @uj D a(uj) Da(u)+urru+rp = fajon a (0TI
(44) @v; D o(vj) Do'(vj)*+Vv rvij+rg = fojon o (O;TI



504 J. CONNORS

The notation for the realizations is reused here. The incompressibili, initial and
boundary conditions are unchanged from before.
Note that upon taking the ensemble-average of (43)-(44) the man ow satis es

@ D a(u) DaT(U+uru+rp
@ Do(v) Do'(V)+Vv rv+rg

faon a (0T
foon o (O;T]:

Comparison with (11)-(16) reveals that the mean ow for the Leray-regularized
ensemble di ers from that of the standard NSE model ensemble onlydue to the
closures (20)-(21) for the Reynolds stress terms.

In ensemble calculations for this regularized model, matrices for the&onvection
terms will not depend on the particular ensemble member. In practie, ensemble
members would be advanced one time step in serial fashion, requirirene ensemble
averaging (a negligible cost) plus the recomputation of convectionérms once per
time step. The matrix assembly cost is thus reduced signi cantly in proportion to
the (possibly large) ensemble size, as compared with standard emable methods.
The resulting savings in run time will depend on the particular implementation and
is left to future study.

Remark 4. The mean ow still satises (19) on . This is not closed for the
mean ow, so the realizations are a coupled system of equations. Existence of
unique, strong solutions is assumed herein, in order to disess algorithmic ideas. A
time-stepping method is applied later that decouples thesguations numerically.

Unique, strong solutions for the realization equations are assumetb exist here-
after and to satisfy the following variational problem. For1 j J, (uj;p):t!
(Xa;Pa)and (vj;q):t! (Xo;Po) satisfy (for a.e. t 2 (0;T])

(@Uj:B)AZ"'(U ruj;e)a+aa(u;a) + aa(uj;e) (p,r e)a
(45) + jup  vji(up vj) ed | = (faj;B)a; 882 XA
(46) | (r uj;pa = 0;8p2Pa;

(@Vjie)oz*'(V rvi;e)o+ao(vj;e) + &o(vj;e) (g;r e)o
(47) —2 ,— Ijuj vii(up vj) ed | = (fo;;e)o; 882 Xo
(48) (r vii@o = 0; 8&2 Po;

with uj(t = 0) = u? and vj(t =0) = v_. Here, it is assumed also thatr u? =
r v?=0andthat u; 2 L*(0;T;Xa)andv; 2 L*0;T;Xo). The time derivatives
satisfy @uj 2 L2(0; T;Xa ) and @vj 2 L?(0;T;Xo ). This way to de ne strong

solutions is consistent with [13].

Lemma 9 (Long-time stability) . Assume(u;j;p;), (vj;q) are strong solutions of
the realization equations forl j J and let the turbulent viscosity coe cients
be constants. Iffa; 2 L* (0;1 ;L2( a)) and fo; 2 L (0;1 ;L3( o)), then for
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0<t< 1,
Zt
kuj (t)k? + —Zkv,—(t)k2+ 1oe ) krup( K+ —Zkr vi( )k d
Z’[
+2 Oe 2(t ) Sk(uj vy )kEd

0

e ' kulk?+ —ZkvOk?
A

1 e 2t o
+ 2~ lim kfa K2 ,+ — lim kfo; k% .
T AL 2 A TH Ojf1 ;2

(2)?
It follows that u; 2 L! (0;1 ;L?( a)) andvj 2L (0;1;L2( o)).

Proof. De ne w; = P ToVj =P “a . It follows from (45)-(48) that

1d
S kuj k? + kwjk? + aa (uj;uj)+ &a(uj;uj)+ ao(wj;w;j)+ do(w;;w;)

+ jkup vk = (fajiui)a + —Z(fo,-;vj)O k fa; kkujk + —ikfojkkvj k:
Since the turbulent viscosity parameters are constants, the anigsis of Lemma 1
and Lemma 2 may be applied to show that

&a(uj;up)+ &o(wj,wj) O

Bound the remaining viscous terms below by applying Lemma 2. The radt is

%% kuj k2 + kwjk? + 5 kujk®+ kw;k? + ?1 kr uj k2 + kr w; k2
+ jkup vikd k fajkkujk+ —Zkfo; kkvjk:
A
Bound the right-hand side above using Young's inequality:

1d kuj k2 + kwjk? + 5 kujk®+ kw;k? +71 kr uj k2 + kr w; k2

2dt
oku vk o ki k24 Ckio k2 + -2 kui k2 + kw K2
j KYj i 2 Aj 0j 2 j i
2 A
1d 2 2 2 2 2 1 2 2
) 5& kUjk +|(Wj|( +7 kUjk +ijk +7 kr Ujk + kr ij

1

+ jkup  vik? kfa; k2 + —Zkfo, K2
A

The remainder of the proof follows by using an integration factor.
The next result is needed to discuss convergence to statistical edibrium.

Lemma 10. Let the mapzping e 20t )f()2LY0;t) satisfy
ote 0 jf()jd  C<1
forall 0<t< 1, where ;> 0andC > 0 are independent of andt. Given any
g2 L (0;1 ) such thatlim s%pm jo(t)j =0, it holds that
lim sup Ote 2t Djg( )jif ( )id =0:

til
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Proof. Without loss of generality, assumekgk, : > 0. Let > 0 be arbitrary.
Given 0<s<t,
z t z S
e 2 Jjg()jif()id kgk:e 209 e 26 jf()jd
0 0
Z t
+sup jg( )i e ¢ Jjf()jd  Ckgkoie 2 9+ C sup jg( )i
S t S t

S

Chooses so large that sup,  ; jg( )j < =(2C) and then choose anyt ( ) >s so
large that

e 2t ) o 2t 8«

2Ckgke 1’
forallt t . It follows that
z t
0 tsutp . e 2 Jjg()jif ()jd < ;

which is the desired result.

Theorem 2. Let the turbulent viscosity coe cients be constants. Assune that for
alll j  J,fa; 2L (0;1;L2( a)), fo; 2L (0;1 ;L3( o)) and also that

(49) lim sup kfa 2(t)k = limsup kfo2(t)k = limsup 2(t) =0:
til ) til ! til !

Given (ui;pi), (vi;qg) and (uj;p;), (vj;g) are any strong solutions of the realiza-
tion equations with1 i;j  J, it holds that

(50) limsup k(ui u;)(OKZ+ —2k(v; v;)(KZ =0
til A

and
Z t

(51) limsup e 2t ) kr (ui u)( K+ Zkr (vi vi)()k® d =0:
th A

0

Proof. Dene a= u; uj andb = v; v;. It follows from (45)-(48) that

Z Z
1d . . . .
Eakak2 + ijui - vij(ui vi) ad jjui vji(u;vy) ad
+tan(@a)t da(@a)= fa; faj;a,:

Next, decompose the data i, j, fa; andfa; in terms of uctuations and means,
then insert above and rearrange terms to see that

1d Z Z

Eakakz + jUi vij(ui Vi) ad I jUj ij(Uj Vj) ad |

| I
ta@at d@a)= fal fafia,

Gui wvij(ui  vi) ad |+ fjup vii(up vy ad
| |
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On the domain o an analogous equation is derived and added to the above result,
which leads to

1
1A ake+ Ckbk2 + an(a;a)+ Ba(8)+ —2ao(bib)+ —280(bsb)
A A A

2d z
+ jui  vij(ui vy) (@ b)d jui vij(up o vp) (@ b)d
Z' Z'
= Gui vij(ui vi) (@ byd  +  %ui vii(up vy) (& b)d
| |

0 0. o 0 0. .
+ faj fAj,aA"'— foi ij'bo-
A

The interface terms on the left are treated by applying the monotmicity result
Lemma 6, withx = u; vjandy =u; vj.Thenx y=a b and

Z Z
jui - vij(ui  vi) (& b)d jup vij(ujp vy) (@ b)d
: Z 'z
= (xjx jyjy) (@ b)d, = (xjx jyjy) (x y)d,
: 1Z : Z

. .3 _1 : 3 .
i Jx YJd|—4 | ja bj°d, O

Next, bound the viscous terms below by applying Lemma 2. Upon comining the
above results, it holds that

1
(52) 1d a2+ Ckok2 + » kak? + —2kbk?
2dt A A
+— krak®+ kr bk kfafk+ kiaTk kak+ = Kfofk+ kfofk kbk
A A

y4 Z
+i 0 duioviifa bid o +j P jup o viifjia bjd

Young's inequality is used to bound

(53) kfafk+ kialk kak+ — kfo’k+ kfo’k kbk
A

2 %+ kfaPk?+ ZkfoXk? + —Zkiolk? + —2 kak?+ —2kbk?
2 A A 2 A

The interface terms on the right of (52) require more work. First, note that
ja bj=jx yj jui Vvij+jup vj

It follows from Young's inequality that

z z
i 0 duiovifja bjd  +j % jup o vijfa bjd
| Z Z I
5 . . 5 o . .
0w ovidd o+ 50 juy viitd g
3 | 3 I
1 1~
+ 500w oviiBd o+ S % jui viPd o

3 3
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Next, use tzhe positivity requirement (18)Zto bound

i % dui vifia bid  +j Y ju o viifja bjd
I I
5 5+ fi , , 5 P+ 0]
—3 uy Vild o+ —a——
This result and (53) provide an upper bound for the right-hand sideof (52). After
some algebra, one obtains

jup viitd g

9 ki + Ckok? + , kak?+ —2kbk? +  kr ak?+ —Zkr bk?
dt A A A

2 a0 + kfa k2 + —Zkfo % + —kfo K2
2 A A

o o e e
w3 AT 5 i+

34 ikui Vik|3+2 3, jkuj Vi k|3
An integration factor may be used here to nd that
z t

ka()k? + 2kb(k2+ 1 e 2 ) kra( )k2+ —Zkr b( )k? d
A A

0

e ' ka(0)k? + —2kb(0)k?
A

Zt
(54) + 2 e ) K0+ ki K+ 2kio%+ kil d
2 2 A A
2 7 Do o
tgo e UG ) ku vikid
0
Z
2 ! 0L i o
t3, ¢ 2006 Y+ ) jkuy o vikid:

Due to (49) and the boundedness of the datda; and fo;, it holds that
D ogi() kAl )R+ KiaP( K2+ —Skiof( )k + —kfol( )K? 2 LY (0;1)
A A

such thatlimsup ; joi( )j = 0. Therefore, Lemma 10 may be applied withg = g
and f () =1 to show that
z t
limsup e 2 ) kfa%?+ kfalk?+ Zkfolk?+ —kioPk? d =0:
th 0 A A
In order to show that the interface terms also vanish in the limit, rst note that
dueto Lemma 9, forany1 j J

() e 2 ) 5 Ok(uy vk

satis es the assumptions of Lemma 10. Due to (49) and the uniformboundedness
of the data ; and j, it then follows from Lemma 10 that

Zt
limsup e 2 (5] f+] D) ikui vikid
ti1 0
Zt
=limsup e (" I i+ ) jku;  vikid =0:
til 0

The desired results are now evident from (54).
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5. Numerical methods and variance analysis

CTM realizations are to be computed using three methods that di er only in the
treatment of the coupling across the interface. One method usemplicit coupling of
velocities, called themonolithic method, which is analogous to solving atmosphere
and ocean equations simultaneously as one large system. In praaticpartitioned
methods are commonly used, which decouple the velocities for the mosphere and
ocean systems. Monolithic coupling is used here only to provide a behmark point
of comparison for the partitioned methods.

The partitioned methods are based on the work by Connors, Howeland Lay-
ton [5], and they provide unconditional numerical stability. The proof of stability
is omitted for brevity, but it is a simple consequence of combining [10], Tieorem
4.6 and [5], Lemma 3.1. However, with a partitioned method the frictiondoes not
automatically satisfy the monotonicity property (see Lemma 6), which may inhibit
convergence to equilibrium. For comparison, one of the two partitimed variants
calculates the friction based on the approximation

pjup vii(upovy) o gju vj(ug vy,
which changes the mean ow and realizations, but is proved to guaratee conver-
gence to statistical equilibrium.

5.1. Numerical methods to approximate realizations. Let A and o have
associated conforming, triangular or tetrahedral meshes with mgh sizesh, and
ho, respectively, de ned as the maximum diameter of a mesh element. @forming
nite element spaces are de ned by using Taylor-Hood pairs, resuling in spaces
(®a;Bs) and (R0 ;By). These elements are known to satisfy the so-called inf-sup
or LBB condition (see [7, 2]) and have enjoyed wide-spread use foruid com-
putations. A uniform time step is used with size t > 0. Given a function
g(t) 2 C[0;1), let g" g(t" = n t) denote an approximation at the discrete
time levelsn =0; 1;:::. De ne explicitly skew-symmetrized trilinear forms for the
convection terms by

z z
1 1
ca(u;uj;e) < uru wdx - u re ujdx
ZZ R ZZ A
1 1
and Co(Vivj;v¥) = vV rv; wvdx ¢ vV r v vjdx:
2 o 2 o
De ne functions ' and 7' on | by
P viooand it v
for 1 ] J and all n. The three coupling approaches are referred to as M

(monolithic) and then P1 and P2 (partitioned). The friction terms ar e de ned as
follows.

g p j:)+:|_ an+i jn+1 : (M)
STV THEVARE 5 T joov (P
A T A TR G
lo U™Vl = A A AU
- p :]rr p :rrvn+1 —n lun (PZ)

iV i j
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Table 2. Choices for turbulent mixing lengths and turbulent energies.

fAH fA?
| t < J(E(UJH )n+1 )q > t < j(E(u?)n+1 )q >
KO| & < J(E(uM)™N)32> | & < j(E(u])")2 >
fOH fo?
I t< j(E(vjH RN t< (EW7)" )T >
kO TO < J(E(VIH )I’l+l )%2 > T0 < J(E(V] )n+]_ )(iz .

Note that the coupling is linearized with both methods. Also, extrapolation is used
to linearize the convecting velocity for e ciency. To this end, given numbers g",
n=0;1:::;, dene E(g"* 2g" g" . Then numerical approximations for
the realizations are sought by nding (u';p') 2 (a;®Ba) and (v{';q") 2 (Ro;Po)
satisfying
1

> 3uf™  4ul +ul He  +ca(E(U)" U e)

taauimie)r da(ulTie) (T @)a

(55) + da uttvuhv ed
I

+ AT uj”+1;r aA:(fA{‘+1;B)A;832)@A

(r ul™;pa =0; 8p2 Ba;

1
>y 4+ V] he)o + G (E(W)™ v e)
+ 2, uf™tviulv ed
o
(56) + n|+1 . n+l . n+l .
aO(VJ ,e)+ aO(V] ,E) (q T e)O

+ o vj'”l;r eO:(fo-r'+l;'e)o; 8e 2 Xo

j
(r v™:eo =0; 82 Po;

with initial data uJO 2 ®, and vi0 2 ®5. The constants 5 > 0and o > O are
known as \grad-div stabilization parameters" and help to improve mass conserva-
tion (seee.g. [3, 19]), since Taylor-Hood elements do not admit a divergence-free
velocity space. Values for these parameters are to be determinedy experiment.
The turbulent viscosity coe cients are chosen as shown in Table 2.

Note that the coe cients for these linear systems do not depend @ j except for
the terms for the ux coupling over . Butthese latter terms only a ect a relatively
small number of the total matrix entries. Furthermore, the part itioned methods are
linearized; compared to nonlinear methods applied to the true realiziion equations,
the approach in this paper is very fast to run.

5.2. Evolution of variance for the methods. In order to simplify the analysis
in this section, variance is only introduced through the initial conditions. In general,
it is expected that the variance for the discrete approximations M axd P2 will vanish
as time evolves so long as the uctuations j°, fAjO and foJQ vanish fast enough in
time. However, for method P1 this behavior may be inhibited and it is nad known
if the variance vanishes at long times.
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Lemma 11. Let ; = > Oforall j =1;:::;J. For methods M and P2, there
exist numbersR" QandS" Ofor n=1;:::;N, which depend on the method,
such that 7
D 0
+1. +1 . . +1
NV T U d,

Z D E

&7 + lo uf*tovi*toumvt vt @ g

=s"™ +R"™ R n=1;::;N L

Proof. De ne S! = 0 for both methods. For method M, the relevant coupling terms

satisfy
Z D E Z p ]

n+1l n+1l n+1 n+1l n+1 n+1l n+1 n+1l

iy Vi uj d Py v Vi d

| Z D |
_ n+1 n+l n+1 n+1 n+l n+1 O
= u; Vi u; Vi u; Vi d
Z'p
0 0

- g+l oynel o neln+l N+l oynt d,:

It foll%/vs[f)rom Lemma 5 that

n+1 n+1 n+1 n+#1 O n+1 n+t1 O n+1

u; vj uj vj uj vj d, S 0
forn=1;:::;N 1. For method M, take R" =0 for all n.

Note that for method P2, the numbers 7' satisfy 7' = (t")ju™  v"j, which

does not %epend or . Then the interface terms satisfy

q— q — 0
—n,,n+1 —n 1,,n —n,,n+1
'Uj P Uj di
z q _n n+1 q n 1,n q _n n+1 0
+ IVi [ IVj d
| *( +
z q _n n+l 0 q n 1,n () g _n n+1 0
- iy iV Y d
|
z (g J q _ y
— +1 —n 1 — +1
+ Dy 0ol Nyl d,

The polarization identity may be applied to write the above terms in the form
s+l 4+ RN R" where

1 02 02
n+l _ —n n+1 —n n+l .
R = é j UJ + j VJ d | 01
I % +
z - 2
gn+l - } g —n yn+l 0 q —n 1 yn 0 d
2 Y j j I
|
z " g ,*
1 0 0
+3 vt - otap d, O

It can be shown that Lemma 11 need not hold in a purely algebraic sersfor
method P1. As a result, spurious variance might be created numeraly for method
P1 through the coupling terms and inhibit convergence to statisticd equilibrium.
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Theorem 3. Let the turbulent viscosities be constants. AssumeJO =0, fAJQ =0

and foj0 = 0 identically, for all j. Then the discrete solutions for methods M and
P2 satisfy

: o . o
im Vu' + =V v =Ilm V ru' + —=V rv!' =0;
n'i J A J ni1 J A j

for all j.

1 n+1

Proof. Insert o = u]-“" and ¢ = p, in (55), apply the polarization identity,

multiply through by  t and take the ensemble average to see that
1 n+l 2 1 n+1 n 2E 1D n 2E 1D n n

2 Y + 2 2u; uj 2 Y 2 207y

1 D zE

+ 2 uMt )t

D

2
+ ot aa(utut) ot aa )ty ¢t A Ut
Z

+ t La uf™ v ufv) uf™ d =t (fa ™ u) A
|

On the other hand, take the ensemble average of (55) before indng & = u. Then
similar arguments may be used to show that

1 n+1 2 1 2 1 2 1 2
Zu + 2 2u™t yn Zku"k® = 2u" u"t?
4 4 4 4

+ % un+1 2un + un 12

2
+ taf(un+l;un+l)+ té.A(un+l;u”+1)+ t AT Un+l

+ t |A uj””;vj”"l;uj”;vj” un+1 d | = t(fAn+1;Un+l)A:
|
Now subtract this from the previous equation and apply Lemma 7 and(36) to see
that
1

2V uptt o+ %V 20t

1 1
I3

1
VDujn ZV 2ujn ujn
1
+ZV uj”"1 2uf + uf L o ta o (uj”"l)02
(58)
S N A (T e M S S A\ AN G
D

0
+ t La uM™ v v o™t 7 od =0:
|

Note that the forcing terms cancel by assumption. The analogousteps may be
applied with (56) and the result added to (58). For the viscous terns, bound below
using Lemma 7 and Lemma 2. For a more compact notation, de ne

| n+l vV an+1 + _OV an+1
A
Nty o gttt 4 Oy oyt

J A J

T T - A
A

n+l n+1 n n 1 O n+1 n n 1
V uj 2uj + U + —V vj 2vj +V;

D E b}
n+1 AT (ujn+1 )O + 2
A

n+140 2

o f (V] )0
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In summary, it holds that

}|n+1+n+1 | n n_’_l'n+1_’__t 2n+1+ (LR 1n+1
4 2 2
+ ot I A uj””;vJ-“J'l,u]”;vjn uj“"1 d
ZI
t I A uj””;vJ-“J'l;uj“;vjn u"td
ZI
+ ot lo u]-“"l;vj“"l,uj”;v]-n vjn+1 d
Zl
t lo ufMt;vMutvd v d, o

Next, apply Lemma 11 for the interface terms, sum over the time ingx and multiply
through by 4. The result is
(59)
K 1 1
!N+ N+4 tRN+2t 28n+1+2 n+l 4 = n+l 4 2!n+1+ ln+1
n=1 2
Y+1l+a tRY:

Inthe limitas N !'1 , itis necessary that
im!"=1lm "=0:
nll n!l

This is the desired result.

6. Computational testing

Here, heat transport is considered under conditions of (approxirate) radiative
equilibrium, as an example of an important process in AOI research [8].Based
on Theorem 2, it is likely that the conclusions of Theorem 3 still hold whan ensem-
bles are run with uncertainty in forcings, fa; and fo;, and friction coe cients, ;.
The statistical convergence of the CTM methods is investigated in his section.

The methods M, P1 and P2 will be tested in 2D domains 5 =[0;10L] [O;L]
and o =[0;10L] [ L; 0], whereL =500 is a length scale in meters. The compu-
tational meshes in both domains are uniform Delaunay-Voronoi triangulations with
mesh sizeh =50 2 (meters). Time steps are uniform, with size t =5 (seconds).
These parameters are xed throughout the computations below.

6.1. Heat convection model background state. A background ow state is

computed in order to provide a uniform point of comparison for the CTM models.

Whereas ensemble indices take on valugs=1;2;:::, the background state will be
associated with indexj = 0. Buoyancy-driven forcings for the momentum are used,
which take the form

fao= 0, 9@ a(o o) and foo= 0 91 o(o o)

Here, o and  are temperatures in Kelvin (K), g =9:81m s ? is gravitational

acceleration and o =3:43 10 3(K 1), o =2:07 10 (K 1) are coe cients of

thermal expansion for air and sea water. The temperature averges over domains
A and o are denoted by ¢ and |, respectively.
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The temperatures will be numerically approximated as solutions of tle heat
convection model

@o A otUgr o = 0on Ao (O;T];
@o o o*Vor o = 0on o (O;T]

with initial conditions discussed later. The (positive, constant) parameters p
and o are thermal diusivity parameters. These values are de ned in terms
of the Prandtl numbers (see [12]) for air Pra) and seawater Prp) by setting
A= al'=Pran and o = o"=Pro. The solutions are horizontally periodic, as
described for the velocity and pressure variables. No heat ux is allewed through
the bottom of . Heat may be transferred across the uid- uid interface and
through the model top (top of ), according to the boundary conditions

Ca A Al o0 Aa = C"(o 285); on q;
Ca A Al 0 Na = Q; on y;
andco o of j ho = Q; on j;

with heat ux Q on the interface consisting of three parts:
Q 30(1 C¥)(1+cos((x 150)=150)) (solar radiative ux)
+ C"(o o) (longwave radiative ux)
+ C*"jupy voj( 0 o) (sensible heat ux):

The constants ca and co are the specic heats of air and seawater, respectively.
The condition on the model top drives the temperature toward the value 285K by
allowing heating (or cooling) if ¢ is below (or above) this value. The net heat ux
Q can be either upward or downward, depending on the net solar radid@ve ux and
the relative temperatures across the interface. The paramete€?® is the albedo of
the ocean. The solar heating is allowed to vary in space, otherwise en heating in
these tests would inhibit circulation.

The numerical approximation for temperature uses globally-contiruous, piece-
wise quadratic nite elements in space and BDF-2 in time, analogous tanethod M
for the coupling terms, except that the velocities are also extraptated there;

juo Voi( o =t § E(ug™) E(vg™)i( g™ g
This decouples the temperature and velocity at each time step. A sintar method
was studied in [4] and shown to be numerically stable; the main di erene is the
BDF-2 time stepping, which can be analyzed as in [10]. The temperatwe elds are
only computed as described here for the background state. Peutbed temperature
elds are discussed later.

6.2. Model spin-up. A spin-up step was used to generate initial conditions for
subsequent testing, with the goal of rst bringing the background state near ra-
diative equilibrium. This was achieved by starting with zero initial velocity and
pressure, and uniform temperatures of 28K in 5 and 300K in . Method M
was used to spin up the background state. Parameter values arénewn in Table 3.

During spin-up, solar heating induces buoyancy-driven currents.The lower do-
main loses heat into the upper domain, due to the initial temperaturedi erential.
Since heat in the upper domain can radiate through the model top, he average
temperatures in both domains stabilize. The problem was run for 20,00 time
steps. Upon completion, the time-rate of change of average tengature in each
subdomain was found to be below 107 in size. Although the system achieves an
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Table 3. Physical parameter values in Sl units for the background state.

Al A’ o" o’ Pra | Pro A 0
1 20 1=15 | 20=15 | 0:713| 7:2 1000 | 1000
A o Ca Co 0 (ol csen Calb
1:2041| 10250 | 10049 | 39930 | 05 | 6:0322| 0:0011| O:1

approximate radiative equilibrium, the dynamics are not steady, as nmay be seen by
looking at the total kineticzenergies over time. 'Iihese are given by

A iui2 o ivi2 dx:

5 jujdx and 5 jvjcdx;

A (o)
shown in Figure 1. The time step size is constrained by the faster dyamics in 4.

n
—
=]
X
p—
>
S

energy (J)
«w o

Figure 1. Kinetic energy during spin-up for the last 500 time
steps in domains A (left) and o (right). The system is approx-
imately at radiative equilibrium, but not stationary.

Temperature and velocity streamlines are shown in Figure 2. Althoudp the sys-
tem is quite simple compared to an atmosphere-ocean simulation, sagrsimilarities
exist. Faster convective currents persist in 5, compared to those in . The ki-
netic energy in ¢ is still considerable, as a result of the larger density, o A 10°.
A test could be done with a wider range of ow scales by decreasing # kinematic
viscosities or by increasing the length scald, . The parameter choices in this report
are limited by the computational cost.

500

291

292
291.5
290.5

0 . - = = i
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

299.99
299.98
299.97
299.96
299.95

T T 1 T — :

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Figure 2. Streamlines and temperatures in 5 (top) and o
(bottom) are shown for the initial conditions generated via spin-up.

The ow exhibits a moderate range of ow scales.
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6.3. Convergence to statistical equilibrium. The calculation of mean- ow
kinetic energy (an example quantity of interest) and the convergace to statistical
equilibrium are investigated with the CTM methods M, P1 and P2. Uncertainty is
introduced through the Boussinesq forcing and the friction paraneter. The initial
conditions, shown in Figure 2, are not perturbed and do not contrihute to the
model variance. The constant parameters in Table 3 are used hereTen-member
ensembles are used, with uncertain data expressed in terms of thrumbers

. iooj =15

! j 5 j=6;:::;10 °
he friction parameters are j = ¢+ 0:01 j h(t) o, j = 1;:::;10. Note that
' =0. The mean friction parameter is thus = .

j=1

]The simulation is run for 2000 time steps, which yields a nal time of 1 s. The
function h(t) is given by

2

2:5 10
which satises 0 h(t) h(5000) = 1 and decays toh(10°) 10 !4, so that (49)
will hold.

Perturbed forcings are constructed to induce small-scale velocityuctuations.
The background temperature elds are perturbed to drive the ows, according to

faj= 0, 9l a(o o+(5 10 °) ;h(t)?cos(x= 250)sin( y=250)))
foj= 0, 9@ o(o o+( 10 °) jh(t)?cos(x= 250)sin( y=250))) :
The full heat convection model is only used to calculate the backgrond state

0 h(t)= exp(2 t=2500) 1,

perturbations of the background state. The forcings for the esemble members
do not depend on the velocitiesu; or vj, since this would present a fundamental
deviation from the theory in this paper. The relative sizes of pertubations for j,

fa; and fo; re ect an attempt to balance out the contributions to model varia nce
from these sources.

In addition to the CTM methods, a straight ensemble calculation is included
here for comparison. That is, the numerical method equivalent to nethod M, but
without using the mean- ow velocity for the convection terms and without any
turbulent viscosity. Variance calculations in the L2-norm are shown in Figure 3,
and kinetic energy is shown in Figure 4. For the CTM methods, the tubulent
viscosities were calculated using (22) with =1:0in A, =0:5in o, andl,
k° de ned in Table 2. These values were found to be roughly optimal for the
mean- ow kinetic energy using method M to match the mean- ow kinetic energy
without CTM as best as possible.

The model variance is consistent amongst CTM methods, but redued compared
to the variance without CTM, and vanishing in all cases. This is consisent with
the implication of Theorem 2 and with Theorem 3. The kinetic energy is aly
shown on time intervals where variance is signi cant; details are hardto see on
the global time scale. The CTM methods all track the reference mea- ow kinetic
energy (without CTM) very well, in particular when the mean ow devia tes signif-
icantly from the background state. When the variance is small, the nean- ow and
background energies nearly coincide, but the partitioned methodgredict a slightly
di erent result in these regions, shown in Figure 5. Methods P1 and R predict the
same energy when the variance in small, which is expected since thesethods are
equivalent when the variance is zero.
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Figure 3. The variance (L2-norm) in domains A (left) and o
(right). As expected, the CTM methods have reduced the variane.

Figure 4. The background state and mean- ow kinetic energies
in domains a (left) and o (right). The CTMs closely track the
mean- ow behavior as it deviates from the background state.

Figure 5. The background state and mean- ow kinetic energies
in domains a (left) and o (right). The model variances are
very small for the range of times shown here. The kinetic energy
of the background state coincides with that of the mean- ow states
without CTM and with method M, but methods P1 and P2 display

a slightly di erent behavior.

Since the di erence between the monolithic and partitioned methodsis only the
numerical coupling, the results suggest that the coupling method an introduce
a statistical bias. In scientic AOI codes, this sort of bias would be dallenging
to quantify since (1) monolithic coupling is not available and (2) the coupling
frequency is limited, due to the computational cost. Method P1 is mae interesting
than methods M or P2, for practical purposes. Aside from the isse of a statistical
bias, the results shown here indicate that method P1 may (with paraneter tuning)
do a good job of reproducing mean- ow statistics.
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7. Conclusions

A statistical turbulence model was proposed for ensemble calcul&ns with two
coupled uids that enables some reduction in matrix assembly costs.The closure
model accounts for the behavior of the Reynolds stress terms athe interface.
The analyses of [10] were extended to account for the uid couplingconditions,
showing a proof of the Boussinesq hypothesis and squeezing of uitfajectories
with the turbulence model. Some numerical methods were proposedncluding
implicit and partitioned coupling, and it was proved for two methods that the
discrete variance must vanish at long times. The analogous proof fothe third
partitioned method, which is of the most practical interest, is not known. But in
computations this method was observed to predict almost exactly he same behavior
as the other methods. Furthermore, the computations indicate @ excellent ability
for the turbulence methods to reproduce the correct ensemble pan- ow behavior.
The partitioned methods may introduce a statistical bias at long times, which was
small in the computational example.
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