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REGULARIZATION AND ROTHE DISCRETIZATION OF

SEMI-EXPLICIT OPERATOR DAES

ROBERT ALTMANN AND JAN HEILAND

Abstract. A general framework for the regularization of constrained PDEs, also called oper-
ator differential-algebraic equations (operator DAEs), is presented. The given procedure works
for semi-explicit and semi-linear operator DAEs of first order including the Navier-Stokes and

other flow equations. The proposed reformulation is consistent, i.e., the solution of the PDE re-
mains untouched. Its main advantage is that it regularizes the operator DAE in the sense that
a semi-discretization in space leads to a DAE of lower index. Furthermore, a stability analysis
is presented for the linear case, which shows that the regularization provides benefits also for
the application of the Rothe method. For this, the influence of perturbations is analyzed for the
different formulations. The results are verified by means of a numerical example with an adaptive
space discretization.

Key words. PDAE, operator DAE, regularization, index reduction, Rothe method, method of
lines, perturbation analysis

1. Introduction

Constrained PDEs arise naturally in the modelling of physical, chemical, and
many other real-world phenomena. They occur whenever different PDE models are
coupled, e.g., via mutual variables at the interfaces, since the coupling is typically
modelled via algebraic constraints. Such models are widely used in flexible multi-
body dynamics, e.g., the pantograph and catenary benchmark problem [6] or the
flexible slider crank mechanism [30, 31]. Also flow equations such as the Navier-
Stokes equations [33, 35] can be seen as constrained PDEs due to the coupling of
momentum equation to the divergence-free constraint. Further applications can be
found in circuit simulation [34], electromagnetics, and chemical engineering [9].

We consider these equation systems of ordinary or partial differential equations
(ODEs, PDEs) and algebraic equations in line with other constrained PDEs –
often referred to as PDAEs – as differential-algebraic equations (DAEs) in function
spaces, so-called abstract or operator DAEs.

Despite the large range of applications and the advantages from the modeling
perspective, the mathematical analysis of operator DAEs is full of open research
questions. There is still no common classification like the index concepts for DAEs
[21, Ch. 12]. The generalization of the tractability index as proposed, e.g., in [34]
does not apply for the commonly used formulation by means of Gelfand triples. The
very general concept of the perturbation index, as it was defined in [25] for linear
PDAEs, applies under strong regularity conditions but is still ambiguous in the
choice of the norm in which one measures the perturbation and their derivatives.
Also the differentiation index was generalized to PDAEs [22] but has difficulties
with the agreement of the PDAE index with the index of the semi-discretized DAE.
Yet another idea is to classify the index of a PDAE directly by the index that may
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be determined after a spatial discretization. This, however, leads to the similar
unclear problem, what a good discretization of a PDAE is.

Within this paper, we analyse constrained systems of first order and semi-explicit
structure. Particularly, we consider systems of the form

u̇(t) +Ku(t) + B∗λ(t) = F(t),(1a)

Bu(t) = G(t).(1b)

Therein, λ denotes the Lagrange multiplier, which enforces the linear constraint
Bu = G. In view of numerical simulations, the incorporation of the constraints via
a Lagrange multiplier and a suitable reformulation seem promising and follow the
paradigm in the treatment of DAEs, that it is preferable to collect all available
information in the form of constraints instead of eliminating them. For the Navier-
Stokes equations this means to maintain the pressure as part of the system.

In this paper, we introduce a regularization or index reduction method for the
PDAE (1) without introducing an index as such. We rather refer to the well-
defined index of the semi-discrete system after a spatial discretization by mixed
finite elements. In other words, we propose a reformulation of the given PDAE
system such that a semi-discretization leads to a DAE of lower index.

A transformation on operator level can be the base for numerically advanta-
geous discretization schemes. The commonly taken approach of first discretizing
and then transforming the equations comes with the latent risk that the algebraic
manipulation are not valid in infinite dimensions [17]. This may cause instabilities
or inconsistencies as the discretization becomes more accurate. The taken approach
has been introduced for second-order systems appearing in elastodynamics [2] and
for flow equations [4] before. Here, we consider the more general case with time-
dependent constraints and provide the functional analytical framework.

The main contribution of this paper is then the analysis of the Rothe discretiza-
tion through the application of the implicit Euler scheme to the operator DAE (1).
As for the finite-dimensional case, we expect a different behavior of the variables u
and λ. It will turn out that we need stronger regularity assumptions to prove the
convergence of the Lagrange multiplier. Among others, we consider the influence
of perturbations and quantify them in a general convergence result. We show that
the proposed reformulation improves the robustness against such perturbations, as
we confirm numerically for a simulation setup with adaptive, and thus changing,
meshes.

The paper is organized as follows. In Section 2 we provide the theoretical frame-
work for the formulation of operator differential equations. These tools are then
used for the formulation and regularization of the operator DAEs in Section 3 in
which we also analyse the influence of perturbations. The advantages of the ob-
tained formulation is topic of Section 4. We consider the discretization in time,
which corresponds to the Rothe method for time-dependent PDEs in Section 5.
Further, we prove the convergence of the implicit Euler scheme and discuss the
resulting advantages in terms of perturbations. Finally, we illustrate the obtained
theoretical results in a numerical simulation of the Navier-Stokes equations in Sec-
tion 6 and conclude the paper in Section 7.
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2. Preliminaries

This section is devoted to the introduction of the functional analytical backgroud
as well as some basics on DAEs. Both ingredients are necessary to understand the
notion of operator DAEs. First, we discuss the spaces and operators, which are
needed for the analysis in Sections 3 and 5 below. Throughout this paper, we use
the notion of Sobolev spaces as in [1] and Bochner spaces as in [28, Ch. 1.5]. Second,
we give the definition of the differentiation index and introduce the idea of minimal
extension, on which the regularization in Section 3.2 is based.

2.1. Sobolev-Bochner spaces. To keep the setting as general as possible, we
consider a real, separable, and reflexive Banach space V and a real separable Hilbert
space H with inner product (·, ·). We assume that the spaces V , H, and V∗ form
a Gelfand triple (also called evolution triple) [36, Ch. 23.4]. This means that V
is densely, continuously embedded in H, written as V ↪→ H, and that H and its
dual space H∗ are identified via the Riesz isomorphism. Such a triple implies the
inclusion H∗ ↪→ V∗ in the sense that for h ∈ H ∼= H∗ and v ∈ V we have

〈h, v〉V∗,V = (h, v).

The space for the Lagrange multiplier is denoted by Q and is assumed to be a
real, separable, and reflexive Banach space. The constraint operator B then maps
from V to Q∗. Together with its dual operator B∗, we obtain the following diagram:

V ↪→ H = H∗ ↪→ V∗

Q∗ Q
B B∗

Example 2.1. A typical example for a Gelfand triple V ↪→ H ↪→ V∗ is given by
the Sobolev spaces V := H1

0 (Ω), H := L2(Ω), and V∗ = H−1(Ω).

We consider time derivatives in the generalized sense as defined, e.g., in [36,
Ch. 23.5]. We require solutions of system (1) to satisfy

u ∈ Lp(0, T ;V) with u̇ ∈ Lq(0, T ;V∗),

where 1 < q ≤ p <∞. If q is the conjugated exponent, i.e., 1/p+1/q = 1, then, by
the well-known embedding theorems for Gelfand triples [36, Th. 23.23], it holds that
such a solution u is continuous as a function u : [0, T ] → H, i.e., u ∈ C([0, T ],H).
Thus, an initial condition u(0) = a for a ∈ H is well-defined.

Remark 2.1. The regularization proposed in Section 3 operates with splittings of
the state space V and is independent of the time regularity of the function u or
u̇. Thus, we can also consider less regular systems with u̇ ∈ Lq(0, T ;V∗) with
q ≤ 1− 1/p, as they may appear in applications. However, we will have to assume
the well-posedness of the initial condition in this case.

2.2. Operator K. Consider a possibly nonlinear operator K : (0, T ) × V → V∗

and 1 ≤ q, p <∞. The question arises whether this operator induces a (bounded)
operator of the form

K : Lp(0, T ;V) → Lq(0, T ;V∗),

(Ku)(t) := K(t, u(t)).
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If such an operator exists, then we do not distinguish between these two notions.
We state a well-known result for Nemytskij mappings for the considered setup of
abstract functions.

Theorem 2.1 (cf. [28, Thm. 1.43]). If the operator K : (0, T ) × V → V∗ is such
that

(a) K(t, ·) : V → V∗ is continuous for almost all t ∈ (0, T ),

(b) K(·, v) : (0, T ) → V∗ is measurable for all v, and

(c) ‖K(t, v)‖V∗ ≤ γ(t) + c‖v‖p/qV for some γ ∈ Lq(0, T ),

then the mapping defined via

(Kv)(t) := K(t, v(t)),

is continuous as a map K : Lp(0, T ;V ) → Lq(0, T ;V ∗), where 1 ≤ p < ∞ and
1 ≤ q ≤ ∞.

The case that the exponents 1 < p, q <∞ are conjugated, i.e, 1/p+ 1/q = 1, is
often assumed for the analysis of nonlinear evolution equations with monotonicity
arguments [28, Ch. 2 and Ch. 8]. However, for nonlinear operators, even if they
are uniformly bounded as a map V → V∗, the conjugacy of the time exponents may
not hold a priori [12, Ch. 8.2].

Example 2.2 (Navier-Stokes operator). Consider the nonlinear operator, which
arises in the weak formulation of the Navier-Stokes equations,

K : V → V∗, 〈Ku,w〉V∗,V :=

∫

(

u · ∇
)

· uw dx.

Then, K : V → V∗ is bounded independently of t, cf. [33, Lem. II.1.1], but, in
the three-dimensional case, it is only bounded as an operator K : L2(0, T ;V) ∩
L∞(0, T ;H) → L4/3(0, T ;V∗), see e.g. [28, Ch. 8.8.4].

Example 2.3 (p-Laplacian). For the p-Laplacian, i.e.,

〈

Ku, v
〉

V∗,V
:=

∫

Ω

|∇u|p−2∇u · ∇v dx,

we take the Sobolev space V =W 1,p
0 (Ω). This then induces an operatorK : Lp

(

0, T ;V)
→ Lp′

(0, T ;V∗) with 1/p+ 1/p′ = 1, see [29, Ch. 3.3.6].

For special operators K, as, e.g., linear operators that are uniformly bounded
with respect to time, we state the following result.

Corollary 2.2. Consider 1 ≤ p < ∞ and an operator K : (0, T )× V → V∗, which
is measurable for fixed v ∈ V and uniformly bounded in the sense that there exists
a constant CK such that ‖K(t)v‖V∗ ≤ CK‖v‖V for all v ∈ V and almost all t ∈
(0, T ). Then, (Kv)(t) := K(t, v(t)) defines a continuous operator from Lp(0, T ;V)
to Lp(0, T ;V∗).

Proof. The application of Theorem 2.1 with p = q and γ = 0 yields the result. �
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2.3. Differential-algebraic equations. As mentioned in the introduction, diffe-
rential-algebraic equations (DAEs) are commonly classified through an index, which
can also be seen as a measure for the expected difficulty of solving such a system
numerically. We emphasize that there exist several different index concepts [24] but
confine ourselves to the so-called differentiation index. Furthermore, we restrict our
considerations to semi-explicit systems of the form

q̇(t) = f(t, q(t), µ(t)), 0 = g(t, q(t))(2)

with q(t) ∈ R
n and µ(t) ∈ R

m, m ≤ n. This means that the constraint for the
differential variable q is explicitly given by the function g : [0, T ]× R

n → R
m.

The differentiation index quantifies the necessary number of differentiation steps
in order to obtain an ODE and thus, describes to which degree the solution depends
on derivatives of the involved quantities. Note that the dependence on derivatives
may lead to instabilities within the numerical simulation.

Definition 2.1 ([8, Def. 2.2.2]). The minimal number of times that all or parts of
(2) must be differentiated with respect to time t in order to determine q̇ and µ̇ as
continuous functions of q, µ, and t is called the differentiation index.

For semi-explicit systems it is known to be sufficient to consider differentiations
of the constraint. This then leads to the following result.

Lemma 2.3 ([16, Ch. VII.1]). The semi-explicit DAE (2) has differentiation index

2 if the matrix ∂g
∂q

∂f
∂µ is invertible.

We emphasize that DAEs of index 1 can, in principle, be numerically treated as
stiff ODEs [16, Ch. VI.1]. For DAEs of higher index, however, one may observe
a reduction of the convergence order or even a loss of convergence [24]. Thus, a
direct treatment is not advisable [8, Ch. 5.4]. A better approach is to reformulate
the system such that the solution set remains unchanged but the index is reduced.
Such methods are called index reduction.

One particular index reduction method, which is well suited for semi-explicit
systems of the form (2), is called minimal extension, cf. [19, 23]. We will adapt this
technique for the operator case in Section 3.2. For an introduction of this method
we consider a special case of (2), namely

Mq̇ = f(t, q, µ) = f̃(t, q)−GTµ, 0 = g(t, q)

with a positive definite mass matrix M ∈ R
n,n and the Jacobian G := ∂g/∂q ∈

R
m,n, which is assumed to be of full row rank m ≤ n. Applying M−1 from the

left, we obtain by Lemma 2.3 that this DAE is of index 2, since ∂g
∂q

∂f
∂µ = GM−1GT

is invertible. Because of the full rank property, there exists an orthogonal matrix
Q ∈ R

n,n such that GQ has the block structure GQ = [G1, G2] with an invertible
matrix G2 ∈ R

m,m. Accordingly, we transform the variable q into
[

q1
q2

]

:= QT q

with q1 ∈ R
n−m and q2 ∈ R

m. With this, we can write the derivative of the
constraint as

0 =
d

dt
g(q) = Gq̇ + ∂tg(q).
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As the name of the method reveals, we extend the system and introduce a dummy
variable. Replacing the derivative of q2 by q̃2 := q̇2, we obtain the system

MQ

[

q̇1
q̃2

]

= f̃(t, q1, q2)−GTµ,

0 = g(t, q1, q2),

0 = G1q̇1 +G2q̃2 + ∂tg(t, q1, q2),

which is equivalent to the original system but, as one can show, of index 1.

3. Regularization of operator DAEs

In this section, we consider semi-explicit operator equations in a time interval
(0, T ). With a given linear constraint incorporated by the Lagrangian method, we
obtain a system of the form: find u : (0, T ) → V and λ : (0, T ) → Q such that

u̇(t) +K(t)u(t) + B(t)∗λ(t) = F(t) in V∗,(3a)

B(t)u(t) = G(t) in Q∗(3b)

for t ∈ (0, T ) a.e. with initial condition

u(0) = a ∈ H.(3c)

Therein, B∗(t) denotes the dual of the linear constraint operator B(t). System (3)
is a generalization of a semi-explicit DAE since here, u(t) belongs to the infinite-
dimensional Banach space V . Because of this, we call system (3) a semi-explicit
operator DAE.

Suitable function spaces for the solution (u, λ) will be discussed in Theorem 3.4
below. We assume F ∈ Lq(0, T ;V∗) and G ∈ Lp(0, T ;Q∗). The equalities (3a) and
(3b) should be understood pointwise in L1

loc in the corresponding dual product. By
the fundamental theorem of variational calculus [12, Thm. 8.1.3] and the definition
of the weak time derivative, this means that v̇(t) = F(t) in V∗ if

−
∫ T

0

〈

v(t), w
〉

V∗,V
φ̇(t) dt =

∫ T

0

〈

F(t), w
〉

V∗,V
φ(t) dt

for all w ∈ V and φ ∈ C∞
0 (0, T ). Furthermore, we assume operatorsK : Lp(0, T ;V) →

Lq(0, T ;V∗), cf. Section 2.2, and B : Lp(0, T ;V) → Lp(0, T ;Q∗) with 1 < p ≤ q <
∞.

3.1. Assumptions on B. In this subsection, we summarize the properties of the
constraint operator B, which we require for a reformulation of the operator DAE
(3). Note that we do not need additional assumptions of K at this point.

Assumption 3.1 (Properties of B). The constraint operator B(t) : V → Q∗ satisfies
the following conditions:

(a) B(t) is linear and uniformly bounded, B(·)v is measurable for all v ∈ V ,
(b) VB := kerB(t) is independent of time t,
(c) there exists a uniformly bounded right-inverse of B(t), i.e., there exists a

uniformly bounded operator B−(t) : Q∗ → V such that for all q ∈ Q∗ it
holds that

B(t)B−(t)q = q,

(d) the range of the right-inverse Vc := rangeB−(t) is independent of time t,

(e) there exist continuous time derivatives Ḃ(t) : V → Q and Ḃ−(t) : Q∗ → V .
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Remark 3.1 (Time-independent constraint). If the constraint operator is indepen-
dent of time, i.e., B(t) ≡ B, then Assumption 3.1 reduces to the points (a) and
(c).

Remark 3.2 (Induced operators). By Corollary 2.2 it follows that B(t) and B−(t)
from Assumption 3.1 induce bounded operators of the form

B : Lp(0, T ;V) → Lp(0, T ;Q∗) and B− : Lp(0, T ;Q∗) → Lp(0, T ;Vc).

Example 3.1. In the intended application of flow problems, the constraint oper-
ator will be the divergence operator which, in the common weak formulation and
under standard assumptions on the physical or computational domain, will fulfill
Assumption 3.1, cf. Section 6.1 below.

If the domain Ω changes with time, as it happens in models of fluid-structure
interaction problems, then the divergence operator will depend on time. In princi-
ple, Assumption 3.1 and the following results permit such a time dependency but
the validity of the assumption will be problem specific.

An example of a time-dependent constraint operator, that is directly covered
by Assumption 3.1, would be a time-dependent linear combination of constraint
operators, i.e.,

B(t)u = α1(t)B1u+ α2(t)B2u

with α1(t), α2(t) > 0 for all t and time-independent linear and bounded operators
B1,B2.

Note that the choice of the right-inverse in Assumption 3.1 is not unique. A
special case, for which the existence of a right-inverse is guaranteed, is when B(t)
satisfies an inf-sup condition of the form

inf
q∈Q

sup
v∈V

〈B(t)v, q〉
‖v‖V‖q‖Q

≥ β > 0.

Nevertheless, this does not imply the time-independence of the range of B−(t). In
the next lemma, we summarize several properties of the right-inverse B−(t) from
Assumption 3.1.

Lemma 3.1 (Properties of B−). Let B satisfy Assumption 3.1. Then, the right-
inverse B−(t) : Q∗ → V is linear and one-to-one. Furthermore, Vc := rangeB−(t)
is a closed subspace of V and the operator B−(t)B(t) : V → V, restricted to Vc,
equals the identity.

Proof. The linearity of B−(t) follows from the linearity of the operator B(t) [26,
Ch. 8.1.2]. For the one-to-one relation, consider q1, q2 ∈ Q∗ with B−(t)q1 =
B−(t)q2. Then, the application of B(t) yields q1 = B(t)B−(t)q1 = B(t)B−(t)q2 = q2.

The linearity of B−(t) and the continuity of B−(t) and B(t) imply that Vc is a
closed subspace of V . Finally, for v ∈ Vc and fixed t ∈ (0, T ) there exists q ∈ Q∗

with B−(t)q = v. Then, Assumption 3.1 implies

v = B−(t)q = B−(t)
(

B(t)B−(t)q
)

= B−(t)B(t)v. �

Remark 3.3. Lemma 3.1 implies that B−(t)B(t) : V → V is a projection onto Vc.
Furthermore, the induced Nemytskij mapping B− is a right-inverse of B.

An important implication of Assumption 3.1 and Lemma 3.1 is the decomposition
of Lp(0, T ;V) as given in the following lemma. This decomposition will be the basis
for the index reduction procedure of Section 3.2.
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Lemma 3.2 (Decomposition of Lp(0, T ;V)). Consider the subspaces VB and Vc of
V defined in Assumption 3.1. Then, we have the decomposition

Lp(0, T ;V) = Lp(0, T ;VB)⊕ Lp(0, T ;Vc).

Proof. For given v ∈ Lp(0, T ;V), we define r := Bv ∈ Lp(0, T ;Q∗), cf. Remark 3.2.
A decomposition of v ∈ Lp(0, T ;V) is then given by

v = v0 + vc :=
(

v − B−r
)

+ B−r.(4)

Obviously, vc = B−r ∈ Lp(0, T ;Vc) and v0 ∈ Lp(0, T ;VB) follows from Assump-
tion 3.1 by Bv0 = Bv − BB−Bv = 0. We show that the decomposition in (4) is
unique. For this, consider v0, w0 ∈ Lp(0, T ;VB) and vc, wc ∈ Lp(0, T ;Vc) with
v = v0+ v

c = w0+w
c. The application of B yields Bvc = Bwc. Furthermore, there

exist rv, rw ∈ Lp(0, T ;Q∗) such that vc = B−rv and wc = B−rw . By Assump-
tion 3.1 we obtain

rv − rw = BB−rv − BB−rw = Bvc − Bwc = 0.

Thus, it holds that vc = B−rv = B−rw = wc and finally also v0 = w0. �

Lemma 3.3. Let W be a closed subspace of V such that there exists a projection
P : V → V that maps V onto W and consider v ∈ Lp(0, T ;W). Then, the existence
of a time derivative v̇ ∈ Lp(0, T ;V) implies v̇ ∈ Lp(0, T ;W).

Proof. Assume v ∈ Lp(0, T ;W) with v̇ ∈ Lp(0, T ;V). By assumption, it holds
that (id−P)v(t) = 0 for almost all t ∈ (0, T ) with id denoting the identity. Since
the time derivative of v exists in a generalized sense [36, Ch. 23.5], we can write
(id−P)v̇(t) = 0, which implies for t ∈ (0, T ) a.e.,

v̇(t) = P v̇(t) ∈ W . �

3.2. Reformulation. This subsection is devoted to the reformulation and reg-
ularization of the operator DAE (3). This extends the results of [4] to a setup
with a time-dependent constraint. In Section 3.3 we discuss the resulting positive
effects in terms of the sensitivity to perturbations. In Section 4 we then show
that the reformulation is in fact an index reduction on operator level and thus, a
regularization.

We adapt the technique of minimal extension, cf. Section 2.3, to the operator
case. For this, we first add to system (3) the time derivative of the constraint,

B(t)u̇+ Ḃ(t)u = Ġ(t).
Clearly, this requires the right-hand side G to be differentiable in the generalized
sense, i.e., G ∈W 1,p(0, T ;Q∗). Note that this assumption is already needed for the
existence of a solution of (3). This fact comes from the theory of DAEs, see for
example [20, Th.2.29], which shows that even for the finite-dimensional case with
constant coefficients higher derivatives of the right-hand side are necessary. At this
point, also u̇ ∈ Lp(0, T ;V) seems to be a necessary condition. However, as the next
paragraph shows, this requirement applies only to a part of u̇.

Second, we use the decomposition from Lemma 3.2 to split u into u1 ∈ Lp(0, T ;VB)
and u2 ∈ Lp(0, T ;Vc). Therewith, the two constraints reduce to

B(t)u2 = G(t) and B(t)u̇2 + Ḃ(t)u2 = Ġ(t).
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Thus, it is sufficient that the derivative of u2 is an element of V . For u as a whole,
we only need that u̇ ∈ Lq(0, T ;V∗). The assumed regularity of G implies with
Assumption 3.1, Lemma 3.1, and equation (3b) that u2 ∈ W 1,p(0, T ;Vc).

Having added one equation, in a third step, we introduce a new variable v2 :=
u̇2 ∈ Lp(0, T ;Vc). Recall that Vc is a subspace of V for which there exists a
projection, cf. Lemma 3.1. Thus, we can apply Lemma 3.3 at this point. The
addition of a new variable compensates the redundancy of the two constraints.
Note that in the reformulated system the variable u2 is not differentiated anymore
such that we only need an initial condition for u1. The initial condition for u2 in the
original formulation corresponds to a consistency condition, which typically appears
for DAEs [20, Ch. 1]. The overall system then reads: for given data F ∈ Lq(0, T ;V∗)
and G ∈W 1,p(0, T ;Q∗) find functions u1 ∈ Lp(0, T ;VB) with u̇1 ∈ Lq(0, T ;V∗), u2,

v2 ∈ Lp(0, T ;Vc), and λ ∈ Lp′

(0, T ;Q) such that

u̇1(t) + v2(t) +K(t)
(

u1(t) + u2(t)
)

+ B∗(t)λ(t) = F(t) in V∗,(5a)

B(t)u2(t) = G(t) in Q∗,(5b)

B(t)v2(t) + Ḃ(t)u2(t) = Ġ(t) in Q∗(5c)

holds for t ∈ (0, T ) a.e. with the initial condition

u1(0) = a0 := a− B−(0)G(0) ∈ H.(5d)

The initial condition is well-posed for time smooth G, since W 1,p(0, T ;Q∗) is con-
tinuously embedded in the space of continuous functions with values in Q∗, namely
C([0, T ],Q∗) [28, Lem. 7.1]. Further, note that Lp′

(0, T ;Q) is the right space for the

multiplier λ, since for a separable Banach space Q∗ the dual space of Lp′

(0, T ;Q)
can be identified with Lp(0, T ;Q∗), cf. [28, Prop. 1.38].

In the following theorem, we discuss the connection of the original system (3)
and the regularized formulation (5), cf. [4, Th. 2.3]. In the sequel, we omit to write
the time-dependency of the operators K and B.

Theorem 3.4 (Equivalence of the reformulation). Consider exponents 1 < q ≤ p <
∞, and p′ with 1/p+1/p′ = 1. Assume that F ∈ Lq(0, T ;V∗), G ∈W 1,p(0, T ;Q∗),
and a ∈ H as well as the operator B satisfying Assumption 3.1. Then, the op-
erator DAE (3) has a solution (u, λ) with u ∈ Lp(0, T ;V), u̇ ∈ Lq(0, T ;V∗),

and λ ∈ Lp′

(0, T ;Q) if and only if system (5) has a solution (u1, u2, v2, λ) with

u1 ∈ Lp(0, T,VB), u̇1 ∈ Lq(0, T ;V∗), u2, v2 ∈ Lp(0, T ;Vc), and λ ∈ Lp′

(0, T ;Q).
Furthermore, it holds that u = u1 + u2 and u̇2 = v2.

Proof. Let (u, λ) be a solution of (3). We define

u1 := u− B−Bu ∈ Lp(0, T ;VB) and u2 := B−Bu ∈ Lp(0, T ;Vc).

With equation (3b), we obtain u2 = B−G and thus, by the regularity of G and
Assumption 3.1, u̇2 ∈ Lp(0, T ;Vc). With v2 := u̇2 the quadruple (u1, u2, v2, λ)
satisfies equations (5a-c). The initial condition (5d) is satisfied because of

u1(0) = u(0)− u2(0) = a− B−G(0).
For the reverse direction consider a solution of (5), namely (u1, u2, v2, λ). Then,

u := u1+u2 ∈ Lp(0, T ;V). Because of the regularity of G, equation (5b), and q ≤ p,
it holds that u̇ = u̇1+ u̇2 ∈ Lq(0, T ;V∗). We show that u̇2 = v2. Equation (5c) and
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the time derivative of equation (5b) yield

Bv2 + Ḃu2 = Ġ =
d

dt

(

Bu2
)

= Bu̇2 + Ḃu2.

Note that u̇2 ∈ Lp(0, T ;Vc), as shown in the first part of the proof. The invertibility
of B on Vc, see Lemma 3.1, then gives u̇2 = v2. Thus, the pair (u, λ) satisfies
equations (3a) and (3b). For the initial condition (3c), we obtain

u(0) = u1(0) + u2(0) = a− B−G(0) + B−G(0) = a. �

From the solution representation given in Theorem 3.4 we deduce that not every
initial condition a ∈ H admits a solution to (3).

Corollary 3.5. Let the assumptions of Theorem 3.4 hold. For the existence of a
solution to (3) it is necessary that the initial data a ∈ H can be decomposed as
a = a0 + B−G(0), where B−G(0) ∈ Vc and a0 is in the closure of VB in H.

We discuss some examples for which we obtain different kinds of consistency
conditions.

Example 3.2. If the operator B equals the divergence operator and V = [H1
0 (Ω)]

d,
then VB denotes the space of divergence-free functions in V . In this case, the closure
of VB with respect to H = [L2(Ω)]d is a proper subspace of H, cf. [33, Ch. 1,
Thm. 1.4],

VB
H

=
{

v ∈ H | ∇ · v = 0, v · ν∂Ω = 0
}

6= H.
Therein, ν∂Ω denotes the normal outer vector along the boundary. Note that the
closure is even a subspace of H(div,Ω) = {v ∈ H | ∇·v ∈ L2(Ω)}. Thus, the initial
value a0 cannot be chosen arbitrarily in H.

Example 3.3. If B equals the trace operator, i.e., B : V := H1(Ω) → H1/2(∂Ω),
then we have VB = H1

0 (Ω). Since the closure of H1
0 (Ω) in H := L2(Ω) equals H

itself, the initial data only has to satisfy a0 ∈ H. In fact, this means that the initial
data a = a0 + B−G(0) can also be chosen arbitrarily in H such that there is no
consistency condition in this case.

3.3. Influence of perturbations. As mentioned in the introduction, we do not
define an index for operator DAEs. Nevertheless, the influence of perturbations
provides information about the stability of the system, similar to the perturbation
index for DAEs. We show the positive effect of the presented regularization in
terms of perturbations. For this, we restrict the analysis to the case p = q = 2 with
a linear, symmetric, on VB uniformly elliptic, and uniformly bounded operator K,
i.e, for u ∈ VB and v, w ∈ V we assume that

〈K(t)u, u〉 ≥ k1‖u‖2 and 〈K(t)v, w〉 ≤ k2‖v‖‖w‖.

Note that we use ‖ · ‖ := ‖ · ‖V and later | · | := ‖ · ‖H to simplify the notation. We
consider the to (3) corresponding perturbed problem

˙̄u + Kū + B∗λ̄ = F + δ in V∗,(6a)

Bū = G + θ in Q∗.(6b)
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Here, (ū, λ̄) denotes the solution if we include perturbations δ : [0, T ] → V∗ and
θ : [0, T ] → Q∗. For the regularized equations, the perturbed problem has the form

˙̂u1 + v̂2 + K(û1 + û2) + B∗λ̂ = F + δ in V∗,(7a)

Bû2 = G + θ in Q∗,(7b)

Bv̂2 + Ḃû2 = Ġ + ξ in Q∗.(7c)

For this system, we consider perturbations of the form δ ∈ L2(0, T ;V∗) and θ,

ξ ∈ L2(0, T ;Q∗) and the solution is denoted by (û1, û2, v̂2, λ̂). The initial condition
is given by û1(0) = u1(0) − e1,0, i.e., e1,0 contains the initial error. Because of
Theorem 3.4, it is sufficient to consider the regularized system (7). The result for

the original operator DAE then follows if we replace ξ by θ̇, cf. Remark 3.4 below.
By Cemb we denote the continuity constant of the embedding V ↪→ H. Further-

more, we introduce the errors

e1 := û1 − u1, e2 := û2 − u2, ev := v̂2 − v2, eλ := λ̂− λ.

Theorem 3.6. Consider the perturbed problem (7) with a linear, symmetric, on VB

uniformly elliptic, and uniformly bounded operator K. Furthermore, let B satisfy
Assumption 3.1 and the perturbations δ ∈ L2(0, T ;V∗) and θ, ξ ∈ L2(0, T ;Q∗).
Then, the error in the differential variable u1 satisfies with a positive constant
c ∈ R that

‖e1‖2C([0,T ];H) + k1‖e1‖2L2(0,T ;V)

≤|e1,0|2 + c
[

‖δ‖2L2(0,T ;V∗) + ‖θ‖2L2(0,T ;Q∗) + ‖ξ‖2L2(0,T ;Q∗)

]

.

Proof. Bounds of the errors e2 and ev can be easily found by the continuity of Ḃ
and the right-inverse of B. For the error in the differential part u1, we test the
difference of equations (7a) and (5a) by e1 ∈ VB. Thus, the term with the Lagrange
multiplier vanishes and the properties of the operator K can be exploited. The
details can be found in [3, Sect. 6.1]. �

Remark 3.4. In order to transfer these results to the perturbation analysis of the
original formulation (3) we have to insert ξ = θ̇. Thus, the error also depends on
the derivative of the perturbation θ. This leads to possible instabilities known from
high-index DAEs. If the perturbation is not smooth, it may even make the model
useless. In this regard, the presented reformulation can be seen as a regularization
of the system.

In the given setting of the evolution equations, it is not possible to gain sim-
ilar estimates for eλ. Estimates of the error in the Lagrange multiplier are only
possible if we consider the primitive of eλ or assume more regular perturbations
δ ∈ L2(0, T ;H∗) and e1,0 ∈ VB.

4. Spatial discretization

For the simulation of time-dependent PDEs, we need discretizations in time and
space. Because of the special role of the time variable in DAEs we only consider the
approach of discretizing in space and time separately. In this section, we consider
the systems, which result from a spatial discretization of the operator DAE. Thus,
we follow the method of lines. The Rothe method [27], in which one discretizes in
time first, is then discussed in Section 5.
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As mentioned above, a spatial discretization of an operator DAE leads to a clas-
sical DAE, for which the differentiation index is well-defined [8, 16, 20]. Within this
section, we simply write index, meaning the differentiation index, cf. Section 2.3.
Recall that we do not use any index definition for PDAEs.

We show that the DAE corresponding to the original system (3) is of index 2
whereas the DAEs resulting from the reformulated systems are of index 1. For
this, only standard assumptions on the used finite element schemes have to be
considered. This then shows that also in this sense the reformulation presented in
Section 3.2 is a regularization.

4.1. Finite element discretization. For the spatial discretization, we consider
finite-dimensional approximations of the spaces VB, Vc, and Q. We denote the
approximation spaces by VB,h, V

c
h , and Qh, respectively. Furthermore, we define

Vh = VB,h ⊕ V c
h as finite-dimensional approximation of V .

Thinking of finite elements on a regular mesh T of the domain Ω, cf. [7], we
consider basis functions {ϕi}1,...,n1

of VB,h, {ϕi}n1+1,...,n of V c
h , and {ψi}1,...,m of Qh

with m = n−n1. Hence, we assume that dimV c
h = dimQh. The finite-dimensional

approximations of u1, u2, v2, and λ are then represented by the coefficient vectors
q1, q2, r2, and µ, respectively. By q ∈ R

n we denote the vector q = [qT1 , q
T
2 ]

T . Based
on this discretization scheme, we define the positive definite mass matrixM ∈ R

n,n

by Mi,j := (ϕi, ϕj). The discrete version of the constraint operator B is defined by

B(t) ∈ R
m,n, Bj,i(t) :=

〈

B(t)ϕi, ψj

〉

.(8)

Note that, according to Assumption 3.1, it is natural to assume that B is continu-
ously differentiable with respect to time and that B has full rank.

Remark 4.1 (Nonconforming discretization). In order that B is well-defined, the
operator B has to be defined for the given basis functions. Since nonconforming
finite elements are not excluded [7, Ch. III], the application of B may be generalized
to an elementwise application.

Remark 4.2 (Inf-sup stability). For the unique solvability of the semi-discrete sys-
tems resulting from the finite element discretization it is sufficient that the con-
straint matrix B is of full rank. For a stable approximation of the Lagrange mul-
tiplier λ in terms of the discretization parameter h, one may assume an inf-sup
condition, i.e., there exists a constant βdisc > 0, independent of h and time t, such
that

inf
qh∈Qh

sup
vh∈Vh

〈B(t)vh, qh〉
‖vh‖ ‖qh‖Q

≥ βdisc,

cf., e.g., [7, Ch. III.4].

Finally, we denote the discrete version of the possibly time-dependent operator
K by K(t) : Rn → R

n, which may be written as a time-dependent n× n matrix in
the linear case.

4.2. Discretization of (3). For the computation of the index of the resulting
DAE system, we assume that the mass matrix M is positive definite and that B is
of full rank. First, we consider the index of the DAE, which results from a spatial
discretization of the original system (3). With the introduced notation, the DAE
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has the form

Mq̇ +K(t, q) +BT (t)µ = f,(9a)

B(t)q = g.(9b)

From Lemma 2.3 we infer that the system (9) is of index 2, since BM−1BT is
invertible for all times t. The index-2 structure can also made visible through a dif-
ferentiation of the constraint (9b). This then leads to the (analytically) equivalent
DAE

[

M BT (t)
B(t) 0

] [

q̇
µ

]

=

[

f −K(t, q)

ġ − Ḃ(t)q

]

.

Again the assumptions on M and B imply that the matrix on the left-hand side
is invertible. Thus, a single differentiation leads to an ODE for q and an algebraic
equation for µ.

4.3. Discretization of (5). In the case of a conforming discretization, i.e., VB,h ⊆
VB, V

c
h ⊆ Vc, and Qh ⊆ Q, the matrix B(t) has the special structure B(t) =

[0 B2(t)]. Therein, the matrix B2(t) is square and non-singular. In this case, the
semi-discrete version of (5) has the form

M

[

q̇1
r2

]

+K(t, q1, q2) +

[

0
BT

2 (t)

]

µ = f,(10a)

B2(t)q2 = g,(10b)

B2(t)r2 = ġ − Ḃ2(t)q2.(10c)

This system forms a DAE of index 1 as we show in Lemma 4.1 below. In many
cases, one depends on a nonconforming spatial discretization [7, Ch. III], i.e., the
discrete ansatz spaces are not subspaces of the original search spaces. One simple
example is the Crouzeix-Raviart element [10], a lowest order piecewise linear but
discontinuous discretization scheme. Since we do not assume VB,h ⊆ VB for general
mixed finite element discretizations, i.e., kerB(t) 6⊆ kerB(t), cf. [15, Ch. 3], we lose
the special structure of B(t).

In general, we have B(t) = [B1(t) B2(t)] and simply assume that the block B2

is non-singular. This is no restriction, since one may always permute the columns
of B (corresponds to a reordering of basis functions in VB,h and V c

h ) such that the
B2 block is regular. Then, the semi-discretized system reads

M

[

q̇1
r2

]

+K(t, q1, q2) +BT (t)µ = f,(11a)

B2(t)q2 = g −B1(t)q1,(11b)

B2(t)r2 = ġ −B1(t)q̇1 − Ḃ1(t)q1 − Ḃ2(t)q2.(11c)

Lemma 4.1 (Index-1 DAE). For a positive definite mass matrix M and a differ-
entiable constraint matrix B with a regular block B2, the DAEs (10) and (11) are
of index 1.

Proof. Similar to the proof of [20, Th. 6.12], we show that (11) is of index 1. The
property then follows for system (10) as well because it is a special case.

Since the matrix B2(t) is of full rank, equations (11b) and (11c) yield direct
expressions of q2 and r2 in terms of q1 and q̇1. Furthermore, a multiplication of
(11a) from the left by BM−1 provides a formula for µ in terms of q1. Here we use
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the assumptions on M and B, which imply that the matrix BM−1BT is invertible.
Finally, inserting all these expressions into equation (11a), we obtain an ODE in
q1. Thus, we can solve system (11) without any further differentiation steps. �

4.4. Commutativity. The connection between the presented regularization on
operator level in Section 3 and the index reduction for DAEs is illustrated in Fig-
ure 4.1, cf. [2] for second-order systems. The scheme shows that regularization and
spatial discretization commute if corresponding discretization schemes are used and
the index reduction is performed by minimal extension, cf. Section 2.3. Note that
this is beneficial for adaptive simulations as modifications of the finite element
schemes such as a refinement of the underlying mesh do not call for another index
reduction step afterwards. This fact is also of importance for the Rothe discretiza-
tion as shown in the numerical example in Section 6.

operator DAE of
’index-2 type’ (3)

operator DAE of
’index-1 type’ (5)

DAE of index 2 (9) DAE of index 1 (10)

regularization

of operator DAEs

index reduction by

minimal extension

spatial
discretization

spatial
discretization

Figure 4.1. Illustrative scheme of the commutativity of regular-
ization and spatial discretization.

Since the index of the DAE (10) is, compared to the DAE (9), reduced by one, we
may call the proposed regularization procedure from Section 3 an index reduction
on operator level.

5. Temporal discretization

For the time integration of the operator DAE (5) we restrict ourselves to the
implicit Euler method. We prove the convergence of the scheme and highlight the
needed adjustments in contrast to operator ODEs (time-dependent PDEs without
constraint), for which the convergence is well-known. Again we benefit from the
regularization introduced in Section 3 because of the obtained robustness with
respect to perturbations. Furthermore, we consider perturbations of the right-hand
sides in order to analyse the convergence of the Rothe method applied to operator
DAEs.

5.1. Time-discrete systems. As in Section 3.3, we restrict the analysis to the
linear case with p = q = 2. Furthermore, we restrict the analysis to the time-
independent case, i.e., K(t) ≡ K and B(t) ≡ B. This means that we assume K to
be linear, symmetric, continuous, and positive on VB. Furthermore, we assume B
to have a time-independent right-inverse B− : Q∗ → Vc with continuity constant
C

B
− , cf. Assumption 3.1. Recall that (·, ·) := (·, ·)H denotes the inner product in

the space H.
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For the temporal discretization we consider an equidistant partition 0 = t0 <
t1 < · · · < tn = T of the interval [0, T ] with time step size τ . The semi-discrete

approximations of u1, u2, v2, and λ at time tj = jτ are denoted by uj1, u
j
2, v

j
2, and

λj , respectively. For the application of the implicit Euler scheme to system (5) we

replace the derivative u̇1 by the discrete derivative Duj1 := (uj1 − uj−1
1 )/τ . This

then leads to a sequence of stationary PDEs, which have to be solved in every time
step. The differential equation (5a) turns into

(Duj1, v) + 〈Kuj1, v〉+ 〈λj ,Bv〉 = 〈F j , v〉 − (vj2, v)− 〈Kuj2, v〉(12)

for j = 1, . . . , n, whereas the constraints (5b) and (5c) result in

〈Buj2, q〉 = 〈Gj , q〉, 〈Bvj2, q〉 = 〈Ġj , q〉.(13)

Therein, we assume that uj−1
1 ∈ H is given and search for uj1 ∈ VB, u

j
2, v

j
2 ∈ Vc,

and λj ∈ Q. The test functions are given by v ∈ V and q ∈ Q.
Since G is continuous, we set Gj = G(tj). Note, however, that F j and Ġj cannot

equal the function evaluations of F and Ġ at time tj , since this is not well-defined.
Instead, we use integral means over a time interval, i.e.,

F j :=
1

τ

∫ tj

tj−1

F(t) dt ∈ V∗, Ġj :=
1

τ

∫ tj

tj−1

Ġ(t) dt ∈ Q∗.

With these approximations we define Fτ , Gτ , and Ġτ as the piecewise constants

Fτ (t) := F j , Gτ (t) := Gj , Ġτ (t) := Ġj ,

for t ∈]tj , tj+1] and continuous extension in t = 0. This then implies

Fτ → F in L2(0, T ;V∗), Gτ → G, Ġτ → Ġ in L2(0, T ;Q∗).(14)

Since the operator B is invertible on Vc, we argue from (13) that uj2 = B−Gj

and vj2 = B−Ġj . Inserting this into (12) and testing only with functions v ∈ VB, we
obtain

(Duj1, v) + 〈Kuj1, v〉 = 〈F j , v〉 − (B−Ġj , v)− 〈KB−Gj , v〉.(15)

This equation will be used for the stability estimates in the following subsection. It
remains to discuss the solvability of system (12) for uj1 and λj . With the bilinear
form c : V × V → R, given by c(u, v) := τ−1(u, v) + 〈Ku, v〉, and the functional
F ∈ V∗,

〈F, v〉 := 〈F j , v〉 − (B−Ġj , v)− 〈KB−Gj , v〉+ 1

τ
(uj−1

1 , v),

equation (15) can be written as c(uj1, v) = F (v) for all v ∈ VB. The unique solv-

ability of (15) for uj1 then follows by the Lax-Milgram lemma [14, Sect. 6.2.1]. For
the unique solvability of λj we consider equation (12) tested by functions v ∈ Vc,

〈B∗λj , v〉 = 〈F j , v〉 − (B−Ġj , v)− 〈KB−Gj , v〉 − (Duj1, v)− 〈Kuj1, v〉.(16)

Equation (15) implies that the right-hand side of (16) vanishes for all functions in
VB. Thus, the functional is an element of the polar set Vo

B, on which the operator
B∗ is invertible [7, Ch. III, Lem. 4.2].
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5.2. Stability estimates. The most important ingredient for the convergence
analysis of the Rothe method are stability or a priori estimates, which we provide
in this subsection. Since equation (15) is essentially an operator ODE for uj1, the
shown bounds follow the lines of the stability results in [11, Ch. 4], see also [33,
Ch. III.4]. Amongst others, we take advantage of the equality

2(Duj, uj) = D|uj|2 + τ |Duj |2.(17)

This identity follows by a simple calculation, cf. [11, Lem. 3.2.2]. For the differential

variable uj1 we obtain the following result.

Lemma 5.1 (Stability). Assume F ∈ L2(0, T ;V∗
B) and G ∈ H1(0, T ;Q∗). Then,

the approximations uk1 ∈ VB given by the Euler scheme (15) with u01 ∈ H satisfy for
all 1 ≤ k ≤ n the estimate

|uk1 |2 + τ2
k
∑

j=1

|Duj1|2 + τk1

k
∑

j=1

‖uj1‖2 ≤M2(18)

with the constantM2 := |u01|2+3k−1
1

(

‖F‖2L2(0,T ;V∗

B
)+C

2
B

−(C4
emb

+k22)‖G‖2H1(0,T ;Q∗)

)

.

Proof. Using as test function v = uj1 ∈ VB, j ≥ 1, in the implicit Euler scheme (15),
we obtain

(Duj1, u
j
1) + 〈Kuj1, uj1〉 = 〈F j , uj1〉 − (B−Ġj , uj1)− 〈KB−Gj , uj1〉.(19)

Summation over j = 1, . . . , k, together with property (17), the Cauchy-Schwarz
inequality, and the continuous embedding V ↪→ H yields

|uk1 |2 − |u01|2 + τ2
k

∑

j=1

|Duj1|2 + 2τk1

k
∑

j=1

‖uj1‖2

(17)

≤ 2τ
k

∑

j=1

(Duj1, u
j
1) + 2τ

k
∑

j=1

〈Kuj1, u
j
1〉

(19)

≤ 2τ

k
∑

j=1

(

‖F j‖V∗

B

+ Cemb|B−Ġj |+ k2‖B−Gj‖
)

‖uj1‖.

The application of Young’s inequality [14, App. B] and the boundedness of B−

shows that

|uk1 |2 − |u01|2 + τ2
k
∑

j=1

|Duj1|2 + τk1

k
∑

j=1

‖uj1‖2

≤ 3τ

k1

k
∑

j=1

(

‖F j‖2V∗

B

+ C2
B

−C4
emb‖Ġj‖2Q∗ + C2

B
−k22‖Gj‖2Q∗

)

.

Finally, the assertion follows by properties of the Bochner integral, which imply

that τ
∑k

j=1 ‖F j‖2V∗

B

≤ ‖F‖2L2(0,T ;V∗

B
). �

With the same assumptions as in Lemma 5.1, we may also prove that there exists
a positive constant c ∈ R such that

τ

n
∑

j=1

‖Duj1‖2V∗

B

≤ cM2.(20)



468 R. ALTMANN AND J. HEILAND

This result follows from equation (15), which yields for j ≥ 1,

‖Duj1‖V∗

B
:= sup

v∈VB, ‖v‖=1

∣

∣〈F j , v〉 − (B−Ġj , v)− 〈KB−Gj , v〉 − 〈Kuj1, v〉
∣

∣

≤ ‖F j‖V∗

B

+ C
B

−C2
emb‖Ġj‖Q∗ + k2CB

−‖Gj‖Q∗ + k2‖uj1‖.
An application of Young’s inequality, the summation over j, and the estimate (18)
then finally imply (20).

Remark 5.1. Assume that (·, ·) + 〈K ·, ·〉 defines an inner product in V with respect
to which the decomposition V = VB⊕Vc is orthogonal. If we assume more regularity
of the given data in the form of F ∈ L2(0, T ;H∗) and u01 ∈ VB, then we obtain the
estimate

τ
n
∑

j=1

|Duj1|2 ≤M2
reg.

Here, Mreg equals the constant M from Lemma 5.1 but with the stronger norms

‖u01‖ and ‖F‖L2(0,T ;H∗). To obtain this, equation (15) has to be tested byDuj1 ∈ VB.

Thus, we obtain the estimate (20) in a stronger norm, which is crucial in view of
the Lagrange multiplier.

In order to prove the convergence of the Euler scheme, we need to define global
approximations. Given uj1, j = 0, . . . , n, we define the piecewise constant and

piecewise linear functions U1,τ and Û1,τ on the interval [0, T ] by U1,τ (0) = Û1,τ (0) =
u01 and for t ∈]tj−1, tj ] by

U1,τ (t) := uj1, Û1,τ (t) := uj1 + (t− tj)Du
j
1.(21)

We show that the sequences U1,τ and Û1,τ are uniformly bounded. The boundedness
in L∞(0, T ;H) and L2(0, T ;VB) follows directly from (18) if we assume u01 ∈ VB.
Additionally, we obtain by the stability estimate (20) that

∥

∥

˙̂
U1,τ

∥

∥

2

L2(0,T ;V∗

B
)
=

n
∑

j=1

∫ tj

tj−1

‖Duj1‖2V∗

B

dt = τ

n
∑

j=1

‖Duj1‖2V∗

B

≤ cM2.(22)

For the approximations of u2 and v2 we define similarly the piecewise constant
functions

U2,τ (t) := uj2 if t ∈]tj−1, tj ], V2,τ (t) := vj2 if t ∈]tj−1, tj ](23)

with a continuous extension in t = 0. Note that this definition implies that U2,τ =

B−Gτ and V2,τ = B−Ġτ . Finally, we define as approximation of the Lagrange
multiplier Λτ : ]0, T ] → Q by

Λτ (t) := λj if t ∈]tj−1, tj ].(24)

With this, we can rewrite equation (16) in the form

〈B∗Λτ , v〉 = 〈Fτ , v〉 − (B−Ġτ , v)− 〈KB−Gτ , v〉 − (
˙̂
U1,τ , v)− 〈KU1,τ , v〉.(25)

Here, we consider test functions v ∈ V and t ∈ (0, T ) a.e..
Since the Lagrange multiplier corresponds to the algebraic variable in the finite-

dimensional case, we expect less regularity than for the other variables. Indeed, we
are not able to bound Λτ in L2(0, T ;Q) uniformly within the given weak setting.
Note that with the additional regularity assumptions from Remark 5.1, we would
be able to show the desired boundedness. Instead, we consider the primitive of
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Λτ , which then leads to a weaker notion of solvability, cf. [13]. We define Λ̃τ ∈
AC([0, T ];Q) by

Λ̃τ (t) :=

∫ t

0

Λτ (s) ds.(26)

Integrating (25) over [0, t], we obtain an equation for the primitive of the Lagrange
multiplier,

〈B∗Λ̃τ , v〉 = 〈F̃τ , v〉 − (B− ˜̇Gτ , v)− 〈KB−G̃τ , v〉 − (Û1,τ , v)− 〈KŨ1,τ , v〉+ (u01, v).

(27)

Therein, F̃τ , G̃τ ,
˜̇Gτ , and Ũ1,τ denote the primitives of Fτ , Gτ , Ġτ , and U1,τ ,

respectively. For Λ̃τ we are able to prove the boundedness independently of the
step size τ .

Lemma 5.2 (Boundedness of Λ̃τ ). Assume F ∈ L2(0, T ;V∗), G ∈ H1(0, T ;Q∗),

and u01 ∈ VB. Then, the sequence Λ̃τ is bounded in C([0, T ];Q).

Proof. We make use of the inf-sup condition of the operator B and, by equation
(27), we obtain the estimate

βinf‖Λ̃τ‖C([0,T ];Q) ≤ max
t∈[0,T ]

sup
v∈V

〈B∗Λ̃τ (t), v〉
‖v‖

(27)

≤ max
t∈[0,T ]

[

‖F̃τ(t)‖V∗ + Cemb|B− ˜̇Gτ (t)|+ k2‖B−G̃τ (t)‖

+ Cemb|Û1,τ (t)|+ k2‖Ũ1,τ(t)‖ + Cemb|u01|
]

.

By the properties of the Bochner integral and (18), this is bounded uniformly in
terms of T , the initial data, and the right-hand sides. For details we refer to [3,
Sect. 10.3]. �

5.3. Passing to the limit. Since every bounded sequence has a weakly convergent
subsequence, the results from the previous subsection imply the existence of weak
limits U1, U2, V2, and Λ̃. More precisely, we obtain by (14) that

U2,τ = B−Gτ → U2 := B−G, V2,τ = B−Ġτ → V2 := B−Ġ in L2(0, T ;Vc).

The embedding H1(0, T ;Q∗) ↪→ C([0, T ];Q∗) implies additionally that U2 satisfies

the consistency condition U2(0) = B−G(0). By the boundedness of U1,τ and Û1,τ ,
we obtain weak limits in L2(0, T ;VB). Furthermore, the estimate (18) implies that

∥

∥U1,τ − Û1,τ

∥

∥

2

L2(0,T ;H)
≤ τ

n
∑

j=1

∣

∣uj1 − uj−1
1

∣

∣

2 ≤ τM2 → 0.

Thus, the two limits coincide in L2(0, T ;H) and the continuous embedding V ↪→ H
implies that the same is true for the limit in L2(0, T ;VB). We denote the joined

limit by U1, i.e., U1,τ , Û1,τ ⇀ U1 in L2(0, T ;VB).

Finally, Lemma 5.2 implies the existence of a weak limit Λ̃ for which

Λ̃τ ⇀ Λ̃ in Lp(0, T ;Q)

for all 1 < p < ∞. It remains to show that the obtained limits solve the operator
DAE (5). For this, we assume u01 = a0 ∈ VB. Obviously, the limits U2 and V2 solve
equations (5b) and (5c). For U1 we obtain the following result.



470 R. ALTMANN AND J. HEILAND

Theorem 5.3. Assume F ∈ L2(0, T ;V∗
B), G ∈ H1(0, T ;Q∗), and u01 = a0 ∈ VB.

Then, the weak limit U1 ∈ L2(0, T ;VB) of the sequence U1,τ solves equation (5a)
in V∗

B, i.e., for test functions in VB. Furthermore, U1 has a generalized derivative,

which satisfies U̇1 ∈ L2(0, T ;V∗
B).

Proof. As in [11, Ch. 4], we consider equation (15) with test functions v ∈ VB in
the form

d

dt
(Û1,τ , v) + 〈KU1,τ , v〉 = 〈Fτ , v〉 − (B−Ġτ , v)− 〈KB−Gτ , v〉.

With Φ ∈ C∞
0 (0, T ), we may rewrite this in integral form, i.e.,

∫ T

0

−
(

Û1,τ , v
)

Φ̇(t) +
〈

KU1,τ , v
〉

Φ(t) dt =

∫ T

0

〈

Fτ − B−Ġτ −KB−Gτ , v
〉

Φ(t) dt.

We advance to the limit τ → 0 and obtain for the right-hand side
∫ T

0

〈

Fτ − B−Ġτ −KB−Gτ , v
〉

Φ(t) dt −→
∫ T

0

〈

F − V2 −KU2, v
〉

Φ(t) dt.

Furthermore, the weak convergence of U1,τ and Û1,τ in L2(0, T ;VB) implies
∫ T

0

−
(

Û1,τ , v
)

Φ̇ +
〈

KU1,τ , v
〉

Φdt −→
∫ T

0

−
(

U1, v
)

Φ̇ +
〈

KU1, v
〉

Φdt.

As a result, the obtained limit U1 ∈ L2(0, T ;VB) satisfies for all v ∈ VB,

d

dt
(U1, v) + (U2, v) + 〈K(U1 + U2), v〉 = 〈F , v〉.(28)

It remains to show that U1 has a generalized derivative. From the definition of
Û1,τ in (21) we know that its time derivative equals Duj1 for t ∈]tj−1, tj [ and is
bounded in L2(0, T ;V∗

B) due to (22). Thus, there exists a subsequence, which
weakly converges to a limit V1 ∈ L2(0, T ;V∗

B). For every Φ ∈ C∞
0 (0, T ) and v ∈ VB

this limit satisfies the equality
∫ T

0

〈

U1(t), v
〉

Φ̇(t) dt = lim
τ→0

∫ T

0

〈

Û1,τ (t), v
〉

Φ̇(t) dt

= lim
τ→0

−
∫ T

0

〈 ˙̂
U1,τ(t), v

〉

Φ(t) dt = −
∫ T

0

〈

V1(t), v
〉

Φ(t) dt.

This shows that U̇1 = V1 ∈ L2(0, T ;V∗
B) in the generalized sense. Finally, we have

to check whether U1 satisfies the stated initial condition. Since Û1,τ ⇀ U1 as well

as d
dt Û1,τ ⇀ U̇1 = V1, for Φ ∈ C1([0, T ]) with Φ(T ) = 0 and arbitrary v ∈ VB, we

derive by the integration by parts formula that

0 = lim
τ→0

∫ T

0

〈 ˙̂
U1,τ − U̇1, v

〉

Φdt = −
(

a0 − U1(0), v
)

Φ(0).

Since VB is dense in VB
H

by definition, this implies U1(0) = a0. �

Since we were not able to show the uniform boundedness of Λτ , we cannot prove
its convergence to the weak solution of the operator DAE. However, we can show
that the limit Λ̃ solves the operator DAE in a weaker sense. To be more precise,
we state this result in the following theorem.
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Theorem 5.4. Assume F ∈ L2(0, T ;V∗), G ∈ H1(0, T ;Q∗), and u01 = a0 ∈ VB.

Then, for any sequence of step sizes with τ → 0 the sequence Λ̃τ converges weakly
to Λ̃ in L2(0, T ;Q) and (U1, U2, V2, Λ̃) solves system (5) in the weak distributional
sense, meaning that for all v ∈ V and Φ ∈ C∞

0 (0, T ) it holds that

∫ T

0

−
(

U1, v
)

Φ̇ +
(

V2, v
)

Φ +
〈

K(U1 + U2), v
〉

Φ−
〈

B∗Λ̃, v
〉

Φ̇ dt =

∫ T

0

〈

F , v
〉

Φ dt.

Remark 5.2. If we assume more regularity of the data as in Remark 5.1, i.e., F ∈
L2(0, T ;H∗) and the orthogonality of the decomposition V = VB ⊕Vc with respect
to the inner product (·, ·) + 〈K·, ·〉, then the (weak) limits U1, U2, V2, and Λ solve

the regularized operator DAE (5). In addition, we have U̇1 ∈ L2(0, T ;H).

Remark 5.3. The convergence of the Euler scheme for a different kind of regular-
ization was shown in [5]. Therein, also algebraically stable Runge-Kutta schemes
were analyzed.

5.4. Perturbations. In the previous subsection, we have proven the convergence
of the Euler scheme if we assume that the PDEs were solved exactly in every time
step. In order to prove the convergence of the Rothe method, errors due to the
spatial discretization have to be included as well. For this, we consider the time-
discrete systems with additional perturbations of the right-hand sides. This may
then be interpreted as the error of a spatial discretization, cf. [3, Sect. 10.4].

We consider system (5), discretized by the implicit Euler scheme, with additional
perturbations. Note that we still consider the linear case, cf. Section 5.1 for the
assumptions on K and B. The differences of the exact and perturbed solution

(ûj1, û
j
2, v̂

j
2, λ̂

j), namely,

ej1 := ûj1−uj1 ∈ VB, ej2 := ûj2−uj2 ∈ Vc, ejv := v̂j2 − vj2 ∈ Vc, ejλ := λ̂j −λj ∈ Q

then satisfy the equations

Dej1 + ejv + K
(

ej1 + ej2
)

+ B∗ejλ = δj in V∗,(29a)

Bej2 = θj in Q∗,(29b)

Bejv = ξj in Q∗.(29c)

As in the previous section, the reachable results depend on the assumed smoothness
of the given data. Since we want to include estimates for the Lagrange multiplier,
which underlines the positive effects of the regularization from Section 3, we con-
sider the more regular case. For this, we consider perturbations δj ∈ H∗ and θj ,
ξj ∈ Q∗. Note that for an estimate of the errors ej1, e

j
2, and e

j
v it would be sufficient

to assume δj ∈ V∗. Furthermore, we assume the spaces VB and Vc to be orthogonal
with respect to the inner product defined by (·, ·) + 〈K·, ·〉.

By equations (29b) and (29c) we directly obtain the estimates

‖ej2‖ ≤ C
B

−‖θj‖Q∗ , ‖ejv‖ ≤ C
B

−‖ξj‖Q∗ .(30)

For estimates on ej1, we may test equation (29a) by ej1, similarly as in Lemma 5.1.
Because of the additional smoothness δ ∈ H∗ we may also test equation (29a) by

Dej1 and obtain, due to the assumed orthogonality of VB and Vc,

|Dej1|2 + 〈Kej1, Dej1〉 = 〈δj , Dej1〉 − (ejv, De
j
1) + (ej2, De

j
1).
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The equality 2〈Kej1, Dej1〉 = D〈Kej1, ej1〉 + τ〈KDej1, Dej1〉 then yields together with
Young’s inequality,

|Dej1|2 +D〈Kej1, ej1〉+ τk1‖Dej1‖2 ≤ 3‖δj‖2H∗ + 3C2
emb‖ejv‖2 + 3C2

emb‖ej2‖2.

A summation for j = 1, . . . , k and a multiplication by τ finally leads to

k1‖ek1‖2 + τ

k
∑

j=1

|Dej1|2 ≤ k2‖e01‖2 + 3τ

k
∑

j=1

(

‖δj‖2H∗ + C2
emb‖ej2‖2 + C2

emb‖ejv‖2
)

.

(31)

Furthermore, equation (29a) and the inf-sup condition of B yield

βinf‖ejλ‖Q ≤ sup
v∈Vc

〈B∗ejλ, v〉
‖v‖ ≤ ‖δj‖V∗ + k2‖ej1‖+ k2‖ej2‖+ C2

emb‖ejv‖+ Cemb|Dej1|.

Putting the estimates (30) and (31) together, we obtain with a generic constant,
which we express by ., that

τβ2
inf

k
∑

j=1

‖ejλ‖2Q
(30)

. τ
k

∑

j=1

(

‖δj‖2V∗ + ‖θj‖2Q∗ + ‖ξj‖2Q∗

)

+ τ
k
∑

j=1

(

‖ej1‖2 + |Dej1|2
)

(31)

. ‖e01‖2 + τ

k
∑

j=1

(

‖δj‖2H∗ + ‖θj‖2Q∗ + ‖ξj‖2Q∗

)

.(32)

To summarize the result for the Lagrange multiplier, we assume that all the per-
turbations are of the same order of magnitude, i.e., δj ≈ δ ∈ H∗, θj ≈ θ ∈ Q∗, and
ξj ≈ ξ ∈ Q∗. Then, the piecewise constant function Eλ : [0, T ] → Q, defined by

Eλ(t) = ejλ for t ∈]tj−1, tj ], satisfies

βinf ‖Eλ‖L2(0,T ;Q) . ‖e01‖+
√
T
(

‖δ‖H∗ + ‖θ‖Q∗ + ‖ξ‖Q∗

)

.

This estimate raises hope that numerical simulations can be performed in a reason-
able fashion. Note that this is only true for the regularized operator DAE. For an
analogous estimate for the original formulation, equation (29c) has to be replaced

by BDej2 = Dθj . Thus, the perturbation ξj has to be replaced by the discrete
derivative of θj , which then leads to an additional term that scales with τ−1 in the
error estimates.

The preceding analysis reveals that, in view of numerical approximation, a Rothe
discretization of the index-1 formulation, though equivalent in theory, is preferable
over a Rothe discretization of the original system. We will exemplify this theoretical
result in numerical tests in the following section.

6. Examples

This section is devoted to illustrate the benefits of the regularization investigated
in Section 3 by means of numerical approximations of the Navier-Stokes equations.
First, we revisit the numerical results presented in [4] in the context of a Rothe
discretization. Second, we give a concrete example of the perturbation results from
Section 5.4 by illustrating how a perturbation induced by a mesh adaption gets
numerically differentiated in the index-2 but not in the index-1 formulation.
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6.1. Navier-Stokes equations. We consider the standard formulation of the
Navier-Stokes equations [33] for an incompressible flow in a domain Ω ⊂ R

d,

(33) u̇+ (u · ∇)u − ν∆u+∇p = f, ∇ · u = 0.

We interpret the pressure p as a Lagrange multiplier that couples the incompress-
ibility constraint ∇ · u = 0 to the state equations. Then, equation (33) takes the
form of system (3) with the spaces chosen as V = [H1

0 (Ω)]
d, H = [L2(Ω)]d, and

Q = L2(Ω)/R.
The operator B : V → Q∗ is defined as the divergence and K : V → V∗ is the

operator representing convection and diffusion, cf. Example 2.2. Generally, the
nonlinearity K only extends to K : L2(0, T ;V) → L1(0, T ;V∗), cf. [33, Lem. III.3.1].
This causes the main difficulties in the existence theory for the Navier-Stokes equa-
tions. However, this lower regularity does not affect the splitting as proposed in
Section 3. In particular, Assumption 3.1 is fulfilled. The weak divergence operator
is linear and bounded and there exists a continuous right inverse as shown, e.g., in
[32, Lem. I.4.1]. The splitting V = VB⊕Vc is then given by the space of divergence-
free functions and its (orthogonal) complement. Note that our approach is different
from [13] where the splitting of V is used to eliminate the constraints rather then
to augment the system.

For a fixed spatial discretization and for similar approaches to the nonlinear
parts, the discrete equations obtained via Rothe’s method coincide with the equa-
tions stemming from the method of lines. Thus, the numerical study conducted in
[4] also serves as an example for the advantages of the index-1 formulation as the
base for Rothe’s method.

6.2. Adaptive changes of the mesh. The benefits of the index-1 formulation
become particularly apparent for space discretizations that change with time, when,
e.g., the mesh is adapted to the current state of the system. Note that the oppor-
tunity to adapt the mesh between time steps is the major advantage of Rothe’s
method over the method of lines.

Let the superscripts +, c, and − denote the next, current, and previous value of
the variables, respectively. We use the same superscripts for the discrete operators
to denote possibly different spatial discretizations. We consider the algebraic sys-
tems that are obtained from (33) after the time-discretization and, subsequently,
the discretization of the space on the currently considered mesh. With the same
notation as used in [4, Ch. 3.3] for the method of lines, for the original system (3),
the update to (q+, p+) from the current iterate (qc, pc) via a time step of length τ
is obtained via

(34)

[

1
τM

+ −B+T

B+ 0

] [

q+

p+

]

=

[

1
τM

+qc + f+ −K+(q+)
g+

]

.

To advance by one time-step and the regularized index-1-type formulation (5), we
propose the solution of











1
τM

+
11 M+

12 −B+
1

T
0

1
τM

+
21 M+

22 −B+
2

T
0

1
τB

+
1 B+

2 0 0
B+

1 0 0 B+
2



















q+1
q̃+2
p+

q+2









=









1
τM

+
11q

c
1 + f+

1 −K+
1 (q+1 , q

+
2 )

1
τM

+
21q

c
1 + f+

2 −K+
2 (q+1 , q

+
2 )

1
τB

+
1 q

c
1 + ġ+

g+









.(35)
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The different stability properties become evident, if one examines the inherent
equation for the pressure update p+, derived via premultiplying the upper part of
the equations by B+(M+)−1. In the index-2 case (34), this leads to

(36) −B+(M+)−1B+T p+ =
B+qc −B+q+

τ
+B+(M+)−1

[

f+ −K(q+)
]

.

The index-1 formulation yields for the pressure

(37) −B+(M+)−1B+T p+ =
1

τ
B+

[

qc1 − q+1
−τ q̃+2

]

+B+(M+)−1
[

f+ −K(q+1 , q
+
2 )

]

.

Comparing equations (36) and (37) to the time-continuous formula for the pressure

−B+(M+)−1B+T p+ = −ġ+ +B+(M+)−1
[

f+ −K(q+)
]

,

we find that the consistency errors are given as

e+ind2 := − 1

τ
(B+qc − g+)− ġ+ and e+ind1 := − 1

τ
B+

[

qc1 − q+1
−τ q̃+2

]

− ġ+

for the index-2 and index-1 scheme, respectively. Unless the changes in the dis-
cretization and in B are smooth, for different meshes, i.e., B+qc 6= Bcqc = gc, the
consistency error e+ind2 will not approach zero as τ → 0. More likely, for switches
in the mesh, which may appear in every time step, this term leads to an error in
p+ that scales with τ−1, cf. Section 5.4. In the index-1 formulation the error term

e+ind1 is not present at all, since the equation 1
τB

+

[

qc1 − q+1
−τ q̃+2

]

− ġ+ = 0 is an explicit

part of the numerical scheme.

Remark 6.1. The error e+ is due to the changing meshes. In the case of inexact
system solves it will add to the errors that were investigated in [4].

For a numerical example, we consider the following numerical approach to the
cylinder wake at Reynolds number Re = 60 as described in [4]. The spatial com-
ponent is discretized by means of Crouzeix-Raviart elements on a coarse grid with
7404 velocity and 2413 pressure nodes and on a fine grid with 15110 velocity and
4963 pressure nodes. The time evolution on the interval [0, 2] is discretized using
the Euler scheme – implicit in the linear parts and explicit in the nonlinearity – on
a grid of 2048 and 4096 equidistant points and starting with the steady state Stokes
solution. As reference solution we use the trajectory on the finer spatial mesh and
a time discretization by the implicit trapezoidal rule.

To illustrate the error in the pressure induced by changes in the mesh and its
scaling with the inverse of the time step length, we start the simulation on the fine
grid and switch to the coarse grid at t = 0.67. At t = 1.33 we switch back to the
fine grid. The code for this numerical example is available from the author’s public
git repository [18].

The error e+ind2 and its scaling are well visible in the index-2 formulation while
the pressure error at the mesh switches in the index-1 formulation is less prominent
and obviously independent of the time-step size, cf. Figure 6.1(a). Therein we
have plotted the pointwise in time approximation errors ‖pref(t)−pNts‖L2(Ω), where
pref is the reference solution, pNts is the numerical approximation, and Ω is the
computational domain. Note, that in the index-2 case, the error e+ind2 affects the
pressure update only instantaneously. This is due to the implicit decoupling of
pressure and velocity that makes the velocity approximation independent of the
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pressure so that an error in the pressure will not spread in time. Accordingly, the
large amplitude in the pressure error at the switching points is not seen in the
velocity approximations, cf. Figure 6.1(b), where the pointwise temporal error in
the velocity, that is defined in the same way as the pressure error, is plotted. For
inexact solves, however, the implicit splitting of q and p in (34) is not exact such
that a single occurrence of e+ will spread to the velocity computation and, thus,
linger in the velocity approximation forever, cf. the numerical results in [4].

0 0.67 1.33 2

10−4

10−3

10−2

10−1

100

time t

(a): pointwise error in the pressure p

Nts = 2048 (index-1)

Nts = 4096 (index-1)

Nts = 2048 (index-2)

Nts = 4096 (index-2)

0 0.67 1.33 2

10−4

10−3

10−2

time t

(b): pointwise error in the velocity q

Nts = 2048 (index-1)

Nts = 4096 (index-1)

Nts = 2048 (index-2)

Nts = 4096 (index-2)

Figure 6.1. Pointwise in time error for q and p for the index-1
and index-2 formulations for various number of time steps Nts and
with mesh switches at t = 0.67 and t = 1.33 plotted at every 50-th
point of the temporal grid and at the points where the switches
occur.

7. Conclusion

Within this paper, we have introduced a reformulation for a special class of
semi-explicit operator DAEs with linear constraints such that a standard spatial
discretization by finite elements leads to a DAE of index 1, rather than index 2.
Thus, the procedure can be seen as an index reduction or regularization for operator
DAEs.

Furthermore, we have proven the convergence of the Rothe discretization on
the base of the implicit Euler scheme. We have quantified the advantages of the
reformulation over the original schemes in terms of stability estimates concerning
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the robustness against perturbations in the right-hand sides. Particularly, we have
shown that derivatives of perturbations, that may occur in the original formulation,
are not present in the solutions of the reformulated equations.

Finally, we have illustrated the advantages of the regularized formulation in a
numerical simulation of flow equations where the spatial discretization changes at
certain time points.
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