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SYMMETRIC HIGH ORDER GAUTSCHI-TYPE EXPONENTIAL

WAVE INTEGRATORS PSEUDOSPECTRAL METHOD FOR THE

NONLINEAR KLEIN-GORDON EQUATION IN THE

NONRELATIVISTIC LIMIT REGIME

YAN WANG AND XIAOFEI ZHAO

Abstract. A group of high order Gautschi-type exponential wave integrators (EWIs) Fourier
pseudospectral method are proposed and analyzed for solving the nonlinear Klein-Gordon equation
(KGE) in the nonrelativistic limit regime, where a parameter 0 < ε � 1 which is inversely
proportional to the speed of light, makes the solution propagate waves with wavelength O(ε2)
in time and O(1) in space. With the Fourier pseudospectral method to discretize the KGE in
space, we propose a group of EWIs with designed Gautschi’s type quadratures for the temporal
integrations, which can offer any intended even order of accuracy provided that the solution is
smooth enough, while all the current existing EWIs offer at most second order accuracy. The
scheme is explicit, time symmetric and rigorous error estimates show the meshing strategy of
the proposed method is time step τ = O(ε2) and mesh size h = O(1) as 0 < ε � 1, which is
‘optimal’ among all classical numerical methods towards solving the KGE directly in the limit
regime, and which also distinguish our methods from other high order approaches such as Runge-
Kutta methods which require τ = O(ε3). Numerical experiments with comparisons are done to
confirm the error bound and show the superiority of the proposed methods over existing classical
numerical methods.

Key words. Nonlinear Klein-Gordon equation, nonrelativistic limit, exponential wave integrator,
high order accuracy, time symmetry, error estimate, meshing strategy, spectral method.

1. Introduction

The Klein-Gordon equation (KGE) is known as the relativistic version of the
Schrödinger equation for describing the dynamics of spinless particles [35]. Under
proper nondimensionalization, the dimensionless nonlinear KGE in d dimensions
(d = 1, 2, 3) reads [3, 30, 31, 29, 16, 19, 20, 33]:

(1)





ε2∂ttu−∆u+
1

ε2
u+ f (u) = 0, x ∈ Rd, t > 0,

u(x, 0) = φ1(x), ∂tu(x, 0) =
1

ε2
φ2(x), x ∈ Rd.

Here t is time, x is the spatial coordinate, u := u(x, t) is a real-valued scalar field,
0 < ε ≤ 1 is a dimensionless parameter which is inversely proportional to the speed
of light, φ1 and φ2 are two given real-valued initial data which are independent of
ε, and f(u) : R → R is a given nonlinearity independent of ε. It is clear that the
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KGE (1) is time symmetric and conserves the energy [3, 19, 20, 29]

E(t) :=

∫

Rd

[
ε2|∂tu(x, t)|2 + |∇u(x, t)|2 + 1

ε2
|u(x, t)|2 + F (u(x, t))

]
dx

(2)

≡
∫

Rd

[
1

ε2
|φ2(x)|2 + |∇φ1(x)|2 +

1

ε2
|φ1(x)|2 + F (φ1(x))

]
dx = E(0), t ≥ 0,

with F (u) = 2
∫ u

0 f(ρ)dρ.
For fixed 0 < ε ≤ 1, i.e. the relativistic regime, the KGE (1) has been well-

studied both theoretically and numerically. We refer the readers to [3] for a detailed
review on the well-posedness and existing numerical methods for the KGE in this
regime. As ε → 0, which corresponds to the speed of light goes to infinite and is
known as the nonrelativistic limit in physics, recent analytical results [30, 31, 29]
show that the problem (1) propagates waves with amplitude at O(1), and wave-
length at O(ε2) and O(1) in time and space, respectively. The small wavelength
makes the solution of the KGE highly oscillatory in time as 0 < ε � 1. Figure
1 shows an example of the profile of the solution under different ε. The high os-
cillations cause severe numerical burdens in practical computations of the KGE in
the nonrelativistic limit regime. For example, in order to capture the solution cor-
rectly in the highly oscillatory regime, frequently used finite difference time domain
(FDTD) methods, such as the energy conservative type, semi-implicit type and
fully explicit type [13, 33], need the meshing strategy requirement (or ε-scalability)
h = O(1) but τ = O(ε3) [3], where h andτ denote the spatial mesh size and the
time step, respectively. To release the temporal meshing strategy, based on the
classical exponential wave integrators (EWIs) established in [23, 26, 27, 32, 17]
for solving the oscillatory ODEs arising mainly from molecular dynamics, an EWI
with the Gautschi-type quadrature [17] spectral method was proposed for solving
the nonlinear KGE in the nonrelativistic limit regime and was shown to improve the
ε-scalability to τ = O(ε2) in [3]. This method also finds successful applications in
solving the Klein-Gordon-Zakharov (KGZ) system in a similar oscillatory situation
[5]. Later on, an EWI with the Deuflhard-type quadrature [14] spectral method,
which is equivalent to the time-splitting spectral method, was considered in [12]
for the KGE in the nonrelativistic limit regime. It can offer a smaller temporal
error bounded but the same ε-scalability. Recent studies turn to utilize multi-
scale analysis to first derive some sophisticate reformulations or decompositions of
the KGE, then based on which one can propose some suitable numerical meth-
ods [16, 10, 6, 4] for asymptotic preserving or uniformly accurate property. These
multiscale numerical methods are extremely powerful in computations of KGE in
the oscillatory regime, however they either require some delicate pre-knowledge of
the oscillation structures of the problem [6, 16, 4] or require introducing an extra
degree-of-freedom [10]. Very recently, an iterative exponential integrator with op-
timally uniform accuracy has been proposed in [9]. In view of that the solution to
(1) has oscillation wavelength at O(ε2) in time, the EWIs could be viewed as the
optimal one among all the traditional methods towards integrating the KGE (1)
directly in the nonrelativistic limit regime.

However, all the existing EWIs for either solving the oscillatory ODEs from
molecular dynamics or solving the KGE offer at most second order accuracy in
temporal discretization. Of course, one can apply the Runge-Kutta methods, like
the one proposed in [15] for the approximations in time to get higher order temporal
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Figure 1. The solution of (1) with d = 1, f(u) = u3, φ1(x) =

e−x2/2 and φ2(x) =
3
2φ1(x) for different ε.

convergence rates, but that will surely lead to lost of the time symmetry property
or worse ε-scalability in the nonrelativistic limit regime. The time symmetry is
known as a key property to provide good long time behaviors of the numerical
schemes [26, 27]. This work is devoted to propose a group of symmetric Gautschi-
type EWIs with high order convergence rate in temporal approximation and with
Fourier pseudospectral discretization in space for solving the KGE (1) in the non-
relativistic limit regime. We are going to apply the Fourier spectral method for
the spatial discretization of the KGE at first, then propose a group of symmet-
ric Gautschi-type EWIs with even order of accuracy for integrating the oscillatory
ODEs resulting from the spatial semi-discretization in the Fourier frequency space.
The scheme is fully explicit, easy to implement, and in principle, one can construct
the scheme to get any even order of temporal accuracy provided that the solu-
tion of the KGE (1) is smooth enough. Rigorous error estimates of the proposed
methods are established in the highly oscillatory regime with particular attentions
paid to the dependence of ε in the error bound, where the results show that the
ε-scalability of the high order Gautschi-type EWIs spectral method is still h = O(1)
and τ = O(ε2) as 0 < ε � 1. It is believed that the proof techniques here could
also give some clues to the error estimates of a group of trigonometric integrators
considered in [11]. It is also believed that the higher order EWIs could offer an way
to extend the order of the uniform accuracy of the recent developed multiscale time
integrators [4, 6, 2, 8]. Extensive numerical experiments will justify the theoretical
error bound and comparisons with the existing classical numerical methods will
show the superiority of the high order methods in accuracy and energy preserving
property. The proposed high order EWIs spectral method could also find applica-
tions to solve other KG-type equations or coupled system, such as the KGZ system
or the Klein-Gordon-Schrödinger system [7, 8].

The rest of the paper is organized as follows. In Section 2, we derive the high
order EWIs spectral method. The convergence theorem with rigorous proof is
given in Section 3. Numerical results are reported in Section 4. Finally, some
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concluding remarks are drawn in Section 5. Throughout this paper, we adopt the
notation A . B to represent that there exists a generic constant C > 0, which is
independent of time step τ (or n), mesh size h and ε, such that |A| ≤ CB.

2. Numerical methods

In this section, we shall first derive a detailed 4th order Gautschi-type EWI
Fourier pseudospectral method for solving the KGE (1), and then present the gen-
eral even order EWIs with spectral discretization. For the simplicity of notations,
we present the numerical method in one space dimension (1D), i.e. d = 1 in
(1). Generalizations to higher dimensions are straightforward and results remain
valid without modifications. Due to fast decay of the solution of the KGE (1) at
far field [30, 31, 29], similar to those in the literature for numerical computations
[3, 13, 16, 25, 33], the whole space problem (1) in 1D is truncated onto a finite
interval Ω = (a, b) with periodic boundary conditions (a and b are usually chosen
sufficient large such that the truncation error is negligible):





ε2∂ttu(x, t)− ∂xxu(x, t) +
1

ε2
u(x, t) + f (u(x, t)) = 0, x ∈ Ω, t > 0,

u(a, t) = u(b, t), ∂xu(a, t) = ∂xu(b, t), t ≥ 0,(3)

u(x, 0) = φ1(x), ∂tu(x, 0) =
1

ε2
φ2(x), x ∈ Ω = [a, b].

2.1. 4th order Gautschi-type EWI. Choose the mesh size h := ∆x = (b−a)/M
with M a positive even integer and denote grid points as xj := a + jh for j =
0, 1, . . . ,M . Define

XM := span

{
ψl(x) = eiµl(x−a) | µl =

2πl

b− a
, l = −M

2
, . . . ,

M

2
− 1

}
,

YM :=
{
v = (v0, v1, . . . , vM ) ∈ RM+1 | v0 = vM

}
with ‖v‖2l2 = h

M−1∑

j=0

|vj |2.

For a periodic function v(x) on Ω and a vector v ∈ YM , let PM : L2(Ω) → XM be
the standard L2-projection operator, and IM : C(Ω) → XM or YM → XM be the
trigonometric interpolation operator [34, 21, 22], i.e.

(4) (PMv)(x) =

M/2−1∑

l=−M/2

v̂l ψl(x), (IMv)(x) =

M/2−1∑

l=−M/2

ṽl ψl(x), a ≤ x ≤ b,

where v̂l and ṽl are the Fourier and discrete Fourier transform coefficients of the
periodic function v(x) and vector v, respectively, defined as

(5) v̂l =
1

b− a

∫ b

a

v(x) e−iµl(x−a)dx, ṽl =
1

M

M−1∑

j=0

vj e
−iµl(xj−a).

Let τ = ∆t > 0 be the step size, and denote time steps by tn = nτ for n = 0, 1, . . ..
Then a Fourier spectral method for discretizing (3) with t = tn + s (n = 0, 1, . . .)
reads: Find uM (x, tn + s) ∈ XM , i.e.

(6) uM (x, tn + s) =

M/2−1∑

l=−M/2

(̂uM )l(tn + s)ψl(x), x ∈ Ω, s ∈ R,
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such that
(7)

ε2∂ssuM (x, tn+s)−∂xxuM (x, tn+s)+
1

ε2
uM (x, tn+s)+PMf (uM (x, tn + s)) = 0.

Plugging (6) into (7), and noticing the orthogonality of ψl(x) for l = −M
2 , . . . ,

M
2 −1,

we get for n = 0, 1, . . . ,

(8) ε2(̂uM )
′′
l (tn + s) +

(
µ2
l +

1

ε2

)
(̂uM )l(tn + s) + (̂fn

M )l(s) = 0, s ∈ R,

where fn
M (x, s) := PMf (uM (x, tn + s)) . By using the variation-of-constant formula

to (8), we get for n = 0, 1, . . . ,

(̂uM )l(tn + s) = cos(ωls)(̂uM )l(tn) +
sin(ωls)

ωl
(̂uM )

′
l(tn)(9)

−
∫ s

0

sin(ωl(s− w))

ε2ωl
(̂fn

M )l(w)dw, l = −M
2
, . . . ,

M

2
− 1,

with ωl :=

√
ε2µ2

l
+1

ε2 . Differentiating (9) with respect to s on both sides, we get

(̂uM )
′
l(tn + s) =− ωl sin(ωls)(̂uM )l(tn) + cos(ωls)(̂uM )

′
l(tn)(10)

−
∫ s

0

cos(ωl(s− w))

ε2
(̂fn

M )l(w)dw, l = −M
2
, . . . ,

M

2
− 1.

For n ≥ 1, changing s to −s in (9) and (10), we get

(̂uM )l(tn − s) = cos(ωls)(̂uM )l(tn)−
sin(ωls)

ωl
(̂uM )

′
l(tn)

(11a)

−
∫ s

0

sin(ωl(s− w))

ε2ωl
(̂fn

M )l(−w)dw,

(̂uM )
′
l(tn − s) =ωl sin(ωls)(̂uM )l(tn) + cos(ωls)(̂uM )

′
l(tn)

(11b)

+

∫ s

0

cos(ωl(s− w))

ε2
(̂fn

M )l(−w)dw, l = −M
2
, . . . ,

M

2
− 1.

Adding (11a) to (9) and subtracting (11b) from (10) for n ≥ 1, and then let s = τ ,
we get

(̂uM )l(tn+1) = − (̂uM )l(tn−1) + 2 cos(ωlτ)(̂uM )l(tn)(12a)

−
∫ τ

0

sin(ωl(τ − w))

ε2ωl

[
(̂fn

M )l(w) + (̂fn
M )l(−w)

]
dw,

(̂uM )
′
l(tn+1) =(̂uM )

′
l(tn−1)− 2ωl sin(ωlτ)(̂uM )l(tn)(12b)

−
∫ τ

0

cos(ωl(τ − w))

ε2

[
(̂fn

M )l(w) + (̂fn
M )l(−w)

]
dw.

Similar to the quadrature proposed by W. Gaustchi in [17] and used in [3], but in
order to construct a fourth order accuracy method, we approximate the unknown
integrals in (12) by using the Taylor’s expansion of the nonlinearity up to the second
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order terms as

∫ τ

0

sin(ωl(τ − w))

ε2ωl

[
(̂fn

M )l(w) + (̂fn
M )l(−w)

]
dw

≈
∫ τ

0

sin(ωl(τ − w))

ε2ωl

[
2(̂fn

M )l(0) + w2 d2

ds2
(̂fn

M )l(0)

]
dw,(13a)

∫ τ

0

cos(ωl(τ − w))

ε2

[
(̂fn

M )l(w) + (̂fn
M )l(−w)

]
dw

≈
∫ τ

0

cos(ωl(τ − w))

ε2

[
2(̂fn

M )l(0) + w2 d2

ds2
(̂fn

M )l(0)

]
dw, n ≥ 1,(13b)

and then carry out the rest trigonometric integrations exactly, where

(14)





∫ τ

0

sin(ωl(τ − w))

ε2ωl
dw =

1

ε2ω2
l

[1− cos(ωlτ)],

∫ τ

0

sin(ωl(τ − w))

ε2ωl
w2dw =

1

ε2ω4
l

[
ω2
l τ

2 + 2 cos(ωlτ)− 2
]
,

∫ τ

0

cos(ωl(τ − w))

ε2
dw =

1

ε2ωl
sin(ωlτ),

∫ τ

0

cos(ωl(τ − w))

ε2
w2dw =

1

ε2ω3
l

[2ωlτ − 2 sin(ωlτ)] .

For the second order derivatives involved in the above approximations (13), i.e.

d2

ds2
(̂fn

M )l(0) =
̂(∂ssf(uM (x, tn + s)))l

∣∣
s=0

, n ≥ 1,

it can be found out from the equation (7), i.e.

∂ssf(uM (x, tn + s))
∣∣
s=0

= f ′(uM (x, tn))∂ssuM (x, tn) + f ′′(uM (x, tn))(∂suM (x, tn))
2

=
1

ε2
f ′(uM (x, tn))

[
∂xxuM (x, tn)−

1

ε2
uM (x, tn)− PMf(uM (x, tn))

]

+ f ′′(uM (x, tn))(∂suM (x, tn))
2, n ≥ 1.

Since the numerical integrator based on (12) proceeds in a three-level format, we
need to find approximations of uM (x, t1) and ∂suM (x, t1) to start the scheme.
Taking n = 0 and s = τ in (9) and (10), we get

(̂uM )l(t1) = cos(ωlτ)(̂uM )l(0) +
sin(ωlτ)

ωl
(̂uM )

′
l(0)(15a)

−
∫ τ

0

sin(ωl(τ − w))

ε2ωl
(̂f0

M )l(w)dw,

(̂uM )
′
l(t1) =− ωl sin(ωlτ)(̂uM )l(0) + cos(ωls)(̂uM )

′
l(0)(15b)

−
∫ τ

0

cos(ωl(τ − w))

ε2
(̂f0

M )l(w)dw, l = −M
2
, . . . ,

M

2
− 1.
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Applying the quadrature similar as (13) to the unknown integrals in (15), i.e.
∫ τ

0

sin(ωl(τ − w))

ε2ωl
(̂f0

M )l(w)dw

≈
∫ τ

0

sin(ωl(τ − w))

ε2ωl

[
(̂f0

M )l(0) + w
d

ds
(̂f0

M )l(0) +
w2

2

d2

ds2
(̂f0

M )l(0)

]
dw,

∫ τ

0

cos(ωl(τ − w))

ε2
(̂f0

M )l(w)dw

≈
∫ τ

0

cos(ωl(τ − w))

ε2

[
(̂f0

M )l(0) + w
d

ds
(̂f0

M )l(0) +
w2

2

d2

ds2
(̂f0

M )l(0)

]
dw,

where we have d
ds (̂f

0
M )l(0) =

̂(∂sf(uM (x, s)))l
∣∣
s=0

, and in addition to (14),

(17)





∫ τ

0

sin(ωl(τ − w))

ε2ωl
wdw =

1

ε2ω3
l

[ωlτ − sin(ωlτ)] ,

∫ τ

0

cos(ωl(τ − w))

ε2
wdw =

1

ε2ω2
l

[1− cos(ωlτ)] .

The above temporal approximations for both (12) and (15) offer naturally fourth
order truncation error bounds and clearly become exact when the nonlinearity f(·)
reduces to a constant function.

In details, a 4th order Gautschi-type EWI Fourier spectral method (4th-GIFS)
reads as follows. Denote unM (x) and u̇nM (x) (n = 0, 1, . . .) be the approximations to
u(x, tn) and ∂tu(x, tn), respectively. Choose u

0
M (x) = φ1(x) and u̇

0
M (x) = 1

ε2φ2(x),
then for n ≥ 0,

(18) un+1
M (x) =

M/2−1∑

l=−M/2

(̂un+1
M )lψl(x), u̇n+1

M (x) =

M/2−1∑

l=−M/2

(̂u̇n+1
M )lψl(x), x ∈ Ω,

where

(̂un+1
M )l =− (̂un−1

M )l + 2 cos(ωlτ)(̂unM )l −
2− 2 cos(ωlτ)

ε2ω2
l

f̂n
l

− ω2
l τ

2 + 2 cos(ωlτ) − 2

ε2ω4
l

̂̈fn
l , n ≥ 1,(19a)

(̂u̇n+1
M )l =(̂u̇n−1

M )l − 2ωl sin(ωlτ)(̂u̇nM )l −
2 sin(ωlτ)

ε2ωl
f̂n
l

− 2ωlτ − 2 sin(ωlτ)

ε2ω3
l

̂̈
fn
l , n ≥ 1,(19b)

and

(̂u1M )l =cos(ωlτ)(̂φ1)l +
sin(ωlτ)

ε2ωl
(̂φ2)l −

1− cos(ωlτ)

ε2ω2
l

f̂0
l

− ωlτ − sin(ωlτ)

ε2ω3
l

̂̇
f0
l − ω2

l τ
2 + 2 cos(ωlτ)− 2

2ε2ω4
l

̂̈
f0
l ,(20a)

(̂u̇1M )l =− ωl sin(ωlτ)(̂φ1)l +
cos(ωlτ)

ε2
(̂φ2)l −

sin(ωlτ)

ε2ωl
f̂0
l

− 1− cos(ωlτ)

ε2ω2
l

̂̇
f0
l − ωlτ − sin(ωlτ)

ε2ω3
l

̂̈
f0
l ,(20b)
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with

fn(x) = f(unM (x)), ḟ0(x) =
1

ε2
f ′ (φ1(x)) · φ2(x), n ≥ 0,

f̈n(x) = f ′′(unM (x)) · (u̇nM (x))
2
+

1

ε2
f ′(unM (x)) ·

[
∂xxu

n
M (x)− 1

ε2
unM (x) − fn(x)

]
.

In practice, the integrals defined in (5) for computing the Fourier transform co-
efficients in (18)-(20) are not suitable, and they are usually replaced by the in-
terpolations as defined in (5) [34, 3, 18]. Thus, a 4th order Gautschi-type EWI
Fourier pseudospectral method (4th-GIFP) reads as follows. Let unj and u̇nj (n =
0, 1, . . . , j = 0, . . . ,M) be the approximations to u(xj , tn) and ∂tu(xj , tn), respec-
tively. Choose u0j = φ1(xj) and u̇

0
j = 1

ε2φ2(xj), then for n ≥ 0,

(21) un+1
j =

M/2−1∑

l=−M/2

ũn+1
l ψl(xj), u̇n+1

j =

M/2−1∑

l=−M/2

˜̇un+1
l ψl(xj), j = 0, . . . ,M,

where

ũn+1
l =− ũn−1

l + 2 cos(ωlτ)ũnl − 2− 2 cos(ωlτ)

ε2ω2
l

f̃n
l +

2− 2 cos(ωlτ)− ω2
l τ

2

ε2ω4
l

˜̈fn
l ,

(22a)

˜̇un+1
l =˜̇un−1

l − 2ωl sin(ωlτ)˜̇unl − 2 sin(ωlτ)

ε2ωl
f̃n
l +

2 sin(ωlτ)− 2ωlτ

ε2ω3
l

˜̈fn
l , n ≥ 1,

(22b)

and

ũ1l =cos(ωlτ)(̃φ1)l +
sin(ωlτ)

ε2ωl
(̃φ2)l −

1− cos(ωlτ)

ε2ω2
l

f̃0
l

− ωlτ − sin(ωlτ)

ε2ω3
l

˜̇f0
l − ω2

l τ
2 + 2 cos(ωlτ) − 2

2ε2ω4
l

˜̈f0
l ,(23a)

˜̇u1l =− ωl sin(ωlτ)(̃φ1)l +
cos(ωlτ)

ε2
(̃φ2)l −

sin(ωlτ)

ε2ωl
f̃0
l

− 1− cos(ωlτ)

ε2ω2
l

˜̇f0
l − ωlτ − sin(ωlτ)

ε2ω3
l

˜̈f0
l ,(23b)

with

fn
j = f(unj ), ḟ0

j =
1

ε2
f ′ (φ1(xj)) · φ2(xj), n ≥ 0,

f̈n
j = f ′′(unj ) ·

(
u̇nj
)2

+
1

ε2
f ′(unj ) ·

[
∂xxIM (un)(xj)−

1

ε2
unj − fn

j

]
.

Clearly, the proposed 4th-GIFS (18)-(20) or 4th-GIFP (21)-(23) is fully explicit and
easy to implement. It is very efficient due to the fast Fourier transform (FFT), and
its memory cost is O(M) and the computational cost per time step is O(M logM).
The scheme is also clearly time symmetric, i.e. exchanging n + 1 with n − 1 and
changing τ to −τ in (19) or (22), it remains the same.

2.2. Higher order Gautschi-type EWIs spectral method. As a natural gen-
eralization, one can approximate the nonlinearity in (12) by using its Taylor’s ex-
pansion up to some higher order like 6th, 8th...terms, provided that the nonlinearity
and the solution to (1) are smooth enough. In this case, we can get an arbitrary
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2Nth order accurate Gautschi-type EWI Fourier spectral/pesudospectral method
(2Nth-GIFS/2Nth-GIFP) for some integer N ≥ 2 by using

(̂fn
M )l(w) + (̂fn

M )l(−w) =2(̂fn
M )l(0) + 2

N−1∑

m=1

w2m

(2m)!

d2m

dw2m
(̂fn

M )l(0)

+O(w2N ), 0 ≤ w ≤ τ, n ≥ 1,

and then similar as before, carrying out the trigonometric integrations left in (12)
exactly. Also, for the starting values (15), take the Taylor’s expansion

(̂f0
M )l(w) =

2N−2∑

m=0

wm

m!

dm

dwm
(̂f0

M )l(0) +O(w2N−1), 0 ≤ w ≤ τ,

for the nonlinearity in (15) in order to get a 2Nth order approximation and then
evaluate the integrals. Consequently, we will need the higher order time derivatives
of u(x, t). This can be obtained from the original problem (1) with lower order
derivatives in hands, i.e.

∂mt u(x, t) =
1

ε2
∂m−2
t

(
∂xxu(x, t)−

1

ε2
u(x, t)− f(u(x, t))

)
, m ≥ 2.

Then the scheme of 2Nth-GIFS or 2Nth-GIFP can be written down similarly as
(18)-(18) or (21)-(21). We omit the details here for brevity.

Again, the proposed high order GIFS/GIFP methods are fully explicit, time
symmetric, efficient due to the FFT and become exact when f(·) is a constant.

To close this chapter, we make some remarks on the proposed method. The 4th
order or higher order symmetric Gautschi-type EWIs Fourier spectral/pseudospectral
method can be easily applied and extended to solve other KG-type equations or
coupled system, such as the Klein-Gordon-Zakharov system in the high-plasma-
frequency and subsonic limit regime [5] where similar oscillations occur. Similar
numerical schemes with similar expected numerical performance can be derived.
We also remark that if the periodic boundary condition for the KGE (3) is replaced
by the homogeneous Dirichlet or Neumann boundary condition which is also suit-
able here for domain truncations, the GIFS/GIFP method and its following error
estimates are still valid with the Fourier basis is replaced by sine or cosine basis.
For some inhomogeneous general boundary conditions, one can turn to the com-
pact finite difference discretization in order to get high order spatial accuracy and
then construct similar high order Gautschi-type EWIs to the resulting ODEs from
corresponding semidisretizations.

3. Convergence result

In this section, we present the rigorous error estimate results of the proposed 4th
order Gautschi-type EWI Fourier spectral/pseudospectral method for solving the
KGE (3). Generalizations of the results to higher order EWIs spectral/pseudospectral
method can be obtained similarly with stronger regularity assumptions on the so-
lution.

3.1. Main result. To get the optimal error estimates for the 4th order scheme,
we make assumptions on the solution of the KGE (3) motivated from [30, 31, 29]
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as:

f(·) ∈ C2(R), u ∈ C1
(
[0, T ];Hm0+1

p (Ω)
)
∩ C4

(
[0, T ];H1(Ω)

)
,

‖∂kt u‖L∞([0,T ];Hm0+1) .
1

ε2k
, k = 0, 1; ‖∂kt u‖L∞([0,T ];H1) .

1

ε2k
, k = 3, 4,

(A)

where m0 ≥ 2, 0 < T ≤ T ∗ with T ∗ the maximum existence time of the solution
and

Hm0+1
p (Ω) :=

{
v ∈ Hm0+1(Ω) : ∂mx v(a) = ∂mx v(b), m = 0, . . . ,m0

}
.

Under assumption (A), denote

C0 = max
0<ε≤1

{
‖u‖L∞([0,T ];H1∩L∞) , ε

2 ‖∂tu‖L∞([0,T ];H1∩L∞)

}
,

and with unM , u̇
n
M obtained from the 4th-GIFS (18)-(20), define the error functions

as
(24)

en(x) := u(x, tn)− unM (x), ėn(x) := ∂tu(x, tn)− u̇nM (x), x ∈ Ω, 0 ≤ n ≤ T

τ
,

then we have

Theorem 3.1 (Error bound of 4th-GIFS). Under the assumption (A), there exist
two constants 0 < h0 ≤ 1 and 0 < τ0 ≤ 1 sufficiently small and independent of ε,
such that when 0 < τ ≤ τ0 ·min{ε2, hε} and 0 < h ≤ h0, we have

‖en‖H1 + ε2 ‖ėn‖H1 . hm0 +
τ4

ε8
,(25)

‖unM‖L∞ ≤ C0 + 1, ‖u̇nM‖L∞ ≤ C0 + 1

ε2
, 0 ≤ n ≤ T

τ
.(26)

With unj , u̇
n
j obtained from the 4th-GIFP (21)-(23), define the error functions as

en(x) := u(x, tn)−IM (un)(x), ėn(x) := ∂tu(x, tn)−IM (u̇n)(x), x ∈ Ω̄, 0 ≤ n ≤ T

τ
,

then similarly we have

Theorem 3.2 (Error bound of 4th-GIFP). Under the assumption (A), there exist
two constants 0 < h0 ≤ 1 and 0 < τ0 ≤ 1 sufficiently small and independent of ε,
such that when 0 < τ ≤ τ0 ·min{ε2, hε} and 0 < h ≤ h0, we have

‖en‖H1 + ε2 ‖ėn‖H1 . hm0 +
τ4

ε8
,(27)

‖un‖l∞ ≤ C0 + 1, ‖u̇n‖l∞ ≤ C0 + 1

ε2
, 0 ≤ n ≤ T

τ
.(28)

Remark 3.1. In Theorem 3.1 and 3.2, the requirement 0 < τ ≤ τ0 min{ε2, hε}
implies that for ε = O(1), the CFL condition or stability condition is just τ . h,
while for 0 < ε� 1, it is τ . ε2 due to essential wave length.

3.2. Proof of main result. For the 4th order Gautschi-type EWI spectral method,
in fact, the 4th-GIFS (18)-(20) is a semi-discretization to the KGE, while the 4th-
GIFP (21)-(23) is a full-discretization. For simplicity, we prove the error estimate
of the 4th-GIFS, and omit that of the 4th-GIFP which can be done in the same
spirit with additional help of interpolation techniques [1, 4].
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To proceed to the proof of the main result Theorem 3.1, we first define the
projected error

enM (x) := PMu(x, tn)− unM (x), ėnM (x) := PM (∂tu(x, tn))− u̇nM (x), 0 ≤ n ≤ T

τ
.

Then by triangle inequality and estimates on projection error in [21, 34] under
assumption (A), we have

‖en‖H1 + ε2 ‖ėn‖H1 . ‖enM‖H1 + ε2 ‖ėnM‖H1 + ‖u(·, tn)− PMu(·, tn)‖H1

+ ε2 ‖∂tu(·, tn)− PM (∂tu(·, tn))‖H1

. ‖enM‖H1 + ε2 ‖ėnM‖H1 + hm0 .(29)

Thus to prove (25) in Theorem 3.1, it is sufficient to work out the corresponding
estimate for enM and ėnM . The main proof is by the energy method and carried out
in the framework of mathematical induction in order to guarantee the boundedness
of the numerical solutions [3, 6, 5, 1, 12]. Then the proof is done by the following
steps.

Proof of Theorem 3.1: For n = 0, from the choice of initial data in the scheme,
we have

e0 = 0, ė0 = 0,

and results (25) and (26) are obviously true.

For n ≥ 1, define local truncation errors ξnl and ξ̇nl (1 ≤ n ≤ T/τ, l = −M/2,
. . . ,M/2− 1) according to (19) as

ξ̂n+1
l :=ûl(tn+1) + ûl(tn−1)− 2 cos(ωlτ)ûl(tn) +

2− 2 cos(ωlτ)

ε2ω2
l

(̂f(u))l(tn)

+
ω2
l τ

2 + 2 cos(ωlτ)− 2

ε2ω4
l

d2

ds2
(̂f(u))l(tn), 1 ≤ n ≤ T

τ
− 1,(30a)

̂̇ξn+1
l :=ûl

′(tn+1)− ûl
′(tn−1) + 2ωl sin(ωlτ)ûl(tn) +

2 sin(ωlτ)

ε2ωl
(̂f(u))l(tn)

+
2ωlτ − 2 sin(ωlτ)

ε2ω3
l

d2

ds2
(̂f(u))l(tn), 1 ≤ n ≤ T

τ
− 1,(30b)

and

ξ̂1l :=ûl(t1)− cos(ωlτ)(̂φ1)l −
sin(ωlτ)

ε2ωl
(̂φ2)l +

1− cos(ωlτ)

ε2ω2
l

(̂f(u))l(0)(31a)

+
ωlτ − sin(ωlτ)

ε2ω3
l

d

ds
(̂f(u))l(0) +

ω2
l τ

2 + 2 cos(ωlτ)− 2

2ε2ω4
l

d2

ds2
(̂f(u))l(0),

̂̇
ξ1l :=ûl

′(t1) + ωl sin(ωlτ)(̂φ1)l −
cos(ωlτ)

ε2
(̂φ2)l +

sin(ωlτ)

ε2ωl
(̂f(u))l(0)(31b)

+
1− cos(ωlτ)

ε2ω2
l

d

ds
(̂f(u))l(0) +

ωlτ − sin(ωlτ)

ε2ω3
l

d2

ds2
(̂f(u))l(0).

Step 1 : Estimates on local errors ξnl and ξ̇nl .

For the solution of the KGE (3), u(x, tn + s) =

∞∑

l=−∞
ûl(tn + s)φl(x). So in the

Fourier frequency space, we have

ε2ûl
′′(tn + s) +

(
µ2
l +

1

ε2

)
ûl(tn + s) + ̂(f(u))l(tn + s) = 0, n ≥ 0.
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Then by using the variation-of-constant formula similarly as (9)-(12), and noticing
(14) and (17), we find

ξ̂n+1
l =−

∫ τ

0

sin(ωl(τ − w))

ε2ωl

[
̂(f(u))l(tn + w) + ̂(f(u))l(tn − w) − 2 ̂(f(u))l(tn)

− w2 d2

ds2
̂(f(u))l(tn)

]
dw,

̂̇ξn+1
l =−

∫ τ

0

cos(ωl(τ − w))

ε2

[
̂(f(u))l(tn + w) + ̂(f(u))l(tn − w)− 2 ̂(f(u))l(tn)

− w2 d2

ds2
̂(f(u))l(tn)

]
dw, 1 ≤ n ≤ T

τ
− 1;

ξ̂1l =−
∫ τ

0

sin(ωl(τ − w))

ε2ωl

[
̂(f(u))l(w) − ̂(f(u))l(0)− w

d

ds
̂(f(u))l(0)

− w2

2

d2

ds2
̂(f(u))l(0)

]
dw,

̂̇ξ1l =−
∫ τ

0

cos(ωl(τ − w))

ε2

[
̂(f(u))l(w)− ̂(f(u))l(0)− w

d

ds
̂(f(u))l(0)

− w2

2

d2

ds2
̂(f(u))l(0)

]
dw.

Applying the Taylor’s expansion with integral form of the remainder, we get

ξ̂n+1
l =−

∫ τ

0

sin(ωl(τ − w))

ε2ωl

w4

6

[ ∫ 1

0

(1− ρ)

(
d4

ds4
̂(f(u))l(tn + ρw)

+
d4

ds4
̂(f(u))l(tn − ρw)

)
dρ

]
dw,

̂̇ξn+1
l =−

∫ τ

0

cos(ωl(τ − w))

ε2
w4

6

[ ∫ 1

0

(1 − ρ)

(
d4

ds4
̂(f(u))l(tn + ρw)

+
d4

ds4
̂(f(u))l(tn − ρw)

)
dρ

]
dw, 1 ≤ n ≤ T

τ
− 1;

ξ̂1l =−
∫ τ

0

sin(ωl(τ − w))

ε2ωl

w3

2

[∫ 1

0

(1− ρ)
d3

ds3
̂(f(u))l(ρw)dρ

]
dw,

̂̇
ξ1l =−

∫ τ

0

cos(ωl(τ − w))

ε2
w3

2

[∫ 1

0

(1 − ρ)
d3

ds3
̂(f(u))l(ρw)dρ

]
dw.

Then we have the estimates on the local errors as





∣∣∣ξ̂1l
∣∣∣ .

τ3√
1 + ε2µ2

l

∫ τ

0

| sin(ωl(τ − w))|
∫ 1

0

∣∣∣∣
d3

ds3
̂(f(u))l(ρw)

∣∣∣∣ dρdw,

∣∣∣ξ̂n+1
l

∣∣∣ . τ4√
1 + ε2µ2

l

∫ τ

0

|sin(ωl(τ − w))|
∫ 1

0

[ ∣∣∣∣
d4

ds4
̂(f(u))l(tn + ρw)

∣∣∣∣

+

∣∣∣∣
d4

ds4
̂(f(u))l(tn − ρw)

∣∣∣∣
]
dρdw, 1 ≤ n ≤ T

τ
− 1,(34)
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and




∣∣∣ ̂̇ξ1l
∣∣∣ . τ3

ε2

∫ τ

0

∫ 1

0

∣∣∣∣
d3

ds3
̂(f(u))l(ρw)

∣∣∣∣ dρdw, 1 ≤ n ≤ T

τ
− 1,(35)

∣∣∣∣
̂̇ξn+1
l

∣∣∣∣ .
τ4

ε2

∫ τ

0

∫ 1

0

[ ∣∣∣∣
d4

ds4
̂(f(u))l(tn + ρw)

∣∣∣∣

+

∣∣∣∣
d4

ds4
̂(f(u))l(tn − ρw)

∣∣∣∣
]
dρdw.

Under condition τ ≤ πhε
2
√
h2+4π2ε2

, which is provided by τ . min{ε2, hε}, we have

|ωl|τ ≤ π
2 for all l = −M/2, . . . ,M/2− 1. Then from (34) we further have





∣∣∣∣∣
ξ̂1l

sin(ωlτ)

∣∣∣∣∣ .
τ3√

1 + ε2µ2
l

∫ τ

0

∫ 1

0

∣∣∣∣
d3

ds3
̂(f(u))l(ρw)

∣∣∣∣ dρdw,
∣∣∣∣∣∣
ξ̂n+1
l

sin(ωlτ)

∣∣∣∣∣∣
.

τ4√
1 + ε2µ2

l

[ ∫ τ

0

∫ 1

0

∣∣∣∣
d4

ds4
̂(f(u))l(tn + ρw)

∣∣∣∣dρdw(36)

+

∫ τ

0

∫ 1

0

∣∣∣∣
d4

ds4
̂(f(u))l(tn − ρw)

∣∣∣∣dρdw
]
, 1 ≤ n ≤ T

τ
− 1.

With estimates (35) and (36), defining local truncation error functions as

ξn(x) =

N/2−1∑

l=−N/2

ξ̂nl
sin(ωlτ)

eiµl(x−a), ξ̇n(x) =

N/2−1∑

l=−N/2

̂̇ξnl eiµl(x−a), 1 ≤ n ≤ T

τ
,

then combining with Paserval’s identity and Schwarz’s inequality, we get

‖∂xξ1‖2H1 +
1

ε2
‖ξ1‖2H1 .

τ7

ε2

∫ τ

0

∫ 1

0

∥∥∂3sf(u)(·, ρw)
∥∥2
H1 dρdw,

‖∂xξn+1‖2H1 +
1

ε2
‖ξn+1‖2H1 .

τ9

ε2

∫ τ

0

∫ 1

0

∥∥∂4sf(u)(·, tn + ρw)
∥∥2
H1 dρdw,

∥∥∥ξ̇1
∥∥∥
2

H1
.
τ7

ε4

∫ τ

0

∫ 1

0

∥∥∂3sf(u)(·, ρw)
∥∥2
H1 dρdw,

∥∥∥ξ̇n+1
∥∥∥
2

H1
.
τ9

ε4

∫ τ

0

∫ 1

0

∥∥∂4sf(u)(·, tn + ρw)
∥∥2
H1 dρdw, 1 ≤ n ≤ T

τ
− 1.

Thus under assumption (A), we have for

ε2
∥∥∥ξ̇1
∥∥∥
2

H1
+ ‖∂xξ1‖2H1 +

1

ε2
‖ξ1‖2H1 .

τ8

ε14
,(37a)

ε2
∥∥∥ξ̇n+1

∥∥∥
2

H1
+ ‖∂xξn+1‖2H1 +

1

ε2
‖ξn+1‖2H1 .

τ10

ε18
, 1 ≤ n ≤ T

τ
− 1.(37b)

Subtracting the scheme (20) from (31), we get

ê1l = ξ̂1l ,
̂̇e1l = ̂̇ξ1l ,

which together with (37) and (29) imply

‖e1‖H1 + ε2‖ė1‖H1 .
τ4

ε6
+ hm0 .
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Then by triangle inequality and Sobolev’s inequality, when τ ≤ τ1 · ε2 and h ≤ h1,

‖u1M‖L∞ ≤ ‖e1‖L∞ + C0 ≤ 1 + C0, ‖u̇1M‖L∞ ≤ ‖ė1‖L∞ +
C0

ε2
≤ 1 + C0

ε2
,

for some constants τ1 > 0 and h1 > 0 independent of ε. Thus (25) and (26) are
true for n = 1.

Now for n ≥ 2, assume (25) and (26) are true for all n ≤ m ≤ T
τ − 1, and then

we need to show results (25) and (26) are still valid for n = m+1. Subtracting the
scheme (19) from (30), we get

ên+1
l + ên−1

l = 2 cos(ωlτ)ênl + χn+1
l ,(38a)

̂̇en+1
l − ̂̇en−1

l = −2ωl sin(ωlτ)ênl + χ̇n+1
l , 1 ≤ n ≤ T

τ
− 1,(38b)

where

χn+1
l := ξ̂n+1

l + η̂n+1
l , χ̇n+1

l := ̂̇ξn+1
l + ̂̇ηn+1

l ,(39)

with the errors from nonlinear terms as

η̂n+1
l :=

2− 2 cos(ωlτ)

ε2ω2
l

(
f̂n
l − f̂l(tn)

)
+
ω2
l τ

2 + 2 cos(ωlτ) − 2

ε2ω4
l

(
̂̈fn
l − d2

ds2
f̂l(tn)

)
,

̂̇ηn+1

l :=
2 sin(ωlτ)

ε2ωl

(
f̂n
l − f̂l(tn)

)
+

2ωlτ − 2 sin(ωlτ)

ε2ω3
l

(
̂̈
fn
l − d2

ds2
f̂l(tn)

)
.

Step 2 : Estimates on nonlinear errors ηnl and η̇nl .
Again noting (14) with |ωl|τ ≤ π

2 , we find




∣∣∣∣
η̂n+1
l

sin(ωlτ)

∣∣∣∣ .
τ√

1 + ε2µ2
l

∣∣∣f̂n
l − f̂l(tn)

∣∣∣+ τ3√
1 + ε2µ2

l

∣∣∣∣
̂̈fn
l − d2

ds2
f̂l(tn)

∣∣∣∣ ,
∣∣∣̂̇ηn+1

l

∣∣∣ . τ

ε2

∣∣∣f̂n
l − f̂l(tn)

∣∣∣+ τ3

ε2

∣∣∣∣
̂̈
fn
l − d2

ds2
f̂l(tn)

∣∣∣∣ , 1 ≤ n ≤ T

τ
− 1.(41)

Defining nonlinear error functions as

ηn+1(x) =

N/2−1∑

l=−N/2

η̂n+1
l

sin(ωlτ)
eiµl(x−a), η̇n+1(x) =

N/2−1∑

l=−N/2

̂̇ηn+1
l eiµl(x−a), 1 ≤ n ≤ T

τ
−1,

by Parseval’s identity and Hölder’s inequality, we have




‖∂xηn+1‖2H1 +
1

ε2
‖ηn+1‖2H1 .

τ2

ε2
‖fn − f(·, tn)‖2H1

+
τ6

ε2

∥∥∥f̈n − ∂2sf(·, tn)
∥∥∥
2

H1
,

ε2‖η̇n+1‖2H1 .
τ2

ε2
‖fn − f(·, tn)‖2H1 +

τ6

ε2

∥∥∥f̈n − ∂2sf(·, tn)
∥∥∥
2

H1
.(42)

Then under the inductions, for 1 ≤ n ≤ m, we have

‖fn − f(·, tn)‖H1 =

∥∥∥∥
∫ 1

0

f ′ (ρunM + (1 − ρ)u(·, tn)) dρ (unM − u(·, tn))
∥∥∥∥
H1

. ‖unM − u(·, tn)‖H1 . ‖enM‖H1 + hm0 ,(43)
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and
∥∥∥f̈n − ∂2sf(·, tn)

∥∥∥
H1

.
∥∥∥f ′′(unM ) · (u̇nM )

2 − f ′′(u(·, tn)) · (∂su(·, tn))2
∥∥∥
H1

+
1

ε2
‖f ′(unM )∂xxu

n
M − f ′(u(·, tn))∂xxu(·, tn)‖H1

+
1

ε4
‖f ′(unM )unM − f ′(u(·, tn))u(·, tn)‖H1

+
1

ε2
‖f ′(unM )f(unM )− f ′(u(·, tn))f(u(·, tn))‖H1 .(44)

By triangle inequality and Sobolev’s inequality, we find

‖f ′(unM )unM − f ′(u(·, tn))u(·, tn)‖H1

≤ ‖f ′(unM )(unM − u(·, tn))‖H1 + ‖(f ′(unM )− f ′(u(·, tn))) u(·, tn)‖H1

. ‖unM − u(·, tn)‖H1 . ‖enM‖H1 + hm0 , 1 ≤ n ≤ m.(45)

Similarly,
∥∥∥f ′′(unM ) · (u̇nM )

2 − f ′′(u(·, tn)) · (∂su(·, tn))2
∥∥∥
H1

.
∥∥∥(u̇nM )

2 − (∂su(·, tn))2
∥∥∥
H1

+
1

ε4
‖u(·, tn)− unM‖H1

.
1

ε2
‖ėnM‖H1 +

1

ε4
‖enM‖H1 +

hm0

ε4
,(46a)

‖f ′(unM )f(unM )− f ′(u(·, tn))f(u(·, tn))‖H1

. ‖f(unM )− f(u(·, tn))‖H1 + ‖unM − u(·, tn)‖H1

. ‖enM‖H1 + hm0 ,(46b)

‖f ′(unM )∂xxu
n
M − f ′(u(·, tn))∂xxu(·, tn)‖H1

. ‖∂xxunM − ∂xxu(·, tn)‖H1 + ‖unM − u(·, tn)‖H1

. ‖enM‖H3 + hm0−2, 1 ≤ n ≤ m.(46c)

Plugging (45)&(46) back to (44), under conditions τ . hε and τ . ε2 we get

∥∥∥f̈n − ∂2sf(·, tn)
∥∥∥
H1

.
1

ε2

(
‖ėnM‖H1 +

hm0

ε2

)
+

1

ε2
(
‖enM‖H3 + hm0−2

)

+
1

ε4
(‖enM‖H1 + hm0) , 1 ≤ n ≤ m.(47)

Plugging (47) together with (43) into (42), under conditions τ . hε and τ . ε2 we
have

‖∂xηn+1‖2H1 +
1

ε2
‖ηn+1‖2H1 . τ2

(
1

ε2
‖enM‖2H1 + ε2 ‖ėnM‖2H1 +

h2m0

ε2

)
,(48a)

ε2‖η̇n+1‖2H1 . τ2
(

1

ε2
‖enM‖H1 + ε2 ‖ėnM‖H1 +

h2m0

ε2

)
, 1 ≤ n ≤ m.(48b)

Step 3 : Error equations on enl and ėnl .
Denote funcation

T n
l := sin(ωl(n+ 1)τ), n ≥ −1.
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Multiplying both sides of (38a) by T m−n
l and then summing up for 1 ≤ n ≤ m, we

get

m∑

n=1

T m−n
l

(
ên+1
l + ên−1

l

)
=

m∑

n=1

T m−n
l (2 cos(ωlτ)ênl + un+1

l )

=

m∑

n=1

[(T m+1−n
l + T m−1−n

l )ênl + T m−n
l un+1

l ]

=

m−1∑

n=0

T m−n
l ên+1

l +

m+1∑

n=2

T m−n
l ên−1

l +

m∑

n=1

T m−n
l un+1

l ,

which consequently shows

(49) T 0
l ê

m+1
l = −T m−1

l ê0l + T m
l ê1l +

m∑

n=1

T m−n
l un+1

l .

Noting e0l = 0 and by Cauchy’s inequality,

|êm+1
l |2 ≤ 2


|T m

l |2
∣∣∣∣∣

ê1l
sin(ωlτ)

∣∣∣∣∣

2

+m

m∑

n=1

|T m−n
l |2

∣∣∣∣
un+1
l

sin(ωlτ)

∣∣∣∣
2



≤ 2



∣∣∣∣∣

ξ̂1l
sin(ωlτ)

∣∣∣∣∣

2

+ 2m

m∑

n=1




∣∣∣∣∣∣
ξ̂n+1
l

sin(ωlτ)

∣∣∣∣∣∣

2

+

∣∣∣∣∣∣
η̂n+1
l

sin(ωlτ)

∣∣∣∣∣∣

2




 .

Multiplying both sides by (1+µ2
l )

1
ε2 , and then summing up for l = −M/2, . . . ,M/2−

1, by (37) and (48), we get

1

ε2

∥∥em+1
M

∥∥2
H1 .

1

ε2
‖ξ1‖2H1 +

m

ε2

m∑

n=1

(∥∥ξn+1
∥∥2
H1 +

∥∥ηn+1
∥∥2
H1

)

.
1

ε2

(
τ8

ε16
+ h2m0

)
+ τ

m∑

n=1

(
1

ε2
‖enM‖2H1 + ε2 ‖ėnM‖2H1

)
.(50)

Plugging (49) into (38b), we get

˙̂em+1
l − ˙̂em−1

l = −2ωl

(
T m−1
l ê1l +

m−1∑

n=1

T m−1−n
l χn+1

l

)
+ χ̇m+1

l .

Using the recurrence equation, for some odd m = 2p− 1(p ≥ 1), we have

̂̇
e2pl − ̂̇e0l

=

p∑

n=1

χ̇2n
l − 2ωl

p∑

n=1

sin(ωl(2n− 1)τ)ê1l − 2ωl

p∑

q=2

2q−2∑

n=1

sin(ωl(2q − 1− n)τ)χn+1
l

=

p∑

n=1

χ̇2n
l − 2ωl sin

2(ωlpτ)
ξ̂1l

sin(ωlτ)
− 2ωl

2p−2∑

n=1

χn+1
l

p∑

q=qn

sin(ωl(2q − 1− n)τ),
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with qn := dn
2 e+ 1, where d·e denotes the ceiling function. Then we have

ε2
∥∥∥ė2pM

∥∥∥
2

H1
.ε2p

p∑

n=1

∥∥χ̇2n
∥∥2
H1 +

∥∥∂xξ1
∥∥2
H1 +

1

ε2

∥∥ξ1
∥∥2
H1 + p

2p−2∑

n=1

∥∥∂xχn+1
∥∥2
H1

+ p

2p−2∑

n=1

1

ε2

∥∥χn+1
∥∥2
H1 .

Similarly, we can get an estimate for the case m = 2p(p ≥ 1) as

ε2
∥∥∥ė2p+1

M

∥∥∥
2

H1
.ε2

∥∥ė1M
∥∥2
H1 + ε2p

p∑

n=1

∥∥χ̇2n+1
∥∥2
H1 +

∥∥∂xξ1
∥∥2
H1 +

1

ε2

∥∥ξ1
∥∥2
H1

+ p

2p−1∑

n=1

∥∥∂xχn+1
∥∥2
H1 + p

2p−1∑

n=1

1

ε2

∥∥χn+1
∥∥2
H1 .

All together, we have

ε2
∥∥ėm+1

M

∥∥2
H1 .ε2

∥∥ė1M
∥∥2
H1 +m

m∑

n=1

ε2
∥∥χ̇n+1

∥∥2
H1 +

∥∥∂xξ1
∥∥2
H1 +

1

ε2
∥∥ξ1
∥∥2
H1

+m

m∑

n=1

(
‖∂xχn‖2H1 +

1

ε2
‖χn‖2H1

)
.

Then by (37) and (48), we have

ε2
∥∥ėm+1

M

∥∥2
H1 .

1

ε2

(
τ8

ε16
+ h2m0

)
+ τ

m∑

n=1

(
ε2 ‖ėnM‖2H1 +

1

ε2
‖enM‖2H1

)
.(51)

Adding up (50) and (51), we get

ε2
∥∥ėm+1

M

∥∥2
H1 +

1

ε2

∥∥em+1
M

∥∥2
H1

.
1

ε2

(
τ8

ε16
+ h2m0

)
+ τ

m∑

n=1

(
ε2 ‖ėnM‖2H1 +

1

ε2
‖enM‖2H1

)
,

and then by discrete Gronwall’s inequality, we get

ε2
∥∥ėm+1

M

∥∥
H1 +

∥∥em+1
M

∥∥
H1 .

τ4

ε8
+ hm0 .

Then by triangle inequality and Sobolev’s inequality together with (29), when τ ≤
τ2 · ε2 and h ≤ h2,

‖um+1
M ‖L∞ ≤ ‖em+1‖L∞ +C0 ≤ 1+C0, ‖u̇m+1

M ‖L∞ ≤ ‖ėm+1‖L∞ +
C0

ε2
≤ 1 + C0

ε2
,

for some constants τ2 > 0 and h2 > 0 independent of ε. Thus (25) and (26) are
true for n = m + 1, and the proof is completed by choosing τ0 = min{τ1, τ2},
h0 = min{h1, h2}. �

Remark 3.2. The proof technique here is different from that in [3, 5]. The proof
used in [3, 5] can hardly get the rigorous error estimates for the group of trigono-
metric integrators proposed in [11], while it is believed that the proof established here
could offer some clues to that which will be our future work.
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Table 1. Temporal error and convergence rate test of the
4th-GIFP&6th-GIFP with a fixed ε = 0.5 in normal regime:
‖e(·, T )‖H1 at T = 2 for different τ with h = 1/16.

4th-GIFP τ0 = 0.1 τ0/2 τ0/4 τ0/8
‖e(·, T )‖H1 4.55E-02 1.60E-03 9.52E-05 5.90E-06

rate – 4.84 4.07 4.01
6th-GIFP τ0 = 0.1 τ0/2 τ0/4 τ0/8
‖e(·, T )‖H1 4.50E-03 2.43E-05 3.74E-07 5.74E-09

rate – 7.53 6.07 6.02

To close this chapter, we make an important remark on another potential appli-
cation of the proposed method. The recent developed multiscale time integrators
(MTIs) in [4, 6, 8, 2] only achieved the first order uniform accuracy for solving
the highly-oscillatory equations. All of them are using the second order EWIs as
the key integration tools. Now with the higher order EWIs and using higher order
multiscale expansion in corresponding context, MTIs with higher order of uniform
accuracy could be proposed, which is going to appear in our future work.

4. Numerical results

In this section, we present the numerical results of the 4th-GIFP (21)-(23) and
a 6th order GIFP (shorted as 6th-GIFP) proposed in Section 2.2. As comparisons,
we also present the numerical results of the GIFP method proposed in [3] (shorted
as GIFP) and the classical 4th order Runger-Kutta method [24, 28] with Fourier
spectral discretization (shorted as RK4FP). Throughout the section, we consider
the KGE (3) with cubic nonlinearity, i.e.

f(u) = λu3, λ ∈ R,

which occurs in the most application cases and physical situations [3, 16, 4, 6, 29,
30, 31, 13]. Choose

λ = 1, φ1 = 2e−x2

, φ2 = 3e−x2

, x ∈ Ω,

in (3), where the ‘exact’ solution of the problem is obtained via the 6th-GIFP
method with very small time step and mesh size, e.g. τ = 1E − 5, h = 1/16. We
choose the bounded interval Ω = [−32, 32], i.e. b = −a = 32, which is large enough
to guarantee that the periodic boundary condition does not introduce a significant
aliasing error relative to the original problem. To measure the error, we compute
the H1-norm of the error

e(x, T ) = u(x, T )− IMuN(x), where N =
T

τ
,

for some fixed time T > 0.
Firstly, we shall test the temporal convergence rate of the proposed 4th-GIFP

and 6th-GIFP for a fixed 0 < ε < 1 in the normal (relativistic) regime, i.e. ε = O(1).
The numerical results at T = 2 under different τ are given in Table 1. As ε becomes
small, we understand the necessity of condition τ . ε2 from either stability or
accuracy point of view. However for fixed ε = O(1) in the normal regime, the
stability constraint τ . h imposed in Theorem 3.1 and Remark 3.1 is mainly used
for the rigorous mathematical proof. Thus, in addition we test the error of the
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Table 2. Stability test of the 4th-GIFP&6th-GIFP with a fixed
ε = 0.5 in normal regime: ‖e(·, T )‖H1 at T = 2 for different h with
τ = 0.1.

4th-GIFP h = 1/8 h = 1/16h = 1/32
‖e(·, T )‖H14.55E-024.55E-024.55E-02
6th-GIFP h = 1/8 h = 1/16h = 1/32
‖e(·, T )‖H14.50E-034.50E-035.85E-02

Table 3. Spatial error of the 4th-GIFP&6th-GIFP in nonrela-
tivistic limit regime: ‖e(·, T )‖H1 at T = 2 for different ε and h
with τ = 10−5.

4th-GIFP h0 = 1 h0/2 h0/4 h0/8
ε0 = 0.1 6.89E+00 7.28E-01 4.18E-046.18E-08
ε0/2 6.94E+001.06E+005.58E-041.71E-08
ε0/4 7.34E+001.09E+006.16E-045.15E-09
ε0/8 7.21E+001.12E+005.38E-046.62E-07

6th-GIFP h0 = 1 h0/2 h0/4 h0/8
ε0 = 0.1 6.89E+00 7.28E-01 4.18E-046.19E-08
ε0/2 6.94E+001.06E+005.58E-041.72E-08
ε0/4 7.34E+001.09E+006.16E-044.54E-09
ε0/8 7.21E+001.12E+005.38E-041.32E-09

methods for solving the KGE with ε = 0.5 and a fixed large τ = 0.1 but under
different small mesh size h. The results are shown in Table 2.

Then we study the errors and meshing strategy of the 4th-GIFP and 6th-GIFP
in the nonrelativistic limit regime, i.e. 0 < ε� 1. We test and study the temporal
and spatial error separately. Table 3 shows the spatial error of numerical methods
at T = 2 under different ε and h with a very small time step τ = 10−5 such that
the discretization error in time is negligible. Table. 4 shows the temporal error
of numerical methods at T = 2 under different ε and τ with a small mesh size
h = 1/16 such that the discretization error in space is negligible.

At last, we test the energy conservation property of the schemes. The energy
errors of 4th-GIFP and 6th-GIFP during the computation, i.e. the error between
the exact energy E(t) = E(0) and the numerical energy

En :=

∫ b

a

[
ε2|IM u̇n(x)|2 + |∂xIMun(x)|2 +

1

ε2
|IMun(x)|2 + F (IMun(x))

]
dx,

under a small mesh size h = 1/8, are plotted in Figure 2 together with comparisons
with results of the RK4FP.

Based on results from Tables 1-4 and Figure 2, we can draw the following obser-
vations:

(i) The 4th-GIFP and 6th-GIFP have 4th and 6th temporal accuracy order,
respectively, and both of them have the spectral accuracy in spatial discretization.
Our theoretical error bound is optimal. The theoretical stability constrain τ . h
when ε = O(1) does not seem to be essential in computing.

(ii) As ε decreases to zero in the nonrelativistic limit regime, the meshing strategy
of the 4th-GIFP and 6th-GIFP is τ = O(ε2) and h = O(1). Under the same meshing
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Table 4. Temporal error and meshing strategy of the 4th-
GIFP&6th-GIFP with convergence rate and comparisons with
GIFP and RK4FP in nonrelativistic limit regime: ‖e(·, T )‖H1 at
T = 2 for different ε and τ under τ = O(ε2) with h = 1/16.

4th-GIFP τ0 = 1.25 ∗ 10−3 τ0/2 τ0/4
ε0 = 0.05, τ0 3.47E-03 2.04E-04 1.26E-05

rate – 4.09 4.02
ε0/2, τ0/2

2 2.80E-03 1.69E-04 1.05E-05
rate – 4.05 4.01

ε0/4, τ0/4
2 2.56E-03 1.55E-04 9.65E-06

rate – 4.04 4.01
6th-GIFP τ0 = 1.25 ∗ 10−3 τ0/2 τ0/4
ε0 = 0.05, τ0 4.70E-05 6.27E-07 9.67E-09

rate – 6.23 6.02
ε0/2, τ0/2

2 2.05E-05 2.89E-07 4.76E-09
rate – 6.14 5.93

ε0/4, τ0/4
2 1.34E-05 1.98E-07 3.10E-09

rate – 6.07 6.00
GIFP τ0 = 1.25 ∗ 10−3 τ0/2 τ0/4

ε0 = 0.05, τ0 3.25E-01 7.94E-02 1.97E-02
rate – 2.03 2.01

ε0/2, τ0/2
2 3.12E-01 7.60E-02 1.86E-02

rate – 2.04 2.03
ε0/4, τ0/4

2 3.38E-01 7.31E-02 1.80E-02
rate – 2.20 2.02

RK4FP τ0 = 1.25 ∗ 10−3 τ0/2 τ0/4
ε0 = 0.05, τ0 3.53E+00 2.21E-01 1.25E-02

rate – 4.00 4.13
ε0/2, τ0/2

2 8.06E+00 8.32E-01 4.78E-02
rate – 3.28 4.12

ε0/4, τ0/4
2 6.38E+00 3.03E+00 1.83E-01

rate – 1.08 4.04

strategy, the computational error of them is much smaller than that of the GIFP
proposed in [3] and the classical RK4FP method.

(iii) The 4th-GIFP and 6th-GIFP conserve the energy very well. The energy
obtained from the numerical solution is just a small fluctuation from the exact
energy during the computation, while in contrast, the energy error of the RK4FP
keeps growing. As time step τ decreases to zero, the energy error converges to zero.

5. Conclusions

A group of high order Gautschi-type exponential wave integrators (EWIs) Fourier
pseudospectral method were proposed and analyzed for solving the Klein-Gordon
equation (KGE) in the nonrelativistic limit regime with a dimensionless parameter
0 < ε � 1, where the small ε makes the solution of the problem propagates waves
with wavelength O(ε2) in time axis, i.e. high oscillations occur in time. The scheme
is fully explicit and time symmetric. In fact, we proposed a way to construct an
EWI spectral method with temporal accuracy at any even order and spectral spatial
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Figure 2. Energy error of the 4th-GIFP&6th-GIFP and com-
parisons with RK4FP for solving the KGE with ε = 0.05 under
h = 1/8 and different τ .

accuracy, provided the solution of the problem is smooth enough. Rigorous error
estimates were established to show the meshing strategy of the proposed methods is
τ = O(ε2) and h = O(1), as 0 < ε� 1 in the nonrelativistic limit regime, where τ
and h denote the time step and mesh size respectively. In view of the essential wave
length propagating in time, the proposed EWIs Fourier pseudospectral method
offer the high order convergence rate with the ‘optimal’ meshing strategy among
all classical numerical methods for directly solving the KGE in the limit regime.
The proposed method also implies a promising way to construct multiscale time
integrators [4, 6] with higher order uniform accuracy in future. Extensive numerical
experiments were done to confirm the theoretical accuracy order and the meshing
strategy. Comparisons with existing classical methods were carried out to show the
superiority of the proposed methods. It is also believed that the proposed methods
can find wide applications in effectively solving other KG-type oscillatory equations
or coupled systems in future work.
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