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A UNIFIED PARALLEL DEA MODEL AND EFFICIENCY

MODELING OF MULTI-ACTIVITY AND/OR

NON-HOMOGENEOUS ACTIVITY

WF SHEN, ZB ZHOU, PD LIU, QY JIN, WB LIU, AND HUAYONG NIU*

Abstract. Data envelopment analysis(DEA), as originally proposed, is a methodology for evalu-

ating the relative efficiencies of peer decision making units (DMUs) under some general assump-
tions. DEA models with non-homogeneous DMUs and multi-activity structures are two different
subjects referring to relaxing various assumptions. In this paper, we show that these two formula-
tions are both derived by embedding the corresponding process into a general parallel DEA model.

Furthermore, following the parallel DEA framework, general DEA models for multi-activity and
non-homogeneity are proposed, which are able to handle many situations where different aspects
of non-homogeneity or multi-activities exist. This study provides important insights into the

existing DEA models for non-homogeneity and multi-activity.
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1. Introduction

Data Envelopment Analysis (DEA) has been a standard methodology for evalu-
ating the relative performance of Decision Making Units (DMUs) since the paper of
Charnes et al. [4]. Some underlying assumptions are common to traditional DEA
models. DMUs are treated as black boxes since the internal structures of DMUs
are ignored in traditional DEA models. Furthermore, all DMUs are considered to
be homogeneous, that is they all utilize the same types of inputs to produce the
same types of outputs. In the last four decades, thousands of articles and extensive
work have appeared to relax the above assumptions, see [11, 29].

In some contexts, the knowledge of the internal structure of DMU can give further
insights for the performance evaluation. Extensive studies have been done to model
internal structures and networks of the operation, in e.g., [5, 12, 21, 23, 25, 30]
and so on. Comprehensive discussions on network DEA have been showed in the
handbook of Cook and Zhu [15]. A basic type of network structure is parallel
system where a production system is consisted of several subsystems. In the case
that a production system with parallel production units, there are currently two
fundamental researches: YMK model[32] and Kao’s parallel DEA model[22], and
we will first show that they are both special cases of a general parallel DEA model.

Multi-activity problem is a special case concerning the internal structure of
DMUs, where there exist shared inputs and outputs allocated to various activities.
Furthermore, the allocation of resources remains to be determined. This problem
was first studied by Beasley[1]. Molinero[28] extend the problem by concentrat-
ing on the dual of Beasley’s model. Although the problem was first known as the
joint determination of efficiency within a DEA context, it is often referred to as a
multi-activity or multi-component model now. Subsequently, Cook et al.[10], Ja-
hanshahloo et al. [19] and Tsai and Mar Molinero[31] have revised the model. Many
authors have introduced variants of multi-activity models. Castelli et al. [2] have
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reviewed some extensions of multi-activity models, which include considering weight
restrictions (Beasley[1]), variable returns to scale (Tsai and Molinero[31]), differ-
ent weights on shared inputs (Cook et al.[10]), additive objective function (Cook
and Hababou[8]) and various forms of inputs/outputs (e.g., Cook and Green[9];
Jahanshahloo et al.[19, 20]). Moreover, the production process of a DMU may con-
tain several stages in which some outputs produced by a former stage are used as
inputs to a later stage of production. Färe and Grosskopf[16, 17]thus proposed a
network DEA model for measuring efficiency for those DMUs with multiple produc-
tion stages. Subsequently, Chen [6], Chen et al.[7], Yu and Lin[33], Yu and Fan[34],
and Wang et al.[35] studied multi-activity network DEA models which incorporated
multiple activities and multiple processes into a unified framework. In this paper
we show that multi-activity DEA models can be derived from the general parallel
DEA model.

Besides the black-box assumption, in the traditional DEA models, all DMUs
are known as homogeneous in the sense that each has the same type of inputs
and outputs. However, in some applications such as plants and universities, this
assumption may be violated. The situation that the inputs and outputs of a set
of DMUs or their input-to-output relations are not exactly the same is known as
non-homogeneity. The DEA model with non-homogeneous DMUs is first studied
by Molinero[27] with a specific university example, and then a systematic study has
been presented by Cook et al. [13, 14]. Following the work of Cook et al. [13, 14],
a few extensions around the non-homogeneity phenomenon have been carried out.
Imanirad et al. [18] introduced a methodology to allow for efficiency measurement
in situations where some DMUs have different input-to-output relations. And in
the latest paper, Liang et al.[24] examine non-homogeneity on the input side. In the
current paper, by looking inside the non-homogeneity phenomenon, we will show
that Cook’s model can also be transformed into the form of the general parallel
DEA model.

Hence following the parallel DEA framework, general DEA models for multi-
activity and non-homogeneity are proposed, which are able to handle many situa-
tions where different aspects of non-homogeneity or multi-activities exist.

The paper is organized as follows. After introduction, two classic parallel DEA
models are introduced and a general parallel DEA model is proposed in Section
2. Multi-activity models are presented in Section 3, in addition, how to apply
the parallel DEA model is explained. Section 4 describes the specific situations
of multi-activity models which exist in the literatures. Following the formulation
of the general parallel DEA model, a general DEA model with non-homogeneous
DMUs is proposed in Section 5. Furthermore, in Section 6 we apply the general
models into specific situations. Discussions around the general model and some
future directions are presented in Section 7.

2. DEA models for systems with parallel structure

A basic type of internal structure is parallel system. For a system composed
of several processes connected in parallel, there are at least two fundamental re-
searches. One is YMK model proposed by Yang et al.[32] in measuring the efficien-
cies of the production system with independent subsystems, the other is proposed
by Kao[22] dealing with the case where all parallel subunits consume the same set of
inputs to produce the same set of outputs. We think that the key difference between
the YMK model and Kao’s parallel DEA model lies in that the corresponding in-
puts and outputs across subunits are perceived to be (equally) compensable or not
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Figure 1. The parallel production system of YMK model.

in efficiency evaluation, and this is often a managerial decision. Essentially for two
sub-processes that both produce, say, rice, its outputs can be evaluated as two inde-
pendent outputs or, incorporated into an overall total measure, and this is decided
by the decision maker. The notion of (equally) ”substitutable” or ”compensable”
has been investigated in the DEA literature (Liu et al.[26]), where orders or prefer-
ences are introduced as a basic element into DEA model building since DEA is to
compare performance of different DMUs. Logically one has firstly to know what is
the underlying meaning of ”better” in a particular DEA model. Here two different
preferences of Pareto and Average are involved: Let (Y1, Z1) and (Y2, Z2) be the
outputs of two DMUs, then the former is better than the latter in the sense of
Pareto if Y1 > Y2 and Z1 > Z2, while in Average sense if Y1 + Z1 > Y2 + Z2. In
this sense YMK model has adapted the Pareto order while Kao’s uses the Average
order for overall-system aggregation, for more details one can refer to Liu et al. [26]
and Zhang et al.[36].

After introducing the two classic parallel models, we will further investigate the
connection between these two models. Subsequently, a general parallel DEA model
is proposed, which can encompass the feature of the both models.

Before introducing the models, some notations are given as follows. For each
DMUj(j = 1, 2, · · · , n), it acts as a production system consisting of K subsystems,
each subsystem k represented by its own input/output bundle. Each subsystem k
is formed in such a way that all inputs impact all outputs. For DMUj , xk

ij and

ykrj represent the input i and output r of subsystem k, respectively.

2.1. YMK model. In the model proposed by Yang et al.[32], the operation of
each subsystem is independent. As the YMK production system shown in Fig.1
below, the input/output bundle of subsystem k is denoted by (Ik, Rk). Note that
each input/output subset can vary from one another. The numbers of inputs and
outputs for subsystem k are mk and sk, respectively. In this model, we assume the
inputs and outputs are evaluated via Pareto order across subunits, the input and
output of the overall production system is constituted of all inputs and outputs
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of K subsystem. Hence the numbers of inputs and outputs for the system will be∑
k

mk and
∑
k

sk, respectively. Let us emphasize that the corresponding inputs and

outputs in different subsystems are compared in the Pareto order, but they may be
in fact of either the same type or different types. They are linked only through the
radial measurement and objective functions.

The YMK model and its dual are formulated as follows (Yang et al.[32]).

(1)

max

K∑
k=1

sk∑
r=1

uk
ry

k
rj0

s.t.
K∑

k=1

mk∑
i=1

vki x
k
ij0 = 1,

mk∑
i=1

vki x
k
ij −

sk∑
r=1

uk
ry

k
rj 6 0,∀k,∀j,

uk
r , v

k
i > 0,∀k,∀j.

(2)

min θ

s.t.

n∑
j=1

λk
jx

k
ij 6 θxk

ij0 ,∀k,∀i,

n∑
j=1

λk
j y

k
rj > ykrj0 ,∀k,∀r,

λk
j > 0,∀k,∀j.

2.2. Kao’s model. In the model proposed by Kao[22], all parallel subsystems are
operated independently by utilizing the same set of inputs to produce the same
set of outputs which is different from YMK model. Furthermore, the principle
underlying this model is that the corresponding inputs and outputs across subunits
are evaluated via Average order, hence it is rational for them to be summed up in the
evaluation of the system efficiency. The production system of Kao’s model is shown
in Fig. 2. Let (I0, R0) denotes the input/output bundle. There are m inputs and
s outputs in every subsystem as well as in the overall system. xij(i = 1, 2, · · · ,m)
and yrj(r = 1, 2, · · · , s) constitute the overall inputs and outputs of the production

system, where xij =
K∑

k=1

xk
ij and yrj =

K∑
k=1

ykrj .

The Kao’s model and its dual are as follows (Kao[22]).

(3)

max
s∑

r=1

uryrj0

s.t.
m∑
i=1

vixij0 = 1,

m∑
i=1

vix
k
ij −

s∑
r=1

ury
k
rj 6 0,∀k,∀j,

ur, vi > 0.
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Figure 2. The parallel production system of Kao s parallel model.

(4)

min σ

s.t.
n∑

j=1

K∑
k=1

λk
jx

k
ij 6 σxij0 , ∀i,

n∑
j=1

K∑
k=1

λk
j y

k
rj > yrj0 , ∀r,

λk
j > 0.

2.3. General parallel model combining Pareto and Average orders. In
more general cases, inputs and outputs can be divided into those equally important
but non-compensable and compensable. In the notation of preference Pareto is
applied for some of the components of the input/outputs while Average order is
used for the others. In the following, we will combine the above two models and
derive a general parallel DEA model which can deal with the more general cases.

Our approach is based on observation that actually YMK model can be trans-
formed into the form of Kao’s model. Take the YMK production system shown in
Fig.3 as a simple example and each subsystem has two inputs and two outputs. To
help transfer YMK model into the form of Kao’s parallel DEA model, extensions of
the inputs and outputs sets are done as follows: in the first subsystem, assume x1

1

and x1
2 are the same as x1

1 and x1
2 in YMK, while letting x1

3 = x1
4 = 0; similarly, in

the second subsystem, let x2
1 = x2

2 = 0, while assuming x2
3 and x2

4 are the same as x2
3

and x2
4 in YMK. The extensions of the outputs are the same as those of the inputs.

The system inputs and outputs are xi =
∑
k

xk
i (i = 1, 2) and yr =

∑
k

ykr (r = 1, 2) ,

respectively. In this case, the original production system is transformed into a new
system (see Fig. 4) which is the same as that of Kaos parallel DEA model. Note
that the model derived from the transformed system is equivalent to the original
YMK mod

As indicated by the simple example, YMK model can be transformed into Kao’s
parallel model after extending the original input and output sets by adding zeros.
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Figure 3. A simple YMK production system.

Figure 4. A transformed production system.

Figure 5. The production system of the general parallel DEA model.
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With these helps, we now give the general parallel DEA model, where some subsys-
tem inputs/outputs are compensable, while others are perceived to be not. To be
more specific, in the evaluation of the system efficiency, some inputs/outputs are
addable across subsystems while others are not.

In this model, each subsystem k is represented by its own input/output bundle
(Ik
∪
I0, Rk

∪
R0). There will be (mk + m) inputs and (sk + s) outputs for sub-

system k. In subsystem k, the inputs belong to I0 and outputs belong to R0 are
compensable across subsystems as that in Kao’s model, while inputs belong to Ik
and outputs belong to Rk are the same type as that in YMK model.

The general parallel DEA model and its dual can be formulated as follows:

(5)

max
∑
r∈R0

uryrj0 +
∑
k

∑
r∈Rk

uk
ry

k
rj0

s.t.
∑
i∈I0

vixij0 +
∑
k

∑
i∈Ik

vki x
k
ij0 = 1,

∑
r∈R0

ury
k
rj +

∑
r∈Rk

uk
ry

k
rj 6

∑
i∈I0

vix
k
ij +

∑
i∈Ik

vki x
k
ij ,∀k,∀j,

ur > 0, r = 1, · · · , s, vi > 0, i = 1, · · · ,m,

uk
r > 0, r = 1, · · · , sk,∀k,

vki > 0, i = 1, · · · ,mk,∀k.

(6)

min θ

s.t.
∑
j

∑
k

λk
jx

k
ij 6 θxij0 , i ∈ I0,∑

j

λk
jx

k
ij 6 θxk

ij0 ,∀k, i ∈ Ik,∑
j

∑
k

λk
j y

k
rj > yrj0 , r ∈ R0,∑

j

λk
j y

k
rj > ykrj0 ,∀k, r ∈ Rk,

λk
j > 0,∀k,∀j.

where xij =
K∑

k=1

xk
ij(i ∈ I0) and yrj =

K∑
k=1

ykrj(r ∈ R0) .

It is clear that when inputs and outputs in different subsystems are compared in
Average order, the general model is exactly the same formulation as that of Kao’s
model. Otherwise, the general model will share the same formulation as that of
YMK model. That is, our general model encompasses both the YMK model and
Kao’s parallel DEA model.

Take the production system shown in Fig. 6 as a simple example of the general
parallel system. Assume there are two inputs and two outputs for each subsystem
and only the input and output with subscript 2 are perceived to be compensable.
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Figure 6. A simple general parallel production system.

Following the general parallel DEA model, the parallel DEA models for the above
system are formulated as follows.

(7)

max u1
1y

1
1j0 + u2

1y
2
1j0 + u2y2j0

s.t. v11x
1
1j0 + v21x

2
1j0 + v2x2j0 = 1,

u1
1y

1
1j + u2y

1
2j 6 v11x

1
1j + v2x

1
2j ,∀j,

u2
1y

2
1j + u2y

2
2j 6 v21x

2
1j + v2x

2
2j ,∀j,

u1
1, u

2
1 > 0,

v11 , v
2
1 > 0,

u2 > 0, v2 > 0.

(8)

min θ

s.t.
∑
j

λ1
jx

1
1j 6 θx1

1j0 ,
∑
j

λ2
jx

2
1j 6 θx2

1j0 ,∑
j

λ1
jx

1
2j +

∑
j

λ2
jx

2
2j 6 θx2j0 ,∑

j

λ1
jy

1
1j > y11j0 ,

∑
j

λ2
jy

2
1j > y21j0 ,∑

j

λ1
jy

1
2j +

∑
j

λ2
jy

2
2j > y2j0 ,

λ1
j , λ

2
j > 0,∀j.

In the following, we will try to utilize the general parallel DEA model to handle
the multi-activity and non-homogeneous input/output processes by embedding the
process into a general parallel system.

3. Multi-activity model

In many real situations, the units under evaluation may perform several different
functions or may be separated into different subsystems. In such situations, partic-
ular resources are often shared among those subsystems. This sharing phenomenon



378 W.F. SHEN, Z.B. ZHOU, P.D. LIU, Q.Y. JIN, W.B. LIU, AND H.Y. NIU

will commonly present the difficulty of how to disaggregate the measure into sub-
systems. Usually, the amount of shared flow to each subsystem is considered as
a decision variable to maximize the DMU efficiencies. This problem is known as
multi-activity problem which was first proposed by Beasley[1].

A multi-activity model is formulated after introducing the following notations.
Consider n homogeneous DMUs and each engages in K activities. For DMUj , let
xk
ij(i ∈ Ik) and ykrj(r ∈ Rk) be the dedicated input i and output r of subsystem k,

respectively. Assume that xij(i ∈ I0) is the shared input and thus all subsystems
are shared in xij . Also, all components play an important role in producing shared
output yrj(r ∈ R0). Some portion αk

i of the shared inputs xij and some portion βk
r

of shared outputs yrj are allocated to subsystem k.
If we know the split proportion of inputs and outputs among activities, that is,

αk
i xij(i ∈ I0) and βk

r yrj(r ∈ R0) are known shared inputs and outputs allocated to
activity k , we might reasonably apply the general parallel DEA model directly to
arrive at an efficiency score for each DMU. That is, αk

i xij(i ∈ I0) is equivalent to
that xk

ij(i ∈ I0) in the general parallel model, similarly, βk
r yrj(r ∈ R0) is equivalent

to ykrj(r ∈ R0) in the general parallel model. However, the precise split of shared

inputs and outputs to various activities are not known, αk
i and βk

r are variables to
be determined. Hence evaluating the efficiency of a given DMU with multi-activity
structure is, indeed, a bi-level programming problem which contains two parallel
objectives: obtaining the best efficiency score and the most appropriate resource
allocation. It may take two steps to solve this problem. First, assuming the split of
inputs/outputs is a known quantity, so we can proceed as above, that is to seek a
best score for each DMU by directly applying the general parallel DEA model. For
this step, the objective function can be either minimal or maximal depending on
the orientation chosen. Then the second step is to determine the most appropriate
alpha and beta variables. We argue that the best way to allocate the resources
is to do so in a way that results in the best overall efficiency for a DMU. For the
optimization model with alpha and beta as decision variables, the objective function
is supposed to find the maximum efficiency score.

Following the two-steps method shown above, the multi-activity models could
be formulated as follows.

Multiplier form:

(9)

max
(α,β)

max
(u,v)

e0(α, β, u, v) =
∑
r∈R0

uryrj0 +
∑
k

∑
r∈Rk

uk
ry

k
rj0

s.t.
∑
i∈I0

vixij0 +
∑
k

∑
i∈Ik

vki x
k
ij0 = 1,

∑
r∈R0

urβ
k
r yrj +

∑
r∈Rk

uk
ry

k
rj 6

∑
i∈I0

viα
k
i xij +

∑
i∈Ik

vki x
k
ij , ∀j,∀k,

∑
k

αk
i = 1, ∀i ∈ I0,∑

k

βk
r = 1, ∀r ∈ R0,

ur, u
k
r , vi, v

k
i , α

k
i , β

k
r > 0 ∀i, r, k.
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Dual form:

(10)

max
(α,β)

max
(ϕ,λ)

e1(α, β, ϕ, λ)

s.t.
∑
k

∑
j

λk
jα

k
i xij 6 xij0 ,∀i ∈ I0,

∑
j

λk
jx

k
ij 6 xk

ij0 ,∀k,∀i ∈ Ik,∑
k

∑
j

λk
jβ

k
r yrj > ϕyrj0 ,∀r ∈ R0,∑

j

λk
j y

k
rj > ϕykrj0 ,∀k,∀r ∈ Rk,∑

k

αk
i = 1,∀i ∈ I0,∑

k

βk
r = 1,∀r ∈ R0,

λk
j > 0,∀k,∀j.

The above bi-level programming problem is linear in each level, but the com-
putational work is enormous. We show below that we only need to compute the
objectives max

(α,β,u,v)
e0(α, β, u, v) and max

(α,β,ϕ,λ)
e1(α, β, ϕ, λ), although they are nonlin-

ear (we will discuss the linearization later).

Lemma 3.1. max
x

max
y

f(x, y) = max
(x,y)

f(x, y).

Proof. This lemma appears to be obviously true. However, we cannot find the proof
in the literature. Thus we include a proof here for the convenience of readers.

max
x

max
y

f(x, y) 6 max
(x,y)

f(x, y).

Let max
(x,y)

f(x, y) = f(x0, y0), then max
x

max
y

f(x, y) > max
x

f(x, y0) > f(x0, y0).

Consequently, we can conclude that max
x

max
y

f(x, y) = max
(x,y)

f(x, y). �

Theorem 3.2. The functions e0(α, β) = max
(u,v)

e0(α, β, u, v) and e1(α, β) = max
(u,v)

e1(α,

β, u, v) are concave with respect to (α, β), so that any local solutions are also global
solutions.

Proof. For any fixed α, β, e0(α, β, u, v) is a linear function, that is, e0(α, β, u, v)
is concave with respect to u and v for any fixed α and β , then e0(α, β) =
max
(u,v)

e0(α, β, u, v) is concave with respect to α and β. Similarly, we can show the

concavity of e1(·, ·). �

With Lemma 3.1, we rewrite model (9) and (10) as follows.



380 W.F. SHEN, Z.B. ZHOU, P.D. LIU, Q.Y. JIN, W.B. LIU, AND H.Y. NIU

Multiplier form:

(11)

max
∑
r∈R0

uryrj0 +
∑
k

∑
r∈Rk

uk
ry

k
rj0

s.t.
∑
i∈I0

vixij0 +
∑
k

∑
i∈Ik

vki x
k
ij0 = 1,

∑
r∈R0

urβ
k
r yrj +

∑
r∈Rk

uk
ry

k
rj 6

∑
i∈I0

viα
k
i xij +

∑
i∈Ik

vki x
k
ij , ∀j,∀k,

∑
k

αk
i = 1, ∀i ∈ I0,∑

k

βk
r = 1, ∀r ∈ R0,

ur, u
k
r , vi, v

k
i , α

k
i , β

k
r > 0, ∀i, r, k.

Dual form:

(12)

max ϕ

s.t.
∑
k

∑
j

λk
jα

k
i xij 6 xij0 ,∀i ∈ I0,∑

j

λk
jx

k
ij 6 xk

ij0 ,∀k,∀i ∈ Ik,∑
k

∑
j

λk
jβ

k
r yrj > ϕyrj0 ,∀r ∈ R0,∑

j

λk
j y

k
rj > ϕykrj0 ,∀k,∀r ∈ Rk,∑

k

αk
i = 1,∀i ∈ I0,∑

k

βk
r = 1,∀r ∈ R0,

λk
j > 0,∀k,∀j.

To facilitate linearization, we make the change of variables
⌣

Z
k

i = viα
k
i and

⌣

z
k

r =
urβ

k
r , and note that∑

k

αk
i = 1 ⇒ vi

∑
k

αk
i = vi ⇒

∑
k

⌣

Z
k

i = vi,∑
k

βk
r = 1 ⇒ ur

∑
k

βk
r = ur ⇒

∑
k

⌣

z
k

r = ur.

Using the usual transformation t = 1/(
∑
i∈I0

νixij0 +
∑
k

∑
i∈Ik

νki x
k
j0
) (see Charnes

et al.[4]), and defining µr = tur, µ
k
r = tuk

r , νi = tvi, ν
k
i = tvki , γ

k
i = t

⌣

Z
k

i , ω
k
r = t

⌣

z
k

r ,
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problem (11) reduces to the following form:

(13)

max
∑
r∈R0

µryrj0 +
∑
k

∑
r∈Rk

µk
ry

k
rj0

s.t.
∑
i∈I0

νixij0 +
∑
k

∑
i∈Ik

νki x
k
ij0 = 1,

∑
r∈R0

ωk
r yrj +

∑
r∈Rk

µk
ry

k
rj 6

∑
i∈I0

γk
i xij +

∑
i∈Ik

νki x
k
ij , ∀j, ∀k,

∑
k

γk
i = νi, ∀i,∑

k

ωk
r = µr, ∀r,

µr, µ
k
r , νi, ν

k
i , γ

k
i , ω

k
r > 0, ∀i, r, k.

However, it seems difficult to linearize dual form model (12), which is a key for
benchmarking. For the first layer of the bi-level problem, we may take the dual of
model (9) and (10), and derive the corresponding multi-activity models.
Multiplier form:

(14)

max
(α,β)

min
(u,v)

e2(α, β, u, v) =
∑
i∈I0

vixij0 +
∑
k

∑
i∈Ik

vki x
k
ij0

s.t.
∑
r∈R0

uryrj0 +
∑
k

∑
r∈Rk

uk
ry

k
rj0 = 1,

∑
r∈R0

urβ
k
r yrj +

∑
r∈Rk

uk
ry

k
rj 6

∑
i∈I0

viα
k
i xij +

∑
i∈Ik

vki x
k
ij , ∀j,∀k,

∑
k

αk
i = 1, ∀i ∈ I0,∑

k

βk
r = 1, ∀r ∈ R0,

ur, u
k
r , vi, v

k
i , α

k
i , β

k
r > 0, ∀i, r, k.

Dual form:

(15)

max
(α,β)

min
(θ,λ)

e3(α, β, θ, λ)

s.t.
∑
k

∑
j

λk
jα

k
i xij 6 θxij0 ,∀i ∈ I0,∑

j

λk
jx

k
ij 6 θxk

ij0 ,∀k,∀i ∈ Ik,∑
k

∑
j

λk
jβ

k
r yrj > yrj0 ,∀r ∈ R0,∑

j

λk
j y

k
rj > ykrj0 ,∀k,∀r ∈ Rk,∑

k

αk
i = 1,∀i ∈ I0,∑

k

βk
r = 1,∀r ∈ R0,

λk
j > 0,∀k,∀j.
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These models are more difficult to solve so to keep the presentation simple, we only
consider model (11) and (12) throughout the paper.

4. Models for special situations

The model proposed by Beasley[1] which included shared inputs only can be
written as follows.

(16)

max
∑
k

∑
r∈Rk

uk
ry

k
rj0

s.t.
∑
i∈I0

vixij0 +
∑
k

∑
i∈Ik

vki x
k
ij0 = 1,

∑
r∈Rk

uk
ry

k
rj 6

∑
i∈I0

viα
k
i xij +

∑
i∈Ik

vki x
k
ij , ∀j, ∀k,

∑
k

αk
i = 1, ∀i ∈ I0,

uk
r , vi, v

k
i , α

k
i > 0, ∀i, r, k.

which is clearly a special case of model (11) where no shared outputs exist. Molinero[28]
proposed an approach dual to (16). In addition, the authors included shared inputs.
Their output oriented model is:

(17)

max
∑
k

wkϕk
j0

s.t.
∑
k

∑
j

λk
jα

k
i xij 6 xij0 ,∀i ∈ I0,∑

j

λk
jx

k
ij 6 xk

ij0 ,∀k,∀i ∈ Ik,∑
k

∑
j

λk
jβ

k
r yrj >

∑
k

ϕk
j0β

k
r yr0,∀r ∈ R0,∑

j

λk
j y

k
rj > ϕk

j0y
k
rj0 ,∀k,∀r ∈ Rk,∑

k

αk
i = 1,∀i ∈ I0,∑

k

βk
r = 1,∀r ∈ R0,

λk
j > 0,∀k,∀j.

where wk are positive weights representing the relative importance of each activity
k for DMUj0 , and ϕk

0 are inefficiency measures of activity k for DMUj0. The
measures for various activities can be either the same or different, it depends on
decision makers, note that the choice will not change the general structure of the
multi-activity model. Let wk and measure ϕk

0 be the same for all activities, model
(17) is a special case of model (12).

As pointed in Introduction, many authors have extended multi-activity models.
Castelli et al.[2] has reviewed some extensions of multi-activity models, which in-
cludes considering weight restrictions, variable returns to scale, different weights
on shared inputs, additive objective function and various form of inputs/outputs.
Furthermore, models (11) and (12) can be extended into multi-stage forms, see
Chen[6]Yu and Fan [33] and Yu and Lin[34] for example.
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5. A general model for non-homogeneity

In some applications such as plants and universities, the inputs and outputs of
a set of DMUs are not exactly the same, and note that this is not about missing
input or output data for certain DMUs, but a DMU has chosen not to produce
certain outputs. Although Molinero et al.[27] first proposed a specific example with
university level institutions which engage in different sets of activities, DEA models
with non-homogeneous DMUs were systematically studied by Cook et al.[13, 14]
assuming to only know the inputs and outputs. With the desire to fairly evaluate
a DMU for what it does, the authors proposed a DEA-based model which views
the DMU as consisting of a set of subunits. For each DMU, the efficiencies for
individual subunits make up the aggregate efficiency.

Cook et al.[14] describes a problem setting involving the evaluation of a set of
DMUs with non-homogeneous outputs. Suppose the non-homogeneous DMUs fall
into P mutually exclusive (M.E.) groups which we denote by {Np}Pp=1 such that
the outputs are exactly the same to DMUs of a given group. The outputs are
non-homogeneous across DMUs, but the inputs are all utilized to produce each
output, we may define the inputs are belong to a sharable input set I0. Then
form M.E. output subgroups Rk, k = 1, 2, · · · ,K, where Rk denotes the maximum
subset of outputs with the property that all its members appear as outputs of the
same set of DMUs (same as DMU profile). With Rk properly defined, we may
view each DMU as a business unit consisting of a subset of K subunits where each
subunit k is represented by its input-to-output bundle (I0, Rk). The subset can be
different, however, from one DMU to another. Some further notations are given
below, namely let LNpdenotes those subscript k forming the full specified output set
for any DMU in Np; Mk denotes the set of all DMU groups that has subunit k as a
member, that is Mk = {Np such that k ∈ LNp}. For DMU j, let ykrj(r ∈ Rk) be the

output of subunit k; xij(i ∈ I0) be the sharable inputs; α
k
ipdenote the proportion of

sharable input i (i ∈ I0) to be allocated to subunit k of LNp . Then the DEA-based
model with non-homogeneous DMUs is formulated as follows.

(18)

max
∑

k∈LN
p0

∑
r∈Rk

uryrj0

s.t.
∑
i

vixij0 = 1,∑
r∈Rk

uryrj −
∑
i

viα
k
ipxij 6 0, ∀j ∈ Np, k ∈ LNp ,∀p,∑

k∈LNp

αk
ip = 1, ∀i,∀p,

akip 6 αk
ip 6 bkip, ∀i, k, p,

ur, vi, α
k
ip > 0, ∀i, k, p.

Note that the DEA-based model with non-homogeneous DMUs is a bi-level pro-
gramming problem as well. But with lemma 1, the bi-level programming problem
can be formulated as model (18). Model (18) determines the most appropriate
alpha variables and the highest overall efficiency score simultaneously.

However, Cook’s model needs to be extended in many applications. Such as a
practical application of FHCs, the main business of FHCs can be classified into
Banking, Insurance, Security and Others (Chao et al.[3]). The business lines of
some given FHCs may be different from others. For example, certain FHC may
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Table 1. Product lines and DMU groups in Cook et al. [14].

y1 y2 y3 y4 y5 y6
N1 × × × ×
N2 × × × × ×
N3 × × ×
N4 × × ×

have Insurance company while others may not. In this case, both inputs and outputs
of DMUs are non-homogeneous. Here we extend Cook’s model into a general DEA
framework which can deal with more general non-homogeneous DMUs following
the general parallel DEA model, where some inputs/outputs are shared and some
are specialized. Another difference between our general model and Cook’s model
lies in that the subsystems of our general model will be further defined by the
operation properties of DMUs. That is, the subsystems are not purely the virtual
units decided by the phenomenon of non-homogeneity as in the Cook’s model, but
are further defined by the internal structure of DMUs. Here is an example to help
understand the difference. Cook et al.[14] considered a set of non-homogeneous
manufacturing plants with totally six main product lines. As shown in Table 1,
plants with the same product lines have been grouped into four DMU groups.
According to the subunits grouping criterion in Cook et al.[14], y1, y2, y4 and y6 are
outputs of different subsystems, because their DMU profiles vary from each other,
and the outputs y3 and y5 whose DMU profiles are the same should be grouped as
one subgroup. Different from the unique grouping result in Cook et al.[14], we argue
that the outputs y3 and y5 can be grouped into either one or different subsystems
according to the real operational structure of DMUs (for example, if the outputs
y3 and y5 are two different product lines that need to evaluate separately, then it
is more appropriate to treat them as two subsystems). Note that our setting up
includes the case in Cook et al.[14]. We may argue that without the support of the
operation properties, generating uniqueness of maximal output subgroups is only
one particular option.

Let us now introduce the more general setting. Suppose the non-homogeneous
DMUs with multi-activity structure fall into P mutually exclusive (M.E.) groups
which we denote by {Np}Pp=1 such that the inputs, outputs and input-to-output
relations are all exactly the same to DMUs of a given group. The subsystems are
decided by both the multi-activity structure and the non-homogeneity phenome-
non. Define the whole production system as a system consisted of K subsystems,
each subsystem only engages in one activity and has the property that it appears
homogeneous across the DMUs containing this subsystem. To address this problem,
we may view each DMU as a business unit consisting of a subset of K subsystems.
The subset can be different, however, from one DMU to another. Since the inputs
and outputs are extended in our general model, the following notations are further
defined. Except the sharable inputs defined above, there are specified inputs belong
to Ik that are specially allocated to subsystem k. And similarly, specified outputs
in Rk are those specially generated from subsystem k and sharable outputs belong
to R0 are those generated from all subsystems.

One more step before applying the general parallel DEA model is introducing
dummy processes. By introducing dummy processes, the non-homogeneous DMU
production system can be represented by a homogeneous parallel structure. To be
more specific, for any DMUj ∈ Np, if Rk not ∈ LNp , dummy process k is introduced.
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The outputs and inputs of dummy process k are all zeros, this is realized by letting
βk
rp = 0(∀r ∈ R0), y

k
rj = 0(∀r ∈ Rk), and αk

ip = 0(∀i ∈ I0), x
k
ij = 0(∀i ∈ Ik). Note

that this step is taking after grouping and deciding subsystems (while missing data
approach uses zero as a dummy for blank entries before all these), so this will not
affect the non-homogeneous structure. Consequently, applying the general parallel
DEA model, we propose the following model with dummy processes to deal with
non-homogeneous DMUs.
Multiplier form:
(19)

max

(∑
r∈R0

uryrj0 +
∑
k

∑
r∈Rk

uk
ry

k
rj0

)
/

(∑
i∈I0

vixij0 +
∑
k

∑
i∈Ik

vki x
k
ij0

)
s.t.

∑
r∈R0

urβ
k
rpyrj +

∑
r∈Rk

uk
ry

k
rj 6

∑
i∈I0

viα
k
ipxij +

∑
i∈Ik

vki x
k
ij , ∀j, ∀k,∀p,

∑
k

αk
ip = 1, ∀i ∈ I0,∀p,∑

k

βk
rp = 1, ∀r ∈ R0,∀p,

ur, u
k
r , vi, v

k
i , α

k
ip, β

k
rp > 0, ∀i, r, k,∀p.

Dual form:

(20)

max ϕ

s.t.
∑
k

∑
j

λk
jα

k
ipxij 6 xij0 ,∀i ∈ I0,∑

j

λk
jx

k
ij 6 xk

ij0 ,∀k,∀i ∈ Ik,∑
k

∑
j

λk
jβ

k
rpyrj > ϕyrj0 ,∀r ∈ R0,∑

j

λk
j y

k
rj > ϕykrj0 ,∀k,∀r ∈ Rk,∑

k

αk
ip = 1,∀i ∈ I0,∀p,∑

k

βk
rp = 1,∀r ∈ R0,∀p,

λk
j > 0,∀k,∀j.

The objective functions of model (19) and (20) have been transformed with
Lemma 3.1, the problem underlying these two models remains a bi-level program-
ming problem. Note that after removing the dummy processes, the above dual
model derived from the general parallel DEA model with both shared outputs and
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dedicated inputs is as follows.

(21)

max ϕ

s.t.
∑
k

∑
Np∈Mk

∑
j∈Np

λk
jα

k
ipxij 6 xij0 ,∀i ∈ I0,∑

Np∈Mk

∑
j∈Np

λk
jx

k
ij 6 xk

ij0 ,∀k,∀i ∈ Ik,∑
k

∑
Np∈Mk

∑
j∈Np

λk
jβ

k
rpyrj > ϕyrj0 ,∀r ∈ R0,∑

Np∈Mk

∑
j∈Np

λk
j y

k
rj > ϕykrj0 ,∀k,∀r ∈ Rk,∑

k∈LNp

αk
ip = 1,∀i ∈ I0,∀p,

∑
k∈LNp

βk
rp = 1,∀r ∈ R0,∀p,

λk
j > 0,∀k,∀j.

Model (19) is nonlinear in the current form. Similarly, following the linearization
procedure shown in Section 3, using the usual transformation t = 1/(

∑
i∈I0

vixij0 +∑
k

∑
i∈Ik

vki x
k
ij0

) (see Charnes et al. [4]), and defining µr = tur, µ
k
r = tuk

r , νi = tvi,

νki = tvki , γ
k
ip = tviα

k
ip, ω

k
rp = turβ

k
rp, problem (19) reduces to a linear form.

6. Models for special situations

In the section above, we have developed a general DEA-based model with non-
homogeneous DMUs. Below we will show that many models in the literature are
special cases of our model.

6.1. Non-homogeneous outputs. Consider the problem discussed by Cook et
al.[14] as an example for the situation that non-homogeneity arises due to non-
homogeneous outputs. Following our denotation, the case in Cook et al.[14] only
considers sharable inputs I0 and specified outputs Rk. First four M.E. DMU groups
are derived. Then,y1, y2, y4 and y6 are perceived to be outputs of different subsys-
tems. If y3 and y5 form the outputs of one subsystem since there is no internal
structure given in this case, the envelopment form of this problem can be derived
from our general model.

(22)

max ϕ

s.t.
∑
k

∑
j

λk
jα

k
ipxij 6 xij0 ,∀i ∈ I0,∑

j

λk
j y

k
rj > ϕykrj0 ,∀k,∀r ∈ Rk,∑

k

αk
ip = 1,∀i ∈ I0,∀p,

λk
j > 0,∀k,∀j.
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Table 2. Product lines and DMU groups in Li et al. [24].

x1 x2 x3 x4 x5

N1 × × ×
N2 × × × ×
N3 × × × ×
N4 × × × × ×

6.2. Non-homogeneous inputs. Take the situation Li et al. (2016) considered
as an example, the non-homogeneity arises when there exists an input configuration
in a DMU and is different from the configuration of another DMU.

The methodology proposed in Li et al.[24] can be seen as a special case of our
general model, where there exist sharable inputs I0, specified inputs Ik and over-
lapping outputs R0. To be more specific, the outputs y1 and y2 are overlapping
outputs that can be generated from any subunits, x1 and x2 are sharable among
all subunits, x3, x4 and x5 are specified inputs allocated to specified production
subunits as displayed in Li et al.[24]. The grouping according to our criteria is
displayed in Table 2.

Applying our general model, the problem can be formulated as follows.

(23)

max ϕ

s.t.
∑
k

∑
j

λk
jα

k
ipxij 6 xij0 ,∀i ∈ I0,∑

j

λk
jx

k
ij 6 xk

ij0 ,∀k,∀i ∈ Ik,∑
k

∑
j

λk
jβ

k
rpyrj > ϕyrj0 ,∀r ∈ R0,∑

k

αk
ip = 1,∀i ∈ I0,∀p,∑

k

βk
rp = 1,∀r ∈ R0,∀p,

λk
j > 0,∀k,∀j.

6.3. Non-homogeneous input-output subsystems. When partial input-to-
output interactions exist, DMUs can still have a common input/output bundle,
however, different input/output structure across the DMU set may give rise to the
problem of non-homogeneity. That is, although the inputs and outputs of DMUs
are homogeneous, some DMUs have different input-to-output relations than is true
of others. Our general model can be successfully applied into this case.

When partial input-to-output interactions exist as shown in Table 3, Imanirad
et al.[18] has extend their earlier work to allow for situations that the input/output
profiles are non-homogeneous among DMUs. Imanirad et al.[18] first proceed by
grouping DMUs into P M.E. groups which are the same with our methodology.
The following step is to generate the subunit bundles of inputs and outputs. There
is a significant difference in this step. The maximal set of input-to-output bundles
denoted by (Ikp , Rkp) in Imanirad et al.[18] is derived within the given DMU group
Np.
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Table 3. Product lines and DMU groups in Imanirad et al. [18].

x1, x2, x3 → y1 x1, x2, x3 → y1, y2 x1, x2, x3 → y1, y3 x1, x3 → y2 x2, x3 → y3
N1 × × ×
N2 × ×
N3 × ×

Table 4. Product lines and DMU groups according our methodology.

x1, x2, x3 → y1 x1, x2, x3 → y2 x1, x2, x3 → y3 x1, x3 → y2 x2, x3 → y3
N1 × × ×
N2 × × ×
N3 × × ×

In Imanirad et al.[18], N2(Type 2) has the bundles given by (I12 , R12) = ((1, 2, 3),
(1, 3)) and (I22 , R22) = ((1, 3), (2)). Note that there is no comparison among dif-
ferent types of DMUs referring to the common input-to-output impact (I,R) =
((1, 2, 3), (1)). For the reason that it is combined with (I,R) = ((1, 2, 3), (3)) to
form the input-to-output bundle (I12 , R12) = ((1, 2, 3), (1, 3)) in N2 , while in N3,
it is included in a different input-to-output bundle (I12 , R12) = ((1, 2, 3), (1, 2)).
Actually, there is no clear configuration in this case, thus we argue that the com-
bination of outputs such as y1 and y2 in N3 can be relived. To avoid this kind
of wrong grouping, the input-to-output bundles would be more appropriate to be
derived within the whole DMU set as proposed in our methodology. According to
our methodology, the grouping results are shown in Table 4.

The full production system is consisted of five subunits, and each subunit is
included by exactly the same DMU profile. The type 1 network displayed in Imani-
rad et al.[18] is consisted of subunits 1, 4 and 5, the type 2 network is consisted of
subunits 1, 3 and 4, finally, the type 3 network has subunit 1, 2 and 5. The model
is formulated as follows.

(24)

max ϕ

s.t.
∑
k

∑
j

λk
jα

k
ipxij 6 xij0 ,∀i ∈ I0,∑

j

λk
j y

k
rj > ϕykrj0 ,∀k,∀r ∈ Rk,∑

k

αk
ip = 1,∀i ∈ I0,∀p,

λk
j > 0,∀k,∀j.

7. Discussions and further directions

In this paper, we introduce a general parallel DEA model which encompasses
the YMK model and Kao’s model in order to provide a unified framework for
DEA-based models with non-homogeneity and multi-activity processes. Although
these two problems have always been two different subjects referring to relaxing
two various assumptions, we show that these formulations are both extended by
embedding the corresponding process into the general parallel DEA model. And by
applying the general parallel DEA model, we propose a general model which can
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deal with various aspects of non-homogeneity, including non-homogeneous inputs,
outputs and input-to-output relations.

In the current paper, we assume that the sharable inputs and outputs are equally
important and compensable across all subunits. This assumption could be relaxed
when the internal structures of DMUs are given and decision makers put different
significance to the same type of inputs/outputs in different subunits. Hence, an
important area for future research is considering the more general form of parallel
DEA models, consequently, more general multi-activity models and DEA-based
model with non-homogeneous input/output processes can be extended.
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