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AN APPROXIMATE ALGORITHM TO SOLVE LINEAR

SYSTEMS BY MATRIX WITH OFF-DIAGONAL EXPONENTIAL

DECAY ENTRIES

QIANGSHUN CHANG, YANPING LIN, AND SHUZHAN XU

Abstract. We present an approximate algorithm to solve only one variable out of a linear system
defined by a matrix with off-diagonal exponential decay entries (including the practically most
important class of band limited matrices) via a sub-linear system. This approach thus enables us
to solve any subset of solution variables. Parallel implementation of such approximate schemes
for every variable enables us to solve the linear system with computational time independent of
the matrix size.
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1. Introduction and motivations

How to solve a large linear system Ax = f is a key topic of practical importance.
Direct approaches (like Gauss elimination and various decomposition schemes, such
as LU and QR, are used mainly for small matrices) are theoretically precise yet
practically forbidden for large linear systems in general due to computational cost.
Iterative approaches (such as Jacobi, Gausss-Seidel, SOR and CG iteration, [8, 19])
and multigrid methods [17] are approximate methods and basically ”the practi-
cal schemes”. For iterative methods, the matrix condition number (defined as

cond(A) = max
||x||2=1

||Ax||2
‖x‖2

=
λmax

λmin
, where λmax and λmin are the maximum and

the minimum eigen-values of A respectively) usually decides their convergence rates
and the matrix ”sparsity” (i.e. number of non-zero entries in A) decides their com-
putation costs. Iteration by nature, the convergence speed of multigrid methods is
independent of the matrix condition numbers though [12, 17]. For linear systems
derived from numerical differential equations via finite difference [16] or finite el-
ement [14], the matrix sizes are generally decided by the size of domain and the
approximation accuracies required. Domain decomposition ([12, 13], to split the
original problem into problems with smaller domains) and preconditioning ([11], to
transform the matrix for better condition number) studies are trying to deal with
large matrices and poor matrix condition numbers. They are usually ”geometrical”
methods linked to the original problem. Algebraic multigrid, a special iterative
method [17], is based on the algebraic properties of the final linear systems mainly.

Heading in a different direction, there are also lot of recent progress trying to
reduce the number of computations and to split the matrices (i.e. different de-
composition schemes). Almost purely algebra in nature, these works try to solve
the linear system efficiently by looking at the matrix structure directly. The first
approach is the work on semiseparable matrices (also been used for symmetric
eigen-value problems) [18]. A symmetric matrix can be transformed into tridiago-
nal, semiseparable or with diagonal plus semiseparable form (free diagonal choice)
via orthogonal similarity or Lanczos-like reduction. Efficient algorithms can then be
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devised accordingly [18]. For example, Crout algorithm can be applied to solve the
tridiagonal form and efficient QR-factorization approach can be used to solve the
semiseparable form. Another approach is H-matrices [2] with the aim of enabling
matrix operations in almost linear complexity. The key technique is to applying
local matrix approximation via matrices that is product of two vectors. Based
on Taylor series analysis of kernel log |x − y|, local matrix approximation can be
applied with low rank approximation of matrix blocks. Almost linear complexity
algorithm can then be devised via cluster tree partition technically. We emphasize
that these techniques, easier to apply with efficiency for small matrices, can be
applied on top of our scheme since our approach is to decompose the system into
smaller systems first. Future work combining these ideas with decomposition most
likely will further refine our algorithm.

Last but not least, we mention algebraic Schwarz or algebraic domain decom-
position methods which are mostly related to our work [1, 15, 20]. They are it-
erative approaches via Schwarz alternating in algebraic form and can actually be
viewed more clearly in its elliptic problem theoretical background. H. A. Schwarz’s
study of Dirichlet problem on overlapping regions provided the fundamental alter-
nating solution approach (numerically a different way of iteration). The elegant
and insightful analysis of P. L. Lions and O. B. Widlund [5, 9, 10] are recent re-
interpretations and further developments (for example parallel algorithms) of this
classical direction. Amazingly enough, our very first feeling is that these projec-
tion analysis techniques might be borrowed and modified for the iterative turbo
decoding analysis. It is also interesting to recall that turbo codes was invented by
C. Berrou, A. Glavieux and P. Thitimajshima in 1993 from France (see references
in [7]). Secondly and most importantly, we feel that the connection between it-
erative algebraic domain decomposition and our direct approach to be presented
deserves serious further investigation (in particular the Dirichlet problem counter
part analysis).

In our effort starting with algebraic multigrid looking for schemes to make the
matrix to have better condition number and to decompose large linear systems, we
found a fast approximate algorithm capable of breaking the matrix size (for special
classes of matrices of course) to be presented here. This algorithm seems can be
used in many areas beyond numerical partial differential equations. It thus justifies
an independent paper. Our main contribution is the algorithm capable of solving
a single variable by solving a smaller linear system in some special large linear
systems with controllable error. Even can be further elaborated and extended, we
mainly study matrices with off-diagonal exponential decay entries for simplicity
and practical efficiency. Counter examples show easily that our algorithm is not
valid for all matrices. For practical implementation concerns, we also present exact
conditions for a matrix to be with off-diagonal exponentially decay entries.

Let us look at some simple symmetric positive definite matrix examples with
exponential decay entries to build up our intuitions for further analysis. For A =
( a c
c d ), where a > 0, d > 0, a >> c, and d >> c. Linear equation Ax = b1 has

solutions x = (db1− cb2)/(ad− c2) and x2 = (ab2− cb1)/(ad− c2). We can see that

lim
c→0

x1 =
b1
a

and lim
c→0

x2 =
b2
d
. That is solutions of ( a c

c d ) (
x1
x2
) =

(

b1
b2

)

are close to

solutions of ( a 0
0 d ) (

x1
x2

) =
(

b1
b2

)

, which is a compressed form with c set to zero. Let’s
ponder on this observation and extend our analysis to a larger matrix. Suppose

A =
(

a11 a12 a13
a21 a22 a23
a31 a32 a33

)

is symmetric positive definite and with off-diagonal exponential
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decay entries, we have (from the explicit expression of Ax =

(

b1
b2
b3

)

solutions) the

following approximations

(1) x1 ≈
a33

∣

∣

∣

∣

b1 a12
b2 a22

∣

∣

∣

∣

a33

∣

∣

∣

∣

a11 a12
a21 a22

∣

∣

∣

∣

=

∣

∣

∣

∣

b1 a12
b2 a22

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12
a21 a22

∣

∣

∣

∣

,

(2) x3 ≈
a11

∣

∣

∣

∣

a22 b2
a32 b3

∣

∣

∣

∣

a11

∣

∣

∣

∣

a22 a23
a32 a33

∣

∣

∣

∣

=

∣

∣

∣

∣

a22 b2
a32 b3

∣

∣

∣

∣

∣

∣

∣

∣

a22 a23
a32 a33

∣

∣

∣

∣

.

As for the second variable, we have the following approximation form

(3) x1 ≈
−a21

∣

∣

∣

∣

b1 a13
b3 a33

∣

∣

∣

∣

+ b2

∣

∣

∣

∣

a11 a13
a31 a33

∣

∣

∣

∣

a22

∣

∣

∣

∣

a11 a13
a31 a33

∣

∣

∣

∣

− a23

∣

∣

∣

∣

a11 a12
a31 a33

∣

∣

∣

∣

.

Equivalently, the approximate solution can be given by the following systems: (1)

use ( a11 a12
a21 a22 ) (

x1
x2 ) =

(

b1
b2

)

to solve x1, (2) use ( a22 a23
a32 a33 ) (

x2
x3 ) =

(

b2
b3

)

to solve x3,

and (3) use system
(

a11 a12 0
a21 a22 a23
0 a32 a33

)(

x1
x2
x3

)

=

(

b1
b2
b3

)

to solve x2. What we have ob-

served is that matrix
(

a11 a12 a13
a21 a22 a23
a31 a32 a33

)

can be approximated by
(

a11 a12 0
a21 a22 a23
0 a32 a33

)

. The

solutions of the linear system
(

a11 a12 0
a21 a22 a23
0 a32 a33

)(

x1
x2
x3

)

=

(

b1
b2
b3

)

can be approximated

by the three sub-linear systems. Each corresponds to a sub-block of the original

matrix: the upper-left corner matrix ( a11 a12
a21 a22 ), matrix

(

a11 a12 0
a21 a22 a23
0 a32 a33

)

in the middle,

and the lower-right corner ( a22 a23
a32 a33 ) with the corresponding bi’s to solve xi’s respec-

tively. Observing from

(

b1
b2
b3

)

, we see
(

b1
b2

)

,

(

b1
b2
b3

)

and
(

b2
b3

)

are used respectively.

It is actually using a ”window” of unit length from (or centered at) the variable to
be solved. Just look at variable indexes, we see they correspond to {1, 2}, {1, 2, 3}
and {2, 3} respectively to be precise. The most noticeable fact is that this approach
actually reduces the solution spaces dimensions with tolerable errors. The previ-
ous observations are also true for non-symmetric matrices. We ignore the analysis
details to avoid lengthy expressions.

For a linear system defined by matrix with off-diagonal exponential decay entries,
we can simply approximate the first a few rows with the ”tail” part (looking from
left to right) off as zeros. This approximation will not affect the solution much
due to the limit properties. Yet it is enough to solve the first variable already. If
we keep applying this ”windowing” technique to each variable of the system, the
solutions will actually be quite close to the original precise solutions. Due to the
edge effect (errors caused by the variables near the window edge), only the solution
variable at the window center is accurate enough. We will show that this intuition
is actually right.

Another important source of our intuition comes also from the approximate
Viterbi, BCJR and turbo decoding algorithms (also named as local decoding schemes
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by Xu and Stark in 3-4 of [7]) for convolutional and turbo codes studied and sum-
marized in [7]. Viterbi, BCJR and turbo algorithms are fundamental schemes for
bit error correction in digital communications (see references in [7]). These approx-
imate numerical schemes, virtually ”windowing techniques” using lower dimension
approximations, have important practical values. With parallel lay out of these
approximate decoders, fast algorithms can be devised with speed that is indepen-
dent of frame size [7]. For the theoretically and practically fundamental linear
codes (include convolutional, turbo and LDPC codes) in digital communications,
the decoding methods (include Viterbi, BCJR, turbo and LDPC algorithms) are
also consists of direct and iterative schemes and the similarities with what have
been studied in numerical analysis is unmistakable. We feel that the similarity
and hidden connections between them are interesting and worth serious further
investigations.

Let’s recall some results regarding inverses of band limited matrices. Stephen
Demko et al have shown that the inverse of a band limited matrix (with off-diagonal
exponential decay entries) is with off-diagonal exponential decay entries under cer-
tain conditions [3, 4] and have derived the following results (we cite them as lemmas
here for further discussions). We will see that the extension of these results is the
very foundation of our key algorithm to be introduced.

Lemma 1.1. Let A = (ai,j) be an n × n matrix. Assume that there is a number
m such that ai,j = 0 if |i − j| > m (called m banded) and that ‖A‖q ≤ 1 and
∥

∥A−1
∥

∥

q
≤ µ−1 for some 1 ≤ q ≤ ∞ and some µ > 0. Then, with A−1 = (αi,j),

there are numbers K > 0 and r ∈ (0, 1) depending only on µ and m such that
|αi,j | ≤ Kr−|i−j| for ∀ i, j.

Lemma 1.2. Let A and A−1 be in B(l2(S)). Then if A is positive definite and m

banded, we have |A−1(i, j)| ≤ Cλ−|i−j| where C =
∥

∥A−1
∥

∥

{

1,
(1+

√
cond(A))2

2cond(A)

}

and

λ =

(√
cond(A)−1√
cond(A)+1

)
2
m

. If A fails to be positive definite but is still m banded, bounded

and bounded invertible then |A−1(i, j)| ≤ C1λ
−|i−j|
1 where λ1 =

(√
cond(A)−1√
cond(A)+1

)
1
m

and C1 = (m+ 1)λ−m
1

∥

∥A−1
∥

∥ cond(A)max

{

1,
[

1+cond(A)
cond(A)

]2

/2

}

.

Lemma 1.3. If A and A−1 be in B(l2(S)). Then if A is positive definite and

m banded set λ =

(√
condp(A)−1√
condp(A)+1

)2/m

. For any γ > λ there is a constant C2 =

C2(γ,A) so that |A−1(i, j)| ≤ C2γ
−|i−j|. If A fails to be positive definite but is

quasi-centered, m bounded and bounded invertible set λ1 =

(√
condp(A)−1√
condp(A)+1

)1/m

.

For any γ > λ1 there is a constant C3 = C3(γ,A) so that |A−1(i, j)| ≤ C3γ
−|i−j|.

2. Matrix with Off-diagonal Exponential Decay Entries

For most practical linear systems, matrix A is with good properties. These prop-
erties are usually symmetric, positive definite, and with off-diagonal exponentially
decay entries. We may also assume the matrix condition number is good. As a
matter of fact, efficient numerical schemes typically come only with these stringent
conditions in general.
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We now look at a large class of matrices with off-diagonal exponential decay
entries. It is interesting to see that the same exponential decay property (actually
with the same decay ratio) is also true for their inverses as stated in the following
theorem. We name it after Stephen Demko to memorize his pioneering effort three
decades ago [3, 4].

Theorem 2.1. (Demko Lemma) If matrix A has off-diagonal exponentially decay
entries, |ai,j | ≤ α · e−p|j−i| for ∀ j and i = 0, . . . , n − 1, α > 0, ρ > 0, its inverse

B = A−1 is also with off-diagonal exponentially decay entries, |bi,j | ≤ β · e−λ|j−i|

for ∀ j and i = 0, . . . , n− 1, β > 0, λ > 0, with β = n2αn−1

2 det(A)(1−e−ρ) and λ = ρ. In

Particular, both A and B = A−1 have the same exponential decay ratio.

We first prove the following lemma on matrix determinants.

Lemma 2.2. If matrix A has off-diagonal exponentially decay entries, |ai,j | ≤
α ·e−ρ|j−i|, we have | det(A)| ≤ (n+1)2

2 αn 1
1−e−ρ . Denote Mij as the (n−1)×(n−1)

matrix derived by eliminating the i-th row and j-th column from the original matrix

A . We then have | det(Mij)| ≤ n2

2 αn−1 e−|i−j|ρ

1−e−ρ .

Proof. We prove the first claim by direct determinant calculation. Under the
set equality sense and with {j1, j2, . . . , jn} = {1, 2, . . . , n}, we have det(A) =
∑

±a1j1 . . . anjn . Clearly, | det(A)| ≤
∑

|a1j1 . . . anjn |. Define d{j1, j2,...,jn} =
∑

i=1, 2,...,n

|i − ji|, by the given assumptions, |a1j1 . . . anjn | ≤ αne−d{j1, j2,...,jn}ρ and

| det(A)| ≤ ∑ |a1j1 . . . anjn | ≤ αn
∑

e−d{j1, j2,...,jn}ρ . Let’s look at all the n! terms
of {j1, j2, . . . , jn}. There is one term with d{j1, j2,...,jn} = 0 , and son on. Each of

them corresponds to permutation
(

1, 2,...,n
j1, j2,...,jn

)

, and all of the permutations form

a permutation group. Any permutation besides I =
( 1, 2,...,n
1, 2,...,n

)

swaps at least two
positions and thus d{j1, j2,...,jn} ≥ 2 if it is not zero. Actually, d{j1, j2,...,jn} = 2
only happens when two adjacent positions get exchanged. In other words, one ex-
change (formally named transposition) will cause d{j1, j2,...,jn} increase at least by
2. There are at most bn

2 c pairs of positions to swap in the sequence of {1, 2, . . . , n}.
To reverse the reasoning, for d{j1, j2,...,jn} = K with K fixed, there are at most

1+ 2+ . . .+ bn
2 c ≤

n(n+1)
2 ≤ (n+1)2

2 sequences to achieve it. This leads to estimate

| det(A)| =
∑

|a1j1 . . . anjn | ≤ αn
∑

e−d{j1, j2,...,jn}ρ

≤ αn
∑

(1 +
(n+ 1)2

2
e−2ρ + . . .) ≤ (n+ 1)2

2
αn 1

1− e−ρ
,

which gives the conclusion we want.
We now look at matricesMij derives by eliminating the i-th row and j-th column

from the original matrix A . With the off-diagonal exponential decaying assump-
tions and direct determinant calculation and inequality manipulation, we can get

similarly the fact that | det(Mij)| ≤ n2

2 αn−1 e−|i−j|ρ

1−e−ρ . �

The proof of the previous theorem is now straightforward as follows.
Proof of Theorem 2.1: We have analyzed determinants of the related sub-
matrices in the theoretical inverse operation. The inverse matrix of the matrix

A =

(

a11 ··· a1n

...
. . .

...
an1 ··· a1n

)

can be express as B = A−1 = 1
det(A)

(

A11 ··· A1n

...
. . .

...
An1 ··· A1n

)

, where

Aij = (−1)i+j det(Mij), Mij is a (n−1)×(n−1) matrix derived by eliminating the
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i-th row and j-th column from the original matrix A . From the previous lemma,

we know that |Aij | ≤ n2

2 αn−1 e−|i−j|ρ

1−e−ρ . We have thus |bij | ≤ n2

2 det(A)α
n−1 e−|i−j|ρ

1−e−ρ

which concludes our proof. Interestingly enough, the decay ratios for both matrices
are actually the same.

Let’s see what kind of band limited matrix is a off-diagonal exponentially decay

matrix. Suppose A =

(

a11 ··· a1n

...
. . .

...
an1 ··· a1n

)

a band limited matrix with bandwidth 2M+1,

that is aij = 0 if |i− j| > M , define

α = min
1≤i≤n

{|aii|},

ρ = min
0<|i−j|≤M, aij 6=0

{ 1

|i− j| log |
α

aij
|}.

Conditions α > 0 and ρ > 0 are required for matrix A to be off-diagonal expo-
nentially decay, that is |aij | ≤ α · e−ρ|j−i| for all i, j. These requirements simply
translate into the following conditions:

A : aii 6= 0, for all i,

B : |aij | ≤ |aii|, if i 6= j,

C : aij = 0, if |i = j| > M.

These are actually very relaxed conditions (e.g. conditions A and B are even weaker
than diagonal dominance). Most meaningful band limited matrices fall in this
category in practice (for numerical differential equations, the previous conditions are
true for most matrices derived by finite difference and finite element discretization)
. As will be seen in the next section, we do demand fast decay rate for efficient
numerical computations.

A subtle point commented by professor Wolfgang Hackbusch must be mentioned
here for further clarification. In the standard case of partial differential equa-
tions, the off-diagonal entries of the inverse are not decaying exponentially in anal-
ysis. The inverse resembles the Green function, which for example in the 2nd-order
Laplace case decays like 1

|x−y| which is definitely not exponential in theory [6]. Ac-

tually, the matrix entries are in the order of O( 1
h2 )which is polynomial decay (let

alone its inverse) in theoretical sense if finite difference is applied for discretization.
Yet, we still get a band limited matrix with proper boundary conditions. By the
previous conditions A-C, this matrix (in numerical analysis sense only) is with off-
diagonal exponential decay entries given that the step size is fixed and the matrix
is fixed. The key point, once again, is that the matrix size and entries must be
fixed first. Exponential decaying properties (if so) and ratios can then be decided
for numerical computations only.

We emphasize that two things need to be distinguished: the underlying partial
differential equations and the derived linear system to be solved. Once the dis-
cretization scheme is fixed (include step sizes, dimensions and so on), the derived
linear system is fixed. All we need to do next is how to solve this linear system with
efficiency. Our view point is purely look at the numerical procedures in the second
part. Even the off-diagonal entries of the inverse are not decaying exponentially
with respect to step size of discretization (This is the analysis of the discretiza-
tion procedure). When discretization scheme get fixed however, the derived linear
system to be solved get fixed also. For most well-posed problems with proper dis-
cretization, the matrix is with good properties. Typically, it is with off-diagonal
exponential decay entries in numerical sense or band-limited (include cases that the
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matrix can be approximated by a band limited matrix after ”compression” or ap-
proximation schemes). We have also seen that as long as aii 6= 0, |aij | < |aii|, and

aij = 0, if |i − j| > M , then the derived matrix A =

(

a11 ··· a1n

...
. . .

...
an1 ··· a1n

)

can be viewed

as with off-diagonal exponentially decay entries. For a multigrid scheme with finite
difference discretization, the condition number gets smaller on coarse grid (i.e. the
original matrix has the largest condition number). As the step size refines, the
matrix condition number becomes bigger and the matrix bandwidth grows in linear
fashion. The entry decay rate on the coarse grid will not get slower though. We
can see that once the discretization and level of multigrid is fixed. Every matrix
get involved is with uniformly bounded condition numbers and good exponential
decay properties (only in the final numerical computation sense of course).

Clearly, the previous results extended the conclusions of [3, 4] (Lemma 1.1-1.3).
By great luck, it just happened this time that to analyze a general class (matrices
with off-diagonal exponential decay entries) is in a sense easier than to study a
special sub-class (band limited matrices).

3. An approximate algorithm to solve a single variable

We now present the following theorem, which is the main result of this paper.

Theorem 3.1. If matrix A and its inverse B = A−1 both have off-diagonal ex-
ponentially decay entries, |ai,j | ≤ α · e−ρ|j−i|, |bi,j | ≤ β · e−λ|j−i|, for ∀ j and
i = 0, . . . , n − 1, α > 0, ρ > 0, β > 0, λ > 0, we define the following matrix
and vector truncations

A(T,i,K) =

















aT (i,K,−),T (i,K,−) · · · aT (i,K,−),i · · · aT (i,K,−),T (i,K,+)

...
. . .

...
. . .

...
ai,T (i,K,−) · · · ai,j · · · ai,T (i,K,+)

...
. . .

...
. . .

...
aT (i,K,+),T (i,K,−) · · · aT (i,K,+),i · · · aT (i,K,+),T (i,K,+)

















,

and

f (T,i,K) =

















fT (i,K,−)

...
fi
...

fT (i,K,+)

















,

where T (i,K,−) = max(1, i − K), T (i,K,+) = min(n, i + K). Suppose x
T (i,K)
i

be be the one variable in the solution vector of linear system A(T,i,K)y = f (T,i,K)

corresponds to the matrix entry ai,i. Denote

Ã
(T,i,K)

=





























a1,1 ··· a1,T (i,K,−)−1 ··· a1,T (i,K,+)+1 ··· a1,n

.

.

.

.

.

.

.

.

. ···

.

.

.

.

.

.

.

.

.

aT (i,K,−)−1,1 ··· aT (i,K,−)−1,T (i,K,−)−1 ··· aT (i,K,−)−1,T (i,K,+)+1 ··· aT (i,K,−)−1,n

0 A(T,i,K) 0
aT (i,K,+)+1,1 ··· aT (i,K,+)+1,T (i,K,−)−1 ··· aT (i,K,+)+1,T (i,K,+)+1 ··· aT (i,K,+)+1,n

.

.

.

.

.

.

.

.

. ···

.

.

.

.

.

.

.

.

.

an,1 ··· an,T (i,K,−)−1 ··· an,T(i,K,+)+1 ··· an,n





























,
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the solution of Ã(T,i,K)y = f is then x̃(T,i,K) =





α[1,i−K−1]

x(T,i,K)

β[i+K+1,n]



 for some α[1,i−K−1]

and β[i+K+1,n]. With the notation of ∆ = maxi,K{

∥

∥

∥

∥

∥

∥

α[1,i−K−1]

x(T,i,K)

β[i+K+1,n]

∥

∥

∥

∥

∥

∥

∞

}, we have

(4) |xT (i,K)
i − xi| ≤ 4(2K + 1)∆αβ(

n−1
∑

j=0

e−jρ)(
n−1
∑

j=0

e−jλ)e−(K+1)min{ρ,λ},

clearly, error {|xT (i,K)
i − xi|}1≤i≤n decay to zero fast with respect to K uniformly.

Proof. Given the ”windowing” technique, three xi cases need to be analyzed 1 ≤
i ≤ K, K+1 ≤ i ≤ n−K and n−K+1 ≤ i ≤ n (they correspond to the upper-left
corner, middle portion and lower-right corner of the matrix A ). We present proof
for the middle portion only. Other two parts can be analyzed in the same way.

Due to the fact Ã(T,i,K)x̃(T,i,K) = f = Ax, we have

(5)

0 = Ã(T,i,K)x̃(T,i,K) −Ax

= Ã(T,i,K)x̃(T,i,K) −Ax̃(T,i,K) +Ax̃(T,i,K) −Ax

= (Ã(T,i,K) −A)x̃(T,i,K) +A(x̃(T,i,K) − x)

= (Ã(T,i,K) −A)x(T,i,K) +A(x̃(T,i,K) − x).

The previous equation leads us to

(6) x̃(T,i,K) − x = A−1(A− Ã(T,i,K))x̃(T,i,K) = B(A− Ã(T,i,K))





α[1,i−K−1]

x(T,i,K)

β[i+K+1,n]



 .

Define







ξ1
...
ξn






= (A− Ã(T,i,K))





α[1,i−K−1]

x(T,i,K)

β[i+K+1,n]



 =















0
ξT (i,K,−)

...
ξT (i,K,+)

0















,

some detailed calculations based on the exponential decaying properties with ab-
solute values gives us

(7)















0
|ξT (i,K,−)|

...
|ξT (i,K,+)|

0















≤ 2∆α(

n−1
∑

j=0

e−jρ)

























0
e−ρ

...

e−(K+1)ρ

...
e−ρ

0

























.
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Please note that the previous inequality is valid with corresponding entries. For
example, we have
(8)

|ξT (i,K,−)| ≤ ∆(

T (i,K,−)−1
∑

j=1

α · e−ρ|j−T (i,K,−)| +

n
∑

j=T (i,K,+)+1

α · e−ρ|j−T (i,K,+)|)

≤ 2∆α(
n−1
∑

j=0

e−jρ)e−ρ

and estimates for all other entries follow the same way.
Loot at the specific t−th entry of x̃(T,i,K) − x and apply the exponential decay

properties of matrix B = A−1, we have

(9)

|x̃(T,i,K)
i − xi|

≤ 4∆αβ(

n−1
∑

j=0

e−jρ)(

n−1
∑

j=0

e−jλ)(2

K
∑

j=1

e−jρe−(K−j+1)λ + e−(K+1)ρ)

≤ 4∆αβ(

n−1
∑

j=0

e−jρ)(

n−1
∑

j=0

e−jλ)(2K + 1)e−(K+1)min{ρ,λ},

and the last inequality concludes our proof. �

We must point out that the error of our approximate algorithm is also based on,
besides the decaying ratios, the constant ∆. That is the window size needs to be
analyzed and selected in practice. Trial and error (typically by simulation) is of
course one way.

Based on the matrix analysis of the previous section, the following results are
obvious.

Corollary 3.2. If matrix A has off-diagonal exponentially decay entries, |ai,j | ≤
α · e−ρ|j−i|, for ∀ j and i = 0, . . . , n− 1, α > 0, ρ > 0, we have

(10) |xT (i,K)
i − xi| ≤ 2(2K + 1)

n2∆αn

det(A)(1 − e−ρ)
(
n−1
∑

j=0

e−jρ)2e−(K+1)ρ

Most importantly, the previous analysis leads us to the following approximate
algorithm.

Linear system decomposition algorithm: Instead of solving the original
linear system Ax = f directly, the sub-linear system A(T,i,K)y = f (T,i,K) can be
used to solve xi only in an approximation sense (numerically with tolerable error).
The requirement is that matrix A has off-diagonal exponentially decay entries.

As analyzed before, most band limited matrices in numerical partial differential
equation cases are with off-diagonal exponentially decay entries. The other way is
also true, that is off-diagonal exponential decay matrices are virtually band limited,

in the sense of matrix compression. A compressed matrix A(W ) = (a
(W )
i,j )1≤i,j≤n

can be defined as

(11) a
(W )
i,j =

{

ai,j , |j − i| ≤ W,

0, |j − i| > W,
for ∀ j, and i = 1, . . . , n,
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where W is called the off-diagonal band width, or A(ε) = (a
(ε)
i,j )1≤i,j≤n defined as

(12) a
(ε)
i,j =

{

ai,j , |ai,j | ≥ ε,

0, |ai,j | < ε,
for ∀ j, and i = 1, . . . , n,

where ε is called the truncation threshold. We have easily

(13)

∥

∥

∥
A(W ) −A

∥

∥

∥

∞
≤ a · e−ρ(W+1,

∥

∥

∥A(ε) −A
∥

∥

∥

∞
≤ ε.

We are thus happy that our method covers practically most important matrices.
The most extreme off-diagonal decay matrix is of course diagonal matrix.

Example 3.3. Linear system with matrix

A =











1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
1 0 · · · 1











cannot be approximately solved by the previous method. More comprehensive matrix
analysis is thus needed.

Let’s look at numerical stability as theorem 3.1. guarantees also the convergence.
Using same notations defined in the previous proof and the standard numerical
stability analysis, we can get that the ”windowing” operation to solve xi when 1 ≤
i ≤ K will give:
∥

∥

∥δX̃(T,i,K)
∥

∥

∥

p
∥

∥

∥
X̃

(T,i,K)
p

∥

∥

∥

p

≤ cond(A(T,i,K))p

(1− cond(A(T,i,K))p
‖δA(T,i,K)‖

p

‖A(T,i,K)‖
p

)

(

∥

∥δf (T,i,K)
∥

∥

p
∥

∥f (T,i,K)
∥

∥

p

+

∥

∥δA(T,i,K)
∥

∥

p
∥

∥A(T,i,K)
∥

∥

p

),

with cond(A(T,i,K))p =
∥

∥A(T,i,K)
∥

∥

p

∥

∥

∥A(T,i,K)−1
∥

∥

∥

p
, and p = 1, 2 or ∞ as the corre-

sponding matrix condition number, where condition
∥

∥

∥A(T,i,K)−1
∥

∥

∥

p

∥

∥δA(T,i,K)
∥

∥

p
≤ 1

is hidden as usual. Therefore, a sufficient condition for stability could be the previ-
ous condition numbers are uniformly bounded.

4. Split and merge: freedom of implementation

Being able to solve one variable out a whole linear system defined by matrix with
off-diagonal exponential decay entries, we can thus solve any subset or combination
of variables approximately in the whole system. The practical importance of this
flexibility is that we can solve only the variables we are most interested in (e.g.,
numerical PDE solutions at certain region or along certain curve).

A straightforward variation of the previous theorem is of course to use unequal
”window” sizes as follows: using

A(T,i,K1,K2) =

















aT (i,K1,−),T (i,K1,−) · · · aT (i,K1,−),i · · · aT (i,K1,−),T (i,K2,+)

...
. . .

...
. . .

...
ai,T (i,K1,−) · · · aii · · · ai,T (i,K2,+)

...
. . .

...
. . .

...
aT (i,K2,+),T (i,K1,−) · · · aT (i,K2,+),i · · · aT (i,K2,+),T (i,K2,+)

















,
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and

f (T,i,K1,K2) =

















fT (i,K1,−)

...
fi
...

fT (i,K1,+)

















to solve for x
(T,i,K1,K2)
i . Following the proof of Theorem 3.1, we know that the

error is decided by min{K1,K2} (the smaller window size) similarly.
Results of Theorem 3.1 tell us that we can solve approximately one variable in a

large system. Of course, we can also solve a few variables adjacent to each other via
the same ”windowing” techniques (the left and right window sizes can be different).
More precisely, using

A
(T,[i···j],K)

=



































aT (i,K,−),T (i,K,−) · · · · · · · · · aT (i,K,−),T (j,K,+)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

.

.

. · · ·









ai,i · · · ai,j

.

.

.
.
.
.

.

.

.
aj,i · · · aj,j









· · ·

.

.

.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
aT (j,K,+),T (i,K,−) · · · · · · · · · aT(j,K,+),T (j,K,+)



































,

and

f (T,[i···j],K) =



























fT (i,K,−)

...
fi
...
fj
...

fT (j,K,+)



























to solve x
(T,[i···j],K)
i···j (the i-th through j-th variables).

Split and Merge approach: The sub-linear system for approximate solutions

x
(T,[i···j],K)
i···j can be divided into two sub-linear systems to solve x

(T,[i···l],K)
i···l and

x
(T,[···j],K)
l···j respectively, where i ≤ l ≤ j. Two sub-linear systems to solve x

(T,[i···l],K)
i···l

and x
(T,[···j],K)
l···j can be merged into one sub-linear system to solve x

(T,[i···j],K)
i···j , where

i ≤ l ≤ j. We call the first process ”split” and the second process ”merge”.
Let’s look at two extreme cases. Our approximate algorithm is of course the

traditional direct solution for x
(T,[l···n],K)
l···n . There is no extra computation due to

”window technique” processing. It has the slowest speed but with minimum amount
of computation (we can take either direct or iterative approaches). The full parallel

implementation of solving {x(T,i,K)
i }ni=1 one by one is the fastest in speed but with

maximum amount computation due to maximum possible ”windowing” processing
(but the computation time is independent of matrix size now). With split and merge
algorithm, we can freely choose an algorithm with desired amount of computation
and time of computation. These algorithms range from the slowest to the fastest in
speed. It is also interesting to see the connection and harmony with the conventional
approaches.
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Is our approach direct or iterative? Its very essence is direct. We simply de-
compose the matrix into many non-overlap blocks (for the parts to be solved) and
attaching two or one (if at the left or right corner) ”windows” on the edge(s) to
make these blocks into over-lapping blocks for carrying out computations. For each
overlapping block (simply a small linear system), we can use conventional direct or
iterative methods with free choice.

5. Further discussions

Our simple intuitions have led to practical numerical algorithms. The previous
results in a sense amazed us for linear algebra is a well-studied area. This short
paper shows also that our understanding of finite dimensional Euclidean spaces is
still limited. No numerical results are presented here due to the fact that the key
techniques have been applied in Huawei HI3111 digital TV chipset with remarkable
performance before 2006. In fact the first draft of the paper was originated more
than ten years ago and re-polished in 2016.

Viewing from the algebraic domain decomposition point of view, what we have
done is in a sense a virtual domain decomposition method in simple linear alge-
bra form. Yet, it is very different as no iteration is involved in our approach. By
analogy and just by analogy, can we say that the comparison of our approach and
algebraic domain decomposition is sort of resembles the differences between the
conventional direct and iterative methods? Anyway, it seems that the very ideas
of decomposition can be applied and further extended for numerical procedures in
approximation theory, linear programming and other problems. We will be happy
to see further progresses and will try our best also to work on them.
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