
INTERNATIONAL JOURNAL OF c© 2018 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 15, Number 3, Pages 307–339

APPROXIMATION OF THE LONG-TERM DYNAMICS OF THE

DYNAMICAL SYSTEM GENERATED BY A 3D NS-α SYSTEM

WITH PHASE TRANSITION

T. TACHIM MEDJO AND F. TONE

Abstract. In this article we study an approximate model for a binary fluid flow in a three-
dimensional bounded domain. The governing equations consist of the Allen–Cahn equation for
the order (phase) parameter φ coupled with the Navier–Stokes-α (NS-α) system for the velocity u.

We discretize these equations in time using the implicit Euler scheme and we prove that the global
attractors generated by the numerical scheme converge to the global attractor of the continuous
system as the time-step approaches zero.

Key words. Navier–Stokes-α, phase transition, attractors, implicit Euler scheme, Gronwall
Lemma.

1. Introduction

It is well known that the incompressible Navier–Stokes equations govern the
motion of single-phase fluids, such as air or water. On the other hand, we are faced
with the difficult problem of understanding the motion of binary fluid mixtures, that
is, fluids composed by either two phases of the same chemical species or phases of
different composition. Diffuse interface models are well-known tools to describe the
dynamics of complex (e.g., binary) fluids, [23]. For instance, this approach is used
in [3] to describe cavitation phenomena in a flowing liquid. The model consists of
the Navier–Stokes equations coupled with the phase-field system, [4, 23, 22, 24]. In
the isothermal compressible case, the existence of a global weak solution is proved in
[18]. In the incompressible isothermal case, neglecting chemical reactions and other
forces, the model reduces to an evolution system which governs the fluid velocity u
and the order parameter φ. This system can be written as a Navier–Stokes equation
coupled with a convective Allen–Cahn equation, [23]. The associated initial and
boundary value problem was studied in [23], in which the authors proved that the
system generated a strongly continuous semigroup on a suitable phase space which
possesses a global attractorA. They also established the existence of an exponential
attractor E . This entails that A has a finite fractal dimension, which is estimated in
[23] in terms of some model parameters. The dynamic of simple single-phase fluids
has been widely investigated, although some important issues remain unresolved,
[40]. In the case of binary fluids, the analysis is even more complicated and the
mathematical study is still at its infancy, as noted in [23].

In this article we study an approximate model for a binary fluid flow in a three-
dimensional bounded domain. The model is derived from the 3D coupled Allen–
Cahn–Navier–Stokes system by substituting the 3D Navier–Stokes system with the
3D NS-α equations. This model can be considered as a regularized approximation
of the 3D coupled Allen–Cahn–Navier–Stokes system, depending on a small positive
parameter α > 0, where in some terms, the unknown velocity function v is replaced
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by a smoother function u, solution of the elliptic system v = u−α2∆u. For α = 0,
the model reduces to the exact 3D coupled Allen–Cahn–Navier–Stokes system.

Since the uniqueness theorem for the global weak solutions (or the global ex-
istence of strong solutions) of the initial-value problem of the 3D coupled Allen–
Cahn–Navier–Stokes system is not proved yet, the known theory of global attrac-
tors of infinite dimensional dynamical systems is not applicable to the 3D coupled
Allen–Cahn–Navier-Stokes system. This situation is the same for the 3D Navier–
Stokes systems. Using regular approximation equations to study the classical 3D
Navier–Stokes systems has become an effective tool both from the numerical and
the theoretical point of views. It is well-known that direct numerical simulation
of the 3D NSE for many physical applications with high Reynolds number flows
is intractable even using state-of-the-art numerical methods on the most advanced
supercomputers available nowadays. Recently, many applied mathematicians have
developed regularized turbulence models for the 3D NSE as an attempt to overcome
this simulation barrier. Their aim is to capture the large, energetic eddies without
having to compute the smallest dynamically relevant eddies, by instead modelling
the effects of small eddies in terms of the large scales in the 3D NSE. Since 1998,
many such regularized models have been proposed, tested and investigated from
both the numerical and the mathematical point of views. Among these models,
one can find the globally well-posed 3D Navier–Stokes-α (NS-α) equations (also
known as the viscous Camassa–Holm equations and Lagrangian averaged Navier–
Stokes-α model), the 3D Leray-α models, the modified 3D Leray-α models, the
simplified 3D Bardina models, the 3D Navier–Stokes–Voight (NSV) equations, and
their inviscid counterparts. As noted in [14], it was demonstrated analytically and
numerically that the NS-α model gives a good approximation in the study of many
problems related to turbulent flows. In particular, it was found that the explicit
steady analytical solution of the NS-α model compares successfully with empirical
and numerical experiment data for a wide range of Reynolds numbers in turbulent
channel and pipe flows, [14]. Let us recall that the inviscid 3D NS-α equations
were first proposed in [19]. As described in [19, 33], the 3D NS-α equations are a
systems of partial differential equations for the mean velocity in which a nonlinear
dispertive mechanism filters the small scales. As such, the 3D NS-α equations serve
as an appropriate model for turbulent flows and a suitable approximation of the
3D Navier–Stokes, as documented in [9, 11, 10, 12, 31, 30, 33, 25, 26, 27, 13, 29].
A successful comparison with data for time-averaged quantities for a wide range of
Reynolds numbers in turbulent channel and pipe flows was done in [9, 11]. Further
studies of the 3D NS-α models in the context of turbulence modeling appear in
[15, 32, 36]. Analytical studies of the global existence, uniqueness and regularity
of solutions to the 3D NS-α system are performed in [19] in the case of periodic
boundary conditions. Some existence and uniqueness results are also established in
[33, 7, 8, 6]. In [33], the authors prove the global well-posedness and regularity of
the 3D NS-α equations in a bounded domain with a non-slip boundary condition.
A non-autonomous NS-α model is considered in [7], where the authors study the
asymptotic behavior of the solutions of a 3D NS-α with delay forces. They prove
the existence of a pullback and forward attractors for the model. The stochastic
version is also studied in [6].

Motivated by the above works and the fact that a full mathematical theory of
the 3D coupled Allen–Cahn–Navier–Stokes system is still lacking, the author in
[34] studied an approximate model for a binary fluid flow in a three dimensional
bounded domain. The governing equations consist of the Allen–Cahn equations
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for the order (phase) parameter φ coupled with the NS-α system for the velocity
u. He analyzed the asymptotic behavior of the solution to the associated initial
and boundary value problem. In particular, he proved that the system generates a
strongly continuous semigroup on a suitable phase space, which possesses a global
attractor A. Then he established the existence of an exponential attractor E , which
entails that A has finite fractal dimension. In [20], the authors study the relations
between the long-time dynamics of the 3D Allen–Cahn–NS-α model and the exact
3D Allen–Cahn–Navier–Stokes system. Proceeding in the same spirit as in [14],
it is proved in [20] that bounded set of solutions of the Allen–Cahn–NS-α model
converge to the trajectory attractor of the 3D Allen–Cahn–Navier–Stokes system
as time goes to +∞ and α approaches 0+. It is also proved that the trajectory
attractors of the 3D Allen–Cahn–NS-α model converges to the trajectory attractor
of the 3D Allen–Cahn–Navier–Stokes as α approaches 0+. Moreover, assuming the
potential to be real analytic, it is demonstrated in [20] that in absence of external
forces, each trajectory converges to a single equilibrium and we obtain a convergence
rate estimate.

In this article, we study the numerical approximation of the 3D Allen–Cahn–
Navier–Stokes considered in [34, 20]. We discretize the model in time using the
implicit Euler scheme and with the aid of the discrete Gronwall lemma and of the
discrete uniform Gronwall lemma we prove that the approximate solution is uni-
formly bounded in a suitable space. Using the theory of the so-called multi-valued
attractors, we also prove that the global attractors generated by the numerical
scheme converge to the global attractor of the continuous system as the time-step
approaches zero.

The article is structured as follows. In the next section, we recall from [34, 20]
the 3D NS-α model with phase transition and its mathematical setting, including
the weak formulation of the associated initial and boundary value problem. In
Subsection 3.1, following some ideas of [23], we prove that the approximate solution
is uniformly bounded in a suitable phase space Y. This allows us to prove in
Subsection 3.2 that the implicit Euler scheme is uniformly bounded in a Hilbert
space V, dense and compactly embedded in Y. Using the tools developed in [16]
(see also, [17, 28]), in Section 4 we study the convergence of the discrete (multi-
valued) attractors to the continuous (single-valued) attractor. For convenience, we
recall those results in Subsection 4.1, and then we apply them to the two-phase
flow model in Subsection 4.2.

2. A 3D NS-α model with phase transition and its mathematical setting

2.1. Governing equations. We assume that the domain M of the fluid is a
bounded domain in R

3. The state of the system is described by a pair (u, φ), where
u = (u1, u2, u3) is the velocity field of the fluid and φ is the order parameter. Let
A0u denote the Stokes operator. The system of equations for (u, φ) reads:

(1)



























∂
∂t

(u− α2∆u) + ν1(A0u− α2∆(A0u)) + (u · ∇)(u − α2∆u)

−α∇u∗ ·∆u+∇p−Kµ∇φ = g,
div u = 0,
∂φ
∂t

+ u · ∇φ+ µ = 0,

µ = −ν2∆φ+ α0f(φ),

with appropriate initial and boundary conditions.
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Let us first note that (1) is obtained by coupling the well-known Allen–Cahn
equations

(2)
∂φ

∂t
= −(−ν2∆φ+ α0f(φ))

with the 3D NS-α system through convection and order parameter.
In (1), the unknown functions are the velocity u = (u1, u2, u3) of the fluid, its

pressure p and the order (phase) parameter φ. The quantity µ is the variational
derivative of the following free energy functional

(3) F(φ) =

∫

M

(ν2
2
|∇φ|2 + α0F (φ)

)

ds,

where, e.g., F (r) =

∫ r

0

f(ζ)dζ. Here, the constants ν1 > 0 and K > 0 correspond

to the kinematic viscosity of the fluid and the capillarity (stress) coefficient respec-
tively, ν2, α0 > 0 are two physical parameters describing the interaction between
the two phases. In particular, ν2 is related to the thickness of the interface sepa-
rating the two fluids. Hereafter, as in [23], we assume that ν2 ≤ α0. For α = 0, the
model (1) reduces to the 3D version of coupled Allen–Cahn–Navier–Stokes studied
in [23]. Let us recall from [19] that the positive constant α represents the square of
the spacial scale at which the fluid motion is filtered.

We endow (1) with the boundary condition

(4) u = A0u = 0,
∂φ

∂η
= 0 on ∂M× (0,+∞),

where ∂M is the boundary of M and η is its outward normal. The initial condition
is given by

(5) (u, φ)(0) = (u0, φ0) in M.

2.2. Mathematical setting. We first present a weak formulation of (1)–(5).
Hereafter, we assume that the domain M is bounded with a smooth boundary
∂M (e.g., of class C2). As in [23], we assume that f ∈ C1(R) satisfies

(6)

{

lim
|r|→+∞

f
′

(r) > 0,

|f ′

(r)| ≤ cf (1 + |r|2), ∀r ∈ R.

where cf is some positive constant. It follows from (6) that

(7) |f(r)| ≤ cf (1 + |r|3), ∀r ∈ R.

Note that from (6), we can find γ > 0 such that

(8) lim
|r|→+∞

f
′

(r) > 2γ > 0.

Let us denote by Lp(M) (1 ≤ p <∞) the classic Lp space with the norm

(9) |Φ|p =

(
∫

M

|Φ(x, y, z)|pdxdydz
)1/p

, ∀Φ ∈ Lp(M).

We also denote by Hm(M) (m ≥ 1) the classic Sobolev space of square-integrable
functions with square-integrable derivatives up to order m.

We will denote by (·, ·)L2 and |·|L2 , respectively, the scalar product and associated
norm in (L2(M))3, and by (∇u,∇v)L2 the scalar product in (L2(M))3 of the
gradients of u and v. We consider the scalar product in (H1

0 (M))3 defined by

(10) ((u, v)) = (u, v)L2 + α2(∇u,∇v)L2 , ∀u, v ∈ (H1
0 (M))3,
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where its associated norm, which is equivalent to the usual gradient norm, will be
denoted by ‖ · ‖.

LetH be the closure in (L2(M))3 of the set V = {v ∈ (D(M))3 : ∇·v = 0 in M},
and by V the closure of V in (H1

0 (M))3.
We denote by A0 the Stokes operator, with domain D(A0) = (H2(M))3 ∩ V,

defined by
A0w = −P(∆w), ∀w ∈ D(A0),

where P is the Leray operator, i.e., the projection operator from (L2(M))3 onto
H.

Recall that since ∂M is Lipschitz, |A0w|L2 defines in D(A0) a norm which is
equivalent to the (H2(M))3-norm, and thus D(A0) is a Hilbert space with the
scalar product

(v, w)D(A0) = (A0v,A0w).

Hereafter, we set H = V, with the scalar product (u, v)H = ((u, v)), and U =
D(A0), with the scalar product ((u, v))U = (A0u,A0v). We also denote by | · |H and
‖ · ‖U the associated norms defined on H and U respectively.

Then, H and U are two real and separable Hilbert spaces such that U ⊂ H, with
the injection being compact and dense. We will identify H with its topological dual
H∗, by considering U as a subspace of H∗, and we identify v ∈ U with the element
fv ∈ H∗ given by

fv(w) = (v, w)H, ∀w ∈ H.
We will denote by ‖ · ‖U∗ the norm of U∗, and by 〈·, ·〉, the duality product between
U∗ and U .

Now, we define the operator A by

(11) 〈Au, v〉 = 〈A0u, v〉+ α2〈A0u,A0v〉, ∀u, v ∈ D(A0).

Then, we have (see [8, 7])

(12)

A ∈ L(U ,U∗),

A is self-adjoint,

there exists α1 > 0, such that 〈Au, u〉 ≥ α1‖u‖2U , ∀u ∈ U .

Remark 2.1. Owing to the properties of A, we define

((u, v))A = 〈Au, v〉, ∀u, v ∈ U .
It is clear that ((·, ·))A is a scalar product in U whose associated norm is equivalent
to the usual norm ‖ · ‖U . From now on, without loss of generality, we simply set

(13) ((u, v))U = 〈Au, v〉, ∀u, v ∈ U and ‖u‖2U = 〈Au, u〉.
It then follows that

(14) λ1|u|2H ≤ ‖u‖2U , ∀u ∈ U ,
where λ1 > 0 is the first eigenvalue of the operator A.

We also note that

(15) 〈u+ α2A0u, u〉 = |u|2L2 + α2|∇u|2L2 = |u|2H, ∀u ∈ H,

(16)
〈A0u+ α2A0(A0u), u〉 = |∇u|2L2 + α2|A0u|2L2 = ‖u‖2U

= 〈Au, u〉, ∀u ∈ U , with A0u = 0 on ∂M,

(17) 〈u+ α2A0u,A0u〉 = |∇u|2L2 + α2|A0u|2L2 = ‖u‖2U , ∀u ∈ U ,
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(18)
〈A0u+ α2A0(A0u), A0u〉 = |A0u|2L2 + α2‖A0u‖2

= |A0u|2H, ∀u ∈ D(A), with A0u = 0 on ∂M.

We define the linear positive unbounded operator Aγ on L2(M) by:

(19) Aγφ = −∆φ+ γφ, ∀φ ∈ D(Aγ),

where

D(Aγ) =

{

ρ ∈ H2(M);
∂ρ

∂η
= 0 on ∂M

}

.

Note that A−1
γ is a compact linear operator on L2(M) and |Aγ · |L2 is a norm

on D(Aγ) that is equivalent to the H2-norm. Hereafter, we will set

(20) ‖ψ‖2γ = (Aγψ, ψ)L2 = |∇ψ|2L2 + γ|ψ|2L2, ∀ψ ∈ D(A1/2
γ ).

2.3. Some properties of the nonlinear term. We first recall from [8, 7] some
properties of the nonlinear term

(u · ∇)(u − α2∆u)− α∇u∗ ·∆u
that appears in (1).

For u ∈ D(A0) and v ∈ (L2(M))3, we define (u·∇)v as the element of (H−1(M))3

given by
(21)

〈(u·∇)v, w〉 =
3
∑

i,j=1

〈∂ivj , uiwj〉 = −
3
∑

i,j=1

∫

M

vj(wj∂iui+ui∂iwj)dx, ∀w ∈ (H1
0 (M))3.

We can check that there exists a constant c1 > 0 depending only on M, such that
(22)
|〈(u · ∇)v, w〉| ≤ c1|A0u|L2 |v|L2‖w‖, ∀(u, v, w) ∈ D(A0)× (L2(M))3 × (H1

0 (M))3.

If u ∈ D(A0), then ∇u∗ ∈ (H1(M))3×3 and for v ∈ (L2(M))3, we have ∇u∗ · v ∈
H−1(M))3, with

(23) 〈∇u∗ · v, w〉 =
3
∑

i,j=1

∫

M

(∂jui)viwjdx, ∀w ∈ (H1
0 (M))3.

We can check that there exists a constant c2 > 0 depending only on M, such that
(24)
|〈∇u∗ · v, w〉| ≤ c2|A0u|L2 |v|L2‖w‖, ∀(u, v, w) ∈ D(A0)× (L2(M))3 × (H1

0 (M))3.

We now consider the trilinear form b♯ defined by
(25)

b♯(u, v, w) = 〈(u·∇)v, w〉+〈∇u∗ ·v, w〉, ∀(u, v, w) ∈ D(A0)×(L2(M)3)×(H1
0 (M))3.

The following result is proved in [8, 7].

Proposition 1. The trilinear form b♯ satisfies

(26) b♯(u, v, w) = −b♯(w, v, u), ∀(u, v, w) ∈ D(A0)× (L2(M))3 ×D(A0),

and consequently

(27) b♯(u, v, u) = 0, ∀(u, v) ∈ D(A0)× (L2(M))3.

Moreover, there exists a constant c > 0, depending only on M, such that
(28)

|b♯(u, v, w)| ≤ c|A0u|L2 |v|L2‖w‖, ∀(u, v, w) ∈ D(A0)× (L2(M))3 × (H1
0 (M))3,
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and
(29)

|b♯(u, v, w)| ≤ c‖u‖|v|L2|A0w|L2 , ∀(u, v, w) ∈ (H1
0 (M))3 × (L2(M))3 ×D(A0).

Thus, in particular, b♯ is continuous on D(A0)× (L2(M))3 × (H1
0 (M))3.

We also define the bilinear operator B0 and the associated trilinear form b0 by

(30)
〈B0(u, v), w〉 = b♯(u, v + α2A0v, w), ∀u, v, w ∈ D(A0),
b0(u, v, w) = 〈B0(u, v), w〉, ∀u, v, w ∈ U .

Then, the following properties are proved in [7], (see also [6, 8]).

(31) b0(u, v, u) = 0, ∀u, v ∈ U ,

(32) |b0(u, v, w)| ≤ cb|u|H‖v‖U‖w‖U , ∀u, v, w ∈ U ,

(33) |b0(u, v, w)| ≤ cb‖u‖U‖v‖U |w|H, ∀u, v, w ∈ U .
We introduce the bilinear operator B1 (and its associated trilinear forms b1) as well
as the coupling mapping R0, which are defined from D(A0)×D(Aγ) into L

2(M),

and L2(M)×D(A
3/2
γ ) into H, respectively. More precisely, we set

(34)

(B1(u, φ), ρ)L2 =

∫

M

[(u · ∇)φ]ρdx = b1(u, φ, ρ), ∀u ∈ D(A0), φ, ρ ∈ D(Aγ),

(R0(µ, φ), w)L2 =

∫

M

µ[∇φ · w]dx

= b1(w, φ, µ), ∀w ∈ D(A0), (µ, φ) ∈ L2(M)×D(A
3/2
γ ).

Note that
R0(µ, φ) = Pµ∇φ,

(35) b1(u, φ, φ) = 0, b1(u, φ, fγ(φ)) = 0,

(36) b1(u, φ, ψ) = −b1(u, ψ, φ), ∀u ∈ D(A), φ, ψ ∈ D(Aγ).

We also have the following continuity properties of the trilinear form b1:

Lemma 1. There exists a constant c̃b > 0, depending only on M, such that

(37) |b1(u, φ, ψ)| ≤ c̃b|u|1/2H ‖u‖1/2U ‖φ‖1/2|Aγφ|1/2L2 |ψ|L2 ,

(38) |b1(u, φ, ψ)| ≤ c̃b|u|H‖φ‖1/2|Aγφ|1/2L2 |ψ|L2 , ∀u ∈ D(A0), φ, ρ ∈ D(Aγ).

Proof. Using Holder’s inequality, we find

(39) |b1(u, φ, ψ)| =
∣

∣

∣

∣

∫

M

[(u · ∇)φ]ψdx

∣

∣

∣

∣

≤ |u|L6 |∇φ|L3 |ψ|L2 .

By the Gagliardo–Nirenberg interpolation inequality, we have

(40) |u|L6 ≤ c|u|1/2L2 ‖u‖1/2H2 ,

(41) |γ|L3 ≤ c|γ|1/2L2 ‖γ‖1/2H1 ,

and thus (39) gives

(42) |b1(u, φ, ψ)| ≤ c|u|1/2L2 ‖u‖1/2H2 |∇φ|1/2L2 ‖∇φ‖1/2H1 |ψ|L2 ,

from which (37) follows right away.
Inequality (38) follows from (39), (41) and from the Sobolev imbedding H1 →֒

L6. �



314 T. TACHIM MEDJO AND F. TONE

Now we define the Hilbert spaces Y and V by

(43) Y = H×H1(M), V = U ×D(Aγ),

endowed with the scalar products whose associated norms are

(44)
|(u, φ)|2

Y
= K−1|u|2H + ν2(|∇φ|2L2 + γ|φ|2L2) =: K−1|u|2H + ν2‖φ‖2γ ,

‖(u, φ)‖2
V
= ‖u‖2U + |Aγφ|2L2 .

We also set

(45) fγ(r) = f(r) − α−1
0 ν2γr

and observe that fγ still satisfies (8) with γ in place of 2γ since ν2 ≤ α0. Also its

primitive Fγ(r) =

∫ r

0

fγ(ζ)dζ is bounded from below.

Throughout this article, we will denote by c a generic positive constant depending
on the domain M.

Using the notations above, we rewrite (1)–(4) as (see [23] for details)

(46)



















dũ
dt

+ ν1Au+B0(u, u)−KR0(ν2Aγφ, φ) = g, a.e., in M× (0,+∞),

ũ = u+ α2A0u, a.e., in M× (0,+∞),
µ = ν2Aγφ+ α0fγ(φ), a.e., in M× (0,+∞),
dφ
dt

+ µ+B1(u, φ) = 0, a.e., in M× (0,+∞).

Remark 2.2. In the weak formulation (46), the term µ∇φ is replaced by ν2Aγφ∇φ.
This is justified since f

′

γ(φ)∇φ is the gradient Fγ(φ) and can be incorporated into
the pressure gradient, see [23] for details.

Definition 2.1. Suppose that (u0, φ0) ∈ Y, g ∈ L2(0, T ;U∗) and T > 0. A pair
(u, φ) is called a weak solution to (46), (5) on [0, T ] if it satisfies (46), (5) in a weak
sense on [0, T ] and
(47)

(u, φ) ∈ C([0, T ];Y)∩L2([0, T ];V),
du

dt
∈ L2([0, T ];U∗),

dφ

dt
, µ ∈ L2([0, T ];L2(M)).

If (u0, φ0) ∈ V, a weak solution (u, φ) is called a strong solution on the time interval
[0, T ] if in addition to (47), it satisfies

(48) u ∈ C([0, T ];U) ∩ L2(0, T ;D(A)), φ ∈ C([0, T ];D(Aγ)) ∩ L2(0, T ;D(A3/2
γ )).

Remark 2.3. To justify the first part of (46), we note that if (u, φ) is a weak solution
to (46) satisfying (47), then we haveB0(u, u) ∈ L2([0,∞);U∗), Au ∈ L2([0,∞);U∗).
Moreover, we have

(49)
|(R0(Aγφ, φ), v)L2 | = |b1(v, φ,Aγφ)|

≤ c|v|L∞‖φ‖|Aγφ|L2 ≤ c‖v‖U‖φ‖|Aγφ|L2 ,

therefore R0(Aφ, φ) ∈ L2([0,∞);U∗).

Remark 2.4. The existence and uniqueness of weak and strong solutions to (46) is
proved in [34], (see also [21], where the convergence of the solutions as α goes to
zero is studied). In particular, the author in [34] proved that the system (46) has
a unique solution (u, φ) ∈ C(0, T ;Y) ∩ L2(0, T ;V).
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We define the continuous (nonlinear) semigroup from Y to Y by:

(50) S(t)(u0, φ0) = (u(t), φ(t)),

where (u, φ) is the solution to (46) with the initial condition (u0, φ0). The following
result is proved in [34].

Proposition 2. The semi-group S(t) from Y to Y associated with (46) is such that
i) There exists bounded absorbing sets in Y and in V.
ii) There exists a maximal attractor A which is compact and connected in Y and

bounded in V. Its basin of attraction is the whole space Y.

3. Implicit Euler scheme for (46)

In this article we discretize (46) using the fully implicit Euler scheme,

(51)























ũn−ũn−1

k + ν1Au
n +B0(u

n, un)−KR0(ν2Aγφ
n, φn) = gn,

ũn = un + α2A0u
n,

µn = ν2Aγφ
n + α0fγ(φ

n),
φn−φn−1

k + µn +B1(u
n, φn) = 0,

u0 = u0, φ
0 = φ0,

and prove that the attractors generated by the above system converge to the attrac-
tor generated by the continuous system (46) as the time-step converges to zero. To
prove the existence of the discrete attractors we need to use the theory of the multi-
valued attractors, that we discuss in Subsection 4.1. The need of employing the
theory of the multi-valued attractors comes from the fact that the uniqueness of the
solution of the system (51) can be proved under the restriction k ≤ κ(‖(u0, φ0)‖V),
for some κ(‖(u0, φ0)‖V) depending on the initial data. To see that, we let (un, φn)
and (vn, ψn) be two solutions corresponding to the same initial data (u0, φ0) ∈ V.
Letting wn = un − vn and θn = φn −ψn, we note that (wn, θn) is a solution of the
system
(52)














w̃n + ν1kAw̃
n + k [B0(u

n, un)−B0(v
n, vn)]

−Kk [R0(ν2Aγφ
n, φn)−R0(ν2Aγψ

n, ψn)] = 0,
w̃n = wn + α2A0w

n,
θn + ν2kAγθ

n + α0kfγ(φ
n)− α0kfγ(ψ

n) + k [B1(u
n, φn)−B1(v

n, ψn)] = 0,

which can be rewritten as
(53)














w̃n + ν1kAw̃
n + k [B0(w

n, un) +B0(v
n, wn)]

−Kk [R0(ν2Aγθ
n, φn) +R0(ν2Aγψ

n, θn)] = 0,
w̃n = wn + α2A0w

n,
θn + ν2kAγθ

n + α0kfγ(φ
n)− α0kfγ(ψ

n) + k [B1(w
n, φn) +B1(v

n, θn)] = 0.

Taking the scalar product of the first equation with wn, of the third equation with
ν2Aγθ

n in L2(Ω), integrating over Ω and adding the resulting equations, we obtain
(using (31)):

(

|wn|2H + ν2‖θn‖2γ
)

+ k
(

ν1‖wn‖2U + ν22 |Aγθ
n|2L2

)

+ kb0(v
n, wn, wn)

−Kk [b1(wn, φn, ν2Aγθ
n) + b1(w

n, θn, ν2Aγψ
n)]

+ k [b1(w
n, φn, ν2Aγθ

n) + b1(v
n, θn, ν2Aγθ

n)]

+ α0ν2k (fγ(φ
n)− fγ(ψ

n), Aγθ
n)L2 = 0,

(54)
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Using (33) and (37), we bound the nonlinear terms are bounded as follows:

k|b0(vn, wn, wn)| ≤ cbk‖vn‖U‖wn‖U |wn|H
≤ ν1

6
k‖wn‖2U + ck|wn|2H‖vn‖2U ,

(55)

k [b1(w
n, φn, ν2Aγθ

n) + b1(w
n, θn, ν2Aγψ

n)]

≤ c̃bν2k|wn|1/2H ‖wn‖1/2U ‖φn‖1/2|Aγφ
n|1/2L2 |Aγθ

n|L2

+ c̃bν2k|wn|1/2H ‖wn‖1/2U ‖θn‖1/2|Aγθ
n|1/2L2 |Aγψ

n|L2

≤ ν1
6
k‖wn‖2U +

ν22
6
k|Aγθ

n|2L2 + ck|wn|2H‖φn‖2|Aγφ
n|2L2

+ ck|wn|H‖θn‖|Aγψ
n|2L2

≤ ν1
6
k‖wn‖2U +

ν22
6
k|Aγθ

n|2L2 + ck|wn|2H‖φn‖2|Aγφ
n|2L2

+ ck|wn|2H|Aγψ
n|2L2 + ck‖θn‖2|Aγψ

n|2L2 ,

(56)

k [b1(w
n, φn, ν2Aγθ

n) + b1(v
n, θn, ν2Aγθ

n)]

≤ c̃bν2k|wn|1/2H ‖wn‖1/2U ‖φn‖1/2|Aγφ
n|1/2L2 |Aγθ

n|L2

+ c̃bν2k|vn|1/2H ‖vn‖1/2U ‖θn‖1/2|Aγθ
n|3/2L2

≤ ν1
6
k‖wn‖2U +

ν22
6
k|Aγθ

n|2L2 + ck|wn|2H‖φn‖2|Aγφ
n|2L2

+ ck|vn|2H‖vn‖2U‖θn‖2.

(57)

The last term in (54) is bounded as

k| (fγ(φn)− fγ(ψ
n), Aγθ

n)L2 | ≤ k|fγ(φn)− fγ(ψ
n)|L2 |Aγθ

n|L2

≤ ν22
6
k|Aγθ

n|2L2 + ck|fγ(φn)− fγ(ψ
n)|2L2 .

(58)

Recalling (45) and (6) we have

|fγ(φn)− fγ(ψ
n)|2L2

=

∫

Ω

|f(φn(x)) − f(ψn(x))− α−1
0 ν2γ(φ

n(x)− ψn(x))|2 dx

=

∫

Ω

|f ′(ζn(x)) − α−1
0 ν2γ|2(φn(x) − ψn(x))2 dx

(for some ζn(x) ∈ (φn(x), ψn(x)) or ζn(x) ∈ (ψn(x), φn(x)))

≤ 2

∫

Ω

(

2c2f(1 + |ζn(x)|4) + α−2
0 ν2

2γ2
)

(φn(x)− ψn(x))2 dx

≤ 2
(

2c2f + α−2
0 ν2

2γ2
)

|φn − ψn|2L2 + 4c2f

∫

Ω

|γn(x)|4(φn(x)− ψn(x))2 dx

(where γn(x) = φn(x) or ψn(x))

≤ 2
(

2c2f + α−2
0 ν2

2γ2
)

|φn − ψn|2L2 + 4c2f |γn|4L6 |φn − ψn|2L6

≤ 2
(

2c2f + α−2
0 ν2

2γ2
)

|φn − ψn|2L2 + c‖γn‖4‖φn − ψn‖2

(by the Sobolev imbedding H1(Ω) →֒ L6(Ω))

≤ 2
(

2c2f + α−2
0 ν2

2γ2
)

|φn − ψn|2L2 + cK4
1‖φn − ψn‖2 (by (64))

≤ K2
7‖θn‖2γ ,

(59)
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for some K7 = K7(‖(u0, φ0)‖Y) independent on n, and thus (58) gives

k| (fγ(φn)− fγ(ψ
n), Aγθ

n)L2 | ≤
ν22
6
k|Aγθ

n|2L2 + kK2
7‖θn‖2γ .(60)

Gathering relations (54)–(57) and (60), and using (64) and (142), we obtain

(

1− ckK2
1 − ckK2

1K
2
3 − ckK2

3

)

|wn|2H +
(

ν2 − ckK2
3 − ckK4

1 − kK2
7

)

‖θn‖2γ ≤ 0.

(61)

For k such that

k ≤ min

{

1,
1

κ
,

1

2c (K2
1 +K2

1K
2
3 +K2

3 )
,

ν2
2 (cK2

3 + cK4
1 +K2

7 )

}

=: κ0(‖(uo, φ0)‖V),

(62)

relation (61) implies wn = θn = 0. Hence, the system (51) possesses a unique
solution, provided that the time-step satisfies constraint (62). This dependence of
the time step on the initial value prevents us from defining a single-valued attractor
in the classical sense. This is why we need the theory of the multi-valued attractors,
that we discuss in Subsection 4.1.

Throughout the article, we assume that g ∈ L∞(0, T ;L2) and we let ‖g‖∞ :=
‖g‖L∞(0,T ;L2).

3.1. Y-Uniform Boundedness. We begin with the first main result, which proves
the uniform boundedness of the approximate solution (un, φn) in Y.

Theorem 1. Let (un, φn) be a solution of (51). Then there exists κ > 0 such that
for every k > 0, we have

(63) ‖(un, φn)‖2
Y
≤ (1 + κk)−nQ2(‖(u0, φ0)‖Y) + ρ20

[

1− (1 + κk)−n
]

, ∀n ≥ 0,

where the monotonically increasing function Q, given in (102) below, is independent
of n, and ρ0, given in (103) below, is independent of the initial data.

Moreover, there exists K1 = K1(‖(u0, φ0)‖Y, ‖g‖∞) such that for every k > 0,
we have

(64) ‖(un, φn)‖Y ≤ K1, ∀n ≥ 0,

and for every i = 1, · · · , n there existM1 =M1(‖(ui−1, φi−1)‖Y, ‖g‖∞, (n− i+1)k)
and M2 =M2(‖(ui−1, φi−1)‖Y, ‖g‖∞, (n− i+ 1)k) such that

(65) k

n
∑

j=i

( ν1
2K‖un‖2U + 2|µn|2L2

)

≤M1,

(66) k
n
∑

j=i

|Aγ(φ
j)|2L2 ≤M2.

Proof. Taking the scalar product of the first equation of (51) with 2kun and using
(13), the skew property (31), as well as the relation

(67) 2(ϕ− ψ, ϕ)H = |ϕ|2H − |ψ|2H + |ϕ− ψ|2H ,
where H is any Hilbert space, we obtain

|un|2H − |un−1|2H + |un − un−1|2H + 2ν1k‖un‖2U − 2Kkb1(un, φn, ν2Aγφ
n) = 2k(gn, un)L2 .

(68)

Taking the scalar product of the fourth equation of (51) in L2 by 2kµn, we obtain

(69) 2(φn − φn−1, µn)L2 + 2k|µn|2L2 + 2kb1(u
n, φn, µn) = 0.
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Dividing (68) by K and adding the resulting equation to (69), we obtain (recalling
the third equation of (51) and (35))

1

K
[

|un|2H − |un−1|2H + |un − un−1|2H
]

+
2ν1
K k‖un‖2U + 2(φn − φn−1, µn)L2

+ 2k|µn|2L2 =
2

Kk(g
n, un)L2 .

(70)

Using the third equation of (51) and (20), we obtain

2(φn − φn−1, µn)L2

= 2(φn − φn−1, ν2Aγφ
n + α0fγ(φ

n))L2

= ν2
(

‖φn‖2γ − ‖φn−1‖2γ + ‖φn − φn−1‖2γ
)

+ 2α0(φ
n − φn−1, fγ(φ

n))L2 .

(71)

To evaluate the second term on the right-hand side of Eq. (71) we fix x ∈ Ω and
we write

Fγ(φ
n(x))− Fγ(φ

n−1(x)) =

∫ 1

0

d

dt
[Fγ

(

φn−1(x) + t(φn(x)− φn−1(x))
)

]dt

=

∫ 1

0

[

fγ
(

φn−1(x) + t(φn(x) − φn−1(x))
)

− fγ(φ
n(x))

]

(φn(x) − φn−1(x)) dt

+ (φn(x) − φn−1(x))fγ(φ
n(x)).

(72)

Thus

2α0(φ
n − φn−1, fγ(φ

n))L2 = 2α0Fγ(φ
n)− 2αFγ(φ

n−1) + 2α0R
n
γ ,(73)

where

(74) Fγ(φ
n) =

∫

Ω

Fγ(φ
n(x))dx,

and

R
n
γ = −

∫

Ω

∫ 1

0

[

fγ
(

φn−1(x) + t(φn(x)− φn−1(x))
)

− fγ(φ
n(x))

]

× (φn(x)− φn−1(x)) dt dx

= −
∫

Ω

∫ 1

0

[

f
(

φn−1(x) + t(φn(x) − φn−1(x))
)

− f(φn(x))
]

× (φn(x)− φn−1(x)) dt dx

+
ν2γ

α0

∫

Ω

∫ 1

0

(t− 1)(φn(x)− φn−1(x))2 dt dx (by (45)).

(75)

Relations (71) and (73) give

2(φn − φn−1, µn)L2 = ν2
(

‖φn‖2γ − ‖φn−1‖2γ + ‖φn − φn−1‖2γ
)

+ 2α0Fγ(φ
n)− 2α0Fγ(φ

n−1) + 2α0R
n
γ ,

(76)

and recalling (70) we obtain

1

K
[

|un|2H − |un−1|2H + |un − un−1|2H
]

+ ν2
(

‖φn‖2γ − ‖φn−1‖2γ + ‖φn − φn−1‖2γ
)

+
2ν1
K k‖un‖2U + 2α0Fγ(φ

n)− 2α0Fγ(φ
n−1) + 2α0R

n
γ + 2k|µn|2L2 =

2

Kk(g
n, un)L2 .

(77)
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Multiplying the fourth equation of (51) by 2kφn and integrating we obtain (recalling
the third equation of (51), (20), and (35))

|φn|2L2 − |φn−1|2L2 + |φn − φn−1|2L2 + 2kν2‖φn‖2γ + 2α0k(fγ(φ
n), φn)L2 = 0.(78)

Adding (77) and (78) we find

1

K
[

|un|2H − |un−1|2H + |un − un−1|2H
]

+ ν2
(

‖φn‖2γ − ‖φn−1‖2γ + ‖φn − φn−1‖2γ
)

+ |φn|2L2 − |φn−1|2L2 + |φn − φn−1|2L2 + 2α0Fγ(φ
n)− 2α0Fγ(φ

n−1)

+
2ν1
K k‖un‖2U + 2kν2‖φn‖2γ + 2k|µn|2L2 + 2α0k(fγ(φ

n), φn)L2 + 2α0R
n
γ

=
2

Kk(g
n, un)L2 .

(79)

Now, for any n ≥ 1, we set

xn =
1

K|un|2H + ν2‖φn‖2γ + 2α0Fγ(φ
n) + |φn|2L2 + 2α0CFγ

|Ω|,(80)

where CFγ
is taken large enough to ensure that xn ≥ 0 (recall that Fγ is bounded

from below by a constant independent of ν1 and α0). We rewrite (86) in the form

(81) xn − xn−1 + κkxn = yn,

where κ ∈ (0, 1) is to be determined, and

yn =
κ

Kk|u
n|2H − (2− κ)ν2k‖φn‖2γ + 2α0kκFγ(φ

n) + κk|φn|2L2 + 2α0kκCFγ
|Ω|

+
2

Kk(g
n, un)L2 − 1

K|un − un−1|2H − ν2‖φn − φn−1‖2γ − |φn − φn−1|2L2

− 2ν1
K k‖un‖2U − 2k|µn|2L2 − 2α0k(fγ(φ

n), φn)L2 − 2α0R
n
γ .

(82)

Using the Cauchy–Schwarz inequality and the Poincaré inequality (14), we have

2

Kk(g
n, un)L2 ≤ 2

Kk|g
n|L2 |un|L2

≤ 2

K
√
λ1
k|gn|L2‖un‖U ≤ ν1

K k‖un‖2U +
1

ν1λ1K
k|gn|2L2 .(83)

Hereafter, we assume that the potential function f satisfies the following addi-
tional condition:

(84) f ′(r) ≥ − 1

2α
, ∀r ∈ R.

Then using the mean value theorem and (75), we obtain

2α0R
n
γ ≥

∫

Ω

∫ 1

0

(1− t)(φn(x)− φn−1(x))2 dt dx− ν2γ|φn − φn−1|2L2

= −1

2
|φn − φn−1|2L2 − ν2γ|φn − φn−1|2L2 .

(85)

Combining (82), (83) and (85), we obtain

yn ≤ k
[

−ν1K ‖un‖2U +
κ

K|un|2H − (2− κ)ν2‖φn‖2γ

+κ|φn|2L2 + 2α0κCFγ
|Ω|+ 1

ν1λ1K
|gn|2L2 − 2|µn|2L2

+2α0 [κ (Fγ(φ
n)− fγ(φ

n)φn, 1)L2 − (1− κ) (fγ(φ
n)φn, 1) L2 ]] .

(86)
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Note that due to (6), we have (for any r ∈ R)

(87) fγ(r)r ≥
c⋆
2
|fγ(r)|(1 + |r|)− cf

2
(1 + α−1

0 ν2),

(88) Fγ(r) − fγ(r)r ≤ c′f (1 + α−1
0 ν2)|r|2 + c′′f ,

(89) |Fγ(r)| ≤ |fγ(r)|(1 + |r|) + c1,

where cf , c⋆, c
′
f , c

′′
f , c1 are positive, sufficiently large constants that depend on f

only.
Thus

(Fγ(φ
n)− fγ(φ

n)φn, 1) L2 =

∫

Ω

(

Fγ(φ
n(x)) − fγ(φ

n(x))φn(x)
)

dx

≤ c′f (1 + α−1
0 ν2)|φn|2L2 + c′′f |Ω|,

(90)

2α0 (fγ(φ
n)φn, 1) = 2α0

∫

Ω

fγ(φ
n(x))φn(x) dx

≥ c⋆α0(|fγ(φn)|, 1 + |φn|)L2 − cfα0(1 + α−1
0 ν2)|Ω|

≥ c⋆α0(|Fγ(φ
n)|, 1)L2 − (c1c⋆α0 + cfα0 + cfν2)|Ω|.

(91)

Using the above inequalities and the Poincaré inequality (14), we bound yn as

yn ≤ k

[

− 1

K

(

ν1 −
κ

λ1

)

‖un‖2U − (2− κ)ν2‖φn‖2γ + κ|φn|2L2 + 2α0κCFγ
|Ω|

−2|µn|2L2 +
1

ν1Kλ21
|gn|2L2 + 2α0κ

[

c′f (1 + α−1
0 ν2)|φn|2L2 + c′′f |Ω|

]

−(1− κ) [c⋆α0(|Fγ(φ
n)|, 1)L2 − (c1c⋆α0 + cfα0 + cfν2)|Ω|]]

(92)

where

(93) c2 =
[

(1 − κ)(c1c⋆α0 + cfα0 + cfν2) + 2α0κCFγ
+ 2α0κc

′′
f

]

|Ω|.
Now we choose κ ∈ (0, 1) to be

κ = min

{

ν1λ1
2

,
ν2γ

1 + ν2γ + 2c′f(α0 + ν2)

}

.(94)

Then relation (92) gives

yn ≤ k

(

− ν1
2K‖un‖2U − ν2‖φn‖2γ − 2|µn|2L2 +

1

ν1Kλ21
|gn|2L2

−(1− κ)c⋆α0(|Fγ(φ
n)|, 1)L2 + c2) ,

(95)

and recalling (81), we find

xn − xn−1 + κkxn +
1

2
k
(ν1
K ‖un‖2U + ν2‖φn‖2γ

)

+ 2k|µn|2L2

+ c3k|Fγ(φ
n)|L1 ≤ 1

ν1Kλ21
k|gn|2L2 + c2k.

(96)

Neglecting some positive terms, we obtain

(97) xn ≤ 1

β
xn−1 +

1

β
k

(

1

ν1Kλ21
|gn|2L2 + c2

)

,

where

(98) β = 1 + κk.
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Using recursively (97), we find

xn ≤ 1

βn
x0 + k

n
∑

i=1

1

βi

(

1

ν1Kλ21
|gn+1−i|2L2 + c2

)

≤ (1 + κk)
−n

x0 +
1

κ

(

1

ν1Kλ21
‖g‖2∞ + c2

)

[

1− (1 + κk)
−n
]

.

(99)

Now observe that, due to (6), we can find Cf > 0 such that

(100) xn ≤ Cf

(

1 + ‖(un, φn)‖2
Y
+ |φn|4L4

)

,

and thus, relation (99) yields

(101) xn ≤ (1 + κk)−nQ2(‖(u0, φ0)‖Y) + ρ20

[

1− (1 + κk)
−n
]

,

where

(102) Q2(‖(un, φn)‖Y) = Cf

(

1 + ‖(un, φn)‖2Y +
c

ν22
‖(un, φn)‖4Y

)

,

for some constant c > 0, and

(103) ρ20 =
1

κ

(

1

ν1Kλ21
‖g‖2∞ + c2

)

.

Taking

(104) K2
1 (‖(u0, φ0)‖Y, ‖g‖∞) = Q2(‖(u0, φ0)‖Y) + ρ20,

we obtain

(105) xn ≤ K2
1 , ∀n ≥ 0.

Since ‖(un, φn)‖2
Y
≤ xn, relations (101) and (105) give (63) and (64), respectively.

Now adding inequalities (96) with n from i to N and dropping some positive
terms, we find

k
N
∑

n=i

[

1

2

(ν1
K ‖un‖2U + ν2‖φn‖2γ

)

+ 2|µn|2L2 + c3|Fγ(φ
n)|L1

]

≤ xi−1 +

(

1

ν1Kλ21
‖g‖2∞ + c2

)

(N − i + 1)k.

(106)

Recalling (100), the above inequality gives conclusion (65) of the theorem, with

M1(‖(ui−1, φi−1)‖Y, ‖g‖∞, (n− i+ 1)k)

= Q2(‖(ui−1, φi−1)‖Y) + ρ20 +

(

1

ν1Kλ21
‖g‖2∞ + c2

)

(n− i+ 1)k.
(107)

Recalling (51), (45), (7) and the Sobolev imbedding H1(Ω) →֒ L6(Ω), we obtain

|Aγφ
n|2L2 ≤ 3

ν22
|µn|2L2 +

3α2
0

ν22
|f(φn)|2L2 + 3γ2|φn|2L2

≤ 3

ν22
|µn|2L2 +

6α2
0

ν22
c2f
(

|Ω|+ |φn|6L6

)

+ 3γ2|φn|2L2

≤ 3

ν22
|µn|2L2 +

6α2
0

ν22
c2f |Ω|+

6α2
0

ν22
c′′f (‖φn‖2γ)3 + 3γ2|φn|2L2 ,

(108)
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for some positive constant c′′f depending on cf . Summing with n from i to N and

using (65) and (105), we obtain conclusion (66) of the theorem, with

M2(‖(ui−1, φi−1)‖Y, ‖g‖∞, (n− i + 1)k)

=
3

2ν22
M1(‖(ui−1, φi−1)‖Y) +

6α2
0

ν22
c2f |Ω|(n− i+ 1)k

+
6α2

0

ν52
c′′fK

6
1(‖(ui−1, φi−1)‖Y)(n− i + 1)k

+
3γ

ν2
K2

1(‖(ui−1, φi−1)‖Y)(n− i+ 1)k.

(109)

Thus, the theorem has been proved. �

Corollary 3.1. If

(110) 0 < k ≤ 1

κ
,

then then BY(0,
√
2ρ0), the ball in Y centered at 0 and radius

√
2ρ0, is an absorbing

ball for (un, φn) in Y.

Proof. Let B be any bounded set in Y and assume that it is included in a ball
B(0, R) of Y. For any initial data (u0, φ0) ∈ B, the bound (63) on ‖(un, φn)‖2

Y
gives

‖(un, φn)‖2Y ≤
(

1 + κk
)−n

Q2(R) + ρ20.

Using assumption (110) on k and the fact that 1 + x ≥ exp(x/2) if x ∈ (0, 1) we
obtain

‖(un, φn)‖2Y ≤ exp
(

−nkκ
2

)

Q2(R) + ρ20,

and thus ‖(un, φn)‖2
Y
≤ 2ρ20, ∀n ≥ N0(R, k), where

(111) N0(R, k) :=
4

κk
ln

(

Q(R)

ρ0

)

.

This completes the proof of the corollary. �

3.2. V-Uniform Boundedness. We are now going to derive uniform bounds for
(un, φn) in V, similar to those we have already obtained in Y (see (63) above). In
order to do this, we will first use the discrete Gronwall lemma to derive an upper
bound on ‖(un, φn)‖V, n ≤ N , for some N > 0, and then we will employ the discrete
uniform Gronwall lemma to obtain an upper bound on ‖(un, φn)‖V, n ≥ N .

We begin with some preliminary results.

Lemma 2. For every k > 0, we have

(112) ‖(un, φn)‖2V ≤ K2‖(un−1, φn−1)‖2V + c3(|fγ(φn)|2L2 + |gn|2L2), ∀n ≥ 1,

where K2 = K2(‖(u0, φ0)‖Y, ‖g‖∞) and c3 > 0 are given below, in (122) and (123),
respectively.

Proof. Taking the scalar product of the first equation of (51) with 2k(un − un−1)
we obtain

2|un − un−1|2H + ν1k‖un‖2U − ν1k‖un−1‖2U
+ ν1k‖un − un−1‖2U + 2k b0(u

n, un, un − un−1)

− 2Kkb1(un − un−1, φn, ν2Aγφ
n) = 2k(gn, un − un−1)L2 .

(113)
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Multiplying the fourth equation of (51) by 2ν2kAγ(φ
n − φn−1) and integrating we

obtain (recalling the third equation of (51))

2ν2‖φn − φn−1‖2γ + ν22k|Aγφ
n|2L2 − ν22k|Aγφ

n−1|2L2 + ν22k|Aγ(φ
n − φn−1)|2L2

+ 2ν2kb1(u
n, φn, Aγ(φ

n − φn−1)) + 2ν2α0k(fγ(φ
n), Aγ(φ

n − φn−1))L2 = 0.

(114)

Dividing (113) by K and adding the resulting equation to (114), we obtain

2

K|un − un−1|2H + 2ν2‖φn − φn−1‖2γ +
ν1
K k‖un‖2U + ν22k|Aγφ

n|2L2

− ν1
K k‖un−1‖2U − ν22k|Aγφ

n−1|2L2 +
ν1
K k‖un − un−1‖2U + ν22k|Aγ(φ

n − φn−1)|2L2

+
2

Kk b0(u
n, un, un − un−1)− 2kb1(u

n − un−1, φn, ν2Aγφ
n)

+ 2ν2kb1(u
n, φn, Aγ(φ

n − φn−1))

=
2

Kk(g
n, un − un−1)L2 − 2ν2α0k(fγ(φ

n), Aγ(φ
n − φn−1))L2 .

(115)

To bound the right-hand side of (115) we use the Cauchy–Schwarz inequality and
we obtain

2

Kk(g
n, un − un−1)L2 ≤ 2

Kk|g
n|L2 |un − un−1|L2

≤ 2

K
√
λ1

k|gn|L2‖un − un−1‖U (by (14))

≤ ν1
4Kk‖u

n − un−1‖2U +
4

ν1λ1K
k|gn|2L2 ,

(116)

2ν2α0k|(fγ(φn), Aγ(φ
n − φn−1))L2 |

≤2ν2α0k|fγ(φn)|L2 |Aγ(φ
n − φn−1)|L2

≤ν
2
2

4
k|Aγ(φ

n − φn−1)|2L2 + 4α2
0k|fγ(φn)|2L2 .

(117)

We bound the nonlinear terms as:

2

Kkb0(u
n, un, un − un−1) = − 2

Kkb0(u
n, un, un−1) (by (31))

≤ 2

K cbk|u
n|H‖un‖U‖un−1‖U (by (32))

≤ ν1
2Kk‖u

n‖2U +
2c2b
ν1K

k|un|2H‖un−1‖2U

≤ ν1
2Kk‖u

n‖2U +
2c2b
ν1
K2

1k‖un−1‖2U (by (64)),

(118)
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−2kb1(u
n − un−1, φn, ν2Aγφ

n) + 2ν2kb1(u
n, φn, Aγ(φ

n − φn−1))

= −2ν2kb1(u
n − un−1, φn, Aγφ

n−1) + 2ν2kb1(u
n−1, φn, Aγ(φ

n − φn−1))

≤ 2ν2c̃bk|un − un−1|1/2H ‖un − un−1‖1/2U ‖φn‖1/2|Aγφ
n|1/2L2 |Aγφ

n−1|L2

+ 2ν2c̃bk|un−1|1/2H ‖un−1‖1/2U ‖φn‖1/2|Aγφ
n|1/2L2 |Aγ(φ

n − φn−1)|L2 (by (37))

≤ ν1
4Kk‖u

n − un−1‖2U +
ν22
2
k|Aγφ

n|2L2 + ck|un − un−1|H‖φn‖|Aγφ
n−1|2L2

+
ν22
4
k|Aγ(φ

n − φn−1)|2L2 + ck|un−1|2H‖un−1‖2U‖φn‖2

≤ ν1
4Kk‖u

n − un−1‖2U +
ν22
2
k|Aγφ

n|2L2 + cK2
1k|Aγφ

n−1|2L2

+
ν22
4
k|Aγ(φ

n − φn−1)|2L2 + cK4
1k‖un−1‖2U (by (64)).

(119)

Relations (115)–(119) give

2

K|un − un−1|2H + 2ν2‖φn − φn−1‖2γ +
ν1
2Kk‖u

n‖2U +
ν22
2
k|Aγφ

n|2L2

−
(

ν1
K +

2c2b
ν1
K2

1 + cK4
1

)

k‖un−1‖2U − (ν22 + cK2
1 )k|Aγφ

n−1|2L2 +
ν1
2Kk‖u

n − un−1‖2U

+
ν22
2
k|Aγ(φ

n − φn−1)|2L2 ≤ 4

ν1λ1K
k|gn|2L2 + 4α2

0k|fγ(φn)|2L2 ,

(120)

and after neglecting some positive terms we find

ν1
2K‖un‖2U +

ν22
2
|Aγφ

n|2L2 ≤
(

ν1
K +

2c2b
ν1
K2

1 + cK4
1

)

‖un−1‖2U

+ (ν22 + cK2
1)|Aγφ

n−1|2L2 +
4

ν1λ1K
|gn|2L2 + 4α2

0|fγ(φn)|2L2 .

(121)

Taking

(122) K2 = 2

(K
ν1

+
1

ν22

)(

ν1
K +

2c2b
ν1
K2

1 + cK4
1 + ν22 + cK2

1

)

,

and

(123) c3 = 2

(K
ν1

+
1

ν22

)(

4

ν1λ1K
+ 4α2

0

)

,

we obtain conclusion (112) of the lemma. �

Lemma 3. For every k > 0 and n ≥ 1, we have

c4(1 +K2
1)k‖(un, φn)‖4V − ‖(un, φn)‖2

V
+ ‖(un−1, φn−1)

‖2
V
+ c5k

(

|fγ ′(φn)∇φn|2L2 + |gn|2L2

)

≥ 0,(124)

for some positive constants c4 and c5.

Proof. Taking the scalar product of the first equation of (51) by 2kA0u
n and inte-

grating, we obtain

‖un‖2U − ‖un−1‖2U + ‖un − un−1‖2U + 2ν1k|A0u
n|2H + 2kb0(u

n, un, A0u
n)

− 2Kkb1(A0u
n, φn, ν2Aγφ

n) = 2k(gn, A0u
n)L2 .

(125)
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Multiplying the fourth equation of (51) by 2kA2
γφ

n and integrating, we obtain

|Aγφ
n|2L2 − |Aγφ

n−1|2L2 + |Aγ(φ
n − φn−1)|2L2 + 2k(µn, A2

γφ
n)L2

+2kb1(u
n, φn, A2

γφ
n) = 0.

(126)

Recalling the third equation of (51) we find

2k(µn, A2
γφ

n)L2 = 2kν2|Aγ
3/2φn|2L2 + 2α0k(fγ(φ

n), A2
γφ

n)L2 ,(127)

and then (126) gives

|Aγφ
n|2L2 − |Aγφ

n−1|2L2 + |Aγ(φ
n − φn−1)|2L2 + 2kν2|Aγ

3/2φn|2L2

+ 2α0k(fγ(φ
n), A2

γφ
n)L2 + 2kb1(u

n, φn, A2
γφ

n) = 0.
(128)

Adding (125) and (128) we obtain

‖un‖2U + |Aγφ
n|2L2 − (‖un−1‖2U + |Aγφ

n−1|2L2) + ‖un − un−1‖2U
+ |Aγ(φ

n − φn−1)|2L2 + 2ν1k|A0u
n|2H + 2kν2|Aγ

3/2φn|2L2

+ 2kb0(u
n, un, A0u

n)− 2Kkb1(A0u
n, φn, ν2Aγφ

n)

+ 2kb1(u
n, φn, A2

γφ
n) = 2k(gn, A0u

n)L2 − 2α0k(fγ(φ
n), A2

γφ
n)L2 .

(129)

To bound the right-hand side of the above equality we use the Cauchy-Schwarz
inequality and obtain

(130) 2k(gn, A0u
n)L2 ≤ 2k|gn|L2 |A0u

n|L2 ≤ ν1
4
k|A0u

n|2H +
4

ν1
k|gn|2L2 ,

2α0k|(fγ(φn), A2
γφ

n)L2 | = 2α0k|(A1/2
γ fγ(φ

n), A3/2
γ φn)L2 |

≤ 2α0k|A1/2
γ fγ(φ

n)|L2 |A3/2
γ φn|L2

≤ c|∇fγ(φn)|L2 |A3/2
γ φn|L2

≤ ν2
3
k|A3/2

γ φn|2L2 + ck|fγ ′(φn)∇φn|2L2 .

(131)

We bound the nonlinear terms as follows:

2k|b0(un, un, A0u
n)|

≤ 2cbk‖un‖2U |A0u
n|H (by (33))

≤ ν1
4
k|A0u

n|2H + ck‖un‖4U ,
(132)

2Kk|b1(A0u
n, φn, ν2Aγφ

n)|
≤ 2c̃bν2K|A0u

n|H‖φn‖1/2|A3/2
γ φn|1/2L2 |Aγφ

n|L2 (by (38))

≤ ν2
3
k|A3/2

γ φn|2L2 +
ν1
4
k|A0u

n|2H + ck‖φn‖2|Aγφ
n|4L2 ,

(133)
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2k|b1(un, φn, A2
γφ

n)| = 2k|(A1/2
γ B1(u

n, φn), A3/2
γ φn)L2 |

≤ 2k|A1/2
γ B1(u

n, φn)|L2 |A3/2
γ φn|L2

≤ 2c̃bk|∇un|1/2H ‖∇un‖1/2U ‖φn‖1/2|Aγφ
n|1/2L2 |A3/2

γ φn|L2

+ 2c̃bk|un|1/2H ‖un‖1/2U ‖∇φn‖1/2|A3/2
γ φn|3/2L2 (by (38))

≤ ck‖un‖1/2U |A0u
n|1/2H ‖φn‖1/2|Aγφ

n|1/2L2 |A3/2
γ φn|L2

+ ck|un|1/2H ‖un‖1/2U |Aγφ
n|1/2L2 |A3/2

γ φn|3/2L2

≤ ν2
3
k|A3/2

γ φn|2L2 +
ν1
4
k|A0u

n|2H + ck‖un‖2U‖φn‖2|Aγφ
n|2L2

+ ck|un|2H‖un‖2U |Aγφ
n|2L2 .

(134)

Recalling (64), relations (129)–(134) give

‖un‖2U + |Aγφ
n|2L2 − (‖un−1‖2U + |Aγφ

n−1|2L2)

+ ‖un − un−1‖2U + |Aγ(φ
n − φn−1)|2L2

+ ν1k|A0u
n|2H + ν2k|Aγ

3/2φn|2L2 ≤ ck‖un‖4U + cK2
1k|Aγφ

n|4L2

+ cK2
1k‖un‖2U |Aγφ

n|2L2 + ck|fγ ′(φn)∇φn|2L2 +
4

ν1
k|gn|2L2 ,

(135)

and the conclusion of the Lemma follows right away. �

We now recall the following two lemmas, whose proofs can be found in [39]:

Lemma 4. Given k > 0 and positive sequences ξn, ηn and ζn such that

(136) ξn ≤ ξn−1(1 + kηn−1) + kζn, for n ≥ 1,

we have, for any n ≥ 2,

(137) ξn ≤
(

ξ0 +

n
∑

i=1

kζi

)

exp

(n−1
∑

i=0

kηi

)

.

Lemma 5. Given k > 0, a positive integer n0, positive sequences ξn, ηn and ζn such
that

(138) ξn ≤ ξn−1(1 + kηn−1) + kζn, for n ≥ n0,

and given the bounds

(139)

N+k0
∑

n=k0

kηn ≤ a1,

N+k0
∑

n=k0

kζn ≤ a2,

N+k0
∑

n=k0

kξn ≤ a3,

for any k0 ≥ n0, we have,

(140) ξn ≤
( a3
Nk

+ a2

)

ea1 , ∀n ≥ N + n0.

We are now able to prove the V-uniform stability of the scheme:

Proposition 3. Let (u0, φ0) ∈ V and (un, φn) be the solution of the numerical scheme
(51). Also, let k be such that

k ≤ min

{

1

κ
, 1

}

=: κ1,(141)
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where κ is given in (94). Then there exists K3

(

‖(u0, φ0)‖V, ‖g‖∞
)

, such that

(142) ‖(un, φn)‖V ≤ K3

(

‖(u0, φ0)‖V, ‖g‖∞
)

, ∀n ≥ 0,

and for all i = 1, · · · ,m, we have
m
∑

n=i

(

‖un − un−1‖2U + |Aγ(φ
n − φn−1)|2L2

)

≤K2
3 + c(1 +K2

1)K
4
3 (m− i+ 1)k +

4

ν1λ1
‖g‖2∞(m− i+ 1)k

+ c
(

c2fK
4
1K

2
3 + 2(2c2f + α−2

0 ν22γ
2)K2

1

)

(m− i+ 1)k.

(143)

Moreover, there exists K4 = K4(‖g‖∞), independent of the initial data, such
that

(144) ‖(un, φn)‖V ≤ K4(‖g‖∞), ∀n ≥ 2N0 + 1,

where N0 is given in (111).

Proof. Using (112), we infer from (124)

‖(un, φn)‖2V ≤ c4(1 +K2
1)k

[

K2‖(un−1, φn−1)‖2V + c3(|fγ(φn)|2L2 + |gn|2L2)
]2

+ ‖(un−1, φn−1)‖2V + c5k
(

|fγ ′(φn)∇φn|2L2 + |gn|2L2

)

≤ ‖(un−1, φn−1)‖2V
[

1 + 2c4(1 +K2
1 )K

2
2k‖(un−1, φn−1)‖2V

]

+ 2c23c4(1 +K2
1 )k(|fγ(φn)|2L2 + |gn|2L2)2

+ c5k
(

|fγ ′(φn)∇φn|2L2 + |gn|2L2

)

.

(145)

We rewrite (145) in the form

(146) ξn ≤ ξn−1(1 + kηn−1) + kζn,

with

ξn =‖(un, φn)‖2
V
, ηn = 2c4(1 +K2

1)K
2
2‖(un, φn)‖2V,

ζn = 2c23c4(1 +K2
1 )(|fγ(φn)|2L2 + |gn|2L2)2 + c5

(

|fγ ′(φn)∇φn|2L2 + |gn|2L2

)

,

(147)

and recalling (65) and (66), we compute:

(148)

n−1
∑

i=0

kηi = 2c4(1 +K2
1)K

2
2k

n−1
∑

i=0

‖(un, φn)‖2V

≤ 4c4K
ν1

(1 +K2
1 )K

2
2M1(‖(u0, φ0)‖Y, ‖g‖∞, (n− 1)k)

+ 2c4(1 +K2
1)K

2
2M2(‖(u0, φ0)‖Y, ‖g‖∞, (n− 1)k)

+ 2c4(1 +K2
1)K

2
2k‖(u0, φ0)‖2V.

Now using (45), (6), (7) and recalling (64) and the Sobolev imbedding H1(Ω) →֒
L6(Ω), we obtain

(149)

|fγ(φn)|2L2 =

∫

Ω

|fγ(φn(x))|2 dx =

∫

Ω

|f(φn(x)) − α−1
0 ν2γφ

n(x)|2 dx

≤ 4c2f
(

|Ω|+ |φn|6L6

)

+ 2α−2
0 ν22γ

2|φn|2L2

≤ cc2f
(

|Ω|+ ‖φn‖6
)

+ 2α−2
0 ν22γ

2|φn|2L2

≤ cc2f
(

|Ω|+K6
1

)

+ 2α−2
0 ν22γ

2K2
1 ,
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(150)

|fγ ′(φn)∇φn|2L2 =

∫

Ω

|fγ ′(φn(x))∇φn(x)|2 dx

=

∫

Ω

|f ′(φn(x))− α−1
0 ν2γ|2|∇φn(x)|2 dx

≤ 4c2f

∫

Ω

|φn(x)|4|∇φn(x)|2 dx+ 2(2c2f + α−2
0 ν22γ

2)|∇φn(x)|2L2

≤ 4c2f |φn|4L6 |∇φn|2L6 + 2(2c2f + α−2
0 ν22γ

2)|∇φn|2L2

≤ cc2f‖φn‖4|Aγφ
n|2L2 + 2(2c2f + α−2

0 ν22γ
2)|∇φn|2L2

≤ cc2fK
4
1 |Aγφ

n|2L2 + 2(2c2f + α−2
0 ν22γ

2)K2
1 .

Recalling (65) and (66), relations (149), (150) give

(151)

n
∑

i=1

kζi ≤ K5(‖(u0, φ0)‖V, ‖g‖∞, nk
)

.

Then conclusion (137) of Lemma 4 together with (148) and (151) give

(152) ξn = ‖(un, φn)‖2V ≤ K2
6 (‖(u0, φ0)‖V, ‖g‖∞, 2N0k

)

, ∀n = 1, · · · , 2N0,

for some continuous functions K5(·, ·, ·
)

, K6(·, ·, ·
)

, increasing in all their arguments.
Now, to derive an upper bound on ‖(un, φn)‖V, n ≥ 2N0, we apply Lemma 5 to

(146). For that, we recall that ‖(un, φn)‖Y < ρ0, for n ≥ N0, and for k0 ≥ N0 + 1
we compute:

N0+k0
∑

n=k0

kξn = k

N0+k0
∑

n=k0

‖(un, φn)‖2
V

≤ 2K
ν1
M1(ρ0, T0 + 1) +M2(ρ0, T0 + 1) =: a3, (by (65) and (66))

(153)

(154)
N0+k0
∑

n=k0

kηn ≤ 2c4(1 + ρ20)K
2
2 (ρ0)

(

2K
ν1
M1(ρ0, T0 + 1) +M2(ρ0, T0 + 1)

)

=: a1,

Recalling (149), (150), (65) and (66), we find

(155)

N0+k0
∑

n=k0

kζn ≤ a2,

for some a2 independent of the initial data. Then Lemma 5 gives

(156) ξn = ‖(un, φn)‖2V ≤
(a3
T0

+ a2

)

ea1 =: K4(‖g‖∞), ∀n ≥ 2N0 + 1,

which is exactly conclusion (144). Combining (156) with (151), we obtain conclusion
(142) of the proposition.

Taking the sum of (135) with n from i to m and using (142) and (150) gives
conclusion (143) and thus the proof of Proposition 3 is complete. �
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4. Convergence of Attractors

In this section we address the issue of the convergence of the attractors generated
by the discrete system (51) to the attractor generated by the continuous system
(46). Whereas for the continuous system (46) one can prove both the existence
and uniqueness of the solution (see [34]) and, therefore, define a global attractor
for the discrete system (51) one can prove (using Proposition 3) the uniqueness of
the solution provided that k ≤ κ(‖(u0, φ0)‖V), for some κ(‖(u0, φ0)‖V) > 0. Since
the time restriction depends on the initial data, one cannot define a single-valued
attractor in the classical sense, and this is why we need to use the attractor theory
for the so-called multi-valued mappings. Multi-valued dynamical systems have been
investigated by many authors (see, e.g., [1], [2], [5], [35], [37], [38]), but in this article
we use the tools developed in [16] (see also, [17]) to study the convergence of the
discrete (multi-valued) attractors to the continuous (single-valued) attractor. For
convenience, we recall those results in Subsection 4.1, and then we apply them to
the two-phase flow model in Subsection 4.2.

4.1. Attractors for multi-valued mappings. Throughout this subsection, we
consider (H, | · |) to be a Hilbert space and T to be either R+ = [0,∞) or N.

Definition 4.1. A one-parameter family of set-valued maps S(t) : 2H → 2H is a
multi-valued semigroup (m-semigroup) if it satisfies the following properties:

(S.1) S(0) = I2H (identity in 2H);
(S.2) S(t+ s) = S(t)S(s), for all t, s ∈ T.

Moreover, the m-semigroup is said to be closed if S(t) is a closed map for every
t ∈ T, meaning that if xn → x in H and yn ∈ S(t)xn is such that yn → y in H ,
then y ∈ S(t)x. (To simplify the notation, hereafter we have written S(t)x in place
of S(t){x}.)
Definition 4.2. The positive orbit of B, starting at t ∈ T, is the set

γt(B) =
⋃

τ≥t

S(τ)B,

where

S(t)B =
⋃

x∈B

S(t)x.

Definition 4.3. For any B ∈ 2H , the set

ω(B) =
⋂

t∈T

γt(B)

is called the ω-limit set of B.
Definition 4.4. A nonempty set B ∈ 2H is invariant for S(t) if

S(t)B = B, ∀t ∈ T.

Definition 4.5. A set B0 ∈ 2H is an absorbing set for the m-semigroup S(t) if for
every bounded set B ∈ 2H there exists tB ∈ T such that

S(t)B ⊂ B0, ∀t ≥ tB.

Definition 4.6. A nonempty set C ∈ 2H is attracting if for every bounded set B
we have

lim
t→∞

dist(S(t)B, C) = 0,
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where dist(·, ·) is the Hausdorff semidistance, defined as

(157) dist(B, C) = sup
b∈B

inf
c∈C

|b− c|, ∀B, C ⊂ H.

Definition 4.7. A nonempty compact set A ∈ 2X is said to be the global attractor
of S(t) if A is an invariant attracting set.

Remark 4.1. The global attractor, if it exists, is necessarily unique. Moreover, it
enjoys the following maximality and minimality properties:

(i) if Ã is a bounded invariant set, then A ⊃ Ã;

(ii) if Ã is a closed attracting set, then A ⊂ Ã.

Definition 4.8. Given a bounded set B ∈ 2H , the Kuratowski measure of non-
compactness α(B) of B is defined as

α(B) = inf
{

δ : B has a finite cover by balls of X of diameter less than δ
}

.

We note that α(B) = 0 if and only if B is compact.

The following theorem, whose proof can be found in [16], gives conditions under
which a global attractor exists.

Theorem 2. Suppose that the closed m-semigroup S(t) possesses a bounded ab-
sorbing set B0 ∈ 2H and

(158) lim
t→∞

α(S(t)B0) = 0.

Then ω(B0) is the global attractor of S(t).

For the purpose of this article, we need to introduce the notion of discrete m-

semigroups. More precisely, we have the following:

Definition 4.9. Given a set-valued map S : 2H → 2H , we define a discrete m-
semigroup by

S(n) = Sn, ∀n ∈ N,

and we will denote it by {S}n∈N (instead of {Sn}n∈N).

Remark 4.2. Given two nonempty sets B, C ∈ 2H , we write

B − C = {b− c : b ∈ B, c ∈ C} and |B| = sup
b∈B

|b|.

In order to prove the convergence of the attractors generated by the discrete
system (51) to the attractor generated by the continuous system (46) we will use
the following result, whose proof can be found in [16] (see also [42], [41], [17]).

Theorem 3. Let S(t) be a closed m-semigroup, possessing the global attractor A,
and for κ0 > 0, let {Sk, 0 < k ≤ κ0}n∈N be a family of discrete closed m-semigroups,
with global attractor Ak. Assume the following:

(H1) [Uniform boundedness]: there exists κ1 ∈ (0, κ0] such that the set

K =
⋃

k∈(0,κ1]

Ak

is bounded in H ;
(H2) [Finite time uniform convergence]: there exists t0 ≥ 0 such that for any

T ⋆ > t0,
lim
k→0

sup
x∈Ak, nk∈[t0,T⋆]

|Sn
k x− S(nk)x| = 0.
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Then

lim
k→0

dist(Ak,A) = 0,

where dist denotes the Hausdorff semidistance defined in (157).

4.2. Application: The 3D NS-α model with phase transition. As proven
in [34], the system (46) possesses a unique solution and generates a continuous
single-valued dynamical system S(t) : Y → Y, with global attractor A, bounded in
V. Using Proposition 3, one can prove that the discrete system (51) has a unique
solution provided that k ≤ κ0(‖(u0, φ0)‖V), for κ0(‖(u0, φ0)‖V) > 0 given in (62).
The dependence of the time step k on the initial data prevents us from defining
a single-valued attractor in the classical sense, but this difficulty can be overcome
by the theory of the multi-valued attractors recalled above. More precisely, in this
part we will prove that there exists κ1 > 0 such that if 0 < k ≤ κ1, the system (51)
generates a closed discrete m-semigroup {Sk}n∈N, with global attractors Ak, that
will converge to A in the sense of Theorem 3. For that, we define, for k > 0, the
multi-valued map Sk : 2Y → 2Y as follows: for every (v, ψ) ∈ Y,

Sk(v, ψ) = {(u, φ) ∈ V : (u, φ) solves (159) below with time-step k} :

(159)























ũ+ ν1kAu + kB0(u, u)−KkR0(ν2Aγφ, φ) = ṽ + kg,
ũ = u+ α2A0u,
ṽ = v + α2A0v,
µ = ν2Aγφ+ α0fγ(φ),
φ+ kµ+ kB1(u, φ) = ψ.

Using the same ideas as in [16] (see also [17]), one can prove the following:

Theorem 4. The multi-valued map Sk associated with the implicit Euler scheme
(51) generates a closed discrete m-semigroup {Sk}n∈N.

Proposition 4. Let k ≤ κ1, where κ1 is given in Proposition 3. Then there exists
a constant R1 > 0 such that for every R ≥ 0 and ‖(u0, φ0)‖Y ≤ R, there exists
N1 = N1(R, k) ≥ 0 such that

(160) ‖Sn
k (u0, φ0)‖V ≤ R1, ∀n ≥ N1.

Thus, the set

B1 = {(u, φ) ∈ V : ‖(u, φ)‖V ≤ R1}
is a V-bounded absorbing set for {Sk}n∈N, for k ∈ (0, κ1].

Proof. Let k be as in the hypothesis. Also, let R ≥ 0 and ‖(u0, φ0)‖Y ≤ R. By
Corollary 3.1, there exists N0 = N0(R, k) ≥ 0 such that

(161) ‖(un, φn)‖Y ≤
√
2ρ0, ∀n ≥ N0.

Let m := N0 +
⌊

1
k

⌋

. By (65) and (66), we have

(162)

k

m
∑

j=N0+1

( ν1
2K‖uj‖2U + |Aγφ

j |2
)

≤M1(
√
2ρ0, (m−N0)k) +M2(

√
2ρ0, (m−N0)k).

Arguing by contradiction, we obtain that there exists l ∈ {N0 + 1, · · · ,m} such
that

ν1
2K‖ul‖2U + |Aγφ

l|2 ≤ 1

(m−N0)k

(

M1(
√
2ρ0, (m−N0)k) +M2(

√
2ρ0, (m−N0)k)

)

.

(163)
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Since (m−N0)k = k⌊1/k⌋ ∈ [1/2, 1] and recalling that M1 and M2 are increasing
functions of their arguments, the above relation yields

‖ul‖2U + |Aγφ
l|2 ≤ 2

(

2K
ν1

+ 1

)

(

M1(
√
2ρ0, 1) +M2(

√
2ρ0, 1)

)

=: R2
∗.(164)

Applying Proposition 3 with initial data (ul, φl) we obtain that there exists
K3

(

‖(ul, φl)‖V, ‖g‖∞
)

, such that

(165) ‖(un, φn)‖V ≤ K3

(

‖(ul, φl)‖V, ‖g‖∞
)

, ∀n ≥ l.

Recalling (164) and the fact that K3(·, ·) is an increasing function of its arguments,
relation (165) gives

(166) ‖(un, φn)‖V ≤ K3

(

R∗, ‖g‖∞
)

=: R1, ∀n ≥ N1 = N1(R, k) := N0 +
⌊1

k

⌋

.

This completes the proof of Proposition 4. �

We can now prove the existence of the discrete global attractors. More precisely,
we have:

Proposition 5. For every k ∈ (0, κ1], there exists the global attractor Ak of the
m-semigroup {Sk}n∈N.

Proof. Let B0 = BY(0,
√
2ρ0) be the bounded absorbing set given in Corollary 3.1.

Then Proposition 4 implies that Sn
kB0 is bounded in V, for all n ≥ N1(

√
2ρ0, k).

Since V is compactly embedded in Y, we obtain that Sn
kB0 is relatively compact in

Y and, thus, α(Sn
kB0) = 0, for all n ≥ N1(

√
2ρ0, k). Condition (158) of Theorem

2 is therefore satisfied and then the existence of the discrete global attractor Ak

follows right away. �

Remark 4.3. Since the global attractor Ak is the smallest closed attracting set of
Y, Proposition 4 implies

(167) Ak ⊂ B1, ∀k ∈ (0, κ1],

and thus

(168)
⋃

k∈(0,κ1]

Ak ⊂ B1.

Relation (168) shows that condition (H1) of Theorem 3 is satisfied. In order to
prove the convergence of the discrete global attractors Ak to the continuous global
attractor A we also need to prove that condition (H2) is satisfied. To do so, we
define, for any function ψ and for any k > 0, the following:

(169) ψk(t) = ψn, t ∈ [(n− 1)k, nk),

(170) ψ̂k(t) = ψn +
t− nk

k
(ψn − ψn−1), t ∈ [(n− 1)k, nk),

and we note that, for any t ∈ [(n− 1)k, nk), we have

ψ̂k(t)− ψk(t) =
t− nk

k
(ψn − ψn−1).(171)
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With the above notations, the system (51) can be rewritten in the following form
(for t ∈ [(n− 1)k, nk)):
(172)














dˆ̃uk(t)
dt

+ ν1Aûk(t) +B0(ûk(t), ûk(t))−KR0(ν2Aγ φ̂k(t), φ̂k(t)) = g + gk(t),

µk = ν2Aγφk + αfγ(φk),

dφ̂k(t)
dt

+ µk +B1(ûk(t), φ̂k(t)) = B1(ûk(t), φ̂k(t))−B1(uk(t), φk(t)),

where

gk(t) =ν1A(ûk(t)− uk(t)) +B0(ûk(t), ûk(t))−B0(uk(t), uk(t))

−K
(

R0(ν2Aγ φ̂k(t), φ̂k(t))−R0(ν2Aγφk(t), φk(t))
)

.
(173)

Subtracting (172) from (46) we obtain

(174)











































dξ̃k(t)
dt

+ ν1Aξk(t) +B0(u(t), u(t))−B0(ûk(t), ûk(t))

−K
(

R0(ν2Aγφ(t), φ(t)) −R0(ν2Aγ φ̂k(t), φ̂k(t))
)

= −gk(t),
ξ̃k = ξk + α2A0ξk,
µ− µk = ν2Aγ(φ(t) − φk(t)) + αfγ(φ(t)) − αfγ(φk(t)),
dηk(t)
dt

+ µ− µk +B1(u(t), φ(t)) −B1(ûk(t), φ̂k(t))

= −B1(ûk(t), φ̂k(t)) +B1(uk(t), φk(t)),

where

(175) ξk(t) = u(t)− ûk(t), ηk(t) = φ(t)− φ̂k(t).

Using the linearity of the operators B0, B1 and R0, the above system can be
rewritten as

(176)































dξ̃k(t)
dt

+ ν1Aξk(t) +B0(ξk(t), u(t)) +B0(ûk(t), ξk(t))

−K
(

R0(ν2Aγηk(t), φ(t)) +R0(ν2Aγ φ̂k(t), ηk(t))
)

= −gk(t),
dηk(t)
dt

+ ν2Aγηk(t) +B1(ξk(t), φ(t)) +B1(ûk(t), ηk(t))

= −α
(

fγ(φ(t)) − fγ(φ̂k(t))
)

− hk(t),

where gk(t) is given in (173) and

hk(t) =B1(ûk(t)− uk(t), φ̂k(t)) +B1(uk(t), φ̂k(t)− φk(t))

+ ν2Aγ(φ̂k(t)− φk(t)) + α
(

fγ(φ̂k(t))− fγ(φk(t))
)

.
(177)

Lemma 6. Let T ∗ > 0 be arbitrarily fixed and let k < κ1, where κ1 is given in
Proposition 3. Assume that (u0, φ0) ∈ Ak and let (un, φn) be the solution of the
numerical scheme (51). Then there exist K8(T

∗) and K9(T
∗) such that

‖gk‖2L2(0,T∗;U ′) ≤ kK8(T
∗),(178)

and

‖hk‖2L2(0,T∗;D(Aγ)′)
≤ kK9(T

∗).(179)

Proof. Note that since (u0, φ0) ∈ Ak, relation (167) implies ‖(u0, φ0)‖V ≤ R1 and
then Proposition 3 gives

(180) ‖(un, φn)‖V ≤ K3(R1), ∀n ≥ 0.
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Now let v ∈ U be such that ‖v‖U ≤ 1, and let t ∈ [(n− 1)k, nk) be fixed. Using
properties (32) and (37) of the trilinear forms b0 and b1, respectively, and recalling
(171) and (142), we have the following bounds

|b0(ûk(t), ûk(t), v)− b0(uk(t), uk(t), v)|
= |b0(ûk(t)− uk(t), ûk(t), v) + b0(uk(t), ûk(t)− uk(t), v)|
≤ c(‖ûk(t)‖U + ‖uk(t)‖U )‖ûk(t)− uk(t)‖U
≤ cK3‖un − un−1‖U ,

(181)

Kν2|b1(v, φ̂k(t), Aγφ̂k(t))− b1(v, φk(t), ν2Aγφk(t))|
= Kν2|b1(v, φ̂k(t), Aγ(φ̂k(t)− φk(t)) + b1(v, φ̂k(t)− φk(t), Aγφk(t)))

≤ cKν2
(

|Aγ φ̂k(t)|L2 + |Aγφk(t)|L2

)

|Aγ(φ̂k(t)− φk(t))|L2

≤ cK3|Aγ(φ
n − φn−1)|L2 .

(182)

We also have

ν1|〈A(ûk(t)− uk(t)), v〉| =((ûk(t)− uk(t), v))U

≤ν1‖ûk(t)− uk(t)‖U‖v‖U ≤ ν1‖un − un−1‖U .(183)

Relations (181)–(183) imply

(184) ‖gk(t)‖U ′ ≤ cK3(‖un − un−1‖U + |Aγ(φ
n − φn−1)|L2),

and thus, setting N∗ = ⌊T ⋆/k⌋ and recalling that ‖(u0, φ0)‖V ≤ R1 , we obtain

‖gk‖2L2(0,T∗;U ′) =

∫ T∗

0

‖gk(t)‖2U ′dt =

N∗+1
∑

n=1

∫ nk

(n−1)k

‖gk(t)‖2U ′dt

≤ kK8(T
∗) (by (184) and (143)),

(185)

which proves (178).
Now let φ ∈ D(Aγ) be such that |Aγφ|L2 ≤ 1, and let t ∈ [(n− 1)k, nk) be fixed.

Using (36), (37) and (64), we obtain

|b1(ûk(t)− uk(t), φ̂k(t), φ)| ≤ c‖ûk(t)− uk(t)‖U |Aγφ|L2 |φ̂k(t)|L2

≤ cK1‖un − un−1‖U ,
(186)

|b1(uk(t), φ̂k(t)− φk(t), φ)| ≤ c‖uk(t)‖U |Aγφ|L2 |φ̂k(t)− φk(t)|L2

≤ cK3|φn − φn−1|L2 .
(187)

We also have

|(Aγ(φ̂k(t)− φk(t)), φ)L2 | ≤ |φ̂k(t)− φk(t)|L2 |Aγφ|L2 ≤ |φn − φn−1|L2 .(188)

|(fγ(φ̂k(t))− fγ(φk(t)), φ)L2 | ≤ |fγ(φ̂k(t))− fγ(φk(t))|L2 |φ|L2

≤ K7‖φ̂k(t)− φk(t)‖ (by (59))

≤ K7‖φn − φn−1‖.
(189)

Gathering relations (186)–(189) we obtain

(190) ‖hk(t)‖D(Aγ)′ ≤ c(K1 +K3 +K7)(‖un − un−1‖U + |Aγ(φ
n − φn−1)|L2),
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and thus setting N∗ = ⌊T ⋆/k⌋ and recalling that ‖(u0, φ0)‖V ≤ R1, we obtain

‖hk‖2L2(0,T∗;D(Aγ)′)
=

∫ T∗

0

‖hk(t)‖2D(Aγ)′
dt =

N∗+1
∑

n=1

∫ nk

(n−1) k

‖hk(t)‖2D(Aγ)′
dt

≤ kK9(T
∗) (by (190) and (143)),

(191)

which proves (179) and the proof of the lemma is complete. �

We can now prove that condition (H2) of Theorem 3 is satisfied. More precisely,
we have

Proposition 6 (Finite time uniform convergence). For any T ∗ > 0 we have

(192) lim
k→0

sup
(u0,φ0)∈Ak, nk∈[0,T∗]

‖Sn
k (u0, φ0)− S(nk)(u0, φ0)‖Y = 0.

Proof. Taking the scalar product of the first equation of (176) with ξ(t) we obtain

1

2

d

dt
|ξk(t)|2H + ν1‖ξk(t)‖2U + b0(ûk(t), ξk(t), ξk(t))

− K
(

b1(ξk(t), φ(t), ν2Aγηk(t)) + b1(ξk(t), ηk(t), ν2Aγ φ̂k(t))
)

= −(gk(t), ξk(t))L2 .

(193)

Using (32) and (37) we bound the nonlinear terms as follows:

|b0(ξk(t), u(t), ξk(t))| ≤ cb|ξk(t)|H‖u(t)‖U‖ξk(t)‖U
≤ ν1

8
‖ξk(t)‖2U + c|ξk(t)|2H‖u(t)‖2U ,

(194)

K|b1(ξk(t), φ(t), ν2Aγηk(t))|
≤ c̃bKν2|ξk(t)|1/2H ‖ξk(t)‖1/2U ‖φ(t)‖1/2|Aγφ(t)|1/2L2 |Aγηk(t)|L2

≤ ν22
4
K|Aγηk(t)|2L2 +

ν1
8
‖ξk(t)‖2U + c|ξk(t)|2H‖φ(t)‖2|Aγφ(t)|2L2 ,

(195)

K|b1(ξk(t), ηk(t), ν2Aγ φ̂k(t))

≤ c̃bKν2|ξk(t)|1/2H ‖ξk(t)‖1/2U ‖ηk(t)‖1/2|Aγηk(t)|1/2L2 |Aγ φ̂k(t)|L2

≤ ν22
4
K|Aγηk(t)|2L2 +

ν1
8
‖ξk(t)‖2U + c|ξk(t)|H‖ηk(t)‖|Aγ φ̂k(t)|2L2 .

(196)

Using the Cauchy-Schwarz inequality, we bound the right-hand side of (193) as

|(gk(t), ξk(t))L2 | ≤ ‖gk(t)‖U ′‖ξk(t)‖U ≤ ν1
8
‖ξk(t)‖2U + c‖gk(t)‖2U ′ .(197)

Relations (193)–(197) imply

d

dt
|ξk(t)|2H + ν1‖ξk(t)‖2U

≤c|ξk(t)|2H‖u(t)‖2U +
ν22
2
K|Aγηk(t)|2L2 + c|ξk(t)|2H‖φ(t)‖2|Aγφ(t)|2L2

+ c
(

|ξk(t)|2H + ‖ηk(t)‖2U
)

|Aγφ̂k(t)|2L2 + c‖gk(t)‖2U ′ .

(198)

Now multiplying the second equation of (176) by ν2Aγηk(t) and integrating we
obtain

ν2
2

d

dt
‖ηk(t)‖2γ + ν22 |Aγηk(t)|2L2

+ b1(ξk(t), φ(t), ν2Aγηk(t)) + b1(ûk(t), ηk(t), ν2Aγηk(t))

=− α(fγ(φ(t)) − fγ(φ̂k(t)), ν2Aγηk(t))L2 − (hk(t), ν2Aγηk(t))L2 .

(199)
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Using (37) we bound the nonlinear terms as follows:

|b1(ξk(t), φ(t), ν2Aγηk(t))|
≤ c̃bν2|ξk(t)|1/2H ‖ξk(t)‖1/2U ‖φ(t)‖1/2|Aγφ(t)|1/2L2 |Aγηk(t)|L2

≤ ν22
8
|Aγηk(t)|2L2 +

ν1
4K‖ξk(t)‖2U + c|ξk(t)|2H‖φ(t)‖2|Aγφ(t)|2L2 ,

(200)

|b1(ûk(t), ηk(t), ν2Aγηk(t))|
≤ cbν2|ûk(t)|1/2H ‖ûk(t)‖1/2U ‖ηk(t)‖1/2|Aγηk(t)|3/2L2

≤ ν22
8
|Aγηk(t)|2L2 + c|ûk(t)|2H‖ûk(t)‖2U‖ηk(t)‖2.

(201)

Using the Cauchy-Schwarz inequality, we bound the right-hand side of (199) as

α|(fγ(φ(t)) − fγ(φ̂k(t)), ν2Aγηk(t))L2 |
≤ ν2|fγ(φ(t)) − fγ(φ̂k(t))|L2 |Aγηk(t)|L2

≤ ν22
8
|Aγηk(t)|2L2 + c|fγ(φ(t)) − fγ(φ̂k(t))|2L2

≤ ν22
8
|Aγηk(t)|2L2 + cK2

7‖ηk(t)‖2 (by (59)),

(202)

|(hk(t), ν2Aγηk(t))L2 | ≤ ν2‖hk(t)‖D(Aγ)′ |Aγηk(t))|L2

≤ ν22
8
|Aγηk(t)|2L2 + c‖hk(t)‖2D(Aγ)′

.
(203)

Relations (199)–(203) yield

ν2
d

dt
‖ηk(t)‖2γ + ν22 |Aγηk(t)|2L2 ≤ ν1

2K‖ξk(t)‖2U + c|ξk(t)|2H‖φ(t)‖2|Aγφ(t)|2L2

+ c|ûk(t)|2H‖ûk(t)‖2U‖ηk(t)‖2 + cK2
7‖ηk(t)‖2 + c‖hk(t)‖2D(Aγ)′

.
(204)

Dividing (198) by K and adding the resulting equation to (204) we obtain

d

dt
‖(ξk(t), ηk(t)‖2Y +

ν1
2K‖ξk(t)‖2U +

ν22
2
|Aγηk(t)|2L2

≤c|ξk(t)|2H‖u(t)‖2U + c|ξk(t)|2H‖φ(t)‖2|Aγφ(t)|2L2

+ c
(

|ξk(t)|2H + ‖ηk(t)‖2
)

|Aγφ̂k(t)|2L2

+ c‖gk(t)‖2V ′ + c|ûk(t)|2H‖ûk(t)‖2U‖ηk(t)‖2

+ cK2
7‖ηk(t)‖2 + c‖hk(t)‖2D(Aγ)′

.

(205)

Neglecting some positive terms, the above relation implies

d

dt
‖(ξk(t), ηk(t)‖2Y ≤G(t)‖(ξk(t), ηk(t)‖2Y + c‖gk(t)‖2V ′ + c‖hk(t)‖2D(Aγ)′ ,(206)

where

G(t) = c
(

‖u(t)‖2U + ‖φ(t)‖2|Aγφ(t)|2L2 + |Aγ φ̂k(t)|2L2 + |ûk(t)|2H‖ûk(t)‖2U +K2
7

)

.

(207)

By the Gronwall Lemma and using the fact that ξk(0) = ηk(0) = 0, we obtain

‖(ξk(t), ηk(t)‖2Y ≤c
∫ t

0

exp

(
∫ t

τ

G(s) ds
)

(

‖gk(τ)‖2V ′ + ‖hk(τ)‖2D(Aγ )′

)

dτ.(208)
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Since the solution (u, φ) of the continuous problem is uniformly bounded in V for
all t ≥ 0 (cf. [23]), we have

(209) sup
t≥0

sup
(u0,φ0)∈B1

‖S(t)(u0, φ0)‖V ≤ c,

and thus
∫ t

τ

G(s) ds ≤ c

∫ t

τ

(

c+ |Aγ φ̂k(s)|2L2 + |ûk(s)|2H‖ûk(s)‖2U
)

ds.(210)

Recalling (170) and (142) we obtain the following bound

∫ t

τ

|Aγ φ̂k(s)|2L2 ds ≤
∫ T⋆

0

|Aγφ̂k(s)|2L2 ds

≤ c

⌊T⋆/k⌋+1
∑

n=1

∫ nk

(n−1)k

(

|Aγφ
n|2L2 + |Aγ(φ

n − φn−1)|2L2

)

ds ≤ c6,

(211)

for some constant c6 = c6(T
∗) > 0. Similarly, we have
∫ t

τ

|ûk(s)|2H‖ûk(s)‖2U ds ≤ c7,(212)

and thus
∫ t

τ

G(s) ds ≤ c8,(213)

for some constants c7 = c7(T
∗) > 0 and c8 = c8(T

∗) > 0.
Relations (208), (213), (178) and (179) give

‖(ξk(t), ηk(t)‖2Y ≤kc9,(214)

and thus

lim
k→0

sup
(u0,φ0)∈Ak, nk∈[0,T∗]

‖Sn
k (u0, φ0)− S(nk)(u0, φ0)‖Y

= lim
k→0

sup
(u0,φ0)∈Ak, nk∈[0,T∗]

sup
(un,φn)∈Sn

k
(u0,φ0)

‖(un, φn)− (u(nk), φ(nk))‖Y

= lim
k→0

sup
(u0,φ0)∈Ak, nk∈[0,T∗]

sup
(un,φn)∈Sn

k
(u0,φ0)

‖(ûk(nk), φ̂k(nk))− (u(nk), φ(nk))‖Y

= lim
k→0

sup
(u0,φ0)∈Ak, nk∈[0,T∗]

sup
(un,φn)∈Sn

k
(u0,φ0)

‖(ξk(nk), ηk(nk))‖Y = 0,

(215)

which concludes the proof of the lemma. �

Since conditions (H1) and (H2) of Theorem 3 are satisfied we obtain that the
discrete attractors converge to the continuous attractor as the time-step approaches
zero. More precisely, we have the following:

Theorem 5. The family of attractors {Ak}k∈(0,κ1] converges, as k → 0, to A, in the
following sense:

lim
k→0

dist(Ak,A) = 0,

where dist denotes the Hausdorff semidistance in Y, namely

dist(Ak,A) = sup
xk∈Ak

inf
x∈A

‖xk − x‖Y.
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