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Abstract. We establish in this paper the supercloseness of the quadratic finite element solu-
tion of a two dimensional elliptic problem to the piecewise quadratic interpolation of its exact
solution. The assumption is that the partition of the solution domain is quasi-uniform under a

Riemannian metric and that each pair of the adjacent elements in the partition forms an ap-
proximate parallelogram. This result extends our previous one in [7] for the linear finite element
approximations based on adaptively refined anisotropic meshes. It also generalizes the results
by Huang and Xu in [13] for the supercloseness of the quadratic elements based on the mildly

structured quasi-uniform meshes. A distinct feature of our analysis is that we transform the error
estimates on each physical element to that on an equilateral standard element, and then focus
on the algebraic properties of the Jacobians of the affine mappings from the standard element to

the physical elements. We believe this idea is also useful for the superconvergence study of other
types of elements on unstructured meshes.

Key words. Quadratic elements, superconvergence, anisotropic meshes.

1. Introduction

Superconvergence study in finite element approximations has been an area of re-
search for several decades. Classical superconvergence analysis is mostly performed
on approximations based on uniform meshes or structured meshes, since supercon-
vergence is generally the result of cancellation of certain lower order terms in the
discretization, which relies on the local symmetry of the partition of the solution
domains, [2, 22, 26, 27]. There have been much recent developments in extending
the study to the FEM based on general types of meshes, see, e.g., [3, 12, 15, 24, 25].
Bank and Xu [3] and Huang and Xu [13] introduced a number of basic identities
which involves explicitly the geometric properties of the elements in the partition,
and established the supercloseness of the linear and quadratic finite element solu-
tion of an two dimensional elliptic equation to the interpolation of its exact solution
on general mildly structure quasi-uniform meshes.

For practical applications of the finite element method, the partition of the do-
main are often adaptively refined, and the meshes are no longer quasi-uniform or
even shape regular. In this case, superconvergence is often still observed. Various
error estimators have been designed based on such a property to guide the mesh
refinement process, see, e.g., [10, 14, 16, 17, 20, 21]. Therefore, understanding of
the superconvergence on adaptively refined unstructured meshes may offer useful
insights to the practitioners of the finite element method. There have been some
recent efforts in this area of study e.g., Wu and Zhang [23] established the super-
convergence for linear finite element approximation of a singular perturbed problem
based on a pre-defined graded mesh. However, the theoretical work in this area is
still limited due to the technical complexity involved in deriving the expressions for
discretization errors in general element geometries.

Received by the editors February 30, 2017 and, in revised form, May 12, 2017.
2000 Mathematics Subject Classification. 65N30, 65N15, 65N50.

288



SUPERCONVERGENCE OF A QUADRATIC FINITE ELEMENT METHOD 289

By using the notion of quasi-uniform meshes under a Riemannian metric [9, 5, 6],
we extended in [7] the superconvergence analysis for linear finite element approxima-
tions on mildly structure quasi-uniform meshes in [3] to certain adaptively refined
anisotropic meshes. An innovation for the analysis in [7] is the development of the
notion of approximate parallelogram for anisotropic meshes. Based on this super-
convergence result, we established in [8] the effectiveness of several commonly used
gradient recovery type error estimators for the FEM based on adaptively refined
anisotropic meshes.

In this paper, we extend our analysis in [7] for linear FE approximations to a
quadratic FE approximation on anisotropic meshes. We establish rigorously the
supercloseness of the finite element solution of a two dimensional elliptic equation
to the piecewise quadratic interpolation of the exact solution. This conclusion also
generalizes the results by Huang and Xu [13] for the supercloseness of quadratic ele-
ments on the mildly structured quasi-uniform meshes As is documented in the study
of a Laplace equation in [13], superconvergence analysis for quadratic elements on
general meshes is much more complicated technically than for linear elements, and
considering anisotropic features of the partition makes the study even more difficult.
We simplify the task by performing the analysis on the standard element. More
specifically, we select the equilateral triangle with vertices on the unit circle as the
standard element, and transform the discretization errors on each physical element
to the standard element. Then all the estimates involving the geometric properties
of the physical elements become those involving the algebraic properties of the Ja-
cobians of the affine mappings from the standard element to the physical elements.
This approach was first used in our superconvergence study for linear elements in
[7]. It made much easier technically the derivation of various error bounds needed
for the analysis. We believe this idea is useful for the superconvergence analysis in
other types of problems.

An outline of this paper is as follows: We describe in Section 2 the model problem,
the anisotropic partitions of the solution domain, and the measure of the anisotropic
features of the higher order derivatives of solutions. We list in Section 3 a number of
basic lemmas and then establish the supercloseness of the quadratic finite element
solution to the piecewise quadratic interpolation of the exact solution. We provide
in Section 4 two numerical examples and finish the paper with some discussions in
Section 5.

2. FE Approximation Based on Anisotropic Meshes

We consider the following homogeneous Dirichlet problem of a second order
elliptic equation:{

−∇ · (A∇u+ b u) + d u = f, in Ω
u|∂Ω = 0,

(1)

where A is symmetric positive definite (SPD) constant matrix, and b, d, and f are
suitably smooth functions. Furthermore, (1) is assumed to be strongly elliptic.

FE approximation: Let {TN} be a family of triangulations of Ω satisfying
the basic requirement that the intersection of the closures of any two elements
is either the empty set, a point, or an entire edge. Here N stands for the total
number of elements in TN . We use N , instead of the usual element diameter h to
characterize the fineness of the partition, because in anisotropic meshes an element
may have very different length scales in different directions. Define SN be the
space of continuous piecewise quadratic polynomials over partition TN , and VN =
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SN ∩H1
0 (Ω). The finite element method for solving (1) is to find the approximate

solution uN ∈ VN satisfying

a(uN , v) =

∫
Ω

[(A∇uN ) · ∇v + (b · ∇v)uN + d uNv] =

∫
Ω

fv, ∀v ∈ VN .(2)

In order to better describe and control the anisotropic mesh features, such as
element sizes, aspect ratios, and alignment directions, we consider a class of meshes
that are quasi-uniform under a given metric. Let M be a continuous Riemannian
metric on Ω̄. For each element τ ∈ TN , let Mτ be the average of M over τ . Its
eigen-decomposition is of form

Mτ = Tτ · Λτ · T ′
τ ,(3)

where Λτ is diagonal and Tτ is orthonormal. Define

Fτ = TτΛ
− 1

2
τ .(4)

We call a family of triangulations {TN} quasi-uniform under metric M , if for all
τ ∈ TN , τ̃ = F−1

τ τ are shape regular and of about the same size, see [5, 6, 9]. Let
Jτ be the Jacobian of the affine mapping from a standard element τ̂ to τ . Then
{TN} is quasi-uniform under metric M iff

∥F−1
τ Jτ∥ ≃ (∥J−1

τ Fτ∥)−1 ≃ (CM/N)1/2, ∀τ ∈ TN ,(5)

where ≃ means the ratio of the two quantities involved are bounded from above
and below by positive constants, and

CM =

∫
Ω

| det(M)|1/2.(6)

In order to derive the convergence and superconvergence for the quadratic FE
approximation on anisotropic meshes, we need certain quantities to characterize
the anisotropic behavior of the third and fourth order derivatives of solution u.

Anisotropic measure of D3u and D4u: For any given point x ∈ Ω and m = 3
or 4, we call a “suitable” 2×2 symmetric positive definite matrix Qm an anisotropic
measure of Dmu at x, if it satisfies

|(s · ∇)mu(x)| ≤ [s ·Qm(x)s]m/2, ∀s ∈ R2.(7)

Clearly, there are infinitely many SPD matrices satisfying the above inequality. For
instance, Qm can be chosen as |Dmu| I, where I is the identity matrix, and |Dmu|
is the maximum of all the m-th order directional derivatives at x. However, such a
Qm reflects only the magnitude of Dmu(x), and no information about the possible
anisotropic behavior of Dmu(x) is revealed. In order to include such information,
Qm should be chosen so that inequality (7) is satisfied as tight as possible, namely,
Qm should be selected as “small” as possible. One option is to choose such an
anisotropic measure Qm so that s · Qms = 1 is the largest ellipse contained in
|(s · ∇)mu| ≤ 1 on the s-plane, see [6] for more details. Unfortunately, there is no
explicit formula for Qm in general. Furthermore, in some degenerated cases, such
a largest ellipse can be infinite, and suitable regularization should be applied to
define Qm. We developed in [5, 6] a numerical algorithm to find an suitable Qm

approximately. More recently, Mirebeau [19] discussed the basic properties of Qm

for generalm, and derived in particular an explicit formula in [18] for the “smallest”
Q3 measuring the anisotropic behaviors of third order derivatives D3u. We shall
use this formula for the anisotropic mesh generation in our numerical experiment
in this paper.
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Based on the anisotropic measure Qm of the high order derivatives and its in-
terplay with the metric M characterizing the anisotropic properties of the adaptive
meshes, we can derive the error estimates for the piecewise polynomial interpolation
based on anisotropic meshes, see [5, 6] for details. In particular, we state below an
error estimate for the piecewise quadratic interpolation which will be needed in our
analysis later.

Theorem 2.1. Suppose {TN} is quasi-uniform under metric M , and uq is the
piecewise quadratic interpolation of function u ∈ H3(Ω). Suppose the third order
derivative D3u satisfies assumption (7) about its anisotropic behavior. Then there
exists a constant c independent of u and N such that

∥u− uq∥0,Ω ≤ C
3/2
M N−3/2 ·

{
c

∫
Ω

∥FTQ3F∥3
}1/2

,(8)

and

|u− uq|1,Ω ≤ CMN
−1 ·

{
c

∫
Ω

∥F−1∥2∥FTQ3F∥3
}1/2

.(9)

where F and CM are determined by M as in (4) and (6).

Remark 2.1. The above estimates hold for any quadratic interpolation as long
as all the polynomials of degree ≤ 2 are invariant under the operation. In addition,
by the ellipticity of the model problem, the above error estimate in H1-seminorm is
also true for the error u− uN of the quadratic finite element approximation uN of
(1).

Remark 2.2. Let λ1 ≥ λ2 be the eigenvalues of Q3(x), and v1,v2 its corre-
sponding eigenvectors. Then roughly speaking, λ1 represents the largest third order
directional derivative of u at x (along v1 direction), and λ2 approximately the small-
est third order directional derivative at x (along v2 direction). If we define a mesh
metric M3,1,2 as

M3,1,2 = c(λ1/λ2)
1/6 ·Q3(10)

and the anisotropic mesh is quasi-uniform under M3,1,2, then the error bound (9)
for H1-seminorm for the quadratic interpolation is minimized, see Theorem 2.1 in
[6]. In this case, we have

|u− uq|1,Ω ≤ cN−1 ·
{ ∫

Ω

|λ1|1/2|λ2|1/6
}3/2

.(11)

On the other hand, if quasi-uniform meshes are used, then we would have

|u− uq|1,Ω ≤ cN−1 ·
{ ∫

Ω

|λ1|2
}1/2

;

while if we are only allowed using isotropic adaptive refinements, then the best
isotropic mesh metric to minimize the error bound in (9) would be M = λ1I, and
the error bound for ∥u− uN∥1,Ω becomes

|u− uq|1,Ω ≤ cN−1 ·
{ ∫

Ω

|λ1|2/3
}3/2

.

Therefore, the improvements in error bounds brought by the anisotropic adaptivity
is clearly manifested.
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3. Supercloseness of FE solution

In this section we establish the supercloseness of the quadratic finite element
solution to (1) to the quadratic interpolation of the exact solution. Since super-
convergence is often the result of cancellation of certain lower order terms in the
discretization, which relies on the local symmetry of the partition TN , we first recall
the notion of O(N−(1+α)/2)-approximate parallelograms introduced in [7].

Approximate parallelograms: Let the standard element τ̂ be an equilateral
triangle with vertices on the unit circle. Let τ and τ ′ be a pair of elements sharing
a common edge, and let Jτ and Jτ ′ be, respectively, the Jacobians of the affine
mappings from τ̂ to τ and τ ′ that map a vertex of τ̂ to the opposite vertices of τ∪τ ′,
cf. Figure 1. We call τ ∪ τ ′ forming an O(N−(1+α)/2)-approximate parallelogram,
if

∥I + J−1
τ Jτ ′∥ = O(N−α/2).(12)

It can be shown that the above definition is independent of which of the two elements
is taken as τ or τ ′.

Note in the case that the affine mappings do not map the same vertex of τ̂ to the
opposite vertices of τ ∪ τ ′, e.g., mapping Fτ maps vertex 1̂ to vertex i in τ , but Fτ ′

maps vertex 1̂ in τ̂ to vertex i′−1 in τ ′. In this case, mapping Fτ ′ ◦R120 maps vertex
1̂ into i′ in τ ′, where R120 is the matrix for rotation by 120◦ counter-clock-wise,
and condition (12) should be expressed as

∥I + J−1
τ (Jτ ′R120)∥ = O(N−α/2).(13)

When the partition {TN} is quasi-uniform, the diameters of all elements in TN
are about h = O(N−1/2), and the above definition is equivalent to the O(h1+α)-
approximate parallelograms for “mildly structured” and unstructured quasi-uniform
meshes introduced in [3, 15, 24]. Indeed, anisotropic elements τ1 and τ2 form an
O(N−(1+α)/2)-approximate parallelogram, if they form an shape regularO(N−(1+α)/2)
-approximate parallelogram under an affine mapping, see Lemma 2.2 in [7]. Also, if
the two elements form an approximate parallelogram, then the ratio of their areas
deviates from 1 by at most O(N−α/2), i.e.,

|τ |
|τ ′|

= 1 +O(N−α/2).(14)

Now we introduce some basic notations and formulas about the piecewise linear,
quadratic and cubic interpolations of a continuous function. Let τ = ∆x1x2x3 be
an element in the partition. For i = 1, 2, 3, denote by ei = xi−1 − xi+1. Define
ℓi = |ei| be the length of edge ei, ti = ei/ℓi the unit tangent direction along ei,
and ni the unit outward normal on edge ei. See Figure 1. In addition, we define

ξi = ni+1 ·Ani−1, ηi = ni ·Ani,

where A is the coefficient matrix in our model problem (1). All the indices regard-
ing vertices and edges are considered congruent if they are equal modular 3. For

simplifying notations, we write ∂ti = ∂
∂ti

, ∂t2i = ∂2

∂t2i
, ∂t123 = ∂3

∂t1∂t2∂t3
. We also

denote by Pk the set of polynomials of degree ≤ k.

For any element τ in the partition, we denote by ϕi the linear nodal basis function
associated with vertex xi. It is elementary to verify that{

∇ϕi = − ℓi
2|τ |ni;

∂tiϕi = 0, ∂tiϕi+1 = − 1
ℓi
, ∂tiϕi−1 = 1

ℓi
;

(15)
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Figure 1. Standard element τ̂ with 3 vertices on the unit circle
and a pair of adjacent elements τ and τ ′.

Let u be a continuous function on Ω. We define Πℓu|τ be the linear interpolation
of u|τ at the vertices of τ . Furthermore, we denote by uℓ : Ω → R, the piecewise
linear interpolation of u over triangulation TN , i.e., uℓ|τ = Πℓu|τ for each τ ∈ TN .

Define uq be the piecewise quadratic projection-interpolation of u over TN as
follows: on each τ ∈ TN ,

uq|τ = Πqu|τ = Πℓu|τ +
3∑

i=1

αiϕi+1ϕi−1,(16)

where constants αi, 1 ≤ i ≤ 3, are determined by the following condition:∫
ei

(u− uq) = 0, ∀i = 1, 2, 3.(17)

Since Πqu on an element edge is determined uniquely by u on the edge, thus Πqu
is continuous over Ω. Furthermore, if u ∈ P2, then we have by Lemma 2.2 in [13]
that

αi = −ℓ
2
i

2
∂t2i u.(18)

Define uc be the piecewise cubic projection-interpolation of u over TN as follows:
on each τ ∈ TN ,

uc|τ = Πc u|τ = Πqu|τ +

3∑
i=0

βiψi,(19)

where

ψ0 = ϕ1ϕ2ϕ3,

and

ψi = ϕi+1ϕi−1(ϕi+1 − ϕi−1), 1 ≤ i ≤ 3.

The constants βi, 0 ≤ i ≤ 3, are determined by{
(i):

∫
τ
(u− uc) = 0;

(ii):
∫
ei
(u− uc)p1 = 0, ∀p1 ∈ P1, i = 1, 2, 3.

(20)
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Since Πcu on an element edge is determined uniquely by u on the edge, thus uc is
continuous over Ω. Furthermore, if u ∈ P3, then we have from Lemma 2.3 in [13]
that 

β0 = 1
4ℓ1ℓ2ℓ3∂t123u+ 1

6

3∑
k=1

ℓ2kℓk+1∂t2ktk+1
u;

βi =
1
12ℓ

3
i ∂t3i u, 1 ≤ i ≤ 3.

(21)

Lemma 3.1. For any v ∈ P2, we have

∇ · (A∇v) = − 1

4|τ |2
3∑

i=1

ℓ2i ℓi+1ℓi−1ξi · ∂t2i v.(22)

Proof: Since v ∈ P2 and A is a constant matrix, we have

∇ · (A∇v) =
3∑

i=1

αi ∇ ·A∇(ϕi+1ϕi−1)

=
3∑

i=1

2αi · ∇ϕi+1 ·A∇ϕi−1.

Then (22) follows directly from applying (15) and (18) to the right hand side of the
above equation.

Lemma 3.2. For any v ∈ P2, we have for i = 1, 2, 3, that

∂ti(ni ·A∇v) = 1
4|τ | { ℓi(ℓi+1ξi−1 − ℓi−1ξi+1)∂t2i v

+ηi(ℓ
2
i+1∂t2i+1

v − ℓ2i−1∂t2i−1
v) }.

(23)

Proof: Since v ∈ P2 and A is constant, we have

∂ti(ni ·A∇v) =
3∑

k=1

αk∂ti [ni ·A(ϕk+1∇ϕk−1)]

=
3∑

k=1

αkni ·A(∇ϕk+1∂tiϕk−1 +∇ϕk−1∂tiϕk+1).

(24)

By using (15), we have for k = i,

ni ·A(∇ϕi+1∂tiϕi−1 +∇ϕi−1∂tiϕi+1)
= 1

2|τ | ℓi [−ℓi+1 ni ·Ani+1 + ℓi−1 ni ·Ani−1]

= 1
2|τ | ℓi [−ℓi+1ξi−1 + ℓi−1ξi+1];

for k = i+ 1,

ni ·A(∇ϕi+2∂tiϕi +∇ϕi∂tiϕi+2) = − 1

2|τ |
ni ·Ani = − 1

2|τ |
ηi;

and for k = i− 1,

ni ·A(∇ϕi∂tiϕi−2 +∇ϕi−2∂tiϕi) =
1

2|τ |
ni ·Ani =

1

2|τ |
ηi;

Hence (23) follows readily from the application of (18) and the above three equalities
to (24).

Lemma 3.3. For any u ∈ P3, let uq = Πqu be the piecewise quadratic inter-
polation of u defined in (16). Then for any v ∈ P2,∫

∂τ

(u− uq)(n ·A∇v) = − 1

720

3∑
i=1

ℓ5i ∂t3i u ∂ti(ni ·A∇v).(25)
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Proof: Clearly, ∫
∂τ

(u− uq)(n ·A∇v) =
3∑

i=1

∫
ei

(u− uq)(n ·A∇v).

Note that for u ∈ P3, we have u − uq = βiψi on edge ei with βi given in (21). In
addition,

ψi = ϕi+1ϕi−1(ϕi+1 − ϕi−1) =
ℓi
2
∂ti(ϕ

2
i+1ϕ

2
i−1).

Thus, by using integration by parts,∫
ei
(u− uq)(n ·A∇v) =

∫
ei
βiψi(n ·A∇v)

= 1
2 ℓi βi

∫
ei
∂ti(ϕ

2
i+1ϕ

2
i−1)(n ·A∇v)

= − 1
2 ℓi βi

∫
ei
(ϕ2i+1ϕ

2
i−1)∂ti(n ·A∇v).

By the facts that ∂ti(n ·A∇v) is a constant since v ∈ P2, and that∫
ei

(ϕ2i+1ϕ
2
i−1) =

ℓi
30
,

we have ∫
ei

(u− uq)(n ·A∇v) = − 1

60
ℓ2iβi ∂ti(ni ·A∇v).

Finally, (25) follows from inserting βi described by (21) into the above equation.

Lemma 3.4. For any u ∈ P3, let uq = Πqu be the piecewise quadratic inter-
polation of u defined in (16). Then for any v ∈ P2,∫

τ
A∇(u− uq) · ∇v

= 1
2880|τ |

3∑
i=1

∂t2i v · ℓ
2
i {ℓi+1ℓi−1ξi [ 3 ℓ1ℓ2ℓ3∂t123u

+2
3∑

k=1

ℓ2kℓk+1∂t2ktk+1
u ]− ℓ4i (ℓi+1ξi−1 − ℓi−1ξi+1)∂t3i u

+(ℓ5i−1ηi−1∂t3i−1
u− ℓ5i+1ηi+1∂t3i+1

u) }.

(26)

Proof: Using integration by parts, we have∫
τ
A∇(u− uq) · ∇v

= −
∫
τ
(u− uq)∇ · (A∇v) +

∫
∂τ
(u− uq)(n ·A∇v)

= −∇ · (A∇v)
∫
τ
(u− uq) +

∫
∂τ
(u− uq)(n ·A∇v).

(27)

Since u ∈ P3, we have from (19) that∫
τ

(u− uq) =
4∑

i=0

∫
τ

βiψi = β0

∫
τ

ψ0 =
|τ |
60

· β0,

where we have used the facts that
∫
τ
ψ0 = |τ |

60 , and that
∫
τ
ψi = 0 for all i = 1, 2, 3.

Putting β0 described in (21) into the right hand side of (27) and using Lemma
3.1, we have∫

τ
A∇(u− uq) · ∇v

= 1
2880|τ | (

3∑
i=1

ℓ2i ℓi+1ℓi−1ξi ∂t2i v) · [ 3 ℓ1ℓ2ℓ3∂t123u+ 2
3∑

k=1

ℓ2kℓk+1∂t2ktk+1
u]

− 1
2880|τ |

3∑
i=1

ℓ5i ∂t3i u {ℓi(ℓi+1ξi−1 − ℓi−1ξi+1)∂t2i v

+ηi(ℓ
2
i+1∂t2i+1

v − ℓ2i−1∂t2i−1
v)},
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which leads to (26) after regrouping the terms.

Next we state two lemmas about the partial cancellation of directional derivatives
on a pair of adjacent elements τ and τ ′ when they form an approximate parallelo-
gram. First we are concerned with this cancellation between two ξi = ni+1 ·Ani−1

and between two ηi = ni · Ani after affine transforms. Let Fτ and Fτ ′ be the
affine mappings from τ̂ to τ and τ ′, resp.. Jτ and Jτ ′ are their Jacobians. For any
function u, let ûτ = u ◦ Fτ and ûτ ′ = u ◦ Fτ ′ . Note that ∇̂ûτ = Jτ∇u on τ and
∇̂ûτ ′ = Jτ ′∇u on τ ′. Let

Âτ = J−1
τ AJ−T

τ , Âτ ′ = J−1
τ ′ AJ−T

τ ′ .

Also, let i and i′ be the indices for the opposite vertices in τ ∪ τ ′. Define

ξ̂i = n̂i+1 · Âτ n̂i−1, ξ̂i′ = n̂i′+1Âτ ′ n̂i′−1,

and

η̂i = n̂i · Âτ n̂i, η̂i′ = n̂i′Âτ ′ n̂i′ .

Lemma 3.5. Suppose τ and τ ′ are a pair of adjacent elements in the partition,
and they form an O(N−(1+α)/2)-approximate parallelogram. Then for any 1 ≤ i ≤
3, we have

|ξ̂i − ξ̂i′ |+ |η̂i − η̂i′ | ≤ cN−α/2(∥J−1
τ ∥2 + ∥J−1

τ ′ ∥2).(28)

Proof: First we assume that Fτ and Fτ ′ map the same vertex of τ̂ into opposite
vertices in τ ∪ τ ′. In this case, we have F−1

τ ti = F−1
τ ′ t′i and n̂i = n̂′

i. Therefore

|ξ̂i − ξ̂i′ | = |n̂i+1 · Âτ n̂i−1 − n̂i′+1 · Âτ ′ n̂i′−1|
≤ |n̂i+1| · ∥Âτ − Âτ ′∥ · |n̂i−1|
= ∥J−1

τ AJ−T
τ − J−1

τ ′ AJ
−T
τ ′ ∥

≤ ∥(J−1
τ + J−1

τ ′ )AJ−T
τ ∥+ ∥J−1

τ ′ A(J−T
τ + J−T

τ ′ )∥
≤ ∥I + J−1

τ Jτ ′∥ · ∥J−1
τ ′ AJ−T

τ ∥+ ∥J−1
τ ′ AJ

−T
τ ′ ∥ · ∥I + J−1

τ Jτ ′∥
≤ cN−α/2(∥J−1

τ ∥2 + ∥J−1
τ ′ ∥2).

The estimate for η̂i − η̂i′ is similar.
In the cases where Fτ and Fτ ′ do not map the same vertex of τ̂ into opposite

vertices in τ ∪ τ ′. For instance, mapping Fτ ′ maps vertex 1̂ to vertex i′ in τ ′, but
mapping Fτ maps vertex 1̂ to vertex i − 1 in τ . In this case, n̂i = R120n̂i′ , and
mapping F̃τ = Fτ ◦R120 maps vertex 1̂ into i in τ , cf. Figure 1. Therefore,

ξ̂i = n̂i+1 · Âτ n̂i−1

= R120n̂i′+1 · Âτ R120n̂i′−1

= n̂i′+1 ·RT
120Âτ R120n̂i′−1

= n̂i′+1 ·RT
120J

−1
τ AJ−T

τ R120 n̂i′−1

= n̂i′+1 · (JτR120)
−1A(JτR120)

−T n̂i′−1

Then we may proceed in the same way as for the first case, and prove the estimates

for |ξ̂i − ξ̂i′ | by noting (13).

Lemma 3.6. Suppose τ and τ ′ are a pair of adjacent elements in the partition,
and they form an O(N−(1+α)/2)-approximate parallelogram. Fτ and Fτ ′ are the
affine mappings from standard element τ̂ to τ and τ ′, resp.. Let ûτ = u|τ ◦ Fτ and
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ûτ ′ = u|τ ′ ◦ Fτ ′ . Then we have for any 1 ≤ i, j, k ≤ 3 that∣∣∫
τ̂
(∂t̂ijk ûτ + ∂t̂i′j′k′ ûτ ′) dτ̂

∣∣
≤ cN−α/2{ 1

|τ |
∫
τ
∥JT

τ Q3Jτ∥
3
+ 1

|τ ′|
∫
τ ′∥JT

τ ′Q3Jτ ′∥3}1/2

+ c{ 1
|τ |

∫
τ
∥JT

τ Q4Jτ∥
4
+ 1

|τ ′|
∫
τ ′∥JT

τ ′Q4Jτ ′∥4}1/2,
(29)

where i′, j′, k′ are the indices for the vertices opposite to i, j, k in τ ∪ τ ′, while Jτ
and Jτ ′ are the Jacobians of Fτ and Fτ ′ , resp.. Q3 and Q4 are the anisotropic
measures of D3u and D4u defined in (7).

Proof: First we assume that the affine mappings Fτ and Fτ ′ map the same vertex
on τ̂ into opposite vertices on τ ∪ τ ′, otherwise, either Fτ or Fτ ′ is the composition
of such a mapping with a ±120◦ rotation, and the estimates can be dealt with
similarly. Furthermore, for simplifying notations, we assume both Fτ and Fτ ′ map
ê1 to τ ∩ τ ′ = ei = −ei′ .

To begin with, note that uτ and uτ ′ only share the common values on edge ei,
we define the averages of ûτ and ûτ ′ on ê1 as follows:

G(ûτ ) = 1
τ̂ · 1

|ê1| ·
∫
ê1
∂t̂ijk ûτ = 4

9

∫
ê1
∂t̂ijk ûτ ,

G(ûτ ′) = 1
τ̂ · 1

|ê1| ·
∫
ê1
∂t̂i′j′k′ ûτ ′ = 4

9

∫
ê1
∂t̂i′j′k′ ûτ ′ .

Then ∣∣∫
τ̂
(∂t̂ijk ûτ + ∂t̂i′j′k′ ûτ ′) dτ̂

∣∣
≤

∣∣∫
τ̂
(∂t̂ijk ûτ − G(ûτ ) )

∣∣+ ∣∣∫
τ̂ ′(∂t̂i′j′k′ ûτ ′ − G(ûτ ′) )

∣∣
+
∣∣G(ûτ ) + G(ûτ ′)

∣∣.(30)

We first estimate the first term on the right hand side of the above inequality. Note
that

∣∣∫
τ̂
(∂t̂ijk ûτ −G(ûτ ) )

∣∣ is invariant if ûτ is replaced by ûτ + p3 for any p3 ∈ P3,

and that H4(τ̂) ↩→W 3,1(τ̂), we have∣∣∫
τ̂
(∂t̂ijk ûτ − G(ûτ ) )

∣∣ ≤ c inf
p3

∥ûτ + p3∥H4(τ̂)

≤ c |ûτ |H4(τ̂)

≤ c {
∫
τ̂
|D̂4τ̂ |2dτ̂}1/2

≤ c {
∫
τ̂
∥JT

τ Q4Jτ∥
4
dτ̂}1/2

≤ c |τ |−1/2{
∫
τ
∥JT

τ Q4Jτ∥
4
dτ}1/2.

(31)

The second term on the right hand side of (30) can be estimated similarly.
To bound the last term in (30), we consider first the case i = 1, j = 2, k = 3,

and thus ∂t̂ijk = ∂t̂123 . Since D
3uτ = D3uτ ′ on τ ∩ τ ′, we have on ê1 that

∂t̂ijk ûτ = ∂t̂123 ûτ = (t̂1 · ∇̂)(t̂2 · ∇̂)(t̂3 · ∇̂)ûτ = (Jτ t̂1 · ∇)(Jτ t̂2 · ∇)(Jτ t̂3 · ∇)u,

and similarly

∂t̂i′j′k′ ûτ ′ = ∂t̂123 ûτ ′ = (Jτ ′ t̂1 · ∇)(Jτ ′ t̂2 · ∇)(Jτ ′ t̂3 · ∇)u.

Recall that ∇̂ûτ = JT
τ ∇uτ and ∇̂ûτ ′ = JT

τ ′∇uτ ′ , and use the fact that

Jτ t̂1 + Jτ ′ t̂1 =
1√
3
( ei + ei′ ) = 0,
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we have on ê1 that∣∣∣∂t̂ijk ûτ + ∂t̂i′j′k′ ûτ ′

∣∣∣
=

∣∣∣(Jτ t̂1 · ∇) [ (Jτ t̂2 · ∇)(Jτ t̂3 · ∇)u− (Jτ ′ t̂2 · ∇)(Jτ ′ t̂3 · ∇)u ]
∣∣∣

≤
∣∣∣(Jτ t̂1 · ∇)(Jτ t̂2 · ∇)[(Jτ + Jτ ′)t̂3 · ∇]u

∣∣∣
+
∣∣∣(Jτ t̂1 · ∇)[(Jτ + Jτ ′)t̂2 · ∇)](Jτ ′ t̂3 · ∇)u ]

∣∣∣
≤

∣∣∣(t̂1 · ∇̂)(t̂2 · ∇̂)[(I + J−1
τ Jτ ′)t̂3 · ∇̂]ûτ

∣∣∣
+
∣∣∣(t̂1 · ∇̂)((I + J−1

τ ′ Jτ )t̂2 · ∇̂)(t̂3 · ∇̂)ûτ ′

∣∣∣
≤ |t̂1| |t̂2| |(I + J−1

τ Jτ ′)t̂3| · |D̂3ûτ |+ |t̂1| |(I + J−1
τ ′ Jτ )t̂2| |t̂3| · |D̂3ûτ ′ |

≤ cN−α/2(|D̂3ûτ |+ |D̂3ûτ ′ |).

(32)

Hence we have from the embedding H1(τ̂) ↩→ L1(ê1) that∣∣∣G(ûτ ) + G(ûτ ′)
∣∣∣

≤ 4
9

∫
ê1
|∂t̂ijk ûτ + ∂t̂i′j′k′ ûτ ′ |

≤ cN−α/2 ·
∫
ê1
(|D̂3ûτ |+ |D̂3ûτ ′ |)

≤ cN−α/2 · {
∫
τ̂
(|D̂3ûτ |2 + |D̂4ûτ |2 + |D̂3ûτ ′ |2 + |D̂4ûτ ′ |2)dτ̂}1/2

≤ cN−α/2 · {
∫
τ̂
(∥JT

τ Q3Jτ∥
3
+ ∥JT

τ Q4Jτ∥
4

+∥JT
τ ′Q3Jτ ′∥3 + ∥JT

τ ′Q4Jτ ′∥4)dτ̂}1/2

≤ cN−α/2 · { 1
|τ |

∫
τ
(∥JT

τ Q3Jτ∥
3
+ ∥JT

τ Q4Jτ∥
4
)dτ

+ 1
|τ ′|

∫
τ ′(∥JT

τ ′Q3Jτ ′∥3 + ∥JT
τ ′Q4Jτ ′∥4)dτ ′ }1/2

(33)

Putting estimates (31) and (33) into (30), we have the estimate (29).
For other cases of indices i, j, k, if one of them corresponds to t̂1, then a pro-

ceedure similar to (32) and (33) also leads to estimate (29). If none of the indices
corresponds to t̂1, we only have to split ∂t̂ijk + ∂t̂i′j′k′ into [∂t̂ijk + ∂t̂i′jk ]− [∂t̂i′jk +

∂t̂i′j′k ] + [∂t̂i′j′k + ∂t̂i′j′k′ ], then proceed similarly as in (32) to reach (29).

Theorem 3.1. Let u be the exact solution of model problem (1) and uq its
piecewise quadratic interpolation. Let uN be the quadratic finite element solution
of (1) based on partition TN , and J : Ω → R2×2 is defined on each element τ by
J |τ = Jτ , the Jacobian of the affine mapping from standard element τ̂ to τ . Let Q3

and Q4 be the anisotropic measure of D3u and D4u satisfying (7), and assume each
pair of adjacent elements in TN forms an O(N−(1+α)/2)-approximate parallelogram.
Then we have

∥uN − uq∥1,Ω ≤ c
{ ∫

Ω
[ (1 +N−α/2∥J∥2∥J−1∥4) · ∥JTQ3J∥

3

+∥J∥2∥J−1∥4 · ∥JTQ4J∥
4
]
}1/2(34)

Furthermore, if the partition TN is quasi-uniform under metric M , then we have

∥uN − uq∥1,Ω ≤ CMN
−1

{
c
∫
Ω
[(CMN

−1 +N−α∥F∥2∥F−1∥4) · ∥FTQ3F∥3

+CMN
−1∥F∥2∥F−1∥4 · ∥FTQ4F∥4

}1/2

.
(35)

where F and CM are determined by metric M as in (4) and (6).
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Proof: By the ellipticity of a(·, ·) and the orthogonality of the finite element solu-
tion uN to SN ,

∥uN − uq∥1,Ω ≤ c sup
v∈SN

|a(uN − uq, v)|
∥v∥1,Ω

= c sup
v∈SN

|a(u− uq, v)|
∥v∥1,Ω

.

To estimate a(u−uq, v), let uc be the piecewise cubic interpolation of u defined by
(19). We have for any v ∈ SN that

(A∇(u− uc),∇v) =
∑
τ

∫
τ
A∇(u− uc) · ∇v

=
∑
τ

{−
∫
τ
(u− uc)∇ · (A∇v) +

∫
∂τ

(u− uc)(n ·A∇v) }

= 0,

where we have used the fact that ∇ · (A∇v) is constant and n · A∇v is linear on
each element τ , together with condition (20) in the definition of uc. Therefore,

a(u− uq, v) = (A∇(uc − uq),∇v) + (u− uq, b · ∇v + d v).(36)

For the lower order term on the right hand side of the above equation, we have
from Theorem 2.1 that

| (u− uq, b · ∇v + d v) | ≤ ∥u− uq∥ · ∥v∥1,Ω
≤ c

{ ∫
Ω
∥JTQ3J∥

3
}1/2

· ∥v∥1,Ω.
(37)

Now we focus on the estimate for (A∇(uc − uq),∇v) in (36).
We transform all the integrals on physical elements τ to those on standard ele-

ment τ̂ . Denote by Fτ the affine mapping from τ̂ to τ , and Jτ its Jacobian. Define
ûq = uq ◦ Fτ , and ûc = uc ◦ Fτ . It is easy to see that [13]

ûq = Π̂qû, and ûc = Π̂cû.

Noting that for standard element τ̂ , we have |τ̂ | = 3
√
3

4 and ℓ̂1 = ℓ̂2 = ℓ̂3 =
√
3.

Thus by applying Lemma 3.4 to integrals on τ̂ , we have

(A∇(uc − uq),∇v) =
∑
τ

∫
τ
∇(uc − uq) ·A∇v

= 1
|τ̂ |

∑
τ

|τ |
∫
τ̂
∇̂(ûc − ûq) · Â∇v

= 1
80|τ̂ |

∑
τ

|τ | ∂t̂2i v̂ { ξ̂i ( 3 ∂t̂123 ûτ + 2
3∑

k=1

∂t̂2k t̂k+1
ûτ )

+(ξ̂i+1 − ξ̂i−1)∂t̂3i
ûτ − η̂i−1∂t̂3i−1

ûτ + η̂i+1∂t̂3i+1
ûτ }

= 1
80|τ̂ |2

∑
τ

{ |τ |
3∑

i=1

Bi(Π̂cûτ ) · ∂t̂2i v̂ },

(38)

where

Bi(w) =

∫
τ̂

[
ξ̂i ( 3 ∂t̂123w + 2

3∑
k=1

∂t̂2k t̂k+1
w )

+ (ξ̂i+1 − ξ̂i−1)∂t̂3i
w − η̂i−1∂t̂3i−1

w + η̂i+1∂t̂3i+1
w

]
dτ̂ .
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Regroupping the terms in the sum-up on the right hand side of (38) so that the
two terms involving the same ∂t̂2i

v̂ are combined, we have

a(uc − uq, v)

= 1
80|τ̂ |2

∑
ei=τ∩τ ′

[ |τ |Bi(Π̂cûτ ) + |τ ′|Bi′(Π̂cτ̂
′) ] · ∂t̂2i v̂

= 1
80|τ̂ |2

∑
ei=τ∩τ ′

{ [ |τ |Bi(Π̂cûτ − ûτ ) + |τ ′|Bi′(Π̂cτ̂
′ − ûτ ′) ] · ∂t̂2i v̂

+ [ |τ |Bi(ûτ ) + |τ ′|Bi′(τ̂
′) ] · ∂t̂2i v̂ }.

(39)

First, we estimate Bi(Π̂cûτ − ûτ ) in the first term on the right hand side of (39).

Note that for any 1 ≤ i, j, k ≤ 3, we have ∂t̂ijk(Π̂cûτ − ûτ ) is invariant if ûτ is

replaced by ûτ + p3 for any p3 ∈ P3. Thus∫
τ̂
|∂t̂ijk(Π̂cûτ − ûτ )|dτ̂ ≤ c inf

p3

∥ûτ + p3∥H4(τ̂) ≤ c|ûτ |H4(τ̂)

≤ c
{∫

τ̂
|D̂4ûτ |2dτ̂

}1/2

≤ c
{∫

τ̂
∥JT

τ Q4Jτ∥
4
dτ̂

}1/2

= c |τ |−1/2
{∫

τ
∥JT

τ Q4Jτ∥
4
dτ

}1/2

.

(40)

In addition,

|ξ̂i| = |n̂i+1 · Ân̂i−1| ≤ ∥Â∥ = ∥J−1
τ AJ−T

τ ∥ ≤ c ∥J−1
τ ∥2,

and

|η̂i| = |n̂i · Ân̂i| ≤ c ∥J−1
τ ∥2.

Hence we have

|Bi(Π̂cûτ − ûτ )| ≤ c|τ |−1/2∥J−1
τ ∥2{

∫
τ

∥JT
τ Q4Jτ∥

4
dτ}1/2.(41)

We may estimate |Bi′(Π̂cûτ ′ − ûτ ′)| in a similar way. In addition, since v ∈ P2,
which is a finite dimensional subspace, we have

|∂t̂2i v̂| = |τ̂ |−1/2{
∫
τ̂
|∂t̂2i v̂|

2dτ̂}1/2

≤ c {
∫
τ̂
|D̂2v̂|2dτ̂}1/2

≤ c {
∫
τ̂
|D̂v̂|2dτ̂}1/2

≤ c |τ |−1/2{
∫
τ
∥Jτ∥2 |Dv|2dτ}1/2.

(42)

Thus we have
1

80|τ̂ |2
∑

ei=τ∩τ ′
{ [ |τ |Bi(Π̂cûτ − ûτ ) + |τ ′|Bi′(Π̂cτ̂

′ − ûτ ′) ] · ∂t̂2i v̂

≤ c
∑
τ

{
∫
τ
∥J−1

τ ∥4∥JT
τ Q4Jτ∥

4
dτ }1/2 · {

∫
τ
∥Jτ∥2 |Dv|2dτ }1/2

≤ c {
∑
τ

∫
τ
∥Jτ∥2J−1

τ ∥4∥JT
τ Q4Jτ∥

4
dτ }1/2 · {

∑
τ

∫
τ
|Dv|2dτ }1/2

≤ c{
∫
Ω
∥J∥2∥J−1∥4∥JTQ4J∥

4
dτ }1/2 · |v|1,Ω.

(43)

Now we deal with the last part on the right hand side of (39). We split it as
follows

1
80|τ̂ |2

∑
ei=τ∩τ ′

[ |τ |Bi(ûτ ) + |τ ′|Bi′(τ̂
′) ] · ∂t̂2i v̂ }

= 1
80|τ̂ |2

∑
ei=τ∩τ ′

{ (|τ | − |τ ′|)Bi(ûτ ) · ∂t̂2i v̂

+|τ ′|(Bi(ûτ ) +Bi′(τ̂
′)) · ∂t̂2i v̂ }.

(44)
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For the first term on the right hand side, by using the fact that τ ∪ τ ′ forms an
O(N−(1+α)/2)-approximate parallelogram, we have∣∣∣ |τ | − |τ ′|

∣∣∣ = |τ |
∣∣∣ 1− |τ ′|

|τ |

∣∣∣ ≤ cN−α/2|τ |.

Note that Bi(ûτ ) involves only ξk, ηk, 1 ≤ k ≤ 3, and the third order derivatives of

ûτ . They can be bounded by ∥J−1
τ ∥2 and |D̂3ûτ | respectively. Thus

|Bi(ûτ )| ≤ c
∫
τ̂
∥J−1

τ ∥2 · |D̂3ûτ | dτ̂
≤ c

∫
τ̂
∥J−1

τ ∥2 · ∥JT
τ Q3Jτ∥

3/2
dτ̂

≤ c |τ |−1/2 {
∫
τ
∥J−1

τ ∥4 · ∥JT
τ Q3Jτ∥

3
dτ }1/2.

Putting the above two inequalities together, we have

1
80|τ̂ |2

∑
ei=τ∩τ ′

∣∣∣ (|τ | − |τ ′|)Bi(ûτ ) · ∂t̂2i v̂
∣∣∣

≤ cN−α/2
∑
τ

{
∫
τ
∥Jτ∥2∥J−1

τ ∥4∥JTQ4J∥
4
dτ }1/2 · {

∑
τ

∫
τ
|Dv|2dτ }1/2

≤ c{
∫
Ω
∥J∥2∥J−1∥4(N−α∥JTQ3J∥

3
+ ∥JTQ4J∥

4
)dτ }1/2 · |v|1,Ω

(45)

For the second part on the right hand side of (44), we note that Bi(ûτ ) is

composed of terms like ξ̂l
∫
τ̂
∂t̂ijk ûτ with varrious l, i, j, k, and Bi′ ûτ ′ the terms like

ξ̂l′
∫
τ̂
∂t̂i′j′k′ ûτ ′ with the corresponding indexes l′, i′, j′, k′. Hence all the terms in

Bi(ûτ ) +Bi′(ûτ ′) are in the form of

ξ̂l

∫
τ̂

∂t̂ijk ûτ + ξ̂l′

∫
τ̂

∂t̂i′j′k′ ûτ ′ .

We may estimate each of them in the following manners:

|ξ̂l
∫
τ̂

∂t̂ijk ûτ + ξ̂l′

∫
τ̂

∂t̂i′j′k′ ûτ ′ | ≤ |ξ̂l− ξ̂l′ | ·
∫
τ̂

|∂t̂ijk ûτ |+ |ξ̂l′ | · |
∫
τ̂

[∂t̂ijk ûτ +∂t̂i′j′k′ ûτ ′ ]|,

where by (28) the first term on the right hand side can be bounded by

|ξ̂l − ξ̂l′ | ·
∫
τ̂
|∂t̂ijk ûτ |

≤ cN−α/2(∥J−1
τ ∥2 + ∥J−1

τ ′ ∥2){
∫
τ̂
|D̂3ûτ |2}1/2

≤ c|τ |−1/2N−α/2(∥J−1
τ ∥2 + ∥J−1

τ ′ ∥2){
∫
τ
∥Jτ∥2∥JTQ3J∥

3}1/2;

while by Lemma 3.6, the second term can be bounded by

|ξ̂l′ | · |
∫
τ̂
∂t̂ijk ûτ + ∂t̂i′j′k′ ûτ ′ |

≤ c|τ |−1/2N−α/2∥J−1
τ ′ ∥2{

∫
τ
[∥JTQ3J∥

3
+ ∥JTQ4J∥

4
]

+
∫
τ ′ [∥JT

τ ′Q3Jτ ′∥3 + ∥JT
τ ′Q4Jτ ′∥4]}1/2.

Combining the above estimates and the bound for ∂t̂2i
v̂ in (42), we end up with

1
80|τ̂ |2

∑
ei=τ∩τ ′

|τ ′| · |Bi(ûτ ) +Bi′(τ̂
′) | · |∂t̂2i v̂|

≤ c
∑
τ

∥Jτ∥ · ∥J−1
τ ∥2{

∫
τ
(N−α∥JT

τ Q3Jτ∥
3
+ ∥JT

τ Q4Jτ∥
4
)dτ}1/2

·{
∑
τ

∫
τ
|Dv|2dτ}1/2

≤ c{
∫
Ω
∥J∥2∥J−1∥4(N−α∥JTQ3J∥

3
+ ∥JTQ4J∥

4
)dτ }1/2 · |v|1,Ω.

(46)

Finally, (34) follows from a combination of estimates (37), (39), (43), (45), and
(46).
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The second inequality (35) of this theorem follows easily from applying Jτ ≃
(CM/N)1/2Fτ for all τ ∈ TN in (34) when the partition is quasi-uniform under
metric M .

4. Numerical Results

We present in this section some numerical results for the H1-error |u − uN |1,Ω
of the quadratic finite element solution uN and the error |uN − uq|1,Ω between uN
and the quadratic interpolation of solution u. We choose in the model problem (1)
the domain Ω = [0, 1]2, and coefficients A = I,b = 0, d = 1. The right hand side
function f and the Dirichlet boundary condition are selected so that equation (1)
admits the following exact solutions:

Example (1): u(x, y) = tanh[−100(
√
x2 + y2 − 0.3)];

Example (2): u(x, y) = [cosh(Kx) + cosh(Ky)]/[2 cosh(K)], with K = 100.

These two examples were used in [7] to demonstrate the convergence and su-
perconvergence of the linear finite element approximation based on unstructured
anisotropic adaptive meshes. The first example involves a solutions with steep front
inside the domain, and the second one near the boundary. These examples were
used also for the numerical study of some a-posteriori error estimators of linear
elements based on anisotropic meshes, see, e.g., [14, 20, 25].

In order to generate the anisotropic meshes suitable for the quadratic approxi-
mation of the solution u, we need an accurate measure of the anisotropic behavior
of D3u. We use here the exact formula developed by Mirebeau [18] for the “smallest
possible” Q3. More specifically, at any given point (x, y), let

c0 =
1

6

∂3u

∂x3
(x, y), c1 =

1

2

∂3u

∂x2∂y
(x, y), c2 =

1

2

∂3u

∂x∂y2
(x, y), c3 =

1

6

∂3u

∂y3
(x, y).

Define

p3(t) = c0t
3 + c1t

2 + c2t+ c3

and its discriminant

disc(p3) = (c1c2)
2 − 4(c0c

3
2 + c31c3)− 27(c0c3)

2 + 18c0c1c2c3.

Define

Q3 = (Φ−1)TΦ−1.

where Φ is selected according to disc(p3) as follows:
(i) When disc(p3) > 0, p3 has three distinct real roots r1 < r2 < r3. In this case,

Φ =
c0

3
√

2 disc(p3)
·
[ r1(r2 + r3)− 2r2r3,

√
3 r1(r2 − r3)

2r1 − (r2 + r3),
√
3 (r2 − r3)

]
;

(ii) When disc(p3) < 0, p3 has one real root r1 and two complex roots r2 = r̄3.
Suppose Im(r2) > 0. Then we choose

Φ =
c0√

2 3
√
disc(p3)

·
[ r1(r2 + r3)− 2r2r3,

√
3 i r1(r2 − r3)

2r1 − (r2 + r3),
√
3 i (r2 − r3)

]
.

In the degenerate case c0 = 0, we may apply a rotation of the coordinates to
convert D3u into the case with c0 ̸= 0 and then use the inverse of the rotation
afterwards to get the anisotropic measure Q3. Also for the degenerate cases when
p3 has repeated real roots, we may use small perturbation to convert them into the
cases of distinct real roots, and regularize the resulting Q3 by putting a “floor” on
its eigenvalues to avoid being close to singular.
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Once the anisotropic measure Q3 is determined, we compute the metric M3,1,2

according to (10), which minimizes the upper bound of the quadratic interpola-
tion errors in H1-seminorm. Metric M3,1,2 with various c is then supplied to the
bi-dimensional anisotropic mesh generator (bamg) [11] to generate the adaptive
anisotropic meshes with desired number of elements for our computations. We
display in Figure 2 and 3 typical meshes resulted from this procedure for the two
examples in this section.

We list in Table 1 theH1-error |u−uN |1,Ω of the quadratic finite element solution
uN and the error |uN − uq|1,Ω between uN and the quadratic interpolation of the
solution u based on the above generated anisotropic adaptive meshes. To determine
the rate of convergence, we use linear least square fitting on the logarithms of the
errors as well as the number of elements. It turns out that for Example (1), the
convergence rates (with respect to N−1) are approximate 1.0713 and 1.0875 for
|u − uN |1,Ω and |uN − uq|1,Ω, respectively; while for Example (2) these rates are
1.1919 and 1.2421, respectively. Clearly second order of convergence (corresponding
to O(N−1)) for the quadratic element solutions are achieved in both examples, and
the magnitude of the error |uN − uq|1,Ω is about 1

4 and 1
10 of the corresponding

error |u − uN |1,Ω for example (1) and (2) respectively. However, the convergence
of |uN − uq|1,Ω is only slightly better than quadratic. More precisely, they are

approximately of order O(N−(1+α/2)) with α = 0.1750 and 0.4842 in example (1)
and (2), resp.. The relative small values of α in the improvement of the rate of
convergence for |uN −uq|1,Ω is mainly due to the fact that in unstructured adaptive
mesh refinement the mesh adaptation to metrics or solutions is the major goal, and
the closeness of each element pair to a parallelogram, which often conflicts with
this goal due to geometric constraints, is only secondary. Similar results were
reported before for the linear element approximations on unstructured meshes, too,
see [3] for the case of unstructured shape regular meshes and [7] for the case of
unstructured anisotropic meshes. As the meshes get finer and finer, it is expected
to have more and more pairs of elements become closer and closer to parallelograms,
and indeed this is observed in the cases of linear elements in [7]. However, it seems
that superconvergence for quadratic approximations is even more sensitive to the
closeness of the element pairs to parallelograms. Our computation here for the two
examples is still not well within regime of substantial order improvement yet.

Figure 2. Example (1): Adaptive mesh generated by bamg based
on metric M3,1,2 and its close-up look. Total number of elements
N = 8548.
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Figure 3. Example (2): Adaptive mesh generated by bamg based
on metric M3,1,2 and its close-up look. Total number of elements
N = 8452.

Table 1. Errors of the quadratic element solution to (1) and errors
between the FE solution and the quadratic interpolation of the
exact solution.

Example (1) Example (2)
N |u− uN |1,Ω |uN − uq|1,Ω N |u− uN |1,Ω |uN − uq|1,Ω

2278 4.70495e-01 1.08851e-01 2674 4.12428e-02 4.59787e-03
4146 1.97713e-01 4.34775e-02 4336 1.69532e-02 2.14723e-03
8548 8.26101e-02 1.73568e-02 8452 6.71769e-03 8.18282e-04
16548 4.15003e-02 8.67958e-03 16565 3.07508e-03 3.77876e-04
32014 2.18243e-02 4.74147e-03 32166 1.49450e-03 1.19576e-04
62318 1.16236e-02 2.54865e-03 65568 6.93893e-04 7.67566e-05
124668 5.98247e-03 1.23921e-03 130805 3.65857e-04 3.78686e-05

order in N -1.0713 -1.0875 order in N -1.1919 -1.2421

5. Discussions

For the quadratic finite element approximation of elliptic equations based on
adaptively refined anisotropic meshes in two dimensions, we proved the superclose-
ness of the finite element solutions to the quadratic interpolation of the exact solu-
tions in energy norm. Our basic assumptions are that the partition is quasi-uniform
under a Riemannian metric and that each pair of adjacent elements in the meshes
forms an approximate parallelogram. This result extends our earlier one for the
linear finite element approximation on anisotropic meshes [7]. It can also consid-
ered as a generalization of the results in [13] for quadratic elements based on mildly
structured shape regular meshes.

It is noted that for finite element approximation based on unstructured meshes,
though the finite element solution converges to the quadratic interpolation of the
exact solution faster than it does to the exact solution its self, the improvement in
the rate of convergence depends on the closeness of each element pair to a parallelo-
gram. In particular, this dependence seems to be more critical in quadratic approx-
imations than in linear approximations. Unfortunately, making element pairs close
to parallelograms is subject to the geometric constraints and also often conflicts
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with the goal of mesh adaptation. Therefore, inevitablely there are more or less
certain percentage of element pairs that do not form approximate parallelograms
to higher degrees. One issue of practical interests is to understand how much more
smaller the error uN − uq is compared to the error u− uN in such situations. An-
other issue under our current consideration is rigorous proof of the effectiveness of
the gradient recovery techniques for quadratic finite elements on adaptively refined
unstructured anisotropic meshes.
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