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THE LINEAR ELASTICITY PROBLEM

JUN HU AND RUI MA

This paper is dedicated to Professor Ben-yu Guo

Abstract. We propose a family of conforming mixed triangular prism finite elements for solving
the classical Hellinger-Reissner mixed problem of the linear elasticity equations in three dimen-
sions. These elements are constructed by product of elements on triangular meshes and elements
in one dimension. The well-posedness is established for all elements with k ≥ 1, which are of k+1
order convergence for both the stress and displacement. Besides, a family of reduced stress spaces
is proposed by dropping the degrees of polynomial functions associated with faces. As a result,
the lowest order conforming mixed triangular prism element has 93 plus 33 degrees of freedom on
each element.
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1. Introduction

In the Hellinger-Reissner mixed formulation of the linear elasticity equations, it is
a challenge to design stable mixed finite element spaces mainly due to the symmetric
constraint of the stress tensor, see some earlier work for composite elements and
weakly symmetric methods in [2, 6, 7, 30, 34, 35, 36]. In [9], Arnold and Winther
designed the first family of mixed finite element methods in two dimensions, based
on polynomial shape function spaces. The analogue of the results on tetrahedral
meshes can be found in [1, 4], and rectangular and cuboid meshes in [3, 11, 18]. Since
the conforming symmetric stress elements have too many degrees of freedom, there
are some other methods to overcome this drawback. We refer interested readers
to nonconforming mixed elements, see [5, 10, 15, 21, 37] on simplicial meshes, and
[26, 31, 39, 40] on rectangular and cuboid meshes. For the weakly symmetric
mixed finite element methods for linear elasticity, we also refer to some recent work
in [8, 12, 19, 32].

Recently, Hu [23] proposed a family of conforming mixed elements on simplical
meshes for any dimension, see [27] and [28] the elements in two and three dimen-
sions, respectively. This new class of elements has fewer degrees of freedom than
those in the earlier literature. For k ≥ n, the stress tensor is discretized by Pk+1 fi-
nite element subspace of H(div) and the displacement by piecewise Pk polynomials.
Moreover, a new idea was proposed to analyze the discrete inf-sup condition and
the basis functions therein are easy to obtain. For the case that 1 ≤ k ≤ n− 1, the
symmetric tensor spaces are enriched by proper high order H(div) bubble functions
to stabilize the discretization in [29]. Another method by stabilization technique
to deal with this case can be found in [16]. We also refer to [20] for interior penalty
mixed finite element methods by using nonconforming symmetric stress spaces,
where the stability is established by introducing the conforming H(div) bubble
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spaces from [23] and nonconforming face-bubble spaces. Corresponding mixed el-
ements on both rectangular and cuboid meshes were constructed in [22], also see
[17, 24] for the lowest order mixed elements, while the simplest nonconforming
mixed element on n-rectangular meshes can be found in [25].

In this paper, we propose a family of conforming mixed triangular prism ele-
ments for the linear elasticity problem. Triangular prism meshes can deal with
some columnar regions, and in this case, the triangular prism partition is more
easily achieved than the tetrahedral partition. The key idea here of construct-
ing triangular prism elements is using a product structure that each prism can be
treated as the product of a triangle and an interval. By dividing the stress variable
into three parts, we construct the stress space through a combination of the mixed
elasticity element [23, 27] and the Brezzi-Douglas-Marini element [14] on triangular
meshes, and some other basic elements in one and two dimensions. In this way,
we obtain conforming mixed triangular prism elements for any integer k ≥ 1. The
stability analysis is established by the theory developed in [22, 23, 27, 28, 29]. A
family of reduced stress spaces is also proposed by dropping the degree of poly-
nomials associated with faces. The reduced elements still preserve the same order
of convergence. The lowest order case has 93 plus 33 degrees of freedom on each
element. In addition, by using the lowest order nonconforming mixed element in
[10, 21] on triangular meshes, we obtain a nonconforming mixed triangular prism
element of first order convergence, of which degrees of freedom are 81 plus 33.

The rest of the paper is organized as follows. In Section 2, we define the conform-
ing mixed triangular prism finite element methods and present the basis functions.
In Section 3, we prove the well-posedness of these elements, i.e. the K-ellipticity
and the discrete inf-sup condition. By which, the optimal order convergence of the
new elements follows. In Section 4, we propose a family of reduced triangular prism
elements. In the end, we provide some numerical results.

2. The family of conforming mixed triangular prism elements

Based on the Hellinger-Reissner principle, the linear elasticity problem within
a stress-displacement (σ-u) form reads: Find (σ, u) ∈ Σ × V := H(div,Ω; S :=
symmetric R3×3)× L2(Ω;R3), such that

{
(Aσ, τ) + (divτ, u) = 0 for all τ ∈ Σ,

(divσ, v) = (f, v) for all v ∈ V.
(1)

Here the symmetric tensor space for the stress Σ and the space for the vector
displacement V are, respectively,

H(div,Ω; S) :=
{
τ =




τ11 τ12 τ13
τ21 τ22 τ23
τ31 τ32 τ33



 ∈ H(div,Ω;R3×3), τT = τ
}
,(2)

L2(Ω;R3) := {v = (v1 v2 v3)
T| vi ∈ L2(Ω;R), i = 1, 2, 3}.(3)

This paper denotes by Hk(ω;X) the Sobolev space consisting of functions with
domain ω, taking values in the finite-dimensional vector space X , and with all
derivatives of order at most k square-integrable. For our purposes, the range space
X will be either S, R3, R2, or R, and in some cases, X will be S2 := symmetric R2×2

as well. Let ‖ · ‖k,ω be the norm of Hk(ω) and H(div, ω; S) consist of square-
integrable symmetric matrix fields with square-integrable divergence. The H(div)
norm is defined by

‖τ‖2H(div,ω) := ‖τ‖20,ω + ‖divτ‖20,ω.



230 J. HU AND R. MA

Here, the compliance tensor A = A(x) : S → S, characterizing the properties
of the material, is bounded and symmetric positive definite uniformly for x ∈ Ω,
namely, there exists C > 0 such that (Aτ, τ) ≥ C‖τ‖20,Ω for any τ ∈ Σ. While
for the nearly incompressible materials, it holds only for functions τ which satisfy
divτ ≡ 0,

∫
Ω trτ dx = 0, see remarks in [9].

This paper deals with a pure displacement problem (1) with the homogeneous
boundary condition that u ≡ 0 on ∂Ω. But the method and the analysis work for
mixed boundary value problems and the pure traction boundary problem as well.

2.1. The discrete stress and displacement spaces. To obtain triangular prism
partitions, we suppose that the domain Ω = Ωxy × Ωz, where Ωxy is a polygon on
the (x, y)-plane and Ωz is an interval on the z-axis. The domain Ω is subdivided into
the union of non-overlapping shape-regular triangular prism elements such that the
non-empty intersection of any distinct pair of elements is a single common vertex,
edge or face. Let Th be the set consisting of all these elements (with the mesh size
h). In fact, we also obtain partitions of Ωxy and Ωz, which are denoted by Xh and
Zh, respectively. Given triangle ∆xy ∈ Xh and interval ∆z ∈ Zh, K = ∆xy ×∆z is
thus a triangular prism element in Th. Then, each elementK in Th is equipped with
a product structure. Given element, face or edge ω, let |ω| denote the measure of ω.
Let divxy, ∇xy and curlxy denote the divergence, gradient and curl operators with
respect to the variables x and y, respectively. Given any nonegative integer k, let
Pk(ω;X) denote the space of polynomials over ω of total degrees not greater than
k, taking values in the finite-dimensional vector space X. Let Pk(z) be the space
of polynomials of degree not greater than k with respect to the variable z, and let
Pk(x, y) be the space of polynomials of degree not greater than k with respect to
the variables x and y. Given face F of K satisfying F = e ×∆z, where e ⊂ ∂∆xy,
let Qk1,k2

(F ) = Pk1
(e;R)× Pk2

(∆z ;R) for any nonegative integers k1 and k2.
We define the following spaces associated with partition Zh for s = 0, 1 and

k ≥ s
Ls
k(Zh) := { v ∈ Hs(Ωz ;R) | v|∆z

∈ Pk(z) for any ∆z ∈ Zh},

and the space associated with partition Xh for k ≥ 0

L0
k(Xh) := {v ∈ L2(Ωxy;R) | v|∆xy

∈ Pk(x, y) for any ∆xy ∈ Xh}.

Before defining the space for the stress, we introduce the mixed elasticity finite
element in two dimensions of [23, 27] and the Brezzi-Douglas-Marini (BDM here-
after) space of [14] for the mixed Poisson problem. We recall some notations in
[23, 27]. Let λi(1 ≤ i ≤ 3) denote the barycentric coordinates with respect to
the vertices xi of triangle ∆xy. For any edge xixj(1 ≤ i < j ≤ 3) of ∆xy, let
ti,j = xj − xi denote associated tangent vectors, which allow for us to introduce
the following linearly independent symmetric matrices of rank one

Ti,j = ti,jt
T
i,j , 1 ≤ i < j ≤ 3.

With these symmetric matrices Ti,j of rank one, we define a H(divxy,∆xy; S2)
polynomial bubble function space

H∆xy,k,b :=
∑

1≤i<j≤3

λiλjPk−2(∆xy;R)Ti,j ,

which satisfies

H∆xy,k,b = {τ ∈ Pk(∆xy; S2) | τνxy |∂∆xy
= 0}.

Here and throughout the paper, let H(divxy, ω;X) consist of square-integrable
functions over ω with values in X and square-integrable divergence with respect
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to x and y. Here X will be either S2 or R2. The finite element space of order k
(k ≥ 3) for the stress approximation in two dimensions is

Hk,h :=
{
τ ∈ H(divxy,Ωxy; S2)

∣∣∣ τ = τc + τb, τc ∈ H1(Ωxy; S2),(4)

τc|∆xy
∈ Pk(∆xy; S2) , τb|∆xy

∈ H∆xy,k,b for any ∆xy ∈ Xh

}
.

A matrix field τ ∈ Pk(∆xy ; S2) can be uniquely determined by the following degrees
of freedom [23]

(1) the values of τ at three vertices of ∆xy,
(2)

∫
e
τνxy · p ds for any p ∈ Pk−2(e;R

2) and e ⊂ ∂∆xy,

(3)
∫
∆xy

τ : p dxdy for any p ∈ H∆xy,k,b.

Hereafter νxy is the normal vector of ∂∆xy.
The spaces of the BDM element are defined as follows for k ≥ 1

BDMk :={τ ∈ H(divxy,Ωxy;R
2) | τ |∆xy

∈ Pk(∆xy;R
2) for any ∆xy ∈ Xh}.

The vector-valued function τ ∈ Pk(∆xy;R
2) can be determined by the following

conditions (see e.g. [13]):

(1)
∫
e
τ · νxyp ds for any p ∈ Pk(e;R) and e ⊂ ∂∆xy,

(2)
∫
∆xy

τ · ∇xyp dxdy for any p ∈ Pk−1(x, y),

(3)
∫
∆xy

τ · p dxdy for any p ∈ Ψk(∆xy)

with

(5) Ψk(∆xy) := {w|w = curlxy(bxyv), v ∈ Pk−2(x, y)},

where bxy := λ1λ2λ3 denotes the cubic bubble on ∆xy. We also introduce the
bubble function space

BDM∆xy,k,b := {τ ∈ Pk(∆xy;R
2) | τ · νxy|∂∆xy

= 0}.

This space can be uniquely determined by the conditions in (2) and (3) above.
Based on the above finite element spaces, we use a product structure to define

the stress space of the conforming mixed triangular prism elements for k ≥ 1:

Σk,h :={τ =




τ11 τ12 τ13
τ21 τ22 τ23
τ31 τ32 τ33



 ∈ L2(Ω; S)
∣∣
(
τ11 τ12
τ21 τ22

)
∈ Hk+2,h × L0

k(Zh),

(τ13, τ23)
T ∈ BDMk+1 × L1

k+1(Zh), τ33 ∈ L0
k(Xh)× L1

k+2(Zh)}.

(6)

It is straightforward to show that Σk,h ⊂ Σ and the shape function space of the
element is

Σk(K) := {τ =

(
τ1 τ2
τT2 τ3

)
∈ H1(K; S)

∣∣ τ1 :=

(
τ11 τ12
τ21 τ22

)
∈ Pk+2(∆xy; S2)× Pk(z),

τ2 := (τ13, τ23)
T ∈ Pk+1(∆xy;R

2)× Pk+1(z), τ3 := τ33 ∈ Pk(x, y)× Pk+2(z)}.

(7)

Note that νxy is the normal vector of ∂∆xy and thus defined on ∂∆xy, then it is
also well defined on each face F of K that parallels the z-axis and each edge e of K
that parallels the (x, y)-plane. We present the degrees of freedom in the following
lemma.

Lemma 2.1. A matrix field τ ∈ Σk(K) can be uniquely determined by the following

conditions:
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(1) the values of τ1 at k + 1 distinct points on edge e of K that parallels the

z-axis,
(2)

∫
F
τ1νxy · p ds for any p ∈ (Qk,k(F ))

2 and face F of K that parallels the

z-axis,
(3)

∫
K
τ1 : p dxdydz for any p ∈ H∆xy,k+2,b × Pk(z);

(4)
∫
e
τ2 · νxyp ds for any p ∈ Pk+1(e;R) and edge e of K that parallels the

(x, y)-plane,
(5)

∫
F
τ2 · νxyp ds for any p ∈ Qk+1,k−1(F ) and face F of K that parallels the

z-axis,
(6)

∫
F
τ2 · ∇xyp dxdy for any p ∈ Pk(x, y) and face F that parallels the (x, y)-

plane,

(7)
∫
F
τ2 · p dxdy for any p ∈ Ψk+1(∆xy) and face F that parallels the (x, y)-

plane,

(8)
∫
K
τ2 · ∇xyp dxdydz for any p ∈ Pk(x, y)× Pk−1(z),

(9)
∫
K
τ2 · p dxdydz for any p ∈ Ψk+1(∆xy)× Pk−1(z);

(10)
∫
F
τ3p dxdy for any p ∈ Pk(x, y) and face F that parallels the (x, y)-plane,

(11)
∫
K
τ3p dxdydz for any p ∈ Pk(x, y)× Pk(z).

Here τ1, τ2 and τ3 are defined in (7).

Proof. Since the dimensions of the space Σk(K) are equal to the number of these
conditions, it suffices to prove that τ ≡ 0 if these conditions vanish. The first
and second conditions show that τ1νxy = 0 on side faces of triangular prism K.
Moreover it follows from (3) that τ1 = 0. Note that (4) plus (5) and (4), (6) plus
(7) yield that τ2 · νxy = 0 on side faces and τ2 = 0 on top and bottom faces,
respectively. Thus it follows from (8) and (9) that τ2 = 0. It remains to prove
τ3 = 0. Actually, condition (10) implies that

τ3 = bzg,

where bz is the quadratic bubble function on interval ∆z and g ∈ Pk(x, y)×Pk(z).
Using condition (11), we immediately obtain τ3 = 0. �

On each element K, the space for the displacement is taken as

Vk(K) :={v = (v1, v2, v3)
T ∈ H1(K;R3) | vi ∈ Pk+1(x, y) × Pk(z), i = 1, 2,(8)

v3 ∈ Pk(x, y) × Pk+1(z)}.

Then the global space for displacement reads

Vk,h :={v ∈ V | v|K ∈ Vk(K) for any K ∈ Th}.(9)

The mixed finite element approximation of Problem (1) reads: Find (σh, uh) ∈
Σk,h × Vk,h, such that

{
(Aσh, τ) + (divτ, uh) = 0 for all τ ∈ Σk,h,

(divσh, v) = (f, v) for all v ∈ Vk,h.
(10)

2.2. Basis functions of the stress space. For convenience, we provide the basis
of the stress space Σk,h on element K. In fact, we only need to give the basis of
Hk,h(k ≥ 3) and BDMk(k ≥ 1). Thus we immediately obtain the basis of Σk,h

by the product structure. For any edge xixj(1 ≤ i < j ≤ 3) of ∆xy, xm being
the opposite vertex, let νi,j denote its associated normal vector and hm denote the
height of the triangle from xm to the opposite edge xixj .

The canonical basis of S2 reads
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T1 =

(
1 0
0 0

)
, T2 =

(
0 1
1 0

)
, T3 =

(
0 0
0 1

)
.

Then, the basis functions of Hk,h(k ≥ 3) on triangle ∆xy are as follows [27, 29]:

(1) Given vertex xi, the corresponding basis functions are

λiTj , j = 1, 2, 3;

(2) Given edge xixj , its associated basis functions with nonzero fluxes read

λiλjP̃k−2(λi, λj)νi,jν
T
i,j , λiλjP̃k−2(λi, λj)

ti,jν
T
i,j + νi,jt

T
i,j

2
;

(3) The basis functions of H∆xy,k,b are

λiλjPk−2(∆xy;R)ti,jt
T
i,j , 1 ≤ i < j ≤ 3.

Here

(11) P̃k(λi, λj) := span{λm1

i λm2

j ,m1 +m2 = k}.

For BDMk, the hierarchical basis functions can be found in [38]. We give another
basis functions following [13]:

(1) Given edge xixj , the corresponding basis functions are

1

hm
λitm,i,

1

hm
λjtm,j ,

1

2hm
λiλj P̃k−2(λi, λj)(tm,i + tm,j);

(2) The basis functions of BDM∆xy,k,b are

λiλj P̃k−2(λi, λj)ti,j , 1 ≤ i < j ≤ 3,

λ1λ2λ3Pk−3(∆xy;R
2).

Using the above two families of basis functions, we can easily construct the basis
functions of Σk,h(k ≥ 1) on element K = ∆xy ×∆z by the product technique. We
shall make explicit the lowest order case, of which the stress space is as follows

Σ1,h ={τ =

(
τ1 τ2
τT2 τ3

)
∈ L2(Ω; S)

∣∣ τ1 ∈ H3,h × L0
1(Zh), τ2 ∈ BDM2 × L1

2(Zh),

τ3 ∈ L0
1(Xh)× L1

3(Zh)}.

Let {φi}
30
i=1 and {ψi}

12
i=1 be the collection of basis functions of H3,h and BDM2 on

triangle ∆xy, respectively. Suppose that ∆z = [z0, z0 + h0], we introduce the affine
invertible transformation

F∆z
: [0, 1] → [z0, z0 + h0], z = h0ξ + z0, ξ ∈ [0, 1].

Thus we select τ such that τ2 = τ3 = 0 and

τ1 ∈ {φiξ, φi(1− ξ)}30i=1,

τ1 = τ3 = 0 and

τ2 ∈ {ψiξ(2ξ − 1), ψi(1 − ξ)(1− 2ξ), ψiξ(1− ξ)}12i=1,

and τ1 = τ2 = 0

τ3 ∈{λiξ(3ξ − 1)(3ξ − 2), λiξ(1 − ξ)(2 − 3ξ), λiξ(1 − ξ)(3ξ − 1),

λi(1 − ξ)(3ξ − 1)(3ξ − 2)}3i=1.

In this way, we obtain the basis functions of Σ1,h on K. Thus, the degrees of
freedom on each element of the lowest order element are 108 plus 33.
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3. The stability analysis for the mixed triangular prism elements

In this section, we consider the well-posedness of the discrete problem (10). By
the standard theory, we only need to prove the following two conditions, based on
their counterparts at the continuous level.

• K-ellipticity. There exists a constant C > 0, independent of the meshsize
h such that

(Aτh, τh) ≥ C‖τh‖
2
H(div,Ω) for any τh ∈ Wh,

where Wh is the divergence-free space defined as follows

Wh := {τh ∈ Σk,h | (div τh, v) = 0 for all v ∈ Vk,h}.

• Discrete inf-sup condition. There exists a positive constant C > 0 indepen-
dent of the meshsize h, such that

sup
06=τh∈Σk,h

(divτh, vh)

‖τh‖H(div,Ω)
≥ C‖vh‖0,Ω for any vh ∈ Vk,h.

It can be easily checked that divΣk,h ⊂ Vk,h. Hence divτh = 0 for any τh ∈ Wh

and this implies the above K-ellipticity condition. It remains to show the discrete
inf-sup condition. We first introduce the following lemma in [23, 27], which is a
key ingredient to prove the discrete inf-sup condition for mixed triangular elasticity
elements.

Let Rxy(∆xy) be the rigid motion space in two dimensions, which reads

Rxy(∆xy) := span

{(
1
0

)
,

(
0
1

)
,

(
y
−x

)}
.

Define the orthogonal complement space ofRxy(∆xy) with respect to Pk+1(∆xy;R
2)

by

R⊥
xy(∆xy) := {v ∈ Pk+1(∆xy ;R

2) | (v, w)∆xy
= 0 for any w ∈ Rxy(∆xy)},

where the inner product (v, w)∆xy
over ∆xy reads (v, w)∆xy

=
∫
∆xy

v · w dxdy.

Lemma 3.1. It holds that

divxyH∆xy,k+2,b = R⊥
xy(∆xy).

Next we follow the arguments in [22, 23, 27, 28, 29] to analyze the discrete inf-sup
condition. To this end, we define the bubble function space

ΣK,k,b := {τ ∈ Σk(K), τν = 0 on ∂K}.

Here ν denotes the normal vector of ∂K. Let RM(K) be the rigid motion space in
three dimensions, which reads

RM(K) := span

{

1
0
0


 ,



0
1
0


 ,



0
0
1


 ,



−y
x
0


 ,



−z
0
x


 ,




0
−z
y




}
.

Define the orthogonal complement space of the rigid motion space RM(K) with
respect to Vk(K) by

RM⊥(K) := {v ∈ Vk(K) | (v, w)K = 0 for any w ∈ RM(K)},

where the inner product (v, w)K over K reads (v, w)K =
∫
K
v · w dxdydz.

Lemma 3.2. For any k ≥ 1, it holds that

divΣK,k,b = RM⊥(K).
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Proof. Since it is straightforward to see that divΣK,k,b ⊂ RM⊥(K), we only need to

prove the converse. If divΣK,k,b 6= RM⊥(K), there is a nonzero v = (v1, v2, v3)
T ∈

RM⊥(K) such that
∫

K

divτ · v dxdydz = 0 for any τ ∈ ΣK,k,b.

First, we choose τ =

(
τ1 0
0T 0

)
∈ ΣK,k,b such that τ1 ∈ H∆xy,k+2,b × Pk(z). It

follows that

0 =

∫

K

div τ · v dxdydz =

∫

K

divxy τ1 ·

(
v1
v2

)
dxdydz.

From (8), we have (v1, v2)
T ∈ Pk+1(∆xy;R

2)× Pk(z). This, together with Lemma
3.1 shows that

(12) (v1, v2)
T ∈ Rxy(∆xy)× Pk(z).

Second, we take τ such that τ11 = τ12 = τ22 = τ13 = τ23 = 0 and

τ33 ∈ bz × Pk(x, y)× Pk(z),

where the bubble function bz is defined in Lemma 2.1. An integration by parts
yields

0 =

∫

K

div τ · v dxdydz = −

∫

K

τ33
∂v3
∂z

dxdydz.

Since ∂v3
∂z

∈ Pk(x, y)× Pk(z), it holds that

(13) v3 ∈ Pk(x, y).

Third, we use degrees of freedom of τ13 and τ23 to deal with the remaining part of
(v1, v2, v3)

T in (12) and (13). Given τ ∈ ΣK,k,b such that τ11 = τ12 = τ22 = τ33 = 0
and (τ13, τ23)

T ∈ bz × BDM∆xy,k+1,b × Pk−1(z), we have

0 =

∫

K

(
(
∂τ13
∂z

v1 +
∂τ23
∂z

v2) + v3 divxy(τ13, τ23)
T

)
dxdydz.

Recall that K = ∆xy ×∆z. An integration by parts gives rises to

(14)

∫

∆z

(∫

∆xy

(τ13, τ23)
T · (

∂

∂z
(v1, v2)

T +∇xyv3) dxdy

)
dz = 0.

It follows from (12) that there exist two constants c1 and c2, two polynomials
p1, p2 ∈ Pk−2(z), and a polynomial p3 ∈ Pk−1(z) such that

∂

∂z
(v1, v2)

T +∇xyv3 = ∇xy(c1x+ c2y + v3 + xzp1 + yzp2) + p3

(
y
−x

)
.

Then, the choice (τ13, τ23)
T = bzp3curlxybxy in (14) implies that

(15) −
|∆xy|

30

∫

∆z

bzp
2
3 dz = 0,

where bxy is defined in (5). Indeed, a simple computation shows that

divxycurlxybxy = 0 and curlxybxy ∈ BDM∆xy,k+1,b,

and

(16)

∫

∆xy

curlxybxy · (y,−x)
T dxdy = −

|∆xy|

30
6= 0.
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Further, using (15), we obtain p3 = 0. Next we show that ∇xy(c1x+ c2y+ v3) = 0.
If otherwise, it follows from the second degrees of freedom for the BDM space in
Section 2 that there exists w ∈ BDM∆xy,k+1,b such that

∫

∆xy

w · ∇xy(c1x+ c2y + v3) dxdy = 1.

Besides, there exists q1 ∈ Pk−1(z) satisfying∫

∆z

bzq1 dz = 1 and

∫

∆z

bzq1zpi dz = 0 for i = 1, 2,

Actually, it is straightforward for k ≥ 3. While for k = 1, since p1 = p2 = 0, we
can just take q1 = 1/(

∫
∆z
bz dz). And for k = 2, since p1, p2 ∈ P0(z) and then

p1 and p2 are dependent, there exits q1 ∈ P1(z) satisfying the above conditions.
However, selecting (τ13, τ23)

T = bzq1w in (14) leads to a contradiction that 1 = 0.
Therefore, we obtain ∇xy(c1x + c2y + v3) = 0. On the other hand, we select
w ∈ BDM∆xy,k+1,b such that

∫
∆xy

w · ∇xyx dxdy = 1 and
∫
∆xy

w · ∇xyy dxdy = 0,

and q1 = zp1. This gives p1 = 0. Similar choice yields p2 = 0. Hence, a collection
of the above arguments yields

(17)
∂

∂z
(v1, v2)

T +∇xyv3 = 0.

Consequently, we conclude, by (12), (13) and (17),

v = (v1, v2, v3)
T ∈ RM(K),

which completes the proof. �

Before giving the following lemma, we present the H1 conforming triangular
prism element (k ≥ 1)

Uk,h = {v ∈ H1(Ω; S) | v|K ∈ Pk(∆xy; S)× Pk(z) for any K ∈ Th}.

Let Ĩh : H1(Ω; S) → Uk,h denote the Scott-Zhang interpolation operator in [33]
that satisfies

(18) ‖τ − Ĩhτ‖0,Ω + h‖∇Ĩhτ‖0,Ω ≤ Ch‖∇τ‖0,Ω.

Lemma 3.3. Given any integer k ≥ 1, there exists an interpolation operator Ih :
H1(Ω; S) → Σk,h satisfying for any τ ∈ H1(Ω; S),

(19)

∫

K

div(τ − Ihτ) · w dxdydz = 0 for any w ∈ RM(K) and any K ∈ Th

and

(20) ‖Ihτ‖H(div,Ω) ≤ C‖τ‖1,Ω.

Proof. We use notations τ1, τ2, τ3 to denote the corresponding parts of τ as in (7),

and τ̃1,h, τ̃2,h, τ̃3,h are similar defined for Ĩhτ such that Ĩhτ =

(
τ̃1,h τ̃2,h
τ̃T2,h τ̃3,h

)
. It

follows from degrees of freedom in Lemma 2.1 that there exists τ1,h ∈ Hk+2,h ×
L0
k(Zh), τ2,h ∈ BDMk+1 × L1

k+1(Zh) and τ3,h ∈ L0
k(Xh) × L1

k+2(Zh) such that for
face F that parallels the z-axis,

∫

F

τ1,hνxy · p ds =

∫

F

(τ1 − τ̃1,h)νxy · p ds for any p ∈ (Q1,1(F ))
2,

∫

F

τ2,h · νxyp ds =

∫

F

(τ2 − τ̃2,h) · νxyp ds for any p ∈ Q1,0(F ),
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and for face F that parallels the (x, y)-plane,

(21)

∫

F

τ2,h · p dxdy =

∫

F

(τ2 − τ̃2,h) · p dxdy for any p ∈ Rxy(∆xy),

∫

F

τ3,hp dxdy =

∫

F

(τ3 − τ̃3,h)p dxdy for any p ∈ P1(x, y).

Note that (21) is a combination of (6) and a slight modification of (7) in Lemma
2.1, replacing p = curlbxy ∈ Ψk+1(∆xy) with p = (y,−x)T there. This is valid
because of the result (16). In addition, the remaining degrees of freedom vanish for
τ1,h, τ2,h and τ3,h.

Since Uk,h ⊂ Σk,h, we define Ihτ = Ĩhτ +

(
τ1,h τ2,h
τT2,h τ3,h

)
. An integration by parts

immediately yields that (19) holds true. The stability estimate follows from (18)

and the definition of the correction

(
τ1,h τ2,h
τT2,h τ3,h

)
. �

Theorem 3.4. For k ≥ 1, there exists a positive constant C independent of the

meshsize h with

sup
06=τh∈Σk,h

(div τh, vh)

‖τh‖H(div,Ω)
≥ C‖vh‖0,Ω for any vh ∈ Vk,h.

Proof. By the stability of the continuous formulation, see [9, 23], there exists a
τ ∈ H1(Ω; S) such that

div τ = vh and ‖τ‖1,Ω ≤ C‖vh‖0,Ω.

This plus Lemma 3.3 implies that

(22)

∫

K

(div Ihτ − vh) · wdx = 0 for any w ∈ RM(K) and any element K

and

(23) ‖Ihτ‖H(div,Ω) ≤ C‖vh‖0,Ω.

By Lemma 3.2, there exists a δh ∈ Σk,h such that

(24) div δh = vh − div Ihτ and ‖δh‖H(div,Ω) ≤ C‖vh − div Ihτ‖0,Ω.

Let τh = Ihτ + δh. Then we have div τh = vh and ‖τh‖H(div,Ω) ≤ C‖vh‖0,Ω. �

Remark 3.5. Similarly as mentioned in [23], it follows from Lemma 3.2 and

Lemma 3.3 that there exists an interpolation operator Πh : H1(Ω; S) → Σk,h such

that

(div(τ −Πhτ), vh)K = 0 for any K and vh ∈ Vk,h

for any τ ∈ H1(Ω; S). Further, if τ ∈ Hk+1(Ω; S), it holds that

‖τ −Πhτ‖0,Ω ≤ Chk+1‖τ‖k+1,Ω.

Theorem 3.6. Let (σ, u) ∈ Σ × V be the exact solution of problem (1) and

(σh, uh) ∈ Σk,h × Vk,h the finite element solution of (10). Then, for k ≥ 1,

‖σ − σh‖H(div,Ω) + ‖u− uh‖0,Ω ≤ Chk+1(‖σ‖k+2,Ω + ‖u‖k+1,Ω).(25)
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Proof. We follow the standard error estimate of mixed finite element methods in
[13]

‖σ− σh‖H(div,Ω) + ‖u− uh‖0,Ω ≤ C inf
τh∈Σk,h,vh∈Vk,h

(‖σ− τh‖H(div,Ω) + ‖u− vh‖0,Ω).

Let Ph denote the local L2 projection operator, from V to Vk,h, satisfying the error
estimate

‖v − Phv‖0,Ω ≤ Chk+1‖v‖k+1,Ω for any v ∈ Hk+1(Ω;R3).

Choosing τh = Πhσ where Πh is defined in Remark 3.5, and note that div Πhσ =
Ph div σ, we have

‖σ −Πhσ‖H(div,Ω) ≤ Chk+1‖σ‖k+2,Ω.

Consequently, a choice of vh = Phu and τh = Πhσ completes the proof. �

4. Reduced mixed triangular prism elements

In this section, we provide a family of reduced spaces of Σk,h in (6). According to
Lemma 3.2, we only need the degrees of freedom of bubble function space ΣK,k,b to
deal with the space RM⊥(K). From the proof of Lemma 3.3, we only need degrees
of freedom on faces of the lowest order element to deal with the rigid motion space
RM(K) on each element K. Hence the stress finite elements can be reduced by

replacing Hk+2,h and BDMk+1 in (6) by H̃k+2,h and B̃DMk+1 as follows

H̃k+2,h :=
{
τ ∈ H(divxy,Ωxy; S2)

∣∣∣ τ = τℓ + τb, τℓ ∈ Hk,h,

τb|∆xy
∈ H∆xy,k+2,b for any ∆xy ∈ Xh

}
,

B̃DMk+1 :=
{
τ ∈ H(divxy,Ωxy;R

2)
∣∣∣ τ = τℓ + τb, τℓ ∈ BDMk,

τb|∆xy
∈ BDM∆xy,k+1,b for any ∆xy ∈ Xh

}
.

Remark 4.1. We know that Hk,h is defined for k ≥ 3 in (4). When k = 1, 2, we
refer interested readers to [29] for those two cases and omit the specific definitions

herein. Thus, the degrees of freedom on each element of our lowest order case,

which is of second order convergence, are 93 plus 33.

We use Σ̃k,h to denote the new stress spaces. The reduced elements preserve the
same convergence order.

Theorem 4.2. Let (σ, u) ∈ Σ × V be the exact solution of problem (1) and

(σh, uh) ∈ Σ̃k,h × Vk,h the discrete solution by the reduced triangular prism ele-

ments. Then, for k ≥ 1,

‖σ − σh‖H(div,Ω) + ‖u− uh‖0,Ω ≤ Chk+1(‖σ‖k+2,Ω + ‖u‖k+1,Ω).

Remark 4.3. For k = 1, if we utilize the first order nonconforming stress space of

[10, 21] in two dimensions instead of the first order conforming element of [29], we
obtain a nonconforming mixed triangular prism element of first order convergence,

with 81 plus 33 degrees of freedom. The following error estimate holds

‖σ − σh‖0,Ω + ‖u− uh‖0,Ω ≤ Ch‖u‖2,Ω.
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5. Numerical results

5.1. Pure displacement problem. It is a pure displacement problem on the
unit cube Ω = (0, 1)3 with a homogeneous boundary condition that u ≡ 0 on ∂Ω.
In the computation, let

Aσ =
1

2µ

(
σ −

λ

2µ+ 3λ
tr(σ)δ

)
,

where δ =




1 0 0
0 1 0
0 0 1



, and µ = 1/2 and λ = 1 are the Lamé constants.

Let the exact solution on the unit square [0, 1]3 be

(26) u =




24

25

26



 x(1− x)y(1− y)z(1− z).

Then, the true stress function σ and the load function f are defined by the equations
in (1), for the given solution u.

We use the triangular prism element of k = 1 in Section 2. In the computation,
each mesh is refined into a half-sized mesh uniformly, see the initial mesh in Figure
1. In Table 1, the errors and the convergence order in various norms are listed for
the true solution (26), by the mixed finite element in (6) and (9), with k = 1 there.
The optimal order of convergence is achieved in Table 1, coinciding with Theorem
3.6.

Table 1. The error and the order of convergence by the triangular
prism element, k = 1 in (6) and (9), for (26).

‖σ − σh‖0,Ω hn ‖u− uh‖0,Ω hn ‖ div(σ − σh)‖0,Ω hn

1 1.61682569 0.0 0.21093411 0.0 6.10467990 0.0
2 0.48388087 1.74 0.06461602 1.71 1.74304423 1.81
3 0.12795918 1.92 0.01699145 1.92 0.45537323 1.94
4 0.03244990 1.98 0.00429655 1.98 0.11514501 1.98
5 0.00814520 1.99 0.00108161 1.99 0.02886873 1.99

�
�
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��
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Figure 1. The initial grid for the triangular prism partitions.

5.2. Cantilever beam problem. We consider a straight beam of dimension 10×
1 × 1 from [41]. The Young’s modulus is E = 2.1 × 106. The top is loaded with
normal stress q = 100. See Figure 2 for the boundary conditions and the initial
triangular prism grid. We use the mixed triangular prism element of k = 1 in
Section 2 to compute the vertical displacements at points A and B, which are
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denoted by uA3 and uB3 respectively. For comparison, the first (P1) and second (P2)
order Lagrangian elements are also used to produce the vertical displacements at
points A and B. The initial tetrahedral grid is obtained by dividing each triangular
prism into three tetrahedrons. In this example, we also test the behavior of elements
under the incompressible limit condition (Poisson’s ratio ν is 0.3 and 0.499). The
Lamé constants λ and µ satisfy

λ =
Eν

(1 + ν)(1 − 2ν)
, µ =

E

2(1 + ν)
.

The results are listed in Table 2. From Table 2, we see that the first order mixed
triangular prism element is locking free.

q
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r
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Figure 2. The initial triangular prism grid for the cantilever beam.

Table 2. Cantilever beam.

Poisson’s ratio ν = 0.3
Prism (k = 1) P1 P2

mesh uA3 uB3 uA3 uB3 uA3 uB3
1 -0.2571 -0.7201 -0.0588 -0.1596 -0.2472 -0.6998
2 -0.2566 -0.7183 -0.1305 -0.3636 -0.2534 -0.7119
3 -0.2560 -0.7171 -0.2023 -0.5671 -0.2549 -0.7148
4 -0.2557 -0.7165 -0.2388 -0.6698 -0.2553 -0.7156

Poisson’s ratio ν = 0.499
1 -0.2561 -0.7177 -0.0074 -0.0110 -0.2010 -0.6006
2 -0.2540 -0.7128 -0.0095 -0.0171 -0.2339 -0.6716
3 -0.2520 -0.7086 -0.0174 -0.0398 -0.2449 -0.6943
4 -0.2510 -0.7066 -0.0427 -0.1133 -0.2484 -0.7014

Acknowledgments

The first author was supported by NSFC projects 11625101, 91430213 and
11421101.

References

[1] S. Adams and B. Cockburn, A mixed finite element method for elasticity in three dimensions,
J. Sci. Comput., 25 (2005), 515–521.

[2] M. Amara and J. M. Thomas, Equilibrium finite elements for the linear elastic problem.

Numer, Math., 33 (1979), 367–383.
[3] D. N. Arnold and G. Awanou, Rectangular mixed finite elements for elasticity, Math. Models

Methods Appl. Sci., 15 (2005), 1417–1429.
[4] D. Arnold, G. Awanou and R. Winther, Finite elements for symmetric tensors in three di-

mensions, Math. Comp., 77 (2008), 1229–1251.
[5] D. Arnold, G. Awanou and R. Winther, Nonconforming tetrahedral mixed finite elements for

elasticity, Math. Models Methods Appl. Sci., 24 (2014), 783–796.



TRIANGULAR PRISM ELEMENTS 241

[6] D. N. Arnold, F. Brezzi and J. Douglas Jr, PEERS: A new mixed finite element for plane
elasticity, Jpn. J. Appl. Math., 1 (1984), 347–367.

[7] D. N. Arnold, J. Douglas Jr. and C. P. Gupta, A family of higher order mixed finite element
methods for plane elasticity, Numer. Math., 45 (1984), 1–22.

[8] D. N. Arnold, R. Falk and R. Winther, Mixed finite element methods for linear elasticity
with weakly imposed symmetry, Math. Comp., 76 (2007), 1699–1723.

[9] D. N. Arnold and R. Winther, Mixed finite element for elasticity, Numer. Math., 92 (2002),
401–419.

[10] D. N. Arnold and R. Winther, Nonconforming mixed elements for elasticity, Math. Models
Methods Appl. Sci., 13 (2003), 295–307.

[11] G. Awanou, Two remarks on rectangular mixed finite elements for elasticity, J. Sci. Comput.,
50 (2012), 91–102.

[12] D. Boffi, F. Brezzi and M. Fortin, Reduced symmetry elements in linear elasticity, Commun.
Pure Appl. Anal., 8 (2009), 95–121.

[13] D. Boffi, F. Brezzi and M. Fortin, Mixed finite element methods and applications, Springer,
Heidelberg, 2013.

[14] F. Brezzi, J. Douglas Jr. and L.D. Marini, Recent results on mixed finite element methods
for second order elliptic problems, In Balakrishanan, Dorodnitsyn, and Lions, ediors, Vis-
tas in Applied Math, Numerical Analysis, Atmospheric Sciences, Immunology. Optimization
Software Publications, New York, 1986.

[15] Z. Cai and X. Ye, A mixed nonconforming finite element for linear elasticity, Numer. Methods
Partial Differ. Equ., 21 (2005), 1043–1051.

[16] L. Chen, J. Hu and X. Huang, Stabilized mixed finite element methods for linear elasticity
on simplicial grids in Rn, Comput. Methods Appl. Math., 17 (2017), 17–31,

[17] S. Chen, Y. Sun and J. Zhao, The simplest conforming anisotropic rectangular and cubic
mixed finite elements for elasticity, Appl. Math. Comput., 265 (2015), 292–303.

[18] S. Chen and Y. Wang, Conforming rectangular mixed finite elements for elasticity, J. Sci.
Comput., 47 (2011), 93–108.

[19] B. Cockburn, J. Gopalakrishnan and J. Guzmán, A new elasticity element made for enforcing
weak stress symmetry, Math. Comp., 79 (2010), 1331–1349.

[20] S. Gong, S. Wu, and J. Xu, The lowest order interior penalty nonconforming finite element
methods for linear elasticity, arXiv:1507.01752v2, 2015.

[21] J. Gopalakrishnan and J. Guzmán, Symmetric nonconforming mixed finite elements for linear
elasticity, SIAM J. Numer. Anal. 49 (2011), 1504–1520.

[22] J. Hu, A new family of efficient conforming mixed finite elements on both rectangular and
cuboid meshes for linear elasticity in the symmetric formulation, SIAM J. Numer. Anal., 53
(2015), 1438–1463.

[23] J. Hu, Finite element approximations of symmetric tensors on simplicial grids in Rn: the

higher order case, J. Comput. Math., 33 (2015), 283–296.
[24] J. Hu, H. Man and S. Zhang, A simple conforming mixed finite element for linear elasticity

on rectangular grids in any space dimension, J. Sci. Comput., 58 (2014), 367–379.
[25] J. Hu, H. Man, J. Wang and S. Zhang, The simplest nonconforming mixed finite element

method for linear elasticity in the symmetric formulation on n-rectangular grids, Comput.
Math. Appl., 71 (2016), 1317–1336.

[26] J. Hu and Z. C. Shi, Lower order rectangular nonconforming mixed elements for plane elas-
ticity, SIAM J. Numer. Anal., 46 (2007), pp. 88–102.

[27] J. Hu and S. Zhang, A family of conforming mixed finite elements for linear elasticity on
triangular grids, arXiv:1406.7457, 2014

[28] J. Hu and S. Zhang, A family of symmetric mixed finite elements for linear elasticity on
tetredral grids, Sci. China Math., 58 (2015), 297–307.

[29] J. Hu and S. Zhang, Finite element approximations of symmetric tensors on simplicial grids
in Rn: the lower order case, Math. Models Methods Appl. Sci.,26 (2016) ,1649–1669.

[30] C. Johnson and B. Mercier, Some equilibrium finite element methods for two-dimensional
elasticity problems, Numer. Math., 30 (1978), 103–116.

[31] H. Man, J. Hu, and Z. C. Shi, Lower order rectangular nonconforming mixed finite element
for the three-dimensional elasticity problem, Math. Models Methods Appl. Sci., 19 (2009),
51–65.

[32] W. Qiu and L. Demkowicz, Mixed hp-finite element method for linear elasticity with weakly
imposed symmetry, Comput. Methods Appl. Mech. Engrg., 198 (2009), 3682–3701.



242 J. HU AND R. MA

[33] L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying
boundary conditions, Math. Comp., 54 (1990), 483–493.

[34] R. Stenberg, On the construction of optimal mixed finite element methods for the linear
elasticity problem, Numer. Math., 48 (1986), 447–462.

[35] R. Stenberg, Two low-order mixed methods for the elasticity problem, In: J. R. Whiteman
(ed.): The Mathematics of Finite Elements and Applications, VI. London: Academic Press,
1988, 271–280.

[36] R. Stenberg, A family of mixed finite elements for the elasticity problem, Numer. Math., 53
(1988), 513–538.

[37] X. Xie and J. Xu, New mixed finite elements for plane elasticity and Stokes equations, Sci.
China Math., 54 (2011), 1499–1519.

[38] J. Xin, W. Cai and N. Guo, On the construction of well-conditioned hierarchical bases for
H(div)-conforming Rn simplicial elements. Commun, Comput. Phys., 14 (2013), 621–638.

[39] S. Y. Yi, Nonconforming mixed finite element methods for linear elasticity using rectangular
elements in two and three dimensions, Calcolo, 42 (2005), 115–133.

[40] S. Y. Yi, A new nonconforming mixed finite element method for linear elasticity. Math,
Models Methods Appl. Sci., 16 (2006), 979–999.

[41] L. Zhou, The research on numerical methods for nearly incompressible elasticity problems in
three dimensions and fast solving algorithms, Master’s thesis (in Chinese), Xiangtan Univer-
sity, China, 2014.

LMAM and School of Mathematical Sciences, Peking University, Beijing 100871, P. R. China
E-mail : hujun@math.pku.edu.cn

LMAM and School of Mathematical Sciences, Peking University, Beijing 100871, P. R. China
E-mail : maruipku@gmail.com


