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A FRACTIONAL STOKES EQUATION AND ITS SPECTRAL

APPROXIMATION

SHIMIN LIN, MEJDI AZAÏEZ, AND CHUANJU XU†

Abstract. In this paper, we study the well-posedness of a fractional Stokes equation and its
numerical solution. We first establish the well-posedness of the weak problem by suitably define the
fractional Laplacian operator and associated functional spaces. The existence and uniqueness of
the weak solution is proved by using the classical saddle-point theory. Then, based on the proposed
variational framework, we construct an efficient spectral method for numerical approximations of
the weak solution. The main contribution of this work are threefold: 1) a theoretical framework
for the variational solutions of the fractional Stokes equation; 2) an efficient spectral method
for solving the weak problem, together with a detailed numerical analysis providing useful error
estimates for the approximative solution; 3) a fast implementation technique for the proposed
method and investigation of the discrete system. Finally, some numerical experiments are carried
out to confirm the theoretical results.
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1. Introduction

Fractional partial differential equations(FPDEs) are generalizations of the integer-
order models, based on fractional calculus. As a useful tool in modelling the phe-
nomenon related to nonlocality and memory effect, the FPDEs have been attracting
increasing attention in recent years. They are now finding many applications in a
broad range of fields such as control theory, biology, electrochemical processes, vis-
coelastic materials, polymer, finance, and etc; see, e.g.,[2, 3, 4, 5, 6, 16, 19, 21, 22,
31, 32, 33] and the references therein. In particular, fractional diffusion equations
have been frequently used to describe the so-called anomalous diffusion phenome-
non; see, e.g., [12, 15, 17, 35, 37, 38].

In this paper, we will consider sub-diffusion problems of the incompressible flows.
This problem is related to the Navier-Stokes equation with sub-dissipation, which
has been the subject of many research studies in the community of PDE theory.
For example, Katz and Pavlović [20] considered the equations ∂u

∂t + (−∆)αu + u ·

∇u + ∇p = 0, ∇ · u = 0 with the initial condition u(0, x) = u0(x) ∈ C∞
c (R3),

and proved that for this equation the Hausdorff dimension of the singular set at
time of first blow up is at most 5 − 4α and the solution has global regularity in
the critical and subcritical hyper-dissipation regimes α ≥ 5/4. Tao [40] considered
the global Cauchy problem for the same Navier-Stokes equations in R

d, d ≥ 3,
and improved the above-mentioned result in the hyper-dissipation regimes under
a slightly weaker condition. Yu & Zhai [43] investigated the well-posedness of the
fractional Navier-Stokes equations in some supercritical Besov spaces and largest
critical spaces. Xiao et al. [41] proved a general global well-posedness result for the
fractional Navier-Stokes equations in some critical Fourier-Besov spaces.

On the other side, a considerable body of literature has been devoted to study-
ing numerical methods for the FPDEs, it is impossible to give even a very brief
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review here. Nevertheless, we refer to [26] for a review on the recent progress of
high order numerical methods, particularly spectral methods, for the fractional dif-
ferential equations. The main focus of the current paper is to set up a functional
framework for the fractional Stokes equation in bounded domains, and propose a
spectral method for its numerical solutions. As it has been well known for the tra-
ditional Stokes equation, a suitable variational formulation is essential for spectral
methods to be efficient. The suitable weak form relies on the choice of the space
pair for the velocity and pressure. The main contribution of this paper includes:
first, we introduce the velocity and pressure spaces such that the associated saddle
point problem is well-posed; secondly, we construct an efficient spectral method for
numerical approximations of the weak solution. Based on the weak formulation and
the polynomial approximation results in the related Sobolev spaces, we are able to
derive some error estimates. Finally we present an implementation technique of the
algorithm, and some numerical results to confirm the theoretical statements.

The rest of the paper is organized as follows: In the next section we recall some
notations of fractional calculus and list some lemmas which will be used in the
following sections. In Section 3 the fractional Stokes problem is studied and the
well-posedness result is established. Then we propose and analyze in Section 4 a
stable spectral method based on weak formulation, and derive the error estimates
for the numerical solution. In Section 5, we give some implementation details and
present the numerical results to support the theoretical statements. In Section 6,
we present an extension to the fractional Navier-Stokes equations. Some concluding
remarks are given in the final section.

2. Preliminaries

In this section, we present some notations and basic properties of fractional
calculus [1, 13, 34, 24, 36]. which will be used throughout the paper. Let N and
R be the set of positive integers and real numbers respectively, and set N0 :=
{0} ∪ N. Let c be a generic positive constant independent of any functions and of
any discretization parameters. We use the expression A . B (respectively, A & B)
to mean that A ≤ cB (respectively, A ≥ cB), and use the expression A ∼= B to
mean that A . B . A. In all that follows, without lose of generality, we set
Λ = (−1, 1) and Ωd = Λd. The generic points of Ωd is denoted by x = (x1, · · · , xd).
In some specific occurrences, we may use (x, y) to represent the generic points of
Ωd when d = 2 ((x, y, z) when d = 3), and use Ω instead of Ωd to represent the
domain for simplification.

Definition 2.1 (RL fractional integral). Let f(x) be Riemann integrable on (a, b),
−∞ < a < b < ∞. The left-sided and right-sided Riemann-Liouville fractional
integral of order s > 0 are defined by

aI
s
xf(x) :=

1

Γ(s)

∫ x

a

(x− t)s−1f(t) dt, xI
s
b f(x) :=

1

Γ(s)

∫ b

x

(t− x)s−1f(t) dt

respectively, where Γ(·) is the Gamma function.

Definition 2.2 (RL fractional derivative). For a given f(x), the Riemann-Liouville
fractional derivatives aD

s
xf and xD

s
bf of order s > 0 are defined by

aD
s
xf(x) : =

dn

dxn
aI

n−s
x f(x) =

1

Γ(n− s)

dn

dxn

∫ x

a

(x− t)n−s−1f(t) dt, n = ⌈s⌉,
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and

xD
s
bf(x) : = (−1)n

dn

dxn
xI

n−s
b f(x) =

(−1)n

Γ(n− s)

dn

dxn

∫ b

x

(t− x)n−s−1f(t) dt, n = ⌈s⌉

respectively, where ⌈s⌉ means the smallest integer such that ⌈s⌉ ≥ s.

Definition 2.3 (Caputo fractional derivative). For a given f(x), the Caputo frac-
tional derivatives C

aD
s
xf and C

xD
s
bf of order s > 0 are defined by

C
aD

s
xf(x) : = aI

n−s
x f (n)(x) =

1

Γ(n− s)

∫ x

a

(x− t)n−s−1f (n)(t) dt, n = ⌈s⌉,

and

C
xD

s
bf(x) : = (−1)nxI

n−s
b fn(x) =

(−1)n

Γ(n− s)

∫ b

x

(t− x)n−s−1f (n)(t) dt, n = ⌈s⌉

respectively.

The relation between Riemann-Liouville and Caputo derivative is given as fol-
lows.

Lemma 2.1. [14] Let n ∈ N, n− 1 ≤ s < n, then we have

aD
s
xf(x) =

C
aD

s
xf(x) +

n−1
∑

j=0

f (j)(a)

Γ(1 + j − s)
(x − a)j−s;

xD
s
bf(x) =

C
xD

s
bf(x) +

n−1
∑

j=0

(−1)jf (j)(b)

Γ(1 + j − s)
(b− x)j−s.

Next we list a number of formulas related to the fractional integrals and deriva-
tives of the Jacobi polynomials. These formulas are useful in implementing the
proposed numerical method. We recall that the Jacobi polynomials, denoted by
Js,σ
n (x) for s, σ > −1, are orthogonal with respect to the Jacobi weight function
ωs,σ(x) := (1− x)s(1 + x)σ over Λ, namely,

∫ 1

−1

Js,σ
n (x)Js,σ

m (x)ωs,σ(x) dx = γs,σn δmn,

where δmn is the Kronecker-delta symbol and

γs,σn =
2s+σ+1Γ(n+ s+ 1)Γ(n+ σ + 1)

(2n+ s+ σ + 1)n!Γ(n+ s+ σ + 1)
.

The Jacobi polynomials for parameters s ≤ −1 and/or σ ≤ −1 are defined as in
Szegö [39]. Then we have the following two lemmas.

Lemma 2.2. ([44] Lemma 3.2 and [13] Lemma 2.4) Let ρ > 0, n ∈ N0, and x ∈ Λ.

• For s ∈ R and σ > −1,

(1) −1I
ρ
x{(1 + x)σJs,σ

n (x)} =
Γ(n+ σ + 1)

Γ(n+ σ + ρ+ 1)
(1 + x)σ+ρJs−ρ,σ+ρ

n (x).

• For s > −1 and σ ∈ R,

(2) xI
ρ
1 {(1− x)sJs,σ

n (x)} =
Γ(n+ s+ 1)

Γ(n+ s+ ρ+ 1)
(1− x)s+ρJs+ρ,σ−ρ

n (x).

Lemma 2.3. ([13] Lemma 2.5) Let ρ > 0, n ∈ N0, and x ∈ Λ.
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• For s ∈ R and σ > −1,

(3) −1D
ρ
x{(1 + x)σ+ρJs−ρ,σ+ρ

n (x)} =
Γ(n+ σ + ρ+ 1)

Γ(n+ σ + 1)
(1 + x)σJs,σ

n (x).

• For s > −1 and σ ∈ R,

(4) xD
ρ
1{(1− x)s+ρJs+ρ,σ−ρ

n (x)} =
Γ(n+ s+ ρ+ 1)

Γ(n+ s+ 1)
(1− x)sJs,σ

n (x).

We now introduce some Sobolev spaces, which will be used to define the weak
problem for the fractional Stokes equation. L2(Ωd) is defined as the space of func-
tions which are square measurable. The associated inner product and norm are
denoted by

(u, v)Ωd
:=

∫

Ωd

uv dx, ‖u‖L2(Ωd) := (u, u)
1

2

Ωd
, ∀u, v ∈ L2(Ωd).

For a nonnegative real number s, Hs(Ωd) and Hs
0(Ωd) denote the usual Sobolev

space with norm ‖ ·‖s,Ωd
and semi-norm | · |s,Ωd

. Let E be a separable Hilbert space
for norm ‖ · ‖E . For any positive real number s, we consider space

Hs(Λ;E) = {‖v(x, ·)‖E ∈ Hs(Λ)} ,

equipped with the norm

‖v‖Hs(Λ;E) = ‖‖v(x, ·)‖E‖s,Λ .

With each function v in L2(Ωd), we associate the d-functions vj defined by

vj(xj)(x1, · · · , xj−1, xj+1, · · · , xd) = v(x1, · · · , xd), 1 ≤ j ≤ d.

Then for any j, 1 ≤ j ≤ d, and for any nonnegative real numbers s, σ, we define
the space

Hs(Λj ;H
σ(Ωd−1)) = {v ∈ L2(Ωd); vj ∈ Hs(Λj ;H

σ(Ωd−1))},

where, although Λj is always equal to Λ for all j = 1, . . . , d, the subscript j is used
to mean the domain for the jth variable.

The following properties of the tensorized spaces can be found in [9]:

• For any j, 1 ≤ j ≤ d,

(5) L2(Ωd) = L2(Λj ;L
2(Ωd−1)).

• For any nonnegative real number s and σ, σ ≤ s, the following embedding holds:

(6) Hs(Ωd) ⊂ Hσ(Λj ;H
s−σ(Ωd−1)).

• For any nonnegative real number s, it holds

(7) Hs(Ωd) =

d
⋂

j=1

Hs(Λj ;L
2(Ωd−1)).

Lemma 2.4. [24] For 0 < s < 1, s 6= 1
2 , if w, v ∈ Hs

0(Λ), then

(−1D
s
x−1D

s
xw, v)Λ = (−1D

s
xw, xD

s
1v)Λ , (xD

s
1xD

s
1w, v)Λ = (xD

s
1w,−1D

s
xv)Λ ,

(xD
s
1−1D

s
xw, v)Λ = (−1D

s
xw,−1D

s
xv)Λ , (−1D

s
xxD

s
1w, v)Λ = (xD

s
1w, xD

s
1.v)Λ .

Lemma 2.5. [24] Let s > 0, s 6= n− 1
2 , n ∈ N, for ∀v ∈ Hs

0(Λ), we have

(−1D
s
xv, xD

s
1v)Λ

∼= cos(πs)‖−1D
s
xv‖

2
L2(Λ)

∼= cos(πs)‖xD
s
1v‖

2
L2(Λ)

∼= cos(πs)‖v‖2s,Λ.
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In what follows, for the sake of simplification, the left-sided and right-sided
derivatives will be denoted by Ds

x, xD
s, and similar simplifications will be used for

other notations. The domain symbol in the subscript of norms may be dropped if
no confusion would arise.

3. Fractional Stokes equation

We consider the fractional Stokes equations as follows: for f (x) given, find the
velocity and pressure (u, p), such that

−∆αu+∇p = f , in Ωd,(8)

∇ · u = 0, in Ωd,(9)

u = 0, on ∂Ωd,(10)

where 1
2 < α ≤ 1, d = 2, 3. At this first step of research, we consider a symmetric

definition for the fractional Laplacian operator; see [38]:

−∆α := −
1

4

d
∑

j=1

(

Dα
xj

− xj
Dα
)(

CDα
xj

− C
xj
Dα
)

.(11)

Remark 3.1. There are some other definitions of fractional Laplacian operator,
such as the Fourier transform definition, the Riesz fractional derivative etc. Un-
der some suitable assumptions, some of them are equivalent. For example, in one
dimensional domain Λ, under the homogeneous boundary condition, the Fourier
transform definition is equivalent to definition[42]:

(12) −∆α := −(D2α
x +x D

2α)

Obviously our definition (11) is a more general definition than (12).

To define weak problem of the above Stokes equation, we introduce the following
space:

X := {v ∈ Hα
0 (Ωd)

d; ∇ · v ∈ L2(Ωd)},

endowed with the norm

‖v‖X :=
(

‖v‖2α + ‖∇ · v‖20
)

1

2 .(13)

Obviously, ‖v‖X . ‖v‖1 for all v ∈ H1(Ωd)
d. For the pressure, we define the space

M :=

{

q ∈ L2(Ωd) :

∫

Ωd

q(x)dx = 0

}

.

Inspired by Lemma 2.1 and Lemma 2.4, we consider the weak formulation of
(8)-(10) as follows: given f ∈ X ′, the dual space of X , find (u, p) in X ×M , such
that

a(u,v) + b(v, p) = 〈f ,v〉, ∀v ∈ X,(14)

b(u, q) = 0, ∀q ∈M,(15)

where 〈·, ·〉 is the duality pairing. The bilinear forms a(·, ·) and b(·, ·) are defined
respectively by: for u = (u1, · · · , ud),v = (v1, · · · , vd),

a(u,v) : = −
1

4

d
∑

i=1

d
∑

j=1

[(

Dα
xj
ui,xj

Dαvi
)

+
(

xj
Dαui, Dα

xj
vi
)

−
(

Dα
xj
ui, Dα

xj
vi
)

−
(

xj
Dαui,xj

Dαvi
)

]

,

b(v, q) : = −(∇ · v, q).
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Obviously, the definition (11) for the fractional Laplacian makes the bilinear form
a(·, ·) symmetric.

Remark 3.2. We have to be very cautious with formulation of the FPDEs. The
use of the mixed fractional derivatives is advantageous than a single derivative,
especially when dealing with non homogeneous boundary conditions. For example,
considering the equation using RL derivatives with non homogeneous boundary con-
dition as follows:

(16)

{

−−1D
1.6
x u = f, x ∈ Λ,

u(−1) = u(1) = 1.

For a given f(x) = 1, if the solution u(x) of equation (16) belongs to H0.8(Λ) ⊂
C(Λ̄), then it can be verified that the solution can be written in following form:

(17) u(x) = −−1I
1.6
x f(x) + c1(x + 1)0.6 + c2(x+ 1)−0.4

c1, c2 are two constants determined by boundary condition. We find that only c2 = 0
can lead to u(x) ∈ H0.8(Λ). However, u(−1) = 0 6= 1 when c2 = 0. i.e. the solution
in form (17) would never satisfy the boundary condition. In contrary, the following
problem

{

−−1D
0.8
x

C
−1D

0.8
x u = 1, x ∈ Λ,

u(−1) = u(1) = 1

admits a solution u = ((x + 1)0.6(1− x))/Γ(2.6) + 1 ∈ H0.8(Λ).

In order to establish the well-posedness of (14)-(15), we define the kernel space

(18) K := {v ∈ X : b(v, q) = 0, ∀q ∈M}.

Theorem 3.1. The weak problem (14)-(15) is well-posed.

Proof. First according to the definitions of the bilinear forms a(·, ·) and b(·, ·) and
the spaces X and M , it is readily seen that a(·, ·) and b(·, ·) are both continuous in
the spaces in which they are defined. Furthermore, using Lemma 2.5 and property
(7), for ∀v ∈ K, there exists a positive constant δ such that

a(v,v) =−
1

4

d
∑

i=1

d
∑

j=1

[(

Dα
xj
vi, xj

Dαvi
)

+
(

xj
Dαvi, Dα

xj
vi
)

−
(

Dα
xj
vi, Dα

xj
vi
)

−
(

xj
Dαvi, xj

Dαvi
)

]

&

d
∑

i=1

d
∑

j=1

[

‖Dα
xj
vi‖2L2(Ωd)

+
∥

∥

xj
Dαvi

∥

∥

2

L2(Ωd)

]

&

d
∑

i=1

d
∑

j=1

‖vi‖2Hα(Λj ;L2(Ωd−1))
&

d
∑

i=1

‖vi‖2α ≥ δ‖v‖2X .

That is, a(·, ·) is coercive. Thus there exists a unique solution u to (14)-(15).
On the other side, it is well known [9, 18] that for any q ∈ M , there exists w ∈
H1

0 (Ωd)
d ⊂ X , such that

−∇ ·w = q, ‖w‖1 . ‖q‖0.

Thus we have

sup
v∈X

b(v, q)

‖v‖X
= sup

v∈X

−(∇ · v, q)

‖v‖X
≥

‖q‖20
‖w‖X

≥
‖q‖20
‖w‖1

& ‖q‖0,
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which means b(·, ·) satisfies the Inf-Sup condition. Finally, in virtue of the standard
saddle point theory [11], the problem (14)-(15) admits a unique solution. �

4. A stable spectral method

This section is devoted to construct a spectral method for the weak problem
(14)–(15), and carry out numerical analysis for the proposed method. To alleviate
the presentation, we will restrict ourself to the case d = 2 in the construction of the
method, however the error analysis will be carried out for both 2D and 3D cases.

For a fixed integer N ≥ 2, PN (Ω) denotes the space of polynomials of degree
≤ N with respect to each space variable. We denote the Jacobi-Gauss-Lobatto
nodes, i.e., the zeros of (1− ξ2)Js+1,σ+1

N−1 (ξ) on the interval Λ, by (ξs,σN,i)0≤i≤N , and

corresponding weights by (ωs,σ
N,i)0≤i≤N . Denote the Jacobi-Gauss nodes, i.e., the

zeros of Js,σ
N+1, by (ηs,σN,i)0≤i≤N , and corresponding weights by (ρs,σN,i)0≤i≤N . Assume

that u and v are continuous functions, we define the discrete scalar products:

(u, v)x,N : =

N
∑

i=0

∫

Λ

u(ξ0,0N,i, y)v(ξ
0,0
N,i, y)ω

0,0
N,i dy,

(u, v)y,N : =

N
∑

j=0

∫

Λ

u(x, ξ0,0N,j)v(x, ξ
0,0
N,j)ω

0,0
N,j dx,

(u, v)N : =
N
∑

i,j=0

u(ξ0,0N,i, ξ
0,0
N,j)v(ξ

0,0
N,i, ξ

0,0
N,j)ω

0,0
N,iω

0,0
N,j,

and their associated norms

‖v‖x,N = (v, v)
1

2

x,N , ‖v‖y,N = (v, v)
1

2

y,N , ‖v‖N = (v, v)
1

2

N .

The following equivalence is known (see e.g., [8]):

(19) ‖vN‖x,N ∼= ‖vN‖y,N ∼= ‖vN‖N ∼= ‖vN‖0, ∀vN ∈ PN (Λ).

We have to be careful in making choice of the discrete velocity and pressure space.
As it has been well-known that the discrete pressure space has to be smaller than
the velocity space for spectral approximation to the traditional Stokes equation. A
common choice, suggested by Maday and Patera [30], is the so-called PN × PN−2

method. Inspired by this fact, we are led to consider the same space pair for the
fractional Stokes equation.

We set the discrete velocity space XN := PN (Ω)d ∩ X , and the pressure space
MN := PN−2(Ω) ∩M .

Consider the spectral approximation to (14)–(15) as follows: find (uN , pN ) ∈
XN ×MN such that

aN(uN ,vN ) + bN (vN , pN ) = (f ,vN )N , ∀vN ∈ XN ,(20)

bN(uN , qN ) = 0, ∀qN ∈MN ,(21)
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where

aN (uN ,vN ) : = −
1

4

2
∑

i=1

[

(

xD
αuiN , D

α
xv

i
N

)

y,N
+
(

Dα
xu

i
N , xD

αviN
)

y,N
(22)

−
(

Dα
xu

i
N , D

α
xv

i
N

)

y,N
−
(

xD
αuiN , xD

αviN
)

y,N

+
(

Dα
y u

i
N , yD

αviN
)

x,N
+
(

yD
αuiN , D

α
y v

i
N

)

x,N

−
(

Dα
y u

i
N , D

α
y v

i
N

)

x,N
−
(

yD
αuiN , yD

αviN
)

x,N

]

,

bN (vN , qN ) : = −(∇ · vN , qN )N ,(23)

with the convention u = (u1N , u
2
N )T ,v = (v1N , v

2
N )T . These two bilinear forms

in the 3D case can be defined in a similar way. We want to emphasize that in
the above discretization, numerical quadratures are only used in the direction in
which non fractional derivatives are applied. We know that the fractional derivative
of a polynomial is no longer a polynomial, and naive applications of the numerical
quadratures of Gauss type would result in a lose of accuracy. In our implementation,
we will use an efficient way to evaluate the integrals.

Let

KN = {vN ∈ XN : bN(vN , qN ) = 0, ∀qN ∈MN} .(24)

We have the following theorem.

Theorem 4.1. The spectral approximation problem (20)-(21) is well-posed.

Proof. Similar to Theorem 3.1, the proof makes use of the saddle point theory. Once
again, the continuities of the bilinear forms aN (·, ·) and bN(·, ·) are immediate.
However, in the discrete case, aN (·, ·) loses the uniform coercivity in KN × KN

because the functions of KN are not necessarily divergence-free. Nevertheless, in
virtue of (19) and the inverse inequality [7]

|vN |1 . N2(1−α)|vN |α, ∀vN ∈ PN (Λ),(25)

we have

(26) aN (vN ,vN) &

2
∑

i=1

‖viN‖2α & δN‖vN‖2X ,

where δN = O(N4α−4). It remains to prove the Inf-Sup condition of bN(·, ·). It is
known [10] that for ∀qN ∈MN , there exists wN ∈ XN such that

(−∇ ·wN , ϕN ) = (qN , ϕN ), ∀ϕN ∈ PN−2(Ω),

and

‖wN‖1 . N
1

2 ‖qN‖0.

Therefore we obtain

sup
vN∈XN

−(∇ · vN , qN )

‖vN‖X
≥

‖qN‖20
‖wN‖1

& βN‖qN‖0,

where βN = O(N− 1

2 ). This completes the proof. �

Next we will derive an error estimate for the numerical solution. To this end,
we first establish the following approximation result, which is an extension of some
existing results in 1D and integer order cases.
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Lemma 4.1. Let p and γ be two real numbers such that p 6= n + 1/2, n ∈ N,

0 ≤ γ ≤ p, there exists an operator Πγ,0
p,N from Hp(Ω)∩Hγ

0 (Ω) onto PN (Ω)∩Hγ
0 (Ω),

such that, for any ϕ ∈ Hσ(Ω) ∩Hγ
0 (Ω) with σ ≥ p, we have

‖ϕ−Πγ,0
p,Nϕ‖ν . Nν−σ‖ϕ‖σ, 0 ≤ ν ≤ p.(27)

Proof. The result in the case d = 1 has been proved in [28]. Here we want to
demonstrate that it is also true in the case d = 2. Using Theorem 2.1 in [28], there

exists an operator πγ,0
N from Hp(Λ) ∩ Hγ

0 (Λ) onto PN (Λ) ∩ Hγ
0 (Λ), such that, for

any ϕ ∈ Hσ(Λ) ∩Hγ
0 (Λ), σ ≥ p,

‖ϕ− πγ,0
N ϕ‖ν,Λ . Nν−σ‖ϕ‖σ,Λ, 0 ≤ ν ≤ p.(28)

Now we define the operator Πγ,0
p,N : Hp(Ω) ∩ Hγ

0 (Ω) → PN (Ω) ∩ Hγ
0 (Ω) by: ∀ϕ ∈

Hp(Ω) ∩Hγ
0 (Ω),

Πγ,0
p,Nϕ = πγ,0

N,yπ
γ,0
N,xϕ,

where πγ,0
N,i (i = x, y) be the operator πγ,0

N acting in the i direction. Then we have,

∀ϕ ∈ Hσ(Ω) ∩Hγ
0 (Ω), σ ≥ p,

‖ϕ−Πγ,0
p,Nϕ‖ν =‖ϕ− πγ,0

N,yπ
γ,0
N,xϕ‖ν

.‖ϕ− πγ,0
N,yπ

γ,0
N,xϕ‖Hν(Λ;L2(Λ)) + ‖ϕ− πγ,0

N,yπ
γ,0
N,xϕ‖L2(Λ;Hν (Λ)).(29)

By using the triangle inequality and estimate (28), we get

‖ϕ− πγ,0
N,yπ

γ,0
N,xϕ‖Hν(Λ;L2(Λ))

.‖ϕ− πγ,0
N,yϕ‖Hν(Λ;L2(Λ)) + ‖πγ,0

N,yϕ− πγ,0
N,yπ

γ,0
N,xϕ‖Hν(Λ;L2(Λ))

.Nν−σ‖ϕ‖Hν(Λ;Hσ−ν (Λ)) + ‖πγ,0
N,y

(

ϕ− πγ,0
N,xϕ

)

‖Hν(Λ;L2(Λ))

.Nν−σ‖ϕ‖Hν(Λ;Hσ−ν (Λ)) + ‖ϕ− πγ,0
N,xϕ‖Hν(Λ;L2(Λ))

.Nν−σ‖ϕ‖Hν(Λ;Hσ−ν (Λ)) +Nν−σ‖ϕ‖Hσ(Λ;L2(Λ)).

Furthermore, using (6) and (7) gives

‖ϕ− πγ,0
N,yπ

γ,0
N,xϕ‖Hν(Λ;L2(Λ)) . Nν−σ‖ϕ‖σ.(30)

Similarly, we have

‖ϕ− πγ,0
N,yπ

γ,0
N,xϕ‖L2(Λ;Hν (Λ)) . Nν−σ‖ϕ‖σ.(31)

Then we bring (30) and (31) into (29) to get (27). The case d = 3 can be proved
in a similar way. �

In the next lemma, we give a polynomial approximation result for divergence-free
functions. Note that a similar approximation result has been provided by Landriani
& Vandeven [23] for divergence-free functions. The following lemma extends this
result in the following senses: 1) in 2D case, we will give a different proof allowing
to obtain the optimal error estimate under a less restrictive condition; 2) in 3D
case, the H1-estimate given in [23] is generalized to Hα-estimate for divergence-
free functions.

Lemma 4.2. Let s ≥ α when d = 2 and s ≥ 3 when d = 3. Then for any
divergence-free function v ∈ Hs(Ω)d ∩X, the following estimate holds:

inf
vN∈KN

‖v − vN‖X . Nα−s‖v‖s.(32)
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Proof. (i) The case d = 2. First we recall that [18] for any v ∈ Hα
0 (Ω)

2, there exists
a stream function ψ ∈ Hα+1

0 (Ω) such that v = curlψ. Moreover, if v belongs to
Hs(Ω)2, s ≥ α, then we have ψ ∈ Hs+1(Ω), and

‖ψ‖s+1 . ‖v‖s.(33)

Let Πα+1,0
s+1,N be the operator from Hs+1(Ω)∩Hα+1

0 (Ω) onto PN (Ω)∩Hα+1
0 (Ω), con-

structed in Lemma 4.1 with p = s+1 and γ = α+1. Then we have curl Πα+1,0
s+1,Nψ ∈

KN , and, using (27) and (33),

inf
vN∈KN

‖v − vN‖X ≤ ‖curlψ − curl Πα+1,0
s+1,Nψ‖X ≤ ‖curlψ − curlΠα+1,0

s+1,Nψ‖α

≤ ‖ψ −Πα+1,0
s+1,Nψ‖α+1 . Nα−s‖ψ‖s+1 . Nα−s‖v‖s.

(ii) Case d = 3. It has been proved in [23] that there exists an operator ℘i
2,N

such that for all v ∈ Hs(Ω)d∩X with s > 3, ℘i
2,Nv is a divergence free polynomial

of degree ≤ N in the i variable with i = x, y, z, and

‖v − ℘i
2,Nv‖α . Nα−s‖v‖s.(34)

Now let πi,div
α,N , i = x, y, z, be the orthogonal projection operator for the inner prod-

uct ofX onto the divergence-free subspace ofHα
0 (Ω)

3, which is polynomial of degree

N in the i variable. Then we approximate v by Πdiv
α,Nv := πx,div

α,N πy,div
α,N πz,div

α,N v. It

follows from the orthogonality of πi,div
α,N and the triangular inequality:

inf
vN∈KN

‖v − vN‖X . ‖v −Πdiv
α,Nv‖X = ‖v − πx,div

α,N πy,div
α,N πz,div

α,N v‖α

. ‖v − πx,div
α,N v‖α + 2‖v − πy,div

α,N v‖α + 3‖v − πz,div
α,N v‖α

. ‖v − ℘x
2,Nv‖α + 2‖v − ℘y

2,Nv‖α + 3‖v − ℘z
2,Nv‖α

. Nα−s‖v‖s.

This proves the desired result. �

We are now at a position to derive the error estimate for the numerical solution.

Theorem 4.2. Let s, σ, and γ be positive real numbers, s ≥ α when d = 2 and s ≥ 3
when d = 3. Assume that the solution (u, p) of the continuous problem (14)-(15)
belongs to Hs(Ω)d × Hσ(Ω), and f ∈ Hγ(Ω)d. Then the spectral approximation
solution (uN , pN ) of (20)-(21) satisfies the following error estimate:

(35) ‖u−uN‖X + βN‖p− pN‖0 . N4−4α(Nα−s‖u‖s +N−σ‖p‖σ +N−γ‖f‖γ),

where βN is the Inf-Sup constant given in Theorem 4.1.

Proof. Using a standard approximation result for the saddle point problem, we get

‖u−uN‖X +
βN

1 + γN
‖p− pN‖0 .

1

δN

(

inf
vN∈KN∩PN−1(Ω)d

‖u− vN‖X

+ inf
qN∈MN

‖p− qN‖0 + sup
wN∈XN

(f,wN )− (f,wN )N
‖wN‖X

)

,

where δN is the discrete coercivity constant given in (26). Then the estimate (35)
follows directly from Lemma 4.2 and some standard approximation results (see,
e.g., [9]). �
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Remark 4.1. The error estimate in (35) is not optimal. This is due to the loss of
the uniform coercivity of aN (·, ·) in KN ×KN given in (26). The cause of this loss
is that in the discrete case the divergence of the velocity field is not strictly zero, so
that an inverse inequality had to be applied to control the divergence of the discrete
velocity. Theoretically, this difficulty can be overcome by adding the divergence term
(∇ ·uN ,∇ · vN )N to the bilinear form aN (uN ,vN ). However the drawback of this
formulation is that the different components are coupled in the velocity equation,
making the computation more expensive. Our numerical tests have shown much
better coercivity constant δN than that the theoretical estimation provides without
the divergence term. This is probably due to the fact that in most practical cases
the divergence of the discrete velocity is very small.

5. Numerical results

5.1. Implementation. We first give the implementation detail for the problem
(22)-(23) in 2D. Let hs,σN,i(x) and l

s,σ
N,i(x), i = 0, · · · , N , denote the Lagrangian poly-

nomials associated to the N + 1 Jacobi Gauss-Lobatto points and N + 1 Jacobi
Gauss points with respect to the weight w(x) = (1− x)s(1 + x)σ respectively. We
express the velocity components urN , r = 1, 2 in term of the Lagrangian polynomials
based on the Legendre-Gauss-Lobatto points (s = σ = 0):

urN(x, y) =

N−1
∑

i,j=1

urN (ξi, ξj)h
0,0
N,i(x)h

0,0
N,j(y), r = 1, 2.(36)

In the above expression the indices i, j = 0 and i, j = N are eliminated due to
the Dirichlet boundary condition on the velocity. Let uN denotes the velocity
unknowns vector which represents the values of all the components at the nodes
(ξ0,0N,i, ξ

0,0
N,j)1≤i,j≤N−1. The pressure pN is represented at the Legendre-Gauss nodes

by

pN (x, y) =

L
∑

i,j=0

pN (η0,0L,i, η
0,0
L,j)l

0,0
L,i(x)l

0,0
L,j(y),(37)

where L = N − 2. Note that the pressure is computed up to an additive constant.
We use p

N
to mean the pressure unknowns vector representing the values of pN at

the nodes (l0,0L,i, l
0,0
L,j)0≤i,j≤L.

We insert the expressions (36) and (37) into (20)–(21) and take the test functions
vN and qN to be the Lagrangian nodal basis functions associated to the Gauss-
Lobatto-Legendre and Gauss-Legendre nodes respectively, then we obtain the linear
system under the following form:

Aα
NuN +DT

NpN = BN fN ,(38)

DNuN = 0,(39)

where fN is a vector representation of the data f . Aα
N , DN , and BN are block-

diagonal matrices with d blocks each. The blocks of Aα
N are the discrete fractional

Laplace operators, and those of DN are associated to the different components of
the discrete gradient operators. BN , usually called mass matrices, are diagonal.

The main difficulty in the generation of the linear system is in computing the
stiffness matrices Aα

N involving fractional derivatives. That is, we have to deal with
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the following inner products in x direction (same in y):

(

C
−1D

α
xh

0,0
N,i(x), xD

α
1 h

0,0
N,j(x)

)

,
(

C
xD

α
1 h

0,0
N,i(x), xD

α
1 h

0,0
N,j(x)

)

,(40)
(

C
xD

α
1 h

0,0
N,i(x),−1D

α
xh

0,0
N,j(x)

)

,
(

C
−1D

α
xh

0,0
N,i(x),−1D

α
xh

0,0
N,j(x)

)

.(41)

A formula allowing exact evaluation of the above inner products under homogeneous
boundary condition was given in [25]. Here we choose an alternative method using
Jacobi polynomials. To this end, we take ρ = 1− α, s = 0, σ = 0 in (1) to get

C
−1D

α
xh

0,0
N,i(x) =−1I

1−α
x h0,0N,i

′
(x)

=−1I
1−α
x

N
∑

n=0

cinJ
0,0
n (x) = (1 + x)1−α

N
∑

n=0

c̄inJ
α−1,1−α
n (x),(42)

where {cin} are the expansion coefficients of h0,0i,N

′
in terms of J0,0

n , and c̄in =
Γ(n+1)

Γ(n+2−α)c
i
n. cin can be obtained by using the formulas given in [36]. Similarly,

using (2) we have

C
xD

α
1 h

0,0
N,i(x) =− xI

1−α
1 h0,0N,i

′
(x)

=− xI
1−α
1

N
∑

n=0

cinJ
0,0
n (x) = −(1− x)1−α

N
∑

n=0

c̄inJ
1−α,α−1
n (x).(43)

For the RL fractional derivatives of the Lagrangian polynomials, with the help of
(3) and (4), we have

−1D
α
xh

0,0
N,j(x) = −1D

α
x

N
∑

n=0

rjnJ
0,0
n (x) = (1 + x)−α

N
∑

n=0

r̄jnJ
α,−α
n (x),(44)

xD
α
1 h

0,0
N,j(x) = xD

α
1

N
∑

n=0

rjnJ
0,0
n (x) = (1 − x)−α

N
∑

n=0

r̄jnJ
−α,α
n (x),(45)

where r̄jn = Γ(n+1)
Γ(n+1−α)r

j
n. Then we derive from combining (42) and (45),

(

C
−1D

α
xh

0,0
N,i(x), xD

α
1 h

0,0
N,j(x)

)

=

∫ 1

−1

(1− x)−α(1 + x)1−α

(

N
∑

n=0

c̄inJ
α−1,1−α
n

)(

N
∑

n=0

r̄jnJ
−α,α
n

)

dx

=

∫ 1

−1

(1− x)−α(1 + x)1−α

(

N
∑

n=0

ĉinh
−α,1−α
N,n

)(

N
∑

n=0

r̂jnh
−α,1−α
N,n

)

dx

=
N
∑

n=0

ĉinr̂
j
nω

−α,1−α
N,n .
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Similarly we have,
(

C
xD

α
1 h

0,0
N,i(x),−1D

α
xh

0,0
N,j(x)

)

=

∫ 1

−1

(1− x)1−α(1 + x)−α

(

N
∑

n=0

c̃inh
1−α,−α
N,n

)(

N
∑

n=0

r̃jnh
1−α,−α
N,n

)

dx

=

N+1
∑

n=0

c̃inr̃
j
nω

1−α,−α
N,n ;

(

C
−1D

α
xh

0,0
N,i(x),−1D

α
xh

0,0
N,j(x)

)

=

∫ 1

−1

(1 + x)1−2α

(

N
∑

n=0

činh
0,1−2α
N,n

)(

N
∑

n=0

řl,jn h0,1−2α
N,n

)

dx

=

N
∑

i=0

činř
j
nω

0,1−2α
N,n ;

(

C
xD

α
1 h

0,0
N,i(x), xD

α
1 h

0,0
N,j(x)

)

=

∫ 1

−1

(1− x)1−2α

(

N
∑

n=0

c̆inh
1−2α,0
N,n

)(

N
∑

n=0

r̆jnh
1−2α,0
N,n

)

dx

=

N
∑

n=0

c̆inr̆
j
nω

1−2α,0
N,n .

The ĉin, r̂
j
n, č

i
n, ř

j
n, c̃

i
n, c̃

j
n, c̆

i
n, r̆

j
n are expansion coefficients from spectral space to

physical space with respect to corresponding weight.
A classical method to deal with the discrete saddle point problem like (38)-(39)

is the so-called Uzawa algorithm, which we will adopt here. The algorithm makes
use of the following idea. A block Gaussian elimination is performed on the first
equation (38) to decouple the pressure and the velocity. Then the pressure is solved
from:

(46) SαpN = DNA−α
N BN fN , with Sα = DNA−α

N DT
N .

Once the pressure p
N

is known, the velocity uN is solved from (38).

The matrix Sα is also known as Uzawa matrix. It is of dimension (N − 1)2,
full, symmetric, and semi-definite. In the classcial case, that is α = 1, the pressure
equation (46) used to be solved by a preconditioned conjugate gradient (PCG)
procedure with the mass matrix BN as the preconditioner [9, 29]. However in the
current case, i.e., when α < 1, the mass matrix BN maybe no longer suitable as a
good preconditioner. One of the main goals of the following numerical tests is to
investigate the property of the preconditioned matrix B−1

N Sα, and attempt to make
better choices for preconditioners. Note that in solving (46) by PCG procedure,
each iteration requires the inversion of the fractional Laplace operator Aα

N . In
our calculation performed hereafter, the inversion of Aα

N will be realized by a fast
diagonalization method, similar to that for the classical Laplace operator; see, e.g.,
[27].

5.2. Numerical results. The first numerical investigation is concerned with the
Inf-Sup constant predicted by Theorem 4.1. It has been known (see, e.g., [29])
that Inf-Sup constant for the traditional Stokes equation is linked to the smallest
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eigenvalue of the preconditioned Uzawa operator. Precisely, it was proved in [29]
that λαmin

∼= β2
N when α = 1, where λαmin is the smallest eigenvalue of B−1

N Sα. Here
we want to show that the relationship λαmin

∼= β2
N remains true for 1/2 < α < 1

if the bilinear form aN (u,v) is replaced by aN (u,v) + (∇ · u,∇ · v)N . In fact, we
have

(47) λαmin = inf
p∈MN

((∇N · A−α
N ∇T

N )p, p)N . (p, p)N = 1,

where the operators ∇T
N and Aα

N are defined by:

(v,∇T
Np) : = (∇ · v, p)N , ∀v ∈ XN , ∀p ∈MN ,

(Aα
Nu,v) : = aN (u,v) + (∇ · u,∇ · v)N , ∀u,v ∈ XN .

We also define the inner product

((u,v))N := aN (u,v) + (∇ · u,∇ · v)N , ∀u,v ∈ XN ,

then

βN ∼= inf
p∈MN

sup
v∈XN

−(∇ · v, p)N

((v,v))
1/2
N

, (p, p)N = 1.

Let ũ ∈ XN be the solution of the problem

(48) ũ = −A−α
N ∇T

Np,

then using the Cauchy-Schwarz inequality gives

−(∇ · v, p)N

((v,v))
1/2
N

=
((ũ,v))N

((v,v))
1/2
N

≤ ((ũ, ũ))
1/2
N , ∀v ∈ XN .

The above inequality becomes equality iff ũ and v are colinear, this lead from (48)
to

sup
v∈XN

−(∇ · v, p)N

((v,v))
1/2
N

= ((ũ, ũ))
1/2
N = ((∇N · A−α

N ∇T
N )p, p)

1/2
N .

So that the inf-sup condition satisfies

βN ∼= inf
p∈MN

((∇N · A−α
N ∇T

N )p, p)
1

2

N , (p, p)N = 1.

Now we recalling (47), we have λαmin
∼= β2

N .

In Figure 1 we present the eigenvalue distributions of B−1
N Sα for several values

of α for the 2-dimensional case. The results for the 3-dimensional case is shown
in Figure 2. We first observe that the maximum eigenvalues corresponding to
α = 1 remain 1 for all N , which is a fact well-known. For fractional cases the
maximum eigenvalue increases along with the growth of polynomial degree, and the
growth rates are almost same for the 2-dimensional and the 3-dimensional cases.
Figure 3 depicts the variations of λαmin versus N for α ∈ {0.55, 0.75, 0.95, 1}. We
observe, as expected from Theorem 4.1, that the inf-sup condition of the fractional
Stokes equation decreases slowly as N increases, but no worse than N−0.5, which
corresponds to the traditional case α = 1.
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(a) α = 0.55
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(b) α = 0.75
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(c) α = 0.95
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(d) α = 1.00

Figure 1. Eigenvalues for different α in two dimensional case.

We now present some numerical tests for the validation of the error estimates.
In particular, we look at the steady Stokes problem with the following analytical
solutions for d = 2:

Test 1 u =

(

cos(πx) cos(πy)
sin(πx) sin(πy)

)

, p = sin(π(x + y));

Test 2 u =

(

sin2(πx) sin(πy)
2 sin(2πx) cos2(πy2 )

)

, p = xγ sin(πx) sin(πy);

Test 3 u =

(

πxγ sin2(πx) sin(πy)
2[πxγ sin(2πx) + γxγ−1 sin2(πx)] cos2(πy2 )

)

,

p = sin(π(x + y));

where γ is a given constant. The error behavior is investigated by first comput-
ing the PN × PN−2–spectral approximation solutions for a sequence of N , then
measuring the gap in term of suitable norms between the computed and the exact
solutions.

In Figure 4(A)(B) we plot the evolution, in a semi-log scale, of the Hα-velocity
error and the L2-pressure error respectively as functions of the polynomial degree
N for d = 2. The exponential decay of the errors, due to the smoothness of
both u and p in Test 1, is clearly obtained as predicted by the theoretical esti-
mation. Figure 4(C) shows the pressure error decay for the non-smooth pressure
solution of different regularities, characterized by the parameter γ, given in Test
2. The fact that the error curves are straight lines in the log-log representation
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(a) α = 0.55
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(b) α = 0.75
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(c) α = 0.95
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(d) α = 1.00

Figure 2. Eigenvalues for different α in three dimensional case.
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Figure 3. λαmin with divergence term (left), λαmin without diver-
gence term (right) as a function of the polynomial degree in two
dimensional case.

indicates that only algebraic accuracy is obtained. A closer look at the figure
shows that the convergence rates are approximately N−4.667, N−6.667, N−8.667 re-
spectively (For given γ = 11

3 ,
17
3 ,

23
3 , the pressure p ∈ H5.167, H7.167H9.167, then

the slop = −{5.167, 7.167, 9.167}+ 0.5), which is better than the estimate given in
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(35). As explained in Remark 4.1, the theoretical error estimate given in The-
orem 4.2 does not reflect actual error behavior, and the coupled bilinear form
is not really necessary for obtaining more accurate numerical solutions. We in-
vestigate by using Test 3 the error behavior when the exact velocity solution is
non-smooth. The corresponding result is plotted in Figure 4(D), in which the
error evolution with respect to N is presented for the solution given in Test 3
with different values for the regularity parameter γ. It is observed that the error
decay rate is close to N−4.083,−6.083,−8.083 (for given γ = 10

3 ,
16
3 ,

22
3 , the velocity

u ∈ H4.833, H6.833, H8.833, then the slop = α−{4.833, 6.833, 8.833}), which is once
again better than the one predicted by Theorem 4.2.
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(a) Velocity error decay for Test 1
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(b) Pressure error decay for Test 1
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(c) Pressure error for Test
2 with α = 0.75
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Figure 4. Error as a function of polynomial.

Now we turn to investigate suitable preconditioners for PCG method to solve
(46). It has been known for the traditional Stokes operator that the mass matrix
BM is an efficient preconditioner for the Uzawa matrix S1. However, our numer-
ical experiments show that the efficiency decreases when the fractional order α
decreases. This can be seen in Table 1 and Table 2, where the iteration numbers as
functions of N required by PCG for reaching the convergence are listed for several
values of α. That is, smaller is α, faster is the growth of the required iteration
numbers when N increases. This motivates us to construct an alternative precon-
ditioner. Naturally, the 1 − α order fractional Laplacian ∆1−α defined below is a
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Table 1. Number of iterations for different α (d = 2).

α = 1.1 α = 1.5 α = 1.9 α = 2.0
N BM ∆1−α BM ∆1−α BM ∆1−α BM

8 13 13 13 13 12 12 10
16 34 29 25 20 17 16 13
24 51 34 30 21 18 18 15
32 68 36 34 22 18 18 15
40 82 37 38 23 19 18 15
48 97 37 41 23 19 19 15
56 111 38 44 24 20 19 16
64 125 39 44 24 20 19 16

Table 2. Number of iterations for different α (d = 3).

α = 1.1 α = 1.5 α = 1.9 α = 2.0
N BM ∆1−α BM ∆1−α BM ∆1−α BM

8 29 47 28 30 25 26 24
16 55 75 41 44 30 33 27
24 77 93 47 49 33 30 26
32 95 89 54 45 25 26 21
40 115 69 59 35 24 25 20
48 134 68 57 35 24 24 20
56 152 69 60 35 25 24 20
64 170 64 63 35 25 24 20

choice:

∆1−α :=
1

4

d
∑

j=1

(

D1−α
xj

− xj
D1−α

)(

D1−α
xj

− xj
D1−α

)

.(49)

Note that the above definition differs from the one in (11) in the sense that the right
hand side derivatives involved in (49) are all of RL type, while some of them are of
Caputo type in (11). An another point worthy of mentioning is that no boundary
condition is necessary to inverse the operator ∆1−α since it is done by solving the
associated problem in the weak form in the space H1−α(Ω)d. As for the inversion
of Aα

N , the ∆1−α-preconditioning is realized by the fast diagonalization method.
We use the discrete ∆1−α operator as the preconditioner for the CG iteration,

and test the efficiency of the PCG algorithm in solving (46). In the calculation
we set the threshold ǫ = 10−8. The result, together with a comparison with BM -
preconditioner, is given in Table 1 for 2D case and Table 2 for 3D case. The fact
that the required iteration numbers for the ∆1−α-PCG are almost independent of
the polynomial N and fractional order α clearly indicates the superiority of the
∆1−α over BM as preconditioner.

6. Fractional Navier-Stokes equation

In this section, we consider a fractional Navier-Stokes equation in two-dimension,
which can be regarded as a potential application of the fractional Stokes equation
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studied in the previous sections. Precisely, we consider the following equations:

∂u

∂t
− ν∆αu+ (u · ∇)u+∇p = f , in Ω× [0, T ],(50)

∇ · u = 0, in Ω× [0, T ],(51)

u = g, on ∂Ω× [0, T ],(52)

u(·, t = 0) = u0, on Ω,(53)

where ν = 1
Re , Re is the Reynolds number. For the time discretization of the above

equations, two approaches are possible: the semi-implicit method and projection
method. The former will result in a Stokes-like equation at each time step, then
the PN − PN−2 method combined with the Uzawa algorithm proposed previously
can be applied to compute the full discrete solutions. Next we propose a projection
method. Let us divide the time interval [0, T ] intoK subdivisions of length ∆t = T

K ,

and denote tk = k∆t for k = 0, 1, . . . ,K. We compute two sequences (uk)0≤k≤K

and (pk)0≤k≤K in a recurrent way, which are approximations to (u(·, tk))0≤k≤K

and (p(·, tk))0≤k≤K respectively. The algorithm is as follows: Set u0 = u0, then for
k ≥ 0 compute (ũk+1,uk+1, pk+1) by solving







ũk+1 − uk

∆t
− ν∆αũk+1 + (uk ·∆)uk +∇pk = fk+1, in Ω,

ũk+1 = g, on ∂Ω,
(54)















uk+1 − ũk+1

∆t
+∇φk+1 = 0, in Ω,

∇ · uk+1 = 0, in Ω,
uk+1 = g, on ∂Ω,

(55)

pk+1 = φk+1 + pk.(56)

In (55), φk+1 can be obtained by solving the following Poisson equation, subject to
the homogeneous Neumann condition:











−∆φk+1 = −
∇ · ũk+1

∆t
, in Ω,

∂φk+1

∂n
= 0, on ∂Ω.

Notice that in order to improve the pressure accuracy, in a pressure correction pro-
jection method for the traditional Navier-Stokes equations, the pressure correction
step (56) used to be replaced by

pk+1 = φk+1 + pk − ν∇ · ũk+1.

However, in the fractional case doing so would not allow to obtain the desired
improvement. This is due to the fact that the following identity does not hold for
1/2 < α < 1:

∇ ·∆αu = ∆α∇ · u.

Our numerical tests have confirmed this point.
By curiosity we use this fractional incompressible flow model and the proposed

scheme to simulate the driven cavity flow, which is a well-known benchmark prob-
lem. The purpose is to investigate the effect of the fractional derivative on the flow
behaviors, particularly on the vertex formation. The boundary conditions used in
the simulation are shown in Figure 5. The discretization parameters are set to
∆t = 0.0001, N =M = 64.
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Figures 6-8 show the streamline of the flows for the Reynolds numbers 100, 400,
and 1000 for a number of α. It has been known that in the case α = 1 the flows
under the tested Reynolds numbers evolve into steady state. Our simulation has
shown that this remains true in the subdiffusion regime with 0.5 < α < 1. The
stopping criteria used in the calculations is:

‖uk+1
N − uk

N‖0 ≤ 10−7 or T ≤ 1000.

We have some more observations from Figures 6-8:
- Smaller is the Reynolds number, lighter is the impact of the fractional order

on the vortex structure.
- Unexpected vortexes appear in some region close to the domain boundary at

higher Reynolds numbers. There are two possible explanations for this phenomena:
1) the convection term dominates the diffusion more easily with increasing Reynolds

number in the subdiffusion regime;
2) the fractional Laplacian operator causes a numerical boundary layer, due to its

non-local nature. This issue has been addressed in [38] for a fractional phase-field
model for two-phase flows, and a variable-order fractional model has been proposed
to overcome this difficulty.

Obviously these observations deserve further investigation in the future. In par-
ticular, it is interesting to consider a fractional model with α > 1. Moreover, it is
also an issue how the variable-order fractional phase-field model introduced in [38]
can be extended to the incompressible Navier-Stokes equations.

2 2u=(1-(2x-1) ) ,v=0

u=v=0 u=v=0

u=v=0

y

x

(1,1)(0,1)

(0,0) (1,0)

Figure 5. Boundary conditions for the driven cavity flow.

(a) α = 0.75 (b) α = 0.85 (c) α = 1.00

Figure 6. Streamline at Re = 100.
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(a) α = 0.75 (b) α = 0.85 (c) α = 1.00

Figure 7. Streamline at Re = 400.

(a) α = 0.75 (b) α = 0.85 (c) α = 1.00

Figure 8. Streamline at Re = 1000.

7. Concluding Remarks

This work represents the first attempt to consider a fractional Stokes equation,
and develop a spectral approximation to this equation. First, we studied the well-
posedness of the associated weak problem by introducing suitable functional spaces.
The existence and uniqueness of the weak solution were established by applying the
classical saddle-point theory. Then, using this variational framework, we proposed
an efficient spectral method for numerical approximations of the weak solution. A
detailed numerical analysis was carried to prove the well-posedness of the spectral
discrete problem and derive useful error estimates for the numerical solutions. Some
properties of the linear system are also investigated, together with a description of
the fast solver. Several numerical examples are provided to confirm the theoret-
ical results. Finally, an extension to the fractional incompressible Navier-Stokes
equation was presented, along with corresponding numerical methods. Numerical
simulations using this fractional model has provided some interesting results, which
deserve further investigation in the future.
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[39] G. Szegö. Orthogonal Polynomials (fourth edition), volume 23. AMS Coll. Publ., 1975.
[40] T. Tao. Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes

equation. Analysis and PDE, 2(3):361–366, 2009.
[41] W. Xiao, J. Chen, D. Fan, and X. Zhou. Global Well-Posedness and Long Time Decay of

Fractional Navier-Stokes Equations in Fourier-Besov Spaces. Abstract and Applied Analysis,
2014(2):1–11, 2014.

[42] Q. Yang, F. Liu, and I. Turner. Numerical methods for fractional partial differential equa-
tions with riesz space fractional derivatives . Applied Mathematical Modelling, 34(1):200–
218, 2010.

[43] X. Yu and Z. Zhai. Well-posedness for fractional Navier-Stokes equations in the largest
critical spaces. Mathematical Methods in the Applied Sciences, 35(6):676C683, 2012.

[44] M. Zayernouri and G.E. Karniadakis. Fractional Sturm-Liouville eigen-problems: theory
and numerical approximation. Journal of Computational Physics, 252:495–517, 2014.

School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Mod-
eling and High Performance Scientific Computing, Xiamen University, 361005 Xiamen, China.

E-mail : linshimin@stu.xmu.edu.cn

Bordeaux INP, I2M, (UMR CNRS 5295), 33607 Pessac, France.
E-mail : azaiez@enscbp.fr

Corresponding author. School of Mathematical Sciences and Fujian Provincial Key Labora-
tory of Mathematical Modeling and High Performance Scientific Computing, Xiamen University,
361005 Xiamen, China.

E-mail : cjxu@xmu.edu.cn


