
INTERNATIONAL JOURNAL OF c© 2018 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 15, Number 1-2, Pages 154–169

A FIXED-POINT PROXIMITY APPROACH TO SOLVING THE

SUPPORT VECTOR REGRESSION WITH THE GROUP LASSO

REGULARIZATION

ZHENG LI, GUOHUI SONG, AND YUESHENG XU

In Memory of the Professor Ben-yu Guo

Abstract. We introduce an optimization model of the support vector regression with the group

lasso regularization and develop a class of efficient two-step fixed-point proximity algorithms
to solve it numerically. To overcome the difficulty brought by the non-differentiability of the
group lasso regularization term and the loss function in the proposed model, we characterize its
solutions as fixed-points of a nonlinear map defined in terms of the proximity operators of the

functions appearing in the objective function of the model. We then propose a class of two-step
fixed-point algorithms to solve numerically the optimization problem based on the fixed-point
equation. We establish convergence results of the proposed algorithms. Numerical experiments with

both synthetic data and real-world benchmark data are presented to demonstrate the advantages
of the proposed model and algorithms.

Key words. Two-step fixed-point algorithm, proximity operator, group lasso, support vector

machine, ADMM

1. Introduction

The support vector machine (SVM) has been widely used in many applications
including text/image recognition [8, 35], face detection [29], bioinformatics [4, 6],
since its introduction in [13]. In general, we could consider SVM in two main
categories [15, 31, 36]: support vector classification (SVC) [16, 18] and support
vector regression (SVR) [2, 32, 33]. The standard `2-norm SVC aims at finding
the best hyperplane that has the largest distance to the nearest points of each
class. It turns out that this hyperplane is determined by a small fraction of the
training points that are called the support vectors. The standard `2-norm SVR
performs in an analogical way. It maximizes the margin from the hyperplane to the
nearest points to get the best fitting hyperplane. Similarly, this hyperplane is also
determined by only a small subset of the training points. In this paper we shall
focus on SVR.

For the purpose of promoting sparsity of the support vectors, the SVM with the
`1-norm regularizer [31, 36, 38] was put forward. It is well received that the `1-norm
regularizer produces sparse solutions [34]. In particular, the `1-SVM has been proven
to be advantageous when there are redundant noise features [38] and to have shorter
training time than the standard `2-SVM [20]. A natural extension of the `1-norm
regularization is the group lasso regularization that could be viewed as a group-wise
`1-norm. It has been shown in [19, 26, 37] that group lasso regularization overwhelms
the `1-norm regularization when the optimal variable has the group structure. The
group lasso regularization performs better when the regression problem has the
prior information with group structure [14, 26, 37]. On the other hand, applications

Received by the editors February 2, 2017 and, in revised form, April 12, 2017.

2000 Mathematics Subject Classification. 65N30.

154

A FIXED-POINT PROXIMITY APPROACH 155

with cluster structure have been observed in practice [10, 25]. Therefore, in this
paper we shall consider the SVM model with the group lasso regularization.

The main challenge of solving the SVM model with the group lasso regularization
comes from the non-differentiability of the SVM loss functions and the group lasso
regularization term. A popular technique [9, 11] is to solve a smooth approximation
of the original model instead. However, it may bring an extra approximation
error term and thus we prefer solving the original model rather than a smooth
approximation.

The goal of this paper is to develop numerical algorithms of solving the original
SVR model with the group lasso regularization. Specifically, we shall employ the
techniques of proximity operators to construct a two-step fixed-point proximity
algorithm. We point out that fixed-point proximity algorithms have been popular in
solving non-differentiable optimization models in image processing [21, 22, 27, 28]
and machine learning [1, 23, 24]. We shall first characterize solutions of the non-
differential model as fixed-points of certain nonlinear map defined in terms of the
proximity operator of the convex functions involved in the objective function. We
then employ a matrix splitting technique to derive a class of two-step algorithms to
compute the fixed points.

The rest of this paper is organized as follows. In Section 2, we introduce the
optimization model of the group lasso regularized SVR. In Section 3, we characterize
solutions of the proposed model as the fixed-points of a nonlinear map defined in
terms of the proximity operators of the convex functions appearing in the objective
function. We develop a class of two-step proximity algorithms for computing the
fixed-points and present its convergence analysis in Section 4. We demonstrate the
performance of the proposed model and algorithms in Section 5 through numerical
experiments with both synthetic data and real-world benchmark data. We draw a
conclusion in Section 6.

2. SVR with Group Lasso Regularization

In this section, we shall introduce the model of the SVR with group lasso
regularization. To this end, we first recall the models of the standard `2-norm SVR
(`2-SVR) and the variant `1-norm SVR (`1-SVR).

We start with the notation used throughout this paper. We denote by Rm the
usual m-dimensional Euclidean space and define

Rm+ := {x ∈ Rm : xi ≥ 0, 1 ≤ i ≤ m}.

For a positive integer m ∈ N, we set Nm := {1, 2, . . . ,m}. The standard inner
product is defined for any x,y ∈ Rm by

〈x,y〉 :=
∑
i∈Nm

xiyi.

For p ∈ N2, we define the `p norm for x ∈ Rm by

‖x‖p =

(
m∑
i=1

|xi|p
)1/p

.

We next recall the SVR models. Given instances {(xi, yi) : i ∈ Nm} ⊆ Rn × R,
the standard `2-norm soft margin SVR aims at finding the best hyperplane that
has the largest margin to the nearest training points. This leads to the following

156 Z. LI, G. SONG, AND Y. XU

optimization problem

(1)

min

{
1

2
‖w‖22 +

C

m

∑
i∈Nm

(ξi + ξ∗i) : w ∈ Rm, ξ, ξ∗ ∈ Rm+ , b ∈ R

}
subject to 〈w,xi〉+ b− yi ≤ ε+ ξi,

yi − 〈w,xi〉 − b ≤ ε+ ξ∗i , i ∈ Nm,

where ε > 0 is a prescribed real number. The desired determined function f is given
by

f(x) = 〈w,x〉+ b, for x ∈ Rn.
By the theory of Lagrangian multipliers, the solution w of problem (1) has the form

w =
∑
i∈Nm

αixi, for some αi ∈ R+,

and only a small fraction of αi, i ∈ Nm are non-zero. The training point xi
corresponding to the non-zero parameter αi is called support vector. By defining
ε-insensitive loss function [36]

L̃ε(w,xi, yi, b) := max
{
|〈w,xi〉+ b− yi| − ε, 0

}
,

problem (1) has an equivalent unconstrained form [31]:

min

{
1

2
‖w‖22 +

C

m

∑
i∈Nm

L̃ε(w,xi, yi, b) : w ∈ Rm, b ∈ R
}
.

The notion of kernels [13, 31, 36] was introduced to handle the nonlinear problem
by implicitly mapping the inputs into high-dimensional feature spaces and replacing
the inner product with the kernel evaluation. Therefore, when a kernel function
K(·, ·) is given on Rm×Rm, and the standard `2-SVR performs on the corresponding
feature space, the optimization problem is as follows:

min

{
1

2

∑
i∈Nm

∑
j∈Nm

αiαjK(xi,xj) +
C

m

∑
i∈Nm

Lε(α,xi, yi, b) : α ∈ Rm, b ∈ R
}
,

where the loss function

(2) Lε(α,xi, yi, b) := max


∣∣∣∣∣∣
∑
j∈Nm

αjK(xi,xj) + b− yi

∣∣∣∣∣∣− ε, 0
 ,

and the prediction function f has the form

f(x) =
∑
j∈Nm

αjK(xj ,x) + b.

In order to further promote sparsity of the support vectors and use the liner
combination of the training points as a representation of the solution, SVR with
the `1 norm regularizer [36, 31, 38] is put forward by using a different regularizer,
that is, the `1-norm of the coefficient α ∈ Rm, as

(3) min

{
‖α‖1 + C

∑
i∈Nm

Lε(α,xi, yi, b) : α ∈ Rm, b ∈ R
}
.

The `1-SVR (3) is advantageous when there are redundant noise features [38].
By redundant noise features, we mean that the dictionary of basis functions has
redundant basis functions. Usually, it has shorter training time than the standard
`2-SVM (1) [20]. However, when the data set has a cluster structure, that is, the

A FIXED-POINT PROXIMITY APPROACH 157

variable in problem (3) has a group sparse property, the `1-norm regularization
might not generate a group sparse solution in general. This requires a model to
take advantage of the cluster structure in the data set.

We next introduce the SVR with group lasso regularization which serves this
purpose. Suppose that the m-dimensional variable can be divided into l disjoint
groups Gj , j ∈ Nl. For α ∈ Rm we define

αGi := (αj : j ∈ Gi).

The group lasso regularized SVR can be written as

(4) min

{∑
i∈Nl

δi‖αGi‖2 + C
∑
i∈Nm

Lε(α,xi, yi, b) : α ∈ Rm, b ∈ R
}
,

where δi > 0, i ∈ Nl are prescribed parameters. Note that the group lasso is the sum
of the `2-norm of the variable groups, and it would promote solutions that preserve
the structure information, or more precisely, the group sparsity [14, 19, 26, 37]. We
also remark that both the group lasso term and the loss function in (4) are non-
differentiable, which brings challenges to solve this model numerically. A popular
approach is to use some differentiable approximations [11] of the group lasso term,
or use the squared ε-sensitive loss function [31] instead of solving the approximate
smooth models. However, this might bring extra approximation errors to the original
model and we prefer solving the original model in this paper. In what follows, we
refer to the proposed group lasso model (4) as GL-SVR.

We next rewrite problem (4) in a compact form to facilitate the development of
our algorithms. To this end, we define for any s ∈ Rm+1

(5) ϕg(s) :=
∑
i∈Nl+1

δi‖sGi‖2.

Here, Gi’s and δi’s are given groups and parameters for i ∈ Nl, and for i = l+ 1, we
set Gi = {m+ 1} and δi = 0. We also define for any s ∈ Rm

(6) ψε,y(s) := C
∑
i∈Nm

(|si − yi| − ε|)+,

where |t|+ := max{|t|, 0}, t ∈ R. Let u ∈ Rm+1 be the vector coupling the variables

α ∈ Rm and b ∈ R in (4) as u :=

(
α
b

)
, K be the kernel matrix defined by

K := [K(xi,xj)]i,j∈Nm ,

1 be the m× 1 vector of all ones, and B be the m× (m+ 1) matrix defined by

(7) B := [K 1].

It follows from a direct computation that the GL-SVR model (4) is equivalent to

(8) min{ϕg(u) + ψε,y(Bu) : u ∈ Rm+1}.

We observe from the above formulation that both ϕg and ψε,y are non-differentiable
functions, and this results in the computational difficulty of solving this model.
However, though they are non-differentiable, we shall show in Section 4 that their
proximity operators have closed form, which makes it amenable to develop proximity
algorithms for it.

158 Z. LI, G. SONG, AND Y. XU

3. A Characterization of the Solution

In this section, we shall characterize the solutions of model (8) as fixed-points of
the proximity operators of the functions appearing in the objective function. It will
enable us to develop the proximity algorithms in Section 4. To this end, we first
review several necessary notions and results.

We begin by recalling the notions of the proximity operator. We denote by Γ0(Rd)
the class of all lower semi continuous convex functions f : Rm → (−∞,+∞] such
that

dom(f) := {x ∈ Rm : f(x) < +∞} 6= ∅.
The proximity operator of a function f ∈ Γ0(Rn) is defined for z ∈ Rm by

proxf (z) := argmin{1

2
‖x− z‖2 + f(x) : x ∈ Rm}.

This operator has many good mathematical properties, see [30] for a survey. In
particular, its connection to the subdifferential of a convex function plays a crucial
role in developing the fixed-point chracterization of the solution of (8). We next
review the definition of the subdifferential. The subdifferential of a function f ∈
Γ0(Rm) at z ∈ Rm is defined by

∂f(z) := {y : y ∈ Rm and f(x) ≥ f(z) + 〈y,x− z〉 for all x ∈ Rm}.

A relation [3, 27] between the proximity operator and the subdifferential may be
described for f ∈ Γ0(Rm) and z ∈ Rm as

(9) x ∈ ∂f(z) if and only if z = proxf (x+ z).

It follows immediately from (9) that

(10) x ∈ ∂f(z) if and only if x = (I− proxf)(x+ z),

where I is the identity matrix.
We are now ready to present a characterization of solutions of problem (8). The

proof of the following theorem originates from [27]. We outline it for the convenience
of the reader.

Theorem 1. A vector u ∈ Rm+1 is a minimizer of problem (8) if and only if there
exist λ, β > 0 and q ∈ Rm such that

(11)
u = prox 1

λϕg
(u− Cβ

λ
B>q)

q = (I− prox 1
Cβψε,y

)(Bu+ q).

Proof. We first show the necessity. Suppose that u is a minimizer of (8). It follows
from Fermat’s rule (see [3], chap. 16) and the chain rule [3] that

0 ∈ ∂(ϕg(u) + ψε,y(Bu)) = ∂ϕg (u) + BT∂ψε,y (Bw).

Since both ϕg and ψε,y are convex and the subdifferential of a convex function is a
nonempty set [3], for any positive numbers λ and β, there exist

(12) p ∈ ∂ 1
λϕg

(u) and q ∈ ∂ 1
Cβψε,y

(Bu)

such that

(13) 0 = λp+ CβBTq.

Since

q ∈ ∂ 1
Cβψε,y

(Bu),

A FIXED-POINT PROXIMITY APPROACH 159

the second equality of (11) follows from the relation (10) between the proximity
operator and the subdifferential of a convex function. Moreover, from (13) and

the first inclusion of (12), we obtain Cβ
λ B>q ∈ ∂ 1

λϕg
(u), which together with (9)

implies the first equality of (11).
We next show the sufficiency. It follows from (11) and the relations (9) and (10)

that

−CβB
Tq

λ
∈ ∂ 1

λϕg
(u) and q ∈ ∂ 1

Cβψε,y
(Bu),

which imply that

0 = −CβBTq + CβBTq ∈ ∂ϕg (u) + BT∂ψε,y (Bu).

That is,
0 ∈ ∂(ϕg(u) + ψε,y(Bu)).

By Fermat’s rule, u is a minimizer of (8). �

We observe from the above Theorem that the minimization problem (8) is trans-
ferred into a fixed point problem. This equivalent reformulation brings convenience
in both designing numerical algorithms and conducting the convergence analysis as
we shall see in Section 4.

For the simplicity of presentation, we rewrite the characterization (11) into a
compact form by coupling the two equations together. We define a vector v ∈ R2m+1

coupling the vectors u ∈ Rm+1 and q ∈ Rm as

v :=

(
u
q

)
,

and an operator T : R2m+1 → R2m+1 coupling the proximity operator of the function
1
λϕg and the operator of I− prox 1

Cβψε,y
as for any v ∈ R2m+1

(14) T (v) :=

(
prox 1

λϕg
(u)

I− prox 1
Cβψε,y

(q)

)
.

Let

(15) P :=
λ

Cβ
I.

The characterization (11) can be reformulated as

(16) v = T ◦ E(v),

where

(17) E :=

[
I −P−1B>

B I

]
.

4. A Class of Two-Step Fixed-Point Proximity Algorithms

In this section, we shall develop efficient algorithms to solve the fixed-point
problem (16). In particular, we first show that due to the expansiveness of the
matrix E, the algorithm generated by directly applying the Picard iteration on
equation (16) may not be convergent. We shall then introduce a matrix splitting
technique to derive a two-step iteration scheme and prove its convergence, following
the approach developed in [21]. Moreover, we shall also show that the two-step
iterative scheme will speed up the convergence through numerical experiments in
Section 5.

We first study the Picard iteration algorithm of solving the fixed-point equation
(16) directly. Given the matrix B, the positive parameters C, λ and β. Choose u0

160 Z. LI, G. SONG, AND Y. XU

and q0 as the initial points. Let v0 := (w0, q0)>, T be defined by (14), and E be
defined by (17). The Picard iterative sequence {vk}k∈N of T ◦ E is generated by the
following iteration

(18) vk+1 = T ◦ E(vk).

We point out that the convergence of the above sequence depends on whether the
operator T ◦ E is firmly nonexpansive. We next give a brief review of the definition
and some properties of firmly nonexpansive operators. We denote by S+ the set of
symmetric positive definite matrices. An operator S is called firmly nonexpansive
with respect to R ∈ S+ if

‖S(v1)− S(v2)‖2R ≤ 〈S(v1)− S(v2),R(v1 − v2)〉.

Here, ‖x‖R :=
√
〈x,x〉R is the norm induced by the weighted inner product defined

by 〈x,y〉R := 〈x,Ry〉. It has been shown in [5] that the sequence {Skw0 : k ∈ N}
converges to a fixed-point of S for any initial w0 when S is firmly nonexpansive
with respect to a certain positve definite matrix R.

It has been proved in [12] that the proximity operators are firmly nonexpansive,
that is, the operator T is firmly nonexpansive. If E were also nonexpansive, then
the composition T ◦ E would be nonexpansive [5]. However, as we can see in the
following result, the matrix E in (16) is not nonexpansive. The proof of the following
proposition originates from [21]. We also outline it for the convenience of the reader.

Proposition 1. If E is the operator defined in (17),

‖E‖R := sup{‖Ev‖R, ‖v‖R = 1},
and

(19) R :=

(
P 0
0 I

)
,

where P is defined by (15), then ‖E‖R > 1 and E is not nonexpansive.

Proof. We show the desired result by a direct computation of ‖E‖R. For any
v = (u, q) ∈ R2m+1 with ‖v‖2R = 1, it follows from the definition of E in (17) that

‖Ev‖2R = ‖u‖2P − 2〈u,P−1BTq〉P + ‖P−1BTq‖2P + ‖q‖22 + 2〈q,Bu〉+ ‖Bu‖22.
Note that ‖v‖2R = ‖u‖2P + ‖q‖22 = 1, and 〈u,P−1BTq〉P = 〈q,Bu〉. It follows that

‖Ev‖2R = 1 + ‖P−1BTq‖2P + ‖Bu‖22.
Since B is non-singular, there exists a non-zero vector v = (u, q) with ‖v‖R = 1
such that

‖P−1BTq‖2P + ‖Bu‖22 > 0.

Therefore, by the definition of ‖E‖R, we have that ‖E‖R > 1. �

We point out that the Picard iteration (18) may not yield a convergent sequence
since E is not non-expansive. To overcome this difficulty, we shall split the expansive
matrix E to derive an equivalent fixed point formulation of a non-expansive operator.

To this end, we first show how to split the matrix E to obtain a two-step iterative
scheme. We choose appropriate matrices M1,M2 (which would be specified later in
this section) and decompose the matrix E as

E = (E−M1 −M2) + M1 + M2.

Equation (16) can then be rewritten as

(20) v = T ◦ ((E−M1 −M2)v + M1v + M2v).

A FIXED-POINT PROXIMITY APPROACH 161

Instead of using the Picard iteration (18), we consider the following iteration

(21) vk+1 = T ◦ ((E−M1 −M2)vk+1 + M1v
k + M2v

k−1).

We observe from the above iterative scheme that it is an implicit scheme. However,
one can choose M1 and M2 such that E−M1 −M2 is strictly block upper (or lower)
triangular and it would lead to an explicit iterative scheme, since v has two blocks
w and y. We also observe that the above iteration is a two-step scheme that makes
each iteration more efficient and speeds up the overall convergence, as we can see
from the numerical experiments in Section 5.

We next make specific choices of the matrices M1 and M2 to split the expansive
matrix E. Namely, we choose

(22) M1 :=

[
I (1− θ)P−1BT

(1 + θ)B I

]
, M2 :=

[
0 0
−θB 0

]
,

where θ is a constant to be specified later in convergence analysis. Substituting M1

and M2 into iterative scheme (21), we have the following iterative scheme

(23)

qk+1 = (I− prox 1
Cβψε,y

)(qk + B(uk + θ(uk − uk−1)))

uk+1 = prox 1
λϕg

(uk − Cβ

λ
B>(qk+1 + (1− θ)(qk+1 − qk))).

It can be directly observed that the above iteration scheme has an explicit form.
We are now ready to present a two-step fixed-point proximity algorithm for solving
GL-SVR.

Algorithm 1 Two-step Fixed-Point Proximity Algorithm (TFP2A)

Given: the matrix B, the positive parameters C, θ, λ and β.
Initialization: u0, and q0.
repeat

Step 1: qk+1 = (I− prox 1
Cβψε,y

)(qk + B(uk + θ(uk − uk−1)))

Step 2: uk+1 = prox 1
λϕg

(uk − Cβ
λ B>(qk+1 + (1− θ)(qk+1 − qk)))

until “convergence”

We remark that compared with the original Picard iteration scheme (18), the
proposed TFP2A splits the expansive operator, and results in a nonexpansive
iterative scheme, as we shall see in the convergence analysis to be presented later.
We also remark that both proximity operators in TFP2A can be explicitly calculated.

Efficient implementation of Algorithm 1 requires the availability of closed forms of
the proximity operator of the functions ψε,y and ϕg. We first compute the proximity
operator of the function ψε,y. To do this, we define a function φε : Rm → R as for
any z ∈ Rm

(24) φε(z) :=
∑
i∈Nm

(|zi| − ε)+.

162 Z. LI, G. SONG, AND Y. XU

Proposition 2. If φε is defined by (24), then for any z ∈ Rn and β > 0, we have
that if ε ≥ C

2β ,

(25) (prox 1
β φε

(z))j =



zj − C
β , if zj ≥ ε+ C

β

ε, if ε ≤ zj < ε+ C
β

zj , if ε− C
β ≤ zj < ε

zj + C
β , if −ε ≤ zj < ε− C

β

−ε, if −ε− C
β ≤ zj < −ε

zj + C
β , if zj < −ε− C

β

, j ∈ Nn,

if ε < C
2β ,

(26) (prox 1
β φε

(z))j =



zj − C
β , if zj ≥ ε+ C

β

ε, if ε ≤ zj < ε+ C
β

zj , if −ε ≤ zj < ε

−ε, if −ε− C
β ≤ zj < −ε

zj + C
β , if zj < −ε− C

β

, j ∈ Nn.

Proof. Note that the proximity operator of φε can be computed component-wise.
For each 1 ≤ j ≤ n, we have

(27) (prox 1
β φε

(z))j = argmin

{
1

2
(xj − zj)2 +

C

β
(|xj | − ε)+ : xj ∈ R

}
.

Let

f(xj) :=
1

2
(xj − zj)2 +

1

β
(xj)+ and t := argminf(xj).

When ε ≥ C
2β , we compute t in cases zj ≥ ε+ C

β , ε ≤ zj < ε+ C
β , ε− C

β ≤ zj < ε,

−ε ≤ zj < ε− C
β , −ε− C

β ≤ zj < −ε and zj < −ε− C
β . For the first case zj ≥ ε+ C

β ,

when xj ≥ ε, we have that

f(xj) =
1

2
(xj − zj)2 +

C

β
(xj − ε).

Since zj − C
β ≥ ε, we have that the minimizer of f(xj) on [ε,∞) is zj − C

β and

f(ε) ≥ f(zj − C
β). When −ε ≤ xj < ε, we have that

f(xj) =
1

2
(xj − zj)2.

Since zj > ε, f(xj) decreases on [−ε, ε) and it follows that f(−ε) > f(ε). When
xj < −ε, then we have

f(xj) =
1

2
(xj − zj)2 +

C

β
(−xj − ε).

Since zj + C
β > ε, f(xj) decreases on (−∞,−ε). Therefore, the minimizer of f(xj)

on R is zj − C
β . The minimizer of the other cases can be computed in a similar way.

On the other hand, when ε < C
2β , we can obtain equation (26) by a similar

computation as above. �

To derive the proximity operator of function ψε,y, we recall a fact in [30]. Suppose
that f, g ∈ Γ0(Rm). If f(x) = g(x+ a) for any x,a ∈ Rm, then

(28) proxf (x) = proxg(x+ a)− a.

A FIXED-POINT PROXIMITY APPROACH 163

Note that for any z ∈ Rm, ψε,y(z) = φε(z − y), where y is a vector consisting of
the labels yi, i ∈ Nm. It follows from (28) that

proxψε,y (z) = proxφε(z − y) + y.

We next compute the operator of function ϕg.

Proposition 3. If ϕg is defined by (24), then for any z ∈ Rm+1 and λ > 0, we
have that

(29) (prox 1
λϕg

(z))Gj = max

{
‖zGj‖2 −

δj
λ
, 0

}
zGj
‖zGj‖2

.

Proof. It suffices to compute the proximity operator at z group-wise, since the
groups of the variable z are non-overlapped. Note that for each group, we need to
compute a proximity operator of the `2-norm at the group of the variable. And it
has been shown in [28] that for any s ∈ Rd and λ > 0, the proximity operator of
1
λ‖s‖2 is

(30) prox 1
λ‖·‖2

(s) = max

{
‖s‖2 −

1

λ
, 0

}
s

‖s‖2
.

Therefore, for each group Gj , j ∈ Nl+1, by replacing the parameter 1
λ by

δj
λ in (30),

we have equation (29). �

The rest of this section is devoted to convergence analysis of the proposed TFP2A.
To this end, we first review the definition of weakly firmly nonexpansive introduced
originally in [21].

Suppose that for any y, z ∈ R2m+1 there exists x ∈ R2m+1 such that

(31) x = T (E0x+ M1y + M2z),

where E0 = E −M1 −M2 and E,M1,M2 are defined by (17) and (22). Let M :=
{M1,M2}. We define a mapping TM : R4m+2 → R2m+1 as

(32) TM : (y, z)→ {x : x ∈ Rd, (x,y, z) satisfies equation (31)}.
We say an operator TM : R2d → Rd is weakly firmly nonexpansive with respect to a

matrix set M := {M̃1, M̃2} if for any (xi,ui, zi) ∈ gra(TM), the graph of TM, for
i = 1, 2,

(33) 〈x2 − x1, (M̃1 + M̃2)(x2 − x1)〉 ≤ 〈x2 − x1, M̃1(u2 − u1) + M̃2(z2 − z1)〉.
We first show that the mapping in TFP2A is weakly firmly nonexpansive mapping

and then employ the results in [21] to derive the convergence analysis of TFP2A.

Lemma 1. If TM is an operator defined by (32) with the setM = {M1,M2} defined
by (22), then TM is continuous and weakly firmly nonexpansive with respect to M.

Proof. We first show the weakly firmly nonexpansivity of the operator TM. Recalling
the definition of the operator TM, we obtain that for any (xi,yi, zi) ∈ gra(TM),

xi = T ((E−M1 −M2)xi + M1yi + M2zi), i = 1, 2.

Since the operator T defined by (14) is firmly nonexpansive, we have that

(34) ‖x2−x1‖2 ≤ 〈x2−x1, (E−M1−M2)(x2−x1)+M1(y2−y1)+M2(z2−z1)〉.
By the definition of the matrix E in (17), we have that

(35) E = I + R−1SB, where R is defined by (19), SB :=

(
0 −B>
B 0

)
.

164 Z. LI, G. SONG, AND Y. XU

Substituting equality (35) into inequality (34) and noticing the fact that

〈x2 − x1,SB(x2 − x1)〉 = 0,

we have the desired inequality (33), which means TM is weakly firmly nonexpansive.
The continuity of TM follows from the continuity of the operator T in (14), and

this ends the proof. �

We are now ready to present the main convergence result of TFP2A.

Theorem 2. Suppose B is the matrix defined in (7). If θ ∈ R and positive constants
C, λ, β satisfy

(36)
β(1− θ)2

λ
<

1

C‖B‖22
,

and

(37)
max{Cβλ , 1}

1− |1− θ|
√

Cβ
λ ‖B‖2

|θ|‖B‖2 <
1

2
,

then the sequence {uk}k∈N generated by TFP2A converges to a solution of problem
(8).

Proof. By Lemma 1, we have that TM is weakly firmly nonexpansive. Since

P =
λ

Cβ
I,

it follows from a direct computation from (36) and (37) that

|1− θ|‖BP− 1
2 ‖2 < 1,

and
max{‖P−1‖2, 1}

1− |1− θ|‖BP− 1
2 ‖2
|θ|‖B‖2 <

1

2
.

This implies that H̃ := R(M̃1 + 2M̃2) is symmetric positive definite and∥∥∥H̃− 1
2RM̃2H̃

− 1
2

∥∥∥
2
<

1

2
,

where R are defined by (19). By Theorem 4.6 in [21], the sequence {vk} generated
by (21) converges to a fixed point v∗ of TM, that is,

v∗ = TM(v∗,v∗).

We let v∗ = (u∗, q∗). It follows that u∗ is a solution of problem (8). Since {vk}
converges to v∗, we also have {uk} converges to u∗, which finishes the proof. �

5. Numerical Experiments

In this section, we present numerical results to demonstrate the advantages of the
proposed GL-SVR model and the TFP2A algorithm. Specifically, we first conduct a
numerical experiment to show that on a simulation data set with group structure,
the proposed model is more effective than the standard `1-norm SVR. We further
compare TFP2A with ADMM on two real-world benchmark data sets to show the
efficiency of TFP2A. All the numerical experiments are implemented on a personal
computer with a 2.6 GHz Intel Core i5 CPU and an 8G RAM memory.

A FIXED-POINT PROXIMITY APPROACH 165

(a) `1-SVR (b) GL-SVR

Figure 1. The result of training `1-SVR and GL-SVR.

5.1. Simulation Data. The simulation data set contains 100 instances as training
data and 100 instances as testing data. They are generated randomly on the domain
[0, 1]× [0, 1]. We denote the whole data set as Xwhole and the set of the first 100
training instances as Xtrain. The labels of the instances in Xwhole are generated
by a group sparse kernel combination of the instances in Xtrain. That is, for each
xi ∈ Xwhole, i ∈ N200, we generate the corresponding label yi as

yi =
∑
j∈N100

αjK(xj ,xi) + b,

where xj ∈ Xtrain, j ∈ N100, and the coefficients αj , j ∈ N100 are divided into 10
groups. αj in odd groups are randomly set as 1 or −1, and αj in even groups are
set as 0. Here, we choose Gaussian kernel

K(x,y) := exp(−g‖x− y‖2), x,y ∈ R2

as the base kernel with parameter g = 1, and offset b = −0.5.
We compare the performance of `1-SVR (3) and GL-SVR (4) on this simulation

data set. We apply the proximity algorithm proposed in [23] to solve the `1-SVR
model, and use TFP2A to solve GL-SVR (4). We use the same Gaussian kernel with
parameter g = 1 and the same model parameter ε = 0.01. And parameters of the
algorithms are tuned to approximately achieve the best performance for each model,
while maintaining the same sparsity of each solution in order to be fair. We compare
the testing mean squared error (MSE) and the number of support vectors of the
two models. The numerical result is presented in Table 1. We further visualize

Table 1. Comparison of `1-SVM and GL-SVM in the mean squared
error (MSE) and numbers of support vectors (SVs).

Simulation MSE SVs
`1-SVR 3.68×10−4 41
GL-SVR 1.30 ×10−4 40

the estimated coefficients derived from the two models in Figure 1. The estimated
coefficients of the two models are illustrated in Figures 1. Clearly, in the left figure,
the solution of `1-SVR is globally sparse; while in the right figure, the solution of
GL-SVR is sparse in groups.

166 Z. LI, G. SONG, AND Y. XU

We observe from Table 1 and Figure 1 that the solution of Gl-SVR achieves
sparsity in groups and has a smaller MSE than `1-SVR does, when the data set has
a group structure.

5.2. Real World Data. We next compare TFP2A with ADMM for solving GL-
SVR on two real world data sets from [7]. To this end, we first describe an ADMM
algorithm for solving GL-SVR model (8), followed by a detailed discussion on the
comparison of the proposed TFP2A and ADMM from the multi-step point of view.

We now describe the ADMM algorithm for solving problem (8). Given the matrix
B, the positive parameters C, µ and γ, we choose u0, z0, and x0 as initial points
and define the iteration scheme as below. For k = 0, 1, . . ., we generate uk+1, zk+1,
and xk+1 from uk, zk, and xk via the alternating iteration

(38)

zk+1 = proxγψε,y (Buk + xk)

xk+1 = xk + Buk − zk+1

uk+1 = proxµϕg (uk − µ

γ
BT (Buk − zk+1 + xk+1)).

The algorithm parameters µ and γ are chosen to satisfy

0 < µ ≤ γ

‖B‖22
to ensure convergence of the algorithm. We remark that this scheme follows from
the augmented Lagrangian and a linearized technique, see [17, 30] for more details.

For convenience of understanding the difference between TFP2A and ADMM,
we reformulate the above ADMM iteration scheme (38) as follows. Let

qk := xk, γ :=
1

Cβ
, µ :=

1

λ
.

It follows from a direct computation that (38) is equivalent to

qk+1 = (I− prox 1
Cβψε,y

)(Buk + qk)

uk+1 = prox 1
λϕg

(uk − Cβ

λ
B>(2qk+1 − qk)).

We further write it in a compact form by coupling the two equations together.
Introducing vk := (uk, qk)>,

Ē0 :=

[
0 −2P−1B
0 0

]
, M̄1 :=

[
I P−1B>

B I

]
, M̄2 :=

[
0 0
0 0

]
,

the above iteration scheme is equivalently rewritten as

vk+1 = T
(
Ē0v

k+1 + M̄1v
k + M̄2v

k−1
)
,

where T is as defined in (16).
It can be directly observed that the above iteration scheme is the same as (23)

with θ = 0. Moreover, in the above ADMM scheme, the matrix M̄2 is zero, which
means that the information vk−1 is not used for updating vk+1. That is, ADMM
is a one-step iteration method, while TFP2A is a two-step iteration method by
choosing the parameter θ appropriately. In general, the more information is used
in each iteration, the faster the algorithm converges. We shall further confirm the
advantages of TFP2A through presenting several numerical results on two real-world
benchmark data sets.

The first data set is “Housing” with 506 instances and each instance has 13
features. We use 300 instances as training data and the other 206 as testing data.

A FIXED-POINT PROXIMITY APPROACH 167

The second data set is “Mg” with 1385 instances and each instance has 6 features.
We set 1000 instances as training data and the other 385 as testing data. We use
the same Gaussian kernel and the same regularized parameters C, ε, and δi, i ∈ Nm
for both algorithms. The stopping criterion is set to be the relative error between
the successive iterations less than a given tolerance, which we set as 10−7 in this
experiment. In each algorithm, the parameters are tuned to approximately achieve
the best prediction performance. We present the comparisons of MSE on testing
data, the iteration numbers, and computational time for training of TFP2A and
ADMM in Table 2.

Table 2. Comparison of ADMM and TFP2A in MSE, iteration
numbers and training time. For “Housing” and “Mg”, the parameter
θ of TFP2A is set as 1.3 and 1.6, respectively.

Housing Mg
MSE iteration time MSE iteration time

ADMM 50.80 2059 1.60s 0.04 714 9.94s
TFP2A 50.74 648 0.47s 0.04 238 2.61s

We remark that both algorithms have similar MSE since they are essentially
solving the same model. However, TFP2A requires a much shorter training time
and less iterations than ADMM in both data sets.

6. Conclusions

We introduce the group lasso regularized SVR model and develop a novel two-step
fixed-point proximity algorithm to solve it. We establish the convergence result
of the proposed two-step fixed-point proximity algorithm. We perform numerical
experiments on both synthetic data sets and real-world benchmark data sets to test
the proposed model and algorithm. The numerical results demonstrate that the
proposed GL-SVR performs better than the standard `1-SVR when the underlying
data set has the group sparse structure, and the proposed algorithm is more
computationally efficient than ADMM on the two real-world benchmark data sets.

Acknowledgments

This research is supported in part by the Special Project on High-performance
Computing under the National Key R&D Program (No. 2016YFB0200602), by
the Natural Science Foundation of China under grants 11471013, 91530117 and
11371333, and by the US National Science Foundation under grant DMS-1522332
and DMS-1521661.

References

[1] A. Argyriou, C. A. Micchelli, M. Pontil, L. Shen, and Y. Xu, Efficient first order methods
for linear composite regularizers, arXiv preprint arXiv:1104.1436, (2011).

[2] D. Basak, S. Pal, and D. C. Patranabis, Support vector regression, Neural Information
Processing-Letters and Reviews, 11 (2007), pp. 203–224.

[3] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in

Hilbert Spaces, Springer, New York, 2011.
[4] B. E. Boser, I. M. Guyon, and V. N. Vapnik, A training algorithm for optimal margin

classifiers, in Proceedings of the Fifth Annual Workshop on Computational Learning Theory,
COLT ’92, New York, USA, 1992, ACM, pp. 144–152.

[5] C. Byrne, A unified treatment of some iterative algorithms in signal processing and image
reconstruction, Inverse Problems, 20 (2004).

168 Z. LI, G. SONG, AND Y. XU

[6] E. Byvatov and G. Schneider, Support vector machine applications in bioinformatics.,

Applied Bioinformatics, 2 (2002), pp. 67–77.
[7] C. Chang and C. Lin, LIBSVM: A library for support vector machines, ACM Transactions

on Intelligent Systems and Technology, 2 (2011), pp. 27:1–27:27. Software available at

http://www.csie.ntu.edu.tw/~cjlin/libsvm.
[8] O. Chapelle, P. Haffner, and V. N. Vapnik, Support vector machines for histogram-based

image classification, IEEE Transactions on Neural Networks, 10 (1999), pp. 1055–1064.
[9] O. Chapelle and S. S. Keerthi, Multi-class feature selection with support vector machines,

in Proceedings of the American Statistical Association, 2008.

[10] S. Chatterjee, A. Banerjee, S. Chatterjee, and A. R. Ganguly, Sparse group lasso for
regression on land climate variables, in 2011 IEEE 11th International Conference on Data
Mining Workshops, 2011.

[11] X. Chen, Smoothing methods for nonsmooth, nonconvex minimization, Mathematical
Programming, 134 (2012), pp. 71–99.

[12] P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting,
Multiscale Modeling & Simulation, 4 (2005), pp. 1168–1200.

[13] C. Cortes and V. Vapnik, Support-vector networks, Machine Learning, 20 (1995), pp. 273–

297.

[14] J. Friedman, T. Hastie, and R. Tibshirani, A note on the group lasso and a sparse group
lasso, arXiv preprint arXiv:1001.0736, (2010).

[15] S. R. Gunn et al., Support vector machines for classification and regression, ISIS Technical
Report, 14 (1998).

[16] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, Gene selection for cancer classification

using support vector machines, Machine Learning, 46 (2002), pp. 389–422.
[17] T. Hastie, R. Tibshirani, and M. Wainwright, Statistical Learning with Sparsity: The Lasso

and Generalizations, CRC Press, 2015.

[18] C.-W. Hsu, C.-C. Chang, C.-J. Lin, et al., A practical guide to support vector classification,
(2003).

[19] L. Jacob, G. Obozinski, and J.-P. Vert, Group lasso with overlap and graph lasso, in
Proceedings of the 26th Annual International Conference on Machine Learning, ACM, 2009,
pp. 433–440.

[20] Y. Koshiba and S. Abe, Comparison of l1 and l2 support vector machines, in Proceedings of
the International Joint Conference on Neural Networks, vol. 3, IEEE, 2003, pp. 2054–2059.

[21] Q. Li, L. Shen, Y. Xu, and N. Zhang, Multi-step proximity algorithms for solving a class

of convex optimization problems, Advances in Computational Mathematics, 41 (2014),
pp. 387–422.

[22] Q. Li, Y. Xu, and N. Zhang, Two-step fixed-point proximity algorithms for multi-block
separable convex problems, Journal of Scientific Computing, (2016), pp. 1–25.

[23] Z. Li, G. Song, and Y. Xu, Fixed-point proximity algorithms for solving sparse machine

learning models, Preprint, (2017).

[24] Z. Li, Q. Ye, and Y. Xu, Sparse support vector machines in reproducing kernel banach
spaces, Invited paper in a book to be published in Springer, Submitted, (2016).

[25] S. Ma, X. Song, and J. Huang, Supervised group lasso with applications to microarray data

analysis, BMC Bioinformatics, 8 (2007).
[26] L. Meier, S. Van De Geer, and P. Bühlmann, The group lasso for logistic regression, Journal

of the Royal Statistical Society: Series B (Statistical Methodology), 70 (2008), pp. 53–71.
[27] C. A. Micchelli, L. Shen, and Y. Xu, Proximity algorithms for image models: denoising,

Inverse Problems, 27 (2011).
[28] C. A. Micchelli, L. Shen, Y. Xu, and X. Zeng, Proximity algorithms for the l1/tv image

denoising model, Advances in Computational Mathematics, 38 (2013), pp. 401–426.

[29] E. Osuna, R. Freund, and F. Girosi, Training support vector machines: An application to face

detection, in Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition
(CVPR ’97), Washington, D.C., USA, 1997, IEEE Computer Society, pp. 130–136.

[30] N. Parikh and S. Boyd, Proximal algorithms, Foundations and Trends in Optimization, 1

(2014), pp. 127–239.
[31] B. Schölkopf and A. J. Smola, Learning with kernels: support vector machines, regularization,

optimization, and beyond, MIT Press, Cambridge, Mass, 2002.

[32] A. Smola and V. Vapnik, Support vector regression machines, Advances in Neural Information

Processing Systems, 9 (1997), pp. 155–161.

A FIXED-POINT PROXIMITY APPROACH 169

[33] A. J. Smola and B. Schölkopf, A tutorial on support vector regression, Statistics and

Computing, 14 (2004), pp. 199–222.
[34] R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal

Statistical Society: Series B (Methodological), 58 (1996), pp. 267–288.

[35] S. Tong and D. Koller, Support vector machine active learning with applications to text
classification, Journal of Machine Learning Research, 2 (2002), pp. 45–66.

[36] V. Vapnik, Statistical Learning Theorey, Wiley, New York, 1998.
[37] M. Yuan and Y. Lin, Model selection and estimation in regression with grouped variables,

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68 (2006),

pp. 49–67.
[38] J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani, 1-norm support vector machines, Advances

in Neural Information Processing Systems, 16 (2004), pp. 49–56.

Guangdong Province Key Lab of Computational Science, School of Mathematics, Sun Yat-sen

University, Guangzhou 510275, P. R. China
E-mail : li zheng 2011@163.com

Department of Mathematics, Clarkson University, Potsdam, New York 13699, USA
E-mail : gsong@clarkson.edu

School of Data and Computer Science, Guangdong Province Key Lab of Computational Science,
Sun Yat-sen University, Guangzhou 510275, P. R. China, and Department of Mathematics and

Statistics, Old Dominion University, Norfolk, Virginia, USA. All correspondence should be sent to
this author.

E-mail : y1xu@odu.edu

