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POSITIVITY-PRESERVING HIGH-ORDER SCHEMES FOR

CONSERVATION LAWS ON ARBITRARILY DISTRIBUTED

POINT CLOUDS WITH A SIMPLE WENO LIMITER

JIE DU AND CHI-WANG SHU

Abstract. This is an extension of our earlier work [9] in which a high order stable method
was constructed for solving hyperbolic conservation laws on arbitrarily distributed point clouds.
An algorithm of building a suitable polygonal mesh based on the random points was given and
the traditional discontinuous Galerkin (DG) method was adopted on the constructed polygonal
mesh. Numerical results in [9] show that the current scheme will generate spurious numerical
oscillations when dealing with solutions containing strong shocks. In this paper, we adapt a
simple weighted essentially non-oscillatory (WENO) limiter, originally designed for DG schemes
on two-dimensional unstructured triangular meshes [27], to our high order method on polygonal
meshes. The objective of this simple WENO limiter is to simultaneously maintain uniform high
order accuracy of the original method in smooth regions and control spurious numerical oscillations
near discontinuities. The WENO limiter we adopt is particularly simple to implement and will not
harm the conservativeness and compactness of the original method. Moreover, we also extend the
maximum-principle-satisfying limiter for the scalar case and the positivity-preserving limiter for
the Euler system to our method. Numerical results for both scalar equations and Euler systems
of compressible gas dynamics are provided to illustrate the good behavior of these limiters.

Key words. WENO limiter, positivity-preserving, arbitrarily distributed point cloud, conserva-
tion laws, high order.

1. Introduction

In this paper, we are interested in solving the following two-dimensional hyper-
bolic conservation law

(1)

{
ut +∇ ·F(u) = 0,
u(x, 0) = u0(x),

in the computational domain Ω ⊂ R
2, where F = (f(u), g(u)) is the flux vector,

x = (x, y) ∈ Ω and ∇ = ( ∂
∂x ,

∂
∂y ). Here, u, f and g can be either scalars or vec-

tors. We assume that an arbitrarily distributed point cloud, namely a finite set of
isolated, unstructured points {xi}

N
i=1, together with the values of the initial con-

dition at these points {u0(xi), i = 1, · · · , N}, is given, and we seek an algorithm
to obtain the point values of the numerical solution in this point cloud for later
time. One possible scenario for such a set-up could be that the point clouds are
locations of the observation posts or places where measurements are being made,
and evolution data would need to be predicted and compared with future measure-
ments. Unlike traditional problems where a grid or mesh is given and the initial
condition is assumed given as a function, here we only have the knowledge of the
initial values on the arbitrarily distributed point cloud. Hence, it is difficult to
apply the classical well developed grid- or mesh-based computational methods to
this problem directly, such as the finite difference (FD) methods, the finite volume
(FV) methods, and the finite element (FE) methods. Meshless methods [1, 13] are
alternatives to traditional mesh-based methods. They provide numerical solutions
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in terms of nodes without using any mesh to connect them or using a background
mesh only minimally. However, to our best knowledge, there are few papers de-
voted to meshless methods for solving time-dependent hyperbolic conservation laws
[18], and conservation and stability appear to be particularly difficult for meshless
methods for such PDEs.

Recently, we designed a high order stable method for this problem in [9]. In
order to utilize traditional mesh-based methods which have many important good
properties, we provided a way to generate a suitable mesh based on the given point
cloud. Each cell in the mesh is a polygon, and contains a minimum number of
points in the original point cloud so that a polynomial of a pre-defined degree can
be constructed to represent the initial condition to high order accuracy. Once the
polygonal mesh is constructed, we march the piecewise polynomial numerical solu-
tion in time by choosing the classical discontinuous Galerkin (DG) methods. Due to
the good properties of the DG method, the new constructed method is conservative,
stable and high order accurate, both for linear and nonlinear equations.

The main difficulty in solving the conservation laws (1) is that solutions may
contain discontinuities even if the initial conditions are smooth. As we can see in the
numerical examples in [9], when dealing with solutions containing strong shocks, our
current scheme on the polygonal mesh will generate spurious numerical oscillations,
just as DG schemes without limiters on regular triangular or rectangular meshes
will do. These spurious oscillations may lead to nonlinear instability and eventual
blow-ups of the codes. Therefore, we need to apply nonlinear limiters to control
these oscillations for our polygonal mesh.

To achieve the full potential of high order accuracy and efficiency of our method,
we would like to find a robust high order limiting procedure to simultaneously main-
tain uniform high order accuracy in smooth regions and control spurious numerical
oscillations near discontinuities. There are many successful works based on the
WENO methodology [10, 11] for DG methods on two-dimensional unstructured
triangular meshes, which would serve such a purpose. Zhu et al. [26] designed
limiters using the usual WENO reconstruction. They use the cell averages in an
adaptive stencil to reconstruct the values of the solutions at certain points in the
target cell. Note that the DG method is compact, that is, it uses the information
only from the target cell and its immediate neighboring cells. However, the recon-
struction stencil in [26] contains not only the immediate neighboring cells of the
target cell but also the neighbors’ neighbors. To reduce the width of the recon-
struction stencil, [14] adopted a Hermite type WENO procedure, which uses not
only the cell averages but also the first derivative or first order moment informa-
tion in the stencil. However the information of neighbors’ neighbors is still needed
for higher order methods. Also, it is complicated to perform the usual WENO
procedure or the Hermite type WENO procedure on unstructured meshes, with
the possibility of negative linear weights, as we would need to use extra special
treatments to handle them [19]. Recently, a new and simple WENO limiter [27]
was designed. This WENO limiter attempts to reconstruct the entire polynomial
on the target cell, instead of reconstructing point values or moments in the classi-
cal WENO reconstructions. In fact, the entire reconstruction polynomial is just a
convex combination of polynomials on the target cell and its immediate neighbor-
ing cells (with suitable adjustments for conservation). Hence, it will not harm the
compactness of the DG method. Also, the linear weights are always positive.

All the above mentioned WENO limiters are designed for DG methods on trian-
gular meshes. In our method [9] to solve conservation laws on random points, the
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generated mesh consists of polygonal cells. Each polygon within the mesh can have
arbitrary number of edges and can be in any shape (even non-convex). Also, two
neighboring polygonal cells usually have more than one common edges. As far as
we know, there has been no prior work on WENO limiters on such a complex mesh.
To control the numerical oscillations near discontinuities in our method on random
points, we extend the work in [27] to the polygonal mesh. Numerical examples in
this paper show that we do achieve the purpose to simultaneously maintain uniform
high order accuracy in smooth regions and control spurious numerical oscillations
near discontinuities on the complex polygonal mesh.

An important property of the unique entropy solution to the scalar conservation
law (1) is that it satisfies a strict maximum principle, i.e., if

M = max
x

u0(x), m = min
x

u0(x),(2)

then u(x, t) ∈ [m,M ] for any x ∈ Ω and t > 0. In particular, the solution will
not be negative if m > 0. For hyperbolic conservation law systems, the entropy
solutions generally do not satisfy the maximum principle. However, some important
quantities should be non-negative physically. For instance, density and pressure
in compressible Euler equations, and water height in shallow water equations. In
practice, failure of preserving positivity of such quantities may cause blow-ups of the
computation. In [22] and [23], genuinely high order accurate maximum-principle-
satisfying and positivity-preserving schemes were designed for scalar conservation
laws and compressible Euler equations on rectangular meshes.

An important component of the maximum-principle-satisfying and the positivity-
preserving limiters is to find a quadrature rule in the target cell which is accurate
enough, contains Gauss quadrature points on each edge of the cell, and has positive
weights. [25] developed a special quadrature rule which satisfies the above condi-
tions over a triangle and thus made a nontrivial extension of the aforementioned
schemes to triangular meshes. [20] further discussed an extension to the reactive
Euler equations and proposed a slightly different but very robust and simpler im-
plementation to enforce the positivity of pressure. In the quadrature rules in all
these methods, one need to evaluate the point values on quadrature points inside
the target cell. The implementation is relevantly expensive if the approximation
polynomials are not available, as in the finite volume WENO method. [24] proposed
an alternative and simpler implementation to achieve the same maximum principle
or positivity. Instead of computing all the point values inside the cell, one only need
to compute the value at one single point, determined by the mean value theorem
at an unknown location, which results in a reduction of computational cost and
complexity of the procedure for WENO schemes. The same trick was also used in
[21] for the shallow water equations.

In this paper, our high order method on random points with the WENO limiter
does not in general satisfy a strict maximum-principle for the scalar case or a
positivity-preserving property for the Euler system. Hence, we also extend the
aforementioned limiters into our scheme. Note that we generate a polygonal mesh
based on the given point cloud and apply DG method upon it. Hence, the first
thing we need to do is to find a suitable quadrature rule on the complex polygonal
mesh. The easiest way is to cut the polygon into small triangles and then use the
quadrature rule in [25] for each triangle, which contains all Gauss quadrature points
on each edges of the triangle and several points inside the triangle. By doing so,
the number of quadrature points inside the polygon is huge. The cost will be large
even though we know the approximation polynomials on each cell in our method.
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In fact, we do not need to consider the quadrature points on the edges of triangles
which are inside the polygon. Hence, we use the trick in [21, 24] and extend it to our
polygonal mesh, namely lumping all points inside the cell into just one. Thus, we
just need values on this one (artificial) point plus all the points on the polygonal cell
boundary to construct the limiter. When enforcing the positivity of the pressure
for the Euler system, we adopt the idea in [20] to simplify the implementation.

This paper is organized as follows. We first review the high order method [9]
in Section 2. In Section 3, we describe the details of how to introduce the WENO
limiting procedure to this method. In Section 4, we describe the detailed proce-
dure to construct a maximum-principle-satisfying limiter for the scalar case and a
positivity-preserving limiter for the Euler system. In Section 5, numerical experi-
ments are provided to verify the accuracy and stability of our scheme with these
limiters. Finally, concluding remarks are provided in Section 6.

2. Formulation of the high order method on random points

For self consistency, in this section, we give a brief overview of the high order
method in [9] to solve our problem. In Section 2.1, we first recall how to generate
an appropriate mesh based on the given point cloud and approximate the initial
discrete data with a function. Then in Section 2.2, we show the formulation of the
classical DG method on our constructed polygonal mesh.

2.1. Mesh generation and the initial data approximation. At the initial
time, we are given a set of random points {xi}

N
i=1, as shown by the blue points

in Figure 1. We need to cover the computational domain Ω with an appropriate
mesh {Vj}

M
j=1, based on the given point cloud. The purpose is to represent the

initial condition within each cell Vj with a polynomial in P k(Vj), by interpolating
or fitting the given initial values on the given points in this cell. Here, P k(Vj) is
the space of polynomials of degree up to k on Vj . Hence, each cell should contain

at least K = (k+1)(k+2)
2 points, where K is the degree of freedom of P k(Vj). The

locations of the given points in each cell is crucial. For example, when k = 1, the
three interpolation points can not be aligned along a straight line.
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Figure 1. Voronoi diagram for sixteen random points.

The mesh generation includes two steps. The first step is to divide the computa-

tional domain into small Voronoi regions {V̂i}
N
i=1. Each Voronoi region V̂i contains

only one point xi in the give point cloud and consists of all locations in Ω closer to
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xi than to any other given point in the cloud:

(3) V̂i = {x ∈ Ω | |x− xi| < |x− xj | for j = 1, · · · , N, j 6= i}.

We call xi as the generator of V̂i. Note that Voronoi regions are all polygons. The

set {V̂i}
N
i=1 forms a tessellation of Ω and is called a Voronoi diagram. Figure 1 shows

the Voronoi diagram for the given random points. For a comprehensive treatment,
see [15].

The second step is to carefully group these small Voronoi regions into cells.
Each cell consists of at least K adjacent Voronoi regions. The locations of the
corresponding generator points should enable us to interpolate or fit the initial
values with a polynomial in P k. Considering the cell Vj , we denote the generator

points in it as {xj
l }

L
l=1. By choosing a set of basis functions {φm(x)}Km=1 in Vj , we

attempt to interpolate the initial solution in Vj by

(4) u0
j(x) =

K∑

m=1

αmφm(x), x ∈ Vj ,

such that

(5) u0
j(x

j
l ) = u0(x

j
l ), l = 1, · · · , L.

By denoting A = (al,m) with al,m = φm(xj
l ), ~α = (αm) and ~b = (u0(x

j
l )), we can

rewrite Equations (4) and (5) into the following matrix version:

(6) A~α = ~b.

When L = K, and if A is invertible, we can solve the above system of equations to
obtain ~α. We denote the condition number of A as κ(A), which gives a bound on
how inaccurate the solution will be. We can easily see that each row of A relates
to one generator point. During the grouping procedure, even when L < K, we
can still compute κ(A), which can be viewed as a measure of closeness to a rank
loss [8]. Hence, a crucial rule in our algorithm is to bound κ(A) each time we add
points into Vj , by using a threshold value δ. We summarize the algorithm to group
Voronoi regions into cells as follows. For a more detailed explanation, we refer to
[9].

• We check all generator points one by one, starting from x1. If xi has not
been distributed into any cells, we now start to create a new cell, say, Vj ,

and denote x
j
1 = xi.

• Add all available immediate neighbors (immediate neighbors that have not

been assigned to any cells) of xj
1 into Vj one by one in ascending order of

their index numbers by checking the corresponding κ(A).
• If the number of points in Vj is still less than K, we use the following
algorithm to add only one point each time, until the total number of points
reaches K: we find out all available immediate neighboring points of Vj and
rank them by the number of their immediate neighbors in Vj in descending
order. We check them one by one until we find one that the corresponding
κ(A) is less than δ.

• If we still can not find enough points that can pass the condition number
test after checking all available immediate neighbors of Vj , we put aside xi

for a while, set x
j
1 = xi+1, and use the above algorithm to construct Vj

again. At the end of the algorithm, if xi is still available, we add it to the
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nearest existing cell. By doing so, the number of points in this cell will be
larger than K and we need to solve the following least squares problem

(7) min
~α

||~b−A~α||2

to determine the fitting polynomial.

2.2. DG method on the polygonal mesh. In the previous section, we have
already divided Ω into polygonal cells {Vj}

M
j=1 and approximated the initial value

with a function u0(x): u0(x)|Vj
= u0

j(x), 1 6 j 6 M . It belongs to the following
finite element space consisting of piecewise polynomials

(8) V k
h = {v : v|Vj

= vj ∈ P k(Vj), 1 6 j 6 M},

which is just the solution as well as the test function space in the DG method. In
this section, we adopt the Runge-Kutta discontinuous Galerkin (RKDG) method
carried out by Cockburn et al. in a series of papers [3, 4, 5, 6, 7] to march the
initial function in time. It uses DG discretization in space and the Runge-Kutta
method in time.

The DG method in space is defined as: find the unique solution uh ∈ V k
h such

that, for all test functions vh ∈ V k
h and all 1 6 j 6 M , we have

(9)

∫

Vj

(uh)tvhdx−

∫

Vj

F(uh) · ∇vhdx+

∫

∂Vj

F̂nvhds = 0,

where n is the outward unit normal vector of the cell boundary ∂Vj . F̂n =

F̂n(u−
h , u

+
h ,n) is a monotone numerical flux define on ∂Vj for the scalar case or

an approximate Riemann solver for the system case, consistent with F · n. Here
u−
h and u+

h are the values of uh on ∂Vj taken from the inside the cell Vj and the
outside of Vj , respectively.

The semi-discrete scheme (9) can be written as

(uh)t = L(uh, t)

where L(uh, t) is a spatial discretization operator. For the time discretization, we
use the total variation diminishing (TVD) third order Runge-Kutta method [17].
Starting from un ∈ V k

h at time level n, we compute un+1 by

u(1) = un +∆tL(un, tn),

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tL(u(1), tn +∆t),

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tL(u(2), tn +

1

2
∆t).(10)

3. The WENO limiter

As explained in [9], the method is conservative, stable, and high order accurate.
However, numerical results show that it will generate spurious numerical oscillations
when dealing with solutions containing strong shocks. In this section, we extend
the WENO limiter in [27] designed for the DG method on triangular meshes to our
method on polygonal meshes. The goal is to control the oscillations for shocked
flows as well as to maintain the original high order accuracy in smooth regions.

Note that the TVD third order Runge-Kutta method is just a convex combina-
tion of first order forward Euler steps. For simplicity, we only consider the forward
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Euler time discretization in this section. We denote the numerical solution on the
n-th time level as un ∈ V k

h and denote

(11) un|Vj
(x) = un

j (x) ∈ P k(Vj).

Starting from un ∈ V k
h , we first reconstruct it to obtain a new function un,new ∈ V k

h

and then match the new function in time. That is, find un+1 ∈ V k
h , such that for

all test functions vh ∈ V k
h and all 1 6 j 6 M , we have

(12)

∫

Vj

un+1
j − un,new

j

∆t
vhdx−

∫

Vj

F(un,new) · ∇vhdx+

∫

∂Vj

F̂n,newvhds = 0,

where F̂n,new is the flux computed by using the new function un,new. For the high
order Runge-Kutta method, we only need to repeat the same procedure for each
Runge-Kutta inner stage.

Figure 2. The stencil of the DG method.

One can see that when using the DG method to solve un+1 on the target Vj , we
only need to use functions on Vj and its immediate neighboring cells, as shown in
Figure 2. We denote this stencil as Sj = {Vj , Vj(1), Vj(2), · · · , Vj(Nj)}, where Nj is
the number of immediate neighboring cells of Vj . Note that unlike the triangular
mesh case, Nj is usually not equal to the the number of edges of Vj since two neigh-
boring cells usually share more than one common edges. In the WENO limiting
procedure on Vj , we use the same stencil to obtain un,new. Hence, the WENO
limiter can maintain the compactness of the DG method which makes the method
very suitable for parallel computing. For convenience, we denote the solution poly-
nomials on the stencil Sj as

p0(x) = un
j (x), pl(x) = un

j(l)(x), l = 1, · · · , Nj .(13)

3.1. The WENO limiting procedure for the scalar case. In this section,
we consider conservation laws as shown in Eq. (1), where u, f and g are scalars.
Before we perform the WENO limiter, we first need to find out all troubled cells
which contain possible shocks and need the limiting procedure. As in [27], we adopt
the KXRCF shock detection technique [12]. We divide the boundary ∂Vj into two
parts: ∂V −

j and ∂V +
j , where the flow is into (F′(u)·n < 0) and out of (F′(u)·n > 0)

Vj respectively. The target cell Vj is identified as a troubled cell when

|
∫
∂V −

j

(
p0(x) − pl(x)

)
ds|

h
k+1
2 |∂V −

i | · ‖p0‖
> Ck,(14)
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where Ck is a constant. We choose h as the maximum distance between two points
in Vj . pl(x) denote solutions on the neighboring cells sharing ∂V −

j , and ‖ · ‖ is

the standard L2 norm in Vj . We remark that the KXRCF troubled cell indicator
is just one of the many possibilities and may not be the best one. We use it here
for its simplicity, as our main focus of this paper is not on troubled cell indicators.
We refer the readers to [16] for a detailed discussion about different troubled-cell
indicators.

Assuming that Vj is a troubled cell, we now reconstruct un
j (x) to obtain un,new

j (x).
In order to maintain the original cell average of un

j in cell Vj , which is essential to
keep the conservativeness, we modify solutions on the neighboring cells as:

p̃l(x) = pl(x)−
1

|Vj |

∫

Vj

pl(x)dx +
1

|Vj |

∫

Vj

p0(x)dx, l = 1, 2, · · · , Nj ,(15)

where |Vj | is the area of Vj . For notational consistency, we also denote p̃0(x) =
p0(x). The nonlinear WENO reconstructed polynomial on cell Vj is defined by a
convex combination of these modified polynomials:

un,new
j (x) =

Nj∑

l=0

ωlp̃l(x).(16)

From Eq. (16), we know that un,new
j has the same cell average as p0(x) as long

as
∑Nj

l=0 ωl = 1. Hence, we define the normalized nonlinear weights as

ωl =
ω̃l∑Nj

m=0 ω̃m

, l = 0, 1, · · · , Nj ,(17)

where the non-normalized nonlinear weights ω̃l are defined as

ω̃l =
γl

(ε+ βl)2
.(18)

Here ε > 0 is introduced to avoid the denominator to become 0. We take ε = 10−6

in all our numerical tests. βl is the smoothness indicator, which measures how
smooth the function p̃l is on the target cell Vj . As in [2, 11], we define βl as

βl =

k∑

|s|=1

|Vj |
|s|−1

∫

Vj

( ∂|s|

∂xs1∂ys2
p̃l
)2
dx,(19)

where s = (s1, s2). When p̃l is not smooth, then βl will be large and hence ωl will
be relevantly small.

The linear weights {γl} are a set of positive numbers adding up to one. Note
that since p̃l for l = 0, 1, · · · , Nj are all (k+1)-th order approximations to the exact
solution in smooth regions, there are no extra requirements on the linear weights
in order to maintain the original high order accuracy. As discussed in [27], since
for smooth solutions the central cell is usually the best one, we put a larger linear
weight on the central cell than on the neighboring cells. In this paper, we take

γ0 = 1− 0.0005Nj, γl = 0.0005, l = 1, · · · , Nj ,(20)

which can maintain the original high order accuracy in smooth regions and can
keep essentially non-oscillatory shock transitions in our numerical examples.

For each cell Vj , j = 1, · · · ,M , if it is a troubled cell, we replace the entire
solution polynomial un

j with the new reconstructed polynomial un,new
j , which is a

convex combination of polynomials on this cell and its immediate neighboring cells.
If the cell Vj is not a troubled cell, we just let un,new

j = un
j . After the WENO
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limiter procedure, we just replace un with un,new to march to the next time level
by solving Equation (12).

3.2. The WENO limiting procedure for the Euler system. Let us consider
the two-dimensional Euler system which is given by

(21)

ut + f(u)x + g(u)y = 0,

u =




ρ
m
n
E


 , f(u) =




m
ρu2 + p
ρuv

u(E + p)


 ,g(u) =




n
ρuv

ρv2 + p
v(E + p)


 .

Here, ρ is the density, (u, v)T is the velocity vector, m = ρu and n = ρv are the
momenta. E is the total energy, and p is the pressure, with p(u) = (γ − 1)

(
E −

1
2ρ(u

2 + v2)
)
. For convenience, we also denote the solution polynomials on cell Vj

and its immediate neighbors as

p0(x) = un
j (x), pl(x) = un

j(l)(x), l = 1, · · · , Nj ,(22)

respectively. Each of them is a 4-component vector and each component is a k-th
degree polynomial.

As in the scalar case, we first identify the troubled cells using the KXRCF
technique. The boundary ∂Vj is also divided into two parts: ∂V −

j and ∂V +
j , where

the flow is into ((u, v)T · n < 0) and out of ((u, v)T · n > 0) Vj respectively. In the
system case, we take both the density ρ and the total energy E as the indicator
variables. The target cell Vj is identified as a troubled cell when

|
∫
∂V −

j

(
ρ0(x) − ρl(x)

)
ds|

h
k+1
2 |∂V −

j | · ‖ρ0‖
> Ck,(23)

or

|
∫
∂V −

j

(
E0(x) − El(x)

)
ds|

h
k+1
2 |∂V −

j | · ‖E0‖
> Ck,(24)

where ρl(x) and El(x) denote the density polynomials and the total energy poly-
nomials on the neighboring cells sharing the edge(s) in ∂V −

i .
Assuming Vj is a troubled cell, we now compute a new polynomial un,new

j on

Vj to replace the original one. To maintain the original cell average of p0(x) in
cell Vj , we compute as before the modified polynomial vectors p̃l(x), l = 0, · · · , Nj,
corresponding to the cell Vj and its immediate neighboring cells. In order to achieve
better non-oscillatory qualities, the WENO limiter is used with a local characteristic
field decomposition. In the triangular mesh case in [27], the characteristic-wise
WENO limiting procedure is performed along the normal directions of each edge
of Vj . For the polygonal mesh in this paper, we make a small modification. We
denote nl = (nlx, nly)

T , l = 1, · · · , Nj as the unit vector pointing from the center of
Vj to the center of the neighboring cell Vj(l). Here we simply compute the center of
a cell as the arithmetic mean of the locations of all generator points in this cell. We
perform the characteristic-wise WENO limiting procedure in each nl direction to
reconstruct a new polynomial vector (p0)

new
l and then combine them to get un,new

j .
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In the nl direction, we first denote the associate Jacobian matrix as
(
f ′(u),g′(u)

)T
·

nl, Then the matrix with the left eigenvectors of such Jacobian matrix as rows is

(25) Ll =




B2+(unlx+vnly)/c
2 −B1u+nlx/c

2 −
B1v+nly/c

2
B1

2
nlyu− nlxv −nly nlx 0

1−B2 B1u B1v −B1
B2−(unlx+vnly)/c

2 −B1u−nlx/c
2 −

B1v−nly/c
2

B1

2


 ,

and the matrix with the right eigenvectors as columns is
(26)

Rl =




1 0 1 1
u− cnlx −nly u u+ cnlx

v − cnly nlx v v + cnly

H − c(unlx + vnly) −nlyu+ nlxv
u2+v2

2 H + c(unlx + vnly)


 ,

where c =
√
γp/ρ, B1 = (γ − 1)/c2, B2 = B1(u

2 + v2)/2 and H = (E + p)/ρ. Now
we use the following steps to obtain (p0)

new
l :

• We first project the modified polynomial vectors p̃m,m = 0, 1, · · · , Nj into
the characteristic fields:

p̄m = Ll · p̃m, m = 0, 1, · · · , Nj.(27)

• We perform the scalar WENO limiting procedure that has been specified
in the last subsection on each component of these vectors, and obtain a
4-component vector p̄new

0 .
• The new polynomial vector (p0)

new
l in the nl direction is then computed

by projecting p̄new
0 back into the physical space:

(p0)
new
l = Rl · p̄

new
0 .(28)

After we have performed the above procedure in all directions, the final new
4-component solution polynomial vector on the troubled cell Vj is defined as

u
n,new
j =

∑Nj

l=1(p0)
new
l |Vj(l)|∑Nj

l=1 |Vj(l)|
.(29)

For each cell Vj , j = 1, · · · ,M in the computational domain Ω, if it is a troubled
cell, we perform the characteristic-wise WENO limiting procedure discussed above
and replace the entire solution polynomial un

j with the new 4-component solution

polynomial vector u
n,new
j in (29). If the cell Vi is not a troubled cell, we just let

u
n,new
j = un

j . Then we use the new polynomial to march to the next time level as

in Equation (12).

4. Positivity-preserving limiter

Our method with WENO limiters described in the last section does not sat-
isfy the maximum-principle for the scalar conservation laws and the positivity-
preserving property for the Euler system directly. Hence, in this section, we extend
the maximum-principle-satisfying limiters and the positivity-preserving limiters in
[20, 21, 24, 25] to our method. In each time stage, we first use the WENO lim-
iter to reconstruct solution polynomials in those troubled cells in order to control
oscillations. Then we further modify solutions in each cell before we march to the
next time stage, such that the cell averages on the next time level will satisfy the
maximum-principle for the scalar case or the positivity-preserving property for the
Euler system.
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Based on the given random point cloud, we have shown how to divide the domain
Ω into polygonal cells in Section 2.1. From the procedure of mesh generation, we
know that the numbers of edges for different polygonal cells can be totally different.
Also, the shape of each cell is arbitrary. In the following, we first show a quadrature
rule on such a complex polygonal mesh to compute the cell averages of the solutions
in Section 4.1. Based on this quadrature rule, limiters for the scalar conservation
laws and the Euler system will be shown in Section 4.2 and Section 4.3, respectively.

4.1. Decomposition of the cell average. Consider an arbitrary polygonal cell
Vj with mj edges. In this section, we aim to find a suitable quadrature rule to
compute the cell average of the solution on Vj . Assume q(x) ∈ P k(Vj), then the
cell average of q(x) on Vj is defined as

q̄j =
1

|Vj |

∫

Vj

q(x)dx.(30)

Note that in the DG method, the edge integral in Equation (9) is approximated by
the (k+1)-point Gauss quadrature. The quadrature rule we are going to find should
be exact for functions in P k(Vj) and include all the Gauss quadrature points on
∂Vj . Also, all quadrature weights should be positive. In the following, We denote

the β-th Gauss quadrature point on the i-th edge of Vj as xj
i,β , i = 1, · · · ,mj , β =

1, · · · , k + 1. Also, we use ωβ to denote the β-th quadrature weight of the (k + 1)-
point Gauss rule on [− 1

2 ,
1
2 ]. Besides the Gauss quadrature rule, we also consider the

l-point Gauss-Lobatto rule on [− 1
2 ,

1
2 ] with 2l−3 > k. We denote the corresponding

α-th quadrature weight as ω̂α.

Figure 3. Cell subdivision.

As shown in Figure 3, we subdivide Vj into several non-overlapping sub-domains
such that those sub-domains which share edges with ∂Vj are all triangles. Suppose
there are nj (nj 6 mj) such triangles on the boundary of Vj , which are denoted as

V
(r)
j , r = 1, · · · , nj . For the case in Figure 3, we have nj = 8. We further denote

the rest region of Vj as V
(nj+1)
j = Vj\(

⋃nj

r=1 V
(r)
j ), which is a polygon. Thus, we

can divide the computation of q̄j into several parts:

q̄j =
1

|Vj |

∫

Vj

q(x)dx =
1

|Vj |

nj∑

r=1

∫

V
(r)
j

q(x)dx +
1

|Vj |

∫

V
(nj+1)

j

q(x)dx.(31)
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For the computation on each triangle V
(r)
j , 1 6 r 6 nj , we adopt the special

numerical quadrature derived in [25]:

1

|V
(r)
j |

∫

V
(r)
j

q(x)dx =
∑

x∈Q
(r)
j

ωxq(x).(32)

Here Q
(r)
j is the set of quadrature points in V

(r)
j , which includes all k + 1 Gauss

quadrature points on each edge of V
(r)
j . Also, it is derived in [25] that ωx = 2

3ωβω̂1

when x is the β-th Gauss point on any edge of V
(r)
j . Hence, we can further compute

q̄j as

q̄j =

nj∑

r=1

|V
(r)
j |

|Vj |

( ∑

x∈Q
(r)
j

⋂
∂Vj

ωxq(x) +
∑

x∈Q
(r)
j

\∂Vj

ωxq(x)
)
+

1

|Vj |

∫

V
(nj+1)

j

q(x)dx

=

mj∑

i=1

k+1∑

β=1

aji,βq(x
j
i,β) +

nj∑

r=1

∑

x∈Q
(r)
j \∂Vj

|V
(r)
j |

|Vj |
ωxq(x) +

1

|Vj |

∫

V
(nj+1)

j

q(x)dx,(33)

where aji,β =
|V

(r)
j

|

|Vj |
2
3ωβω̂1 if xj

i,β ∈ ∂V
(r)
j .

If we denote

ξj =

∑nj

r=1

∑
x∈Q

(r)
j

\∂Vj

|V
(r)
j

|

|Vj |
ωxq(x) +

1
|Vj|

∫
V

(nj+1)

j

q(x)dx

1−
∑mj

i=1

∑k+1
β=1 a

j
i,β

=
q̄j −

∑mj

i=1

∑k+1
β=1 a

j
i,βq(x

j
i,β)

1−
∑mj

i=1

∑k+1
β=1 a

j
i,β

,(34)

then we obtain a numerical quadrature rule

q̄j =

mj∑

i=1

k+1∑

β=1

aji,βq(x
j
i,β) + (1−

mj∑

i=1

k+1∑

β=1

aji,β)ξj .(35)

It is easy to see that

mj∑

i=1

k+1∑

β=1

aji,β <

nj∑

r=1

k+1∑

β=1

|V
(r)
j |

|Vj |
2ωβω̂1 =

nj∑

r=1

|V
(r)
j |

|Vj |
2ω̂1 6 1.(36)

Hence, all quadrature weights in the new quadrature are positive. Note that it is
easy to prove that there exists some x∗

j ∈ Vj , such that q(x∗
j ) = ξj . In fact, we do

not need to know the exact location of x∗
j , we only need the know the value of q at

this point.

4.2. Positivity-preserving limiter for scalar conservation laws. We con-
sider the scalar conservation law (1) in this section. Based on the polygonal mesh
we established in Section 2.1, let us first discuss the first order global Lax-Friedrich
scheme on each polygon Vj :

(37) un+1
j = un

j −
∆t

|Vj |

mj∑

i=1

F̂ (un
j , u

n
j[i],n

i
j)l

i
j = H(un

j , u
n
j[1], · · · , u

n
j[mj ]

),

where lij is the length of the i-th edge of Vj , denoted by eij, with outward unit

normal vector ni
j . j[i] denotes the index of the neighboring polygon along eij. The
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global Lax-Friedrichs flux is defined by

(38) F̂ (u, v,n) =
1

2
(F(u) · n+ F(v) · n− a(v − u)),

where a = maxu |F
′(u) · n|. This flux satisfies the conservativity

(39) F̂ (u, v,n) = −F̂ (v, u,−n).

Following the standard proof on the triangular mesh, we can easily prove that
H(·, · · · , ·) is a monotone increasing function with respect to each argument under
the CFL condition

(40) a
∆t

|Vj |

mj∑

i=1

lij 6 1.

Now let us consider our high order scheme. For simplicity, we only discuss the
Euler forward time discretization. Note that after the WENO limiting procedure
described in the last section, we obtain a new solution polynomial un,new, which
has the same cell average as un on Vj . By taking the test function vh as 1, we can
rewrite Equation (12) as

(41) ūn+1
j = ūn

j −
∆t

|Vj |

mj∑

i=1

∫

eij

F̂ (u
int(Vj)
i , u

ext(Vj)
i ,ni

j)ds,

where u
int(Vj)
i and u

ext(Vj)
i are the values of un,new on the edge eij obtained from

the interior and the exterior of Vj . By using the (k+1)-point Gauss quadrature to
compute the edge integral, the scheme becomes

(42) ūn+1
j = ūn

j −
∆t

|Vj |

mj∑

i=1

k+1∑

β=1

F̂ (u
int(Vj)
i,β , u

ext(Vj)
i,β ,ni

j)ωβl
i
j ,

where u
int(Vj)
i,β and u

ext(Vj)
i,β denote the values of un,new evaluated at xj

i,β from the
interior and the exterior of the cell Vj respectively.

By using the quadrature rule we derived in the last section, we can prove the
following theorem:

Theorem 1. For the scheme (42) to satisfy the maximum principle

(43) m 6 ūn+1
j 6 M,

a sufficient condition is that each un,new
j (x) ∈ [m,M ], ∀x ∈ Sj

k and ξj ∈ [m,M ],

where Sj
k = {xj

i,β , i = 1, · · · ,mj , β = 1, · · · , k + 1} and ξj is computed by letting

q(x) = un,new
j (x) in (34), under the CFL condition

α
∆t

|Vj |

mj∑

i=1

lij 6 minr

|V
(r)
j |

|Vj |

2

3
ω̂1,(44)

where ω̂1 is the quadrature weight of the l-point Gauss-Lobatto rule on [− 1
2 ,

1
2 ] for

the first quadrature point. For k = 2, 3, ω̂1 = 1
6 and for k = 4, 5, ω̂1 = 1

12 .
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Proof. Rewrite Equation (42) as

ūn+1
j = ūn

j −
∆t

|Vj |

mj∑

i=1

k+1∑

β=1

F̂ (u
int(Vj)
i,β , u

ext(Vj)
i,β ,ni

j)ωβl
i
j

= ūn
j −

∆t

|Vj |

k+1∑

β=1

ωβ

( mj∑

i=1

F̂ (u
int(Vj)
i,β , u

ext(Vj)
i,β ,ni

j)l
i
j

)
.(45)

Then decompose the flux term inside the bracket:

mj∑

i=1

F̂ (u
int(Vj)
i,β , u

ext(Vj)
i,β ,ni

j)l
i
j

=

mj−1∑

i=1

(
F̂ (u

int(Vj)
i,β , u

ext(Vj)
i,β ,ni

j)l
i
j + F̂ (u

int(Vj)
i,β , u

int(Vj)
mj,β

,−ni
j)l

i
j

)

+

mj−1∑

i=1

F̂ (u
int(Vj)
mj ,β

, u
int(Vj)
i,β ,ni

j)l
i
j + F̂ (u

int(Vj)
mj,β

, u
ext(Vj)
mj ,β

,n
mj

j )l
mj

j ,(46)

where the conservativity of the flux in Equation(39) is used.
Using the quadrature rule (35), we obtain

ūn+1
j =

mj∑

i=1

k+1∑

β=1

aji,βu
int(Vj)
i,β + (1 −

mj∑

i=1

k+1∑

β=1

aji,β)ξj

−
∆t

|Vj |

k+1∑

β=1

ωβ

( mj∑

i=1

F̂ (u
int(Vj)
i,β , u

ext(Vj)
i,β ,ni

j)l
i
j

)

= (1 −

mj∑

i=1

k+1∑

β=1

aji,β)ξj +

k+1∑

β=1

mj∑

i=1

aji,βHi,β ,(47)

where

Hi,β = u
int(Vj)
i,β −

ωβ∆t

aji,β |Vj |

[
F̂ (u

int(Vj)
i,β , u

ext(Vj)
i,β ,ni

j)l
i
j + F̂ (u

int(Vj)
i,β , u

int(Vj)
mj,β

,−ni
j)l

i
j

]
,

for 1 6 i 6 mj − 1, and

Hmj ,β = u
int(Vj)
mj,β

−
ωβ∆t

ajmj,β
|Vj |

[mj−1∑

i=1

F̂ (u
int(Vj)
mj ,β

, u
int(Vj)
i,β ,ni

j)l
i
j

+F̂ (u
int(Vj)
mj ,β

, u
ext(Vj)
mj,β

,n
mj

j )l
mj

j

]
.

We know that Hi,β , 1 6 i 6 Mj are all formal monotone schemes under the condi-
tion

a
ωβ∆t

aji,β |Vj |

mj∑

i=1

lij 6 1.

Since aji,β =
|V

(r)
j

|

|Vj |
2
3ωβω̂1 if xj

i,β ∈ ∂V
(r)
j , we obtain the CFL condition (44).

Writing the right-hand side of (47) as a function H of u
int(Vj)
i,β , u

ext(Vj)
i,β and ξj ,

then H is monotone increasing with respect to each argument. Hence, if all the
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point values involved here are in the range [m,M ], then we have the maximum
principle:

m = H(m, · · · ,m) 6 ūn+1
j 6 H(M, · · · ,M) = M.

�

As in [21], we now modify the solution polynomial un,new
j to get a new function

ũn,new
j ∈ P k(V ) which satisfies the conditions in the above theorem. For all Vj , we

define the following modified polynomial

ũn,new
j (x) = θ(un,new

j (x) − ūj) + ūj, θ = min

{∣∣∣∣
m− ūj

m̃j − ūj

∣∣∣∣ ,
∣∣∣∣∣
M − ūj

M̃j − ūj

∣∣∣∣∣ , 1
}
,

(48)

with

M̃j = max{ξj, u
n,new
j (x),x ∈ Sj

k}, m̃j = min{ξj, u
n,new
j (x),x ∈ Sj

k}.(49)

Following the proof in [21] for the rectangular mesh, we can prove that this lim-
iter preserves the same high-oder accuracy and the conservation of the original
polynomial. After we get ũn,new

j , we then use it to march to the next time level.
We can also use SSP high order time discretization and it will keep the positivity-

preserving property because of the convexity. In this case, we need to perform the
procedure above in each stage for a Runge-Kutta method or in each step for a
multistep method.

4.3. Positivity-preserving limiter for the Euler equations. Consider the
two-dimensional Euler system which is given by Equation (21). We define the set
of admissible states as

G =




u =




ρ
m
n
E




∣∣∣∣∣∣∣∣
ρ > 0 and p(u) > 0





.(50)

As in the last section, we consider the Euler forward time discretization. We also de-
note ξj as in Equation (34), computed by the solution polynomial q = u

n,new
j . But

in the system case, it is a vector. We denote its components as ξj = (ξjρ, ξ
j
m, ξjn, ξ

j
E)

T .
By replacing the scalar variables with vectors in Equation (42), we obtain the fol-
lowing scheme:

(51) ūn+1
j = ūn

j −
∆t

|Vj |

mj∑

i=1

k+1∑

β=1

F̂ (u
int(Vj)
i,β ,u

ext(Vj)
i,β ,ni

j)ωβl
i
j ,

We are interested in finding solutions within the admissible set G. Note that G
is a convex set. Following the same idea as in Theorem 1, we have the following
theorem. We omit the proof since it is almost the same as in Theorem 1.

Theorem 2. For the scheme (51) to satisfy the positivity property

(52) ūn+1
j ∈ G,

a sufficient condition is that each u
n,new
j (x) ∈ G, ∀x ∈ Sj

k and ξj ∈ G, where

Sj
k = {xj

i,β , i = 1, · · · ,mj , β = 1, · · · , k + 1}, under the CFL condition

α
∆t

|Vj |

mj∑

i=1

lij 6 minr

|V
(r)
j |

|Vj |

2

3
ω̂1,(53)
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where ω̂1 is the quadrature weight of the l-point Gauss-Lobatto rule on [− 1
2 ,

1
2 ] for

the first quadrature point. For k = 2, 3, ω̂1 = 1
6 and for k = 4, 5, ω̂1 = 1

12 .

Given the vector of approximation polynomials un,new
j = (ρj ,mj, nj , Ej)

T on cell

Vj , with its cell average ūn
j = (ρ̄j , m̄j , n̄j, Ēj)

T ∈ G, we use the following algorithm

to modify u
n,new
j into ũ

n,new
j ∈ G, and then use it to march to the next time level.

(1) In each cell, we enforce the positivity of density first. Set up a small number
ε > 0 such that ρ̄j > ε for all Vj . In practice, we can choose ε = 10−13.
Replace ρj(x) by

ρ̂j(x) = θ1
(
ρj(x)− ρ̄j

)
+ ρ̄j, θ1 = min{

ρ̄j − ε

ρ̄j − ρmin
, 1},(54)

with ρmin = min{ρj(x),x ∈ Sj
k, ξ

j
ρ}.

(2) The second step is to enforce the positivity of the pressure. Define ûj(x) =(
ρ̂j(x),mj(x), nj(x), Ej(x)

)T
. For each x ∈ Sj

k, if p(ûj(x)) > 0, set θx = 1;
otherwise, set

θx =
p(ūn

j )

p(ūn
j )− p(ûj(x))

.(55)

We replace q in (34) with ûj to obtain ξ̂j . If p(ξ̂j) > 0, set θξ = 1; otherwise,
set

θξ =
p(ūn

j )

p(ūn
j )− p(ξ̂j)

.(56)

Then we get the limited polynomial

ũ
n,new
j (x) = θ2(ûj(x)− ūn

j ) + ūn
j , θ2 = min{θx,x ∈ Sj

k, θξ}.(57)

Similar to the proof in [21], we can prove that the new polynomial ũn,new
j satisfies

the conditions in Theorem 2. Starting from un
j , we first replace it with a new

solution polynomial u
n,new
j by using the WENO limiter to control oscillations,

then further modify the new solution into ũ
n,new
j by using the positivity-preserving

limiter to ensure that the cell average of the next time level is within the admissible
set G.

5. Numerical results

In this section, we provide numerical experiments to demonstrate the perfor-
mance of the WENO limiter and the positivity preserving limiter.

We use the third order TVD Runge-Kutta method [17] for the time discretization.
Second, third and fourth order DG schemes in the space are tested. Since the time
discretization is only third order accurate, we take ∆t ∼ ∆x4/3 to obtain the fourth
order accurate results for accuracy test examples. For the examples containing
discontinuities, the positivity-preserving limiter is used for the third order scheme.

For accuracy test examples, the outmost nodes are set to be uniform as in [9], in
order to impose periodic boundary conditions. But all inner points are randomly
generated that satisfy a uniform distribution in the computational domain. For
examples containing discontinuities, all points are randomly generated. Note that
our mesh refinement is unstructured, that is, the generations of random points are
independent with the refinement of the number of points N .

In the procedure of grouping Voronoi regions into cells, we need to bound the
condition number of the matrix A by a threshold value δ. As in [9], we take δ as
100, 1000 and 3000 for the second, third and fourth order schemes, respectively.
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Since the initial data are only given on the point cloud and we care about the
values on these points for the later time, we show error tables measuring the numer-
ical error on the points from the point cloud. For the L∞ norm, we compute the
maximum absolute value of the error on these points. For the L1 norm, we multiply
the absolute value of the error on each point with the area of the corresponding
Voronoi region, add them together and divide the result by the area of the entire
domain. For all figures, we divide the computational domain by a triangulation
with the given points as the vertexes and thus plot the values on these points.

For the purpose of artificially generating a larger percentage of troubled cells
in order to test accuracy when the WENO reconstruction procedure is enacted in
more cells, we adjust the constant Ck in different examples when using KXRCF
technique to identify troubled cells. We list in each table the percentage of troubled
cells among all the cells.

Table 1. 2D linear equation with u(x, y, 0) = sin(x+ y) at t = 2π.

number of DG without limiter DG with WENO limiter

points L
1 norm order L

∞ norm order L
1 norm order L

∞ norm order percentage

k = 1, Ck = 0.1

400 1.32E-01 – 3.55E-01 – 2.14E-01 – 5.01E-01 – 10.81%
1600 1.69E-02 2.97 7.23E-02 2.30 1.87E-02 3.52 7.23E-02 2.79 0.87%
6400 3.19E-03 2.40 2.00E-02 1.85 3.21E-03 2.54 2.00E-02 1.85 0.11%
25600 7.04E-04 2.18 7.84E-03 1.35 7.03E-04 2.19 7.84E-03 1.35 0.00%
102400 1.74E-04 2.02 2.33E-03 1.75 1.74E-04 2.02 2.33E-03 1.75 0.00%
average – 2.37 – 1.77 – 2.53 – 1.87 –

k = 2, Ck = 0.01

400 2.15E-02 – 8.57E-02 – 4.07E-02 – 1.13E-01 – 37.04%
1600 2.28E-03 3.24 1.84E-02 2.22 3.49E-03 3.55 2.32E-02 2.28 9.40%
6400 2.92E-04 2.96 2.16E-03 3.09 5.36E-04 2.70 4.24E-03 2.45 3.09%
25600 2.92E-05 3.32 3.86E-04 2.49 5.84E-05 3.20 5.60E-04 2.92 0.77%
102400 4.26E-06 2.78 5.90E-05 2.71 5.32E-06 3.46 7.23E-05 2.95 0.13%
average – 3.09 – 2.66 – 3.17 – 2.66 –

k = 3, Ck = 0.0005

400 7.28E-03 – 2.54E-02 – 1.86E-02 – 7.30E-02 – 81.82%
1600 3.89E-04 4.23 2.05E-03 3.63 6.44E-04 4.85 2.98E-03 4.61 19.70%
6400 2.20E-05 4.14 1.75E-04 3.55 2.30E-05 4.81 1.76E-04 4.08 0.37%
25600 1.66E-06 3.73 1.90E-05 3.21 1.65E-06 3.80 1.90E-05 3.21 0.00%
102400 9.56E-08 4.11 1.33E-06 3.84 9.56E-08 4.11 1.33E-06 3.84 0.00%
average – 4.03 – 3.52 – 4.37 – 3.88 –
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(b) Voronoi diagram

Figure 4. Random points and the corresponding Voronoi diagram
in the domain [0, 2π]× [0, 2π], N = 400.

Example 1. Let us first consider the two-dimensional linear equation

(58) ut + ux − 2uy = 0, 0 ≤ x, y ≤ 2π,

with the initial condition u(x, y, 0) = sin(x + y) and a 2π-periodic boundary con-
dition. Figure 4 shows N = 400 random points and the corresponding Voronoi
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(c) P 3

Figure 5. Mesh decomposition of the domain Ω = [0, 2π]× [0, 2π]
based on 400 given points.
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Figure 6. 2D Burgers on random point cloud. t = 0.75. N = 25600.
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diagram. Figure 5 shows mesh subdivisions of these points for different orders of
schemes. Here we use red lines to denote Voronoi edges and use black lines to denote
cell boundaries of the mesh. Numerical errors and numerical orders of accuracy for
the high order method with the WENO limiter comparing with the original high
order method without limiter at t = 2π are listed in Table 1. We list in the last
column of the table the percentage of troubled cells among all the cells. We can
see that the WENO limiter keeps the designed order of accuracy.

Table 2. 2D Burgers equation with u(x, y, 0) = 0.5 + sin(x + y)
at t = 0.25.

number of DG without limiter DG with WENO limiter

points L
1 norm order L

∞ norm order L
1 norm order L

∞ norm order percentage

k = 1, Ck = 0.03

400 3.80E-02 – 2.30E-01 – 1.09E-01 – 6.68E-01 – 81.08%
1600 9.04E-03 2.07 6.39E-02 1.85 3.97E-02 1.46 5.24E-01 0.35 54.47%
6400 2.74E-03 1.72 3.90E-02 0.71 6.20E-03 2.68 2.10E-01 1.32 19.05%
25600 7.50E-04 1.87 1.61E-02 1.27 7.99E-04 2.96 1.42E-02 3.89 4.18%
102400 1.90E-04 1.98 5.36E-03 1.59 1.89E-04 2.08 5.36E-03 1.40 1.37%
average – 1.89 – 1.28 – 2.40 – 1.91 –

k = 2, Ck = 0.01

400 1.88E-02 – 1.52E-01 – 3.97E-02 – 6.02E-01 – 37.04%
1600 2.69E-03 2.80 4.70E-02 1.69 2.72E-03 3.87 4.64E-02 3.70 10.26%
6400 4.18E-04 2.69 1.24E-02 1.92 4.09E-04 2.73 1.39E-02 1.74 1.99%
25600 5.62E-05 2.89 2.44E-03 2.34 5.58E-05 2.87 2.17E-03 2.68 0.55%
102400 7.50E-06 2.91 6.51E-04 1.91 7.52E-06 2.89 1.19E-03 0.87 0.05%
average – 2.82 – 2.00 – 3.03 – 2.24 –

k = 3, Ck = 0.001

400 1.06E-02 – 1.03E-01 – 3.10E-02 – 5.15E-01 – 93.94%
1600 1.16E-03 3.19 3.92E-02 1.40 1.20E-03 4.69 2.16E-02 4.58 23.48%
6400 1.05E-04 3.47 3.55E-03 3.47 1.15E-04 3.39 4.36E-03 2.31 6.34%
25600 7.41E-06 3.82 3.80E-04 3.23 9.13E-06 3.66 4.64E-04 3.23 1.36%
102400 5.62E-07 3.72 6.18E-05 2.62 6.22E-07 3.88 9.08E-05 2.35 0.16%
average – 3.57 – 2.81 – 3.82 – 3.05 –

Example 2. Consider the two-dimensional nonlinear scalar Burgers equation

(59) ut + (
u2

2
)x + (

u2

2
)y = 0, 0 ≤ x, y ≤ 2π,

with the initial condition u(x, y, 0) = 0.5+ sin(x+ y) and periodic boundary condi-
tions in both directions. For this test case, we use the same mesh as in Example 1.
Table 2 gives the L1 and L∞ errors and numerical orders of accuracy at t = 0.25
when the solution is smooth. Similar to the previous example, we can see that the
WENO limiter keeps the designed order of accuracy, even when a large percentage
of good cells are artificially identified as troubled cells.

At t = 0.5, a shock begins to appear in the solution. We plot the solution sur-
faces at t = 0.75 with N = 25600 points in Figure 6. We can see that the schemes
give non-oscillatory shock transitions for this problem.

Example 3. Let us consider the two-dimensional Euler system which is given by
Equation (21). The initial condition is set to be ρ(x, y, 0) = 1 + 0.2 sin(x + y),
u(x, y, 0) = 0.7, v(x, y, 0) = 0.3 and p(x, y, 0) = 1, 0 ≤ x, y ≤ 2π. The boundary
conditions are periodic. γ = 1.4 is used in the computation. The exact solution is
ρ(x, y, t) = 1 + 0.2 sin(x + y − t), u(x, y, t) = 0.7, v(x, y, t) = 0.3 and p(x, y, t) = 1.
Table 3 gives the L1 and L∞ errors and numerical orders of accuracy of the density
at t = 2π. Similar to the previous example, we can see that the WENO limiter
keeps the designed order of accuracy.

Example 4. Consider the two-dimensional vortex evolution problem, which is
an idealized problem for the two-dimensional Euler equations. The setup of this
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Table 3. 2D Euler equation with ρ(x, y, 0) = 1 + 0.2 sin(x + y),
u(x, y, 0) = 0.7, v(x, y, 0) = 0.3 and p(x, y, 0) = 1 at t = 2π.

number of DG without limiter DG with WENO limiter

points L
1 norm order L

∞ norm order L
1 norm order L

∞ norm order percentage

k = 1, Ck = 0.01

400 2.78E-02 – 8.91E-02 – 5.74E-02 – 1.24E-01 – 14.41%
1600 3.80E-03 2.87 1.91E-02 2.22 4.87E-03 3.56 2.29E-02 2.44 1.31%
6400 6.45E-04 2.56 4.91E-03 1.96 6.49E-04 2.91 4.90E-03 2.22 0.00%
25600 1.42E-04 2.19 1.61E-03 1.60 1.42E-04 2.20 1.61E-03 1.60 0.00%
102400 3.34E-05 2.09 5.26E-04 1.62 3.34E-05 2.09 5.26E-04 1.62 0.00%
average – 2.41 – 1.84 – 2.66 – 1.96 –

k = 2, Ck = 0.0006

400 4.42E-03 – 2.74E-02 – 9.23E-03 – 5.95E-02 – 61.11%
1600 4.30E-04 3.36 4.11E-03 2.74 8.57E-04 3.43 4.24E-03 3.81 23.50%
6400 4.35E-05 3.30 5.81E-04 2.82 6.28E-05 3.77 6.43E-04 2.72 1.44%
25600 5.24E-06 3.05 7.67E-05 2.92 5.24E-06 3.58 7.67E-05 3.07 0.00%
102400 6.63E-07 2.98 1.23E-05 2.64 6.63E-07 2.98 1.23E-05 2.64 0.00%
average – 3.18 – 2.80 – 3.49 – 3.03 –

k = 3, Ck = 0.0001

400 1.30E-03 – 6.86E-03 – 2.37E-02 – 1.15E-01 – 84.85%
1600 6.45E-05 4.33 5.12E-04 3.74 2.78E-04 6.41 3.61E-03 5.00 12.88%
6400 3.45E-06 4.23 4.41E-05 3.54 3.55E-06 6.29 4.41E-05 6.36 0.00%
25600 2.14E-07 4.01 2.61E-06 4.08 2.14E-07 4.05 2.61E-06 4.08 0.00%
102400 1.39E-08 3.95 2.97E-07 3.14 1.39E-08 3.95 2.97E-07 3.14 0.00%
average – 4.13 – 3.66 – 5.17 – 4.76 –

Table 4. 2D Euler system. The smooth vortex evolution problem
at t = 0.2.

number of DG without limiter DG with WENO limiter

points L
1 norm order L

∞ norm order L
1 norm order L

∞ norm order percentage

k = 1, Ck = 0.01

400 4.18E-03 – 1.13E-01 – 6.41E-03 – 2.41E-01 – 15.04%
1600 1.11E-03 1.92 4.38E-02 1.36 3.32E-03 0.95 1.87E-01 0.37 7.93%
6400 4.20E-04 1.40 2.45E-02 0.84 8.81E-04 1.91 4.55E-02 2.04 3.72%
25600 1.09E-04 1.94 6.24E-03 1.98 1.35E-04 2.71 1.07E-02 2.09 0.92%
102400 3.07E-05 1.83 2.53E-03 1.30 3.12E-05 2.11 3.21E-03 1.73 0.21%
average – 1.75 – 1.38 – 2.00 – 1.66 –

k = 2, Ck = 0.001

400 3.76E-03 – 7.30E-02 – 7.91E-03 – 3.26E-01 – 30.91%
1600 5.94E-04 2.66 1.88E-02 1.95 2.58E-03 1.62 1.24E-01 1.39 20.89%
6400 9.29E-05 2.68 3.37E-03 2.48 1.43E-04 4.17 7.00E-03 4.15 7.50%
25600 1.56E-05 2.57 1.05E-03 1.68 1.76E-05 3.03 1.11E-03 2.65 2.23%
102400 2.37E-06 2.72 2.46E-04 2.09 2.72E-06 2.69 2.87E-04 1.96 0.45%
average – 2.65 – 2.06 – 3.02 – 2.71 –

k = 3, Ck = 0.001

400 4.30E-03 – 8.02E-02 – 1.07E-02 – 3.49E-01 – 37.14%
1600 5.06E-04 3.09 1.44E-02 2.48 2.51E-03 2.09 1.14E-01 1.62 14.18%
6400 4.38E-05 3.53 2.15E-03 2.74 5.84E-05 5.42 6.96E-03 4.03 1.87%
25600 2.94E-06 3.90 1.99E-04 3.43 3.02E-06 4.27 2.55E-04 4.77 0.05%
102400 2.38E-07 3.63 2.11E-05 3.24 2.36E-07 3.68 1.82E-05 3.81 0.00%
average – 3.57 – 3.00 – 4.06 – 3.73 –

problem is: The mean flow is ρ = 1, p = 1 and (u, v) = (1, 1) (diagonal flow).
We add, to this mean flow, an isentropic vortex (perturbation in (u, v) and the
temperature T = p

ρ , no perturbation in the entropy S = p
ργ ):

(δu, δv) =
ǫ

2π
e0.5(1−t2)(−ȳ, x̄), δT = −

(γ − 1)ǫ2

8γπ2
e1−r2 , δS = 0,(60)

where (x̄, ȳ) = (x − 7, y − 7), r2 = x̄2 + ȳ2, and the vortex strength ǫ = 5. The
computational domain is taken as [0, 14] × [0, 14], extended periodically in both
directions. It is clear that the exact solution of the Euler equation with the above
initial and boundary conditions is just the passive convection of the vortex with
the mean velocity. Table 4 gives the L1 and L∞ errors and numerical orders of
accuracy of the density at t = 0.2. We can see that the WENO limiter maintains
the designed order of accuracy of the original DG method.
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Example 5. We consider the double Mach reflection problem. The computational
domain is set to be [0, 4] × [0, 1]. The reflection wall lies at the bottom of the
computational domain starting from x = 1

6 . Initially a right-moving Mach 10

shock is positioned at x = 1
6 , y = 0 and makes a 60◦ angle with the x-axis. For

the bottom boundary, the exact post-shock condition is imposed for the part from
x = 0 to x = 1

6 , and a reflective boundary condition is used for the rest. At the
top boundary of the computational domain, the flow values are set to describe the
exact motion of the Mach 10 shock. The initial pre-shock condition is

(ρ, p, u, v) = (1.4, 1, 0, 0),(61)

and the post-shock condition is

(ρ, p, u, v) = (8, 116.5, 8.25 cos(30◦),−8.25 sin(30◦)).(62)

We take Ck = 0.01 in the troubled cell indicator. For the second order scheme (P 1),
we use N = 400000 totally random points. For the third order scheme (P 2), we use
N = 1664000 random points. We show a sample mesh with N = 1000 points to
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Figure 7. Double Mach reflection problem. N = 1000 random
points and the corresponding Voronoi diagram.
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Figure 8. Double Mach reflection problem. Mesh subdivision.
Top: second order (k = 1) scheme. Bottom: third order (k = 2)
scheme.
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illustrate our mesh subdivisions. Figure 7 shows N = 1000 random points and the
corresponding Voronoi diagram. Figure 8 shows mesh subdivisions of these points
for different orders of schemes. The density contours at t = 0.2 are plotted in Figure
9. The “zoomed-in” pictures around the double Mach stem to show more details
are given in Figure 10. In all the plots, we use 29 contours equally distributed
from ρ = 1.3 to 23. We can see that the resolution around the double Mach region
improves with an increasing k.

Figure 9. Double Mach reflection problem. Top: second order
(k = 1) scheme with 400000 random points. Bottom: third order
(k = 2) scheme with 1664000 random points.

Figure 10. Zoomed-in figure. Double Mach reflection problem.
Left: second order (k = 1) scheme with 400000 random points.
Right: third order (k = 2) scheme with 1664000 random points.

Example 6. Let us consider the problem of a shock passing a backward facing
corner (diffraction). The setup is the following: the computational domain is the
union of [0, 1] × [6, 11] and [1, 13] × [0, 11]; the initial condition is a pure right-
moving Mach 5.09 shock, initially located at x = 0.5 and 6 6 y 6 11, moving into
undisturbed air ahead of the shock with a density of 1.4 and pressure of 1. The
boundary conditions are inflow at x = 0, 6 6 y 6 11, outflow at x = 13, 0 6 y 6 11
and 1 6 x 6 13, y = 0, and reflective at the walls 0 6 x 6 1, y = 6 and x = 1,
0 6 y 6 6. At the top boundary, we use the exact solution of a free-moving Mach
5.09 shock. We choose Ck = 0.01 in this example. N = 219200 random points are
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used in the second order scheme (P 1). N = 493200 random points are used in the
third order scheme (P 2). The density at t = 2.3 is presented in Figure 11. We use
20 equally spaced contour lines from 0.066227 to 7.0668.

Figure 11. Shock diffraction problem. Left: second order (k =
1) scheme with 219200 random points. Right: third order (k = 2)
scheme with 493200 random points.

6. Concluding remarks

In this paper, we adapt a simple WENO limiter [27] original designed for DG
method on the triangular mesh to our previous work in [9] for solving hyperbolic
conservation laws on a set of two dimensional arbitrarily distributed points. As
in [9], a polygonal mesh can be constructed based on the given random points,
in which each cell has arbitrary number of edges and can be in any shape. The
extended WENO limiter is designed on such a complex polygonal mesh. The goal
is to simultaneously maintain uniform high order accuracy of the original method
in smooth regions and control spurious numerical oscillations near discontinuities.
Also, we extend the maximum-principle-satisfying limiter for the scalar case and
the positivity-preserving limiter for the Euler system case in [20, 21, 25, 24] to our
method on polygonal mesh. On each time level, we first use the WENO limiter
to reconstruct the solutions on those troubled cells, and then use the maximum-
principle-satisfying limiter or the positivity-preserving limiter to further modify the
solution polynomials in each cell if necessary. Finally, we replace the solution on
each cell with the new solution polynomial, and perform the normal DG proce-
dure to march to the next time level. Since the WENO limiter uses information
only from immediate neighbors, it is very simple to implement and can maintain
the compactness of the original method. Numerical results are also provided to
demonstrate the performance of these limiters.
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