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PRECONDITIONERS FOR PDE-CONSTRAINED OPTIMIZATION

PROBLEMS WITH BOX CONSTRAINTS: TOWARDS HIGH

RESOLUTION INVERSE ECG IMAGES

OLE LØSETH ELVETUN AND BJØRN FREDRIK NIELSEN

Abstract. By combining the Minimal Residual Method and the Primal-Dual Active Set algo-
rithm, we derive an efficient scheme for solving a class of PDE-constrained optimization problems

with inequality constraints. The approach studied in this paper addresses box constrains on the
control function, and leads to an iterative scheme in which linear optimality systems must be solved
in each iteration. We prove that the spectra of the associate saddle point operators, appearing
in each iteration, are well behaved: Almost all the eigenvalues are contained in three bounded

intervals, not containing zero. In fact, for severely ill-posed problems, the number of eigenvalues
outside these three intervals are of order O(ln(α−1)) as α → 0, where α is the parameter em-
ployed in the Tikhonov regularization. Krylov subspace methods are well known to handle such
systems of algebraic equations very well, and we thus obtain a fast method for PDE-constrained

optimization problems with box constraints. In contrast to previous papers, our investigation is
not targeted at analyzing a specific model, but instead covers a rather large class of problems.
Our theoretical findings are illuminated by several numerical experiments. An example covered by
our theoretical findings, as well as cases not fulfilling all the assumptions needed in the analysis,

are presented. Also, in addition to computations only involving synthetic data, we briefly explore
whether these new techniques can be applied to real world problems. More specifically, the algo-
rithm is tested on a medical imaging problem with clinical patient data. These tests suggest that

the method is fast and reliable.

Key words. PDE-constrained optimization, primal-dual active set, minimal residual method,
real world applications.

1. Introduction

In the field of optimization many researchers have studied the minimization of
quadratic cost-functionals with constraints given by partial differential equations.
Several books have been written about this subject, see e.g [3, 5, 7, 15]. By using
the Lagrange multiplier technique, one might derive a system of equations which
must be satisfied by the optimal solution. After suitable discretization, this system,
which typically is a saddle-point problem, can be solved by an all-at-once method.
That is, a scheme in which the primal, dual and optimality conditions are solved
in a fully coupled manner.

Such optimality systems are often ill-posed, which leads to bad condition num-
bers for the discretized systems, and regularization techniques must therefore be
invoked. Typically, if Tikhonov regularization is employed, then the spectral con-
dition number of the system is of order O(α−1), where α > 0 is the regularization
parameter. Hence one might expect that, for small values of α, the number of
iterations required to solve the system, using e.g. Krylov subspace methods, would
be large. However, in [11] the authors prove that the spectrum of the optimality
system consists of three bounded intervals and a very limited number of isolated
eigenvalues outside these three intervals. This result is established for a quite broad
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class of PDE constrained optimization problems and imply that the Minimal Resid-
ual Method (MINRES) will handle the associated algebraic systems very well. In
fact, if the problem at hand is severely ill-posed, then the required number of iter-
ations cannot grow faster than O([ln(α−1)]2) as α → 0, and in practice one often
observes iterations counts of order O(ln(α−1)).

Many real world problems are not only modeled by PDEs, but also involve
inequality constraints. These are often given in the form of box constraints on
the control function. In this paper we explore whether the method and analysis
presented in [11] can be extended to handle such problems adequately.

Inequality constraints typically require the use of an iterative method to solve the
overall optimization task. In consequence, since the linear systems arising in each
iteration typically are ill-posed, we need to solve a sequence of algebraic systems
with bad condition numbers.

For some specific state equations, such problems have been solved efficiently, see
e.g. [4, 14]. These efficient techniques also combines the cherished PDAS method
in [2] with different numerical techniques for solving saddle-point problems [1]. We
will consider such optimization tasks in a more abstract and general setting. More
precisely, our analysis concerns the class of problems that can be written on the
form

(1) min
(v,u)∈L2(Ωv)×U

{
1

2
∥Tu− d∥2Z +

1

2
α∥v∥2L2(Ωv)

}
,

subject to

Au+Bv = 0,(2)

v(x) ≥ 0 a.e. in Ωv,(3)

where

• L2(Ωv) is the control space,
• U is the state space, 1 ≤ dim(U) ≤ ∞, and
• Z is the observation space, 1 ≤ dim(Z) ≤ ∞.

We assume that U and Z are Hilbert spaces. Further, Ωv ⊂ Rn is the domain
the control function v is defined on, d is the given observation data, and α > 0 is
the regularization parameter. In Section 2 we will state the assumptions we need
on the linear operators A,B and T . Also, there exists a solution to the problem
(1)-(3) under fairly loose assumptions. For α > 0, the solution is unique, see e.g.
[5] for details.

For the problem (1)-(2), without the inequality constraint v(x) ≥ 0, it was proven
in [11] that for a sound discretization of the associated KKT system

(4)

αI 0 B∗

0 T ∗T A∗

B A 0


︸ ︷︷ ︸

=Bα

vu
w

 =

 0
T ∗d
0

 ,
the eigenvalues of the discretized operator Bh

α satisfies

(5) sp(Bh
α) ⊂ [−b,−a] ∪ [cα, 2α] ∪ {λ1, λ2, ..., λN(α)} ∪ [a, b].

Here, a, b and c are constants, independent of the regularization parameter α,
and N(α) = O(ln(α−1)) for severely ill-posed problems. Krylov subspace methods
handle problems with spectra on the form (5) very well, and, since we have an
indefinite system, the Minimal Residual (MINRES) method [12] is well suited for
solving (4).
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Based on this discussion, we can formulate the objectives of this paper as follows:

• We will combine the PDAS method, presented in [2], with the MINRES
method used in [11] to obtain a standard recipe for solving problems of
the form (1)-(3). We prove that in each iteration of the PDAS algorithm
we obtain a reduced system with a spectrum on the form (5), which we
then can solve efficiently with the MINRES algorithm. Our derivation of
the reduced systems, arising in the PDAS method, is heavily inspired by
[4, 14]. Moreover, in the numerical experiments section, we show how to
apply Riesz maps as preconditioners to solve some model problems.

• Real world problems often involve highly unstructured meshes and noisy
data. Our second objective is to undertake a numerical investigation of
such a real world PDE-constrained optimization problem, known as the
inverse problem of electrocardiography (ECG). The aim is to identify a heart
infarct using ECG recordings and PDE-constrained optimization with box
constraints. This problem has an H1-control function, and is therefore not
supported by the analysis of (1)-(3). Nevertheless, our scheme converged,
and seemed to improve the quality of the solution - compared to the solution
without box constraints.

For practical PDE-constrained optimization problems, the condition numbers of
the discretized KKT systems is known to increase significantly, not only as the
regularization parameter α → 0, but also when the mesh parameter h > 0 de-
creases. We will not discuss this generally, but for the synthetic model problem, we
will explain how to handle the h-dependency by invoking Riesz maps as multigrid
preconditioners. We then obtain an algorithm robust with respect to h and which
grows moderately in iteration numbers as α→ 0.

Remark 1.1. We consider the prototypical inequality constraint v(x) ≥ 0, since
the aim of this paper is to show that the linear systems occurring in each iteration
of the PDAS algorithm can be efficiently solved with the MINRES method, and the
simple constraint v(x) ≥ 0 makes the derivation and analysis more transparent. To
see how to handle the more general box constraints

vl(x) ≤ v(x) ≤ vu(x),

see e.g. [16, 14]. Also note that the requirement v(x) ≥ 0 occurs in many appli-
cations, e.g., when the control function v measures density, temperature, mass or
pressure.

2. Assumptions

We assume that:

A1 : A : U → U is bounded and linear1

A2 : A−1 exists and is bounded.
A3 : B : L2(Ωv) → U is bounded and linear.
A4 : T : U → Z is bounded and linear.
A5 : The optimization problem (1)-(2) is severely ill-posed for α = 0.

As shown in [11], if the assumptions listed above hold, then for a sound discretiza-
tion of the KKT system (4), the eigenvalues of this discretized system satisfies

1Assume that the state equation (2) is a PDE. Then, A is typically a mapping from U onto its

dual space U ′, and hence A1 is not fulfilled. This can, nevertheless, easily be rectified by applying

the inverse Riesz map R−1
U : U ′ → U to (2) and thereby obtain the operator R−1

U A : U → U . In

this context, one might consider R−1
U to be a preconditioner. We will return to this issue in the

example sections.
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(5). If (4) is well posed for α = 0, then the numerical solution of this problem is
”straightforward” and regularization is not needed. We will focus on the challenging
case, i.e. severely ill-posed systems.

3. KKT system

We will now derive the algorithm for solving (1)-(3). The first thing we need, is
the optimality system, which can be obtained from the Lagrangian

(6) L(v, u, w, λ) = 1

2
∥Tu− d∥2Z +

1

2
α∥v∥2L2(Ωv)

+ (w,Au+Bv)U − (λ, v)L2(Ωv).

The standard optimality theory states that if (v∗, u∗) is a solution of (1)-(3),
then there exist duality functions (w∗, λ∗) such that the Fréchet derivatives of (6),
with respect to v, u and w,⟨

∂L
∂v

, ϕ

⟩
= (αv, ϕ)L2(Ωv) + (Bϕ,w)U − (λ, ϕ)L2(Ωv), ∀ϕ ∈ L2(Ωv),⟨

∂L
∂u

, ϕ

⟩
= (Tu− d, Tϕ)Z + (Aϕ,w)U , ∀ϕ ∈ U,⟨

∂L
∂w

, ϕ

⟩
= (Au+Bv, ϕ)U , ∀ϕ ∈ U,

should all be equal to zero at the optimal point (v∗, u∗, w∗, λ∗). In addition, the
conditions given by

(λv)(x) = 0,(7)

λ(x), v(x) ≥ 0,(8)

should also be satisfied at this optimal point. By writing the Fréchet derivatives
on block form, we get the well known KKT system

(9)

αI 0 B∗

0 T ∗T A∗

B A 0

vu
w

 =

 λ
T ∗d
0

 ,
which we combine with (7)-(8) to obtain the full optimality system. Note that,
since we have a convex problem, a solution (v∗, u∗, w∗, λ∗) of (7)-(9) will also be a
solution of (1)-(3).

4. Primal-dual active set method

To solve our optimization problem, we will follow the primal-dual technique
introduced in [2], and later used in [4] and [14].

Thus, we start by noting that (7)-(8) are equivalent to the condition

λ+min(0, cv − λ) = 0 ∀c > 0.

This motivates the PDAS algorithm, where we can define the active A and inactive
I sets as follows

A = {x ∈ Ωv : (cv − λ)(x) < 0},(10)

I = Ωv \ A,(11)

where Ωv is the domain of the control v. We can now formulate the PDAS method
for solving our optimality problem (1)-(3). In the iterative procedure, we need to
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solve systems on the form (9) at each step, i.e., solve

(12)

αI 0 B∗

0 T ∗T A∗

B A 0

vkuk
wk

 =

 λk

T ∗d
0

 ,
together with

λk(x) = 0 on Ik,(13)

vk(x) = 0 on Ak.(14)

Note that the unknowns are vk, uk, wk and λk, and hence there are unknowns
on both sides of equation (12). Here, Ak and Ik are the active and inactive sets
associated with the kth iteration of the PDAS algorithm, see steps 9 and 10 in
Algorithm 1.

In [2] it is shown that the primal-dual active set method provides a local mini-
mum if the active set stays unchanged in two consecutive iterations. We can now,
schematically, present the PDAS algorithm, see Algorithm 1.

Algorithm 1 Primal-dual active-set method

1: Choose the initial set A0 of active constraints
2: I0 = Ωv \ A0

3: for k = 0, 1, 2,... do
4: if k > 0 and Ak = Ak−1 then
5: STOP (algorithm converged)
6: else
7: Solve (12) - (14)
8: end if
9: Ak+1 = {x ∈ Ωv : (cvk − λk)(x) < 0}

10: Ik+1 = Ωv \ Ak+1

11: end for

Although the algorithm is in place, it is possible to reduce the CPU cost of solving
(12) - (14). The idea is based on the fact that, at each iteration, we know that the
control parameter vk is zero on the active domain (14), and similarly, we know that
the Lagrange multiplier λk is zero on the inactive domain (13). Hence, it intuitively
seems possible to restrict the control vk to the inactive domain. Similarly, we want
to restrict the Lagrange multiplier λk to the active domain. By restricting these
functions, the optimality system to be solved becomes smaller, in the sense of fewer
indices in the corresponding discretized KKT equations, and hence it will be faster
to solve.

5. Reduced KKT system

We will now first derive a linear system which only involves the restrictions of
vk and λk to the inactive and active domains, respectively. Thereafter, we analyze
whether assumptions A1-A5, see Section 2, are inherited by this system.

Let q ∈ L2(Ωv) be arbitrary. We may split q ∈ L2(Ωv),

(15) q(x) =

{
qI

k

(x) if x ∈ Ik,

qA
k

(x) if x ∈ Ak.
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where

qI
k

= q|Ik ,

qA
k

= q|Ak .

Let us also introduce the notation

L2(Ik) = {q|Ik : q ∈ L2(Ωv)},(16)

L2(Ak) = {q|Ak : q ∈ L2(Ωv)},

and note that

qI
k

∈ L2(Ik),

qA
k

∈ L2(Ak).

To derive the reduced KKT system, we need an operator which maps the re-

stricted function vI
k

of the control vk into the entire control space L2(Ωv). This
operator must map a function defined on the domain Ik into a function defined on
the domain Ωv by employing a zero extension. We will denote this operator by

(17) EIk

: L2(Ik) → L2(Ωv).

Note that, for any r ∈ L2(Ik),(
EIk

r
)
(x) = r(x) for all x ∈ Ik,(18) (

EIk

r
)
(x) = 0 for all x ∈ Ak.(19)

We also need a similar operator EAk

for the Lagrange multiplier λk. That is, an

operator which maps the restricted version λA
k

of λk into the full domain Ωv, by
a zero extension. Formally, this is defined as

EAk

: L2(Ak) → L2(Ωv),

where this mapping satisfies(
EAk

r
)
(x) = r(x) for all x ∈ Ak,(20) (

EAk

r
)
(x) = 0 for all x ∈ Ik,(21)

which holds for any r ∈ L2(Ak). From (18)-(19) and (20)-(21), we can define the
inner products of the ”restricted” spaces L2(Ik) and L2(Ak) as

(q, r)L2(Ik) = (EIk

q, EIk

r)L2(Ωv),(22)

(q, r)L2(Ak) = (EAk

q, EAk

r)L2(Ωv).(23)

By construction, Ik ∩Ak = ∅, and (19) and (21) therefore imply that the ranges

of EIk

and EAk

are orthogonal sets in L2(Ωv),

(24) R
(
EIk

)
⊥ R

(
EAk

)
.

Also note that EIk

and EAk

are one-to-one, but not onto. Due to (18)-(19) and
(20)-(21), all q ∈ L2(Ωv) satisfy

(25) q = EIk

qI
k

+ EAk

qA
k

,

cf. the splitting (15).
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Recall that the linear operator B maps the control in L2(Ωv) into the state space
U , see sections 1 and 2. We can now use (25) to conveniently split this mapping:

Bq = BEIk

qI
k

+BEAk

qA
k

= BIk

qI
k

+BAk

qA
k

,(26)

where

BIk

= BEIk

: L2(Ik) → U,(27)

BAk

= BEAk

: L2(Ak) → U,(28)

With these operators at hand, we are now able to simplify the optimality system
(12) - (14). We start with formulating the following lemma.

Lemma 5.1. Let EIk

and EAk

be the extension operators introduced in (18)-(19)
and (20)-(21), respectively. Then

(i) q = EIk

qI
k

+ EAk

qA
k

for any q ∈ L2(Ωv),

(ii) Bq = BIk

qI
k

+BAk

qA
k

for any q ∈ L2(Ωv),

(iii) B∗ = EIk

[BIk

]∗ + EAk

[BAk

]∗,

where BIk

and BAk

are defined in (27) and (28), respectively.

Proof. (i) was established in the derivation leading to (25).
(ii) was established in the derivation leading to (26).
(iii) can be verified has follows. First, (18)-(19) and (20)-(21) imply that, for any

q, r ∈ L2(Ωv),

(qI
k

, rI
k

)L2(Ik) = (q, EIk

rI
k

)L2(Ωv),

(qA
k

, rA
k

)L2(Ak) = (q, EAk

rA
k

)L2(Ωv).

Consequently, for arbitrary q ∈ L2(Ωv) and s ∈ U ,

(q,B∗s)L2(Ωv) = (Bq, s)U

= (BIk

qI
k

+BAk

qA
k

, s)U

=
(
qI

k

, [BIk

]∗s
)
L2(Ik)

+
(
qA

k

, [BAk

]∗s
)
L2(Ak)

=
(
q, EIk

[BIk

]∗s
)
L2(Ωv)

+
(
q, EAk

[BAk

]∗s
)
L2(Ωv)

=
(
q,
{
EIk

[BIk

]∗ + EAk

[BAk

]∗
}
s
)
L2(Ωv)

.

Hence, it follows that B∗ = EIk

[BIk

]∗+EAk

[BAk

]∗, which finishes the proof.
�

Assume that vk, uk, wk and λk satisfy (12)-(14), i.e.

αvk +B∗wk = λk,(29)

T ∗Tuk +A∗wk = T ∗d,(30)

Bvk +Auk = 0,(31)

λk = 0 on Ik,(32)

vk = 0 on Ak.(33)
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From properties (i) and (iii) in Lemma 5.1 we find that equation (29) may be
written on the form

αvk +B∗wk = αEIk

vI
k

+ αEAk

vA
k

+ EIk

[BIk

]∗wk + EAk

[BAk

]∗wk

= EIk

λI
k

+ EAk

λA
k

= λk.

Since λI
k

= 0 and vA
k

= 0,

αEIk

vI
k

+ EIk

[BIk

]∗wk + EAk

[BAk

]∗wk = EAk

λA
k

or

(34) EIk
{
αvI

k

+ [BIk

]∗wk
}
+ EAk

{
[BAk

]∗wk − λA
k
}
= 0.

But recall that the ranges of EIk

and EAk

are orthogonal, cf. (24), and that these
operators are one-to-one. Consequently, we find that (34) can be split into two
equations

αvI
k

+ [BIk

]∗wk = 0,

[BAk

]∗wk − λA
k

= 0,

which implies that (29) can be replaced with these two expressions.
Next, we can use property (ii) in Lemma 5.1 to express equation (31) as

Bvk +Auk = BIk

vI
k

+BAk

vA
k

+Auk = 0

or

BIk

vI
k

+Auk = 0,

where we have used that vA
k

= 0.
The KKT system (29)-(33) can therefore be written on the form

αvI
k

+ [BIk

]∗wk = 0,

[BAk

]∗wk − λA
k

= 0,

T ∗Tuk +A∗wk = T ∗d,

BIk

vI
k

+Auk = 0,

Proposition 5.2. Assume that vk, uk, wk and λk solve (12)-(14). Then vI
k

=

vk|Ik , uk, wk and λA
k

= λk|Ak satisfyαIIk

0 [BIk

]∗

0 T ∗T A∗

BIk

A 0


︸ ︷︷ ︸

=Bk
α

vIk

uk

wk

 =

 0
T ∗d
0

 ,(35)

λA
k

= [BAk

]∗wk.(36)

With other words, in each iteration of the PDAS method we can solve the block
system (35) and thereafter use the straightforward update (36) for the Lagrange
multiplier.
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6. Spectrum of the reduced KKT system

Assume that assumptions A1-A5 hold, see Section 2. In the introduction we
mentioned that for a sound discretization of (4), associated with (1)-(2), without
the inequality constraint (3), the discrete operator Bh

α has a spectrum of the form
(5). This issue is analyzed in detail in [11]. Krylov subspace solvers therefore
handle (4) very well. We have shown in the derivation leading to (35) that we get
KKT systems very similar to (4) in each iteration of the PDAS algorithm. One
might therefore hope that the MINRES method also is a fast solver for the reduced
system (35). This issue can be investigated by exploring whether the operators
appearing in Bk

α, defined in (35), also satisfy assumptions A1-A5. In short, are
these properties, assumed to hold for Bα, inherited by Bk

α? If this is the case, then
the spectrum of Bk

α also will consist of three bounded intervals with a few isolated
eigenvalues, i.e. be of the form (5), and Krylov solvers will handle (35) well.

We start by pointing out that (35) is the KKT system associated with the fol-
lowing optimization problem:

(37) min
(vIk ,u)∈L2(Ik)×U

{
1

2
∥Tu− d∥2Z +

1

2
α∥vI

k

∥2L2(Ik)

}
,

subject to

(38) Au = −BIk

vI
k

= −BEIk

vI
k

,

where L2(Ik), EIk

and BIk

are defined in the previous section.
We note that (37)-(38) is on the same form as (1)-(2), except that B in (2) has

been replaced with BIk

= BEIk

. Since the operators A and T are unchanged in the
reduced problem (37)-(38), we immediately conclude that (35) fulfills assumptions
A1, A2, and A4. It remains to explore A3 and A5.

Note that assumption A3 no longer concerns the operator B, but instead the
operator

BIk

= BEIk

: L2(Ik) → U,

cf. the derivation leading to (27). Thus, we must prove that

EIk

: L2(Ik) → L2(Ωv),

see (17)-(19), is a bounded and linear operator. It is obvious that such an extension
operator is linear, and from (18)-(19) and (22) we find that

∥EIk

r∥L2(Ωv) = ∥r∥L2(Ik) for any r ∈ L2(Ik),

and therefore

(39) ∥EIk

∥ = sup
r∈L2(Ik)

∥EIk

r∥L2(Ωv)

∥r∥L2(Ik)

= 1.

Since B is assumed to be bounded and linear, we can conclude that BIk

is linear
and bounded, i.e. (35) satisfies assumption A3.

Although we assumed that (1)-(3) is ill-posed without regularization α = 0, see
assumption A5 in Section 2, this may not be the case for (37)-(38) (with α = 0).
For example, if the inactive set Ik only contains one element/index, then (37)-(38)
typically will be well-posed even with zero regularization. Hence, one can in general
not assure that A5, assumed to be satisfied by B0, is inherited by Bk

0 . There are
two possibilities:
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• If, luckily, (37)-(38) is well posed for α = 0, then regularization is not
needed, and the effective numerical solution of this linear system with the
MINRES method follows from standard theory.

• If A5 is inherited by (37)-(38), then A1-A5 are satisfied, and a sound
discretization Bk,h

α of Bk
α will have eigenvalues satisfying

(40) sp(Bk,h
α ) ⊂ [−b,−a] ∪ [cα, 2α] ∪ {λ1, λ2, ..., λN(α)} ∪ [a, b].

(Of course, the constants in this expression may differ from those in (5)).
From this result, and the Chebyschev polynomial analysis presented in [11],
it follows that the number of MINRES iterations needed to solve (35) can
not grow faster than of order O([ln(α−1)]2) as α→ 0. Moreover, in practi-
cal computations one often observes iterations counts of order O(ln(α−1)).
(The latter issue is also discussed from a theoretical point of view in [11]).

Definition 6.1 (“Sound discretization”). A ”sound discretization“ of Bk
α means

that also the discrete problem should satisfy A1 − A4, with operator norms which
are bounded independently of the mesh parameter h. In addition, a discrete version

of A5 should hold, i.e. that the eigenvalues of Bk,h
0 satisfy

(41) |λi(Bk,h
0 )| ≤ c̃e−C̃i, i = 1, ..., n,

where c̃, C̃ are positive constants.

Remark 6.2. For finite dimensional problems, there obviously always exist c̃ and
C̃ such that (41) holds. Our results are therefore only of relevance for problems
where

c̃e−C̃n

is extremely close to zero. That is, much smaller than typical choices of the size of
the regularization parameter α. The latter will typically be the case if an ill-posed
problem is discretized.

Theorem 6.3. Let Bk
α be the operator defined in (35). Assume that assumption

A5 is inherited by (37)-(38). Then, for every α > 0 and for a sound discretization
Bk,h
α of Bk

α, in the sense of Definition 6.1, the spectrum of the associated discretized
operator obeys

sp(Bk,h
α ) ⊂ [−b,−a] ∪ [cα, 2α] ∪ {λ1, λ2, ..., λN(α)} ∪ [a, b].

Here, a, b, and c are positive constants independent of α and N(α) = O(ln(α−1)).

Since the operators appearing in Bk
α fulfill assumptions A1-A5, the proof of this

theorem is identical to the analysis presented in [11], and therefore omitted.
We conclude, at least theoretically, that the MINRES algorithm is well suited for

solving the KKT system (35) appearing in each iteration of the PDAS algorithm
applied to the box constrained optimization problem (1)-(3). We will illuminate
these findings below with numerical experiments.

7. Example 1

In our first model problem we define

Ω = (0, 1)× (0, 1),

Ωv =

(
1

4
,
3

4

)
×
(
1

4
,
3

4

)
,



PRECONDITIONERS FOR PDE-CONSTRAINED OPTIMIZATION PROBLEMS 945

and consider the minimization problem

(42) min
(v,u)∈L2(Ωv)×H1(Ω)

{
1

2
∥Tu− d∥2L2(∂Ω) +

1

2
α∥v∥2L2(Ωv)

}
subject to

−∆u+ u =

{
−v if x ∈ Ωv,

0 if x ∈ Ω \ Ωv,
(43)

∇u · n = 0 on ∂Ω,(44)

v(x) ≥ 0 a.e.(45)

Here, T denotes the trace operator T : H1(Ω) → L2(∂Ω), which is well known to
bounded and linear, i.e. assumption A4 holds. Note that the state space U and
the observation space Z are

U = H1(Ω),(46)

Z = L2(∂Ω).(47)

We are thus trying to recover the function v ∈ L2(Ωv) from an observation of u
along the boundary ∂Ω of Ω.

Remark 7.1. We want to derive the optimality system associated with (42)-(45)
and to solve it with Algorithm 1. There are, however, two issues that must be
handled before we can employ the theoretical considerations presented above:

(a) In the generic state equation (2) we assumed that the operator A is a mapping
from the state space U onto the state space U , i.e. A : U → U . This differs
from standard PDE theory. For example, the weak form of (43) involves an

operator Â mapping H1(Ω) onto its dual space (H1(Ω))′.
(b) In order to solve the KKT system associated with (42)-(45) numerically, we

must discretize the operators by applying, e.g., the Finite Element Method
(FEM).

Both of these matters can be handled adequately, and we will discuss each of them in
some detail. It is, however, difficult to treat both problems simultaneously. There-
fore, we address them separately, starting with (a), which will provide us with a
suitable preconditioner for the continuous KKT system. Thereafter, we briefly com-
ment the discretization of the preconditioned optimality system, i.e. issue (b).

7.1. Preconditioner. Let us explore issue (a). As mentioned above, the discus-
sion of this matter will provide us with a suitable preconditioner for the KKT
system arising in each iteration of the PDAS algorithm applied to solve (42)-(45).

The variational form of (43)-(44) reads: Find u ∈ U = H1(Ω) such that∫
Ω

∇u · ∇ψ + uψ dx = −
∫
Ωv

vψ dx for all ψ ∈ U,

or

(48) ⟨Âu, ψ⟩ = −⟨B̂v, ψ⟩ for all ψ ∈ U,

where

Â : U → U ′, u→
∫
Ω

∇u · ∇ψ + uψ dx, ψ ∈ U,

B̂ : L2(Ωv) → U ′, v →
∫
Ωv

vψ dx, ψ ∈ U.



946 O. L. ELVETUN AND B. F. NIELSEN

We may write (48) more compactly, i.e.

Âu = −B̂v.

In order to obtain an equation of the form (2), where A : U → U and B : L2(Ωv) →
U , we can simply invoke the inverse R−1

U of the Riesz map RU : U → U ′, i.e.

R−1
U Âu = −R−1

U B̂v,

which is on the desired form since

A = R−1
U Â : U → U,(49)

B = R−1
U B̂ : L2(Ωv) → U.(50)

From standard theory for elliptic PDEs, it follows that A, A−1 and B are bounded.
We thus conclude that assumptions A1, A2 and A3 are satisfied.

Recall that, in each iteration of the PDAS method, we must solve the system
(35). We will now explore the form of this system for the present model problem.
In (35),

BIk

= BEIk

,

see the discussion leading to (27). In the present context, we may use (50) to write
this operator on the form

BIk

= R−1
U B̂EIk

= R−1
U B̂Ik

,(51)

where we define

B̂Ik

= B̂EIk

.

Equation (35) also involves the adjoint operators A∗ and [BIk

]∗ of A and BIk

.
According to a rather technical argument presented in [11],

A∗ = R−1
U Â′,(52)

[BIk

]∗ = [RL2(Ik)]
−1[B̂Ik

]′,(53)

where the ”′” notation is used to denote dual operators, and RL2(Ik) is the Riesz

map of L2(Ik) to its dual space, see (16).
From (49), (51), (52) and (53) it follows that the operator Bk

α in (35) can be
written on the form

Bk
α =

αIIk

0 [BIk

]∗

0 T ∗T A∗

BIk

A 0



=

 αII
k

0 [RL2(Ik)]
−1[B̂Ik

]′

0 T ∗T R−1
U Â′

R−1
U B̂Ik

R−1
U Â 0


=

[RL2(Ik)]
−1 0 0

0 R−1
U 0

0 0 R−1
U


︸ ︷︷ ︸

=[Rk]−1

αRL2(Ik) 0 [B̂Ik

]′

0 RUT
∗T Â′

B̂Ik

Â 0


︸ ︷︷ ︸

=B̂k
α

.(54)

We can therefore express

Bk
αp

k = b,
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cf. (35), appearing in each iteration of the PDAS algorithm, as[RL2(Ik)]
−1 0 0

0 R−1
U 0

0 0 R−1
U


αRL2(Ik) 0 [B̂Ik

]′

0 RUT
∗T Â′

B̂Ik

Â 0


vIk

uk

wk


=

[RL2(Ik)]
−1 0 0

0 R−1
U 0

0 0 R−1
U

 0
RUT

∗d
0

 .(55)

Written more compactly, this system reads

(56) [Rk]−1B̂k
αp

k = [Rk]−1b̂,

where

b̂ = Rkb =

 0
RUT

∗d
0

 ,
pk =

vIk

uk

wk

 .
Note that

B̂k
α : L2(Ik)× U × U →

(
L2(Ik)× U × U

)′
,

and that

[Rk]−1 :
(
L2(Ik)× U × U

)′ → L2(Ik)× U × U.

One may therefore regard [Rk]−1 to be a preconditioner for the (continuous) KKT
system arising in each iteration of the PDAS method applied to (42)-(45), see [9] for

further details. Note that the operators Rk, [Rk]−1, B̂k
α and [B̂k

α]
−1 are bounded.

Hence, a proper discretization of these mappings should yield a discretized approxi-
mation of (54) which is well behaved for any mesh parameter h > 0. This completes
the discussion of issue (a).

7.2. Discretization. Let us turn our attention towards the discretization matter
mentioned in (b), i.e. the discretization of (56). Recall that Bk

α = [Rk]−1B̂k
α only

operates on the inactive part of the control. Expressed with mathematical symbols,

Bk
α : L2(Ik)× U × U → L2(Ik)× U × U.

Hence, in each iteration of the PDAS method one may regard L2(Ik) to be the
control space, while the state space U and the observation space Z are defined in
(46)-(47), respectively.

As mentioned earlier, one may think of the inverse Riesz maps [RL2(Ik)]
−1 and

R−1
U , see (54), as preconditioners. Since U = H1(Ω), it follows that, in a FEM

setting,

• RL2(Ik) ”corresponds” to the mass matrix MIk,Ik

v associated with the in-

active set Ik ⊂ Ωv,
• RU ”corresponds” to the sum of the mass matrixM and the stiffness matrix
S associated with the domain Ω.

Concerning the details of the discretization of the operators in B̂k
α, defined in (54),

we refer to [9]. If we use the superscript notation ”Ik” and ” : ” to denote the
inactive indices and all the indices, respectively, the end result is as follows:
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• Â yields the matrix M + S, which is the sum of the mass and stiffness
matrix associated with the domain Ω.

• B̂Ik

yields the matrix MIk,:
v , where Mv is the mass matrix associated with

the sub domain Ωv of Ω.
• RUT

∗T yields the matrix M∂ , which is the mass matrix associated with
the boundary ∂Ω of the domain Ω.

• The functions v, u, w and d yields the corresponding vectors v̄, ū, w̄ and d̄.

Hence, the discretized system associated with (55) readsMIk,Ik

v 0 0
0 M + S 0
0 0 M + S

−1 αMIk,Ik

v 0 MIk,:
v

0 M∂ M + S

M :,Ik

v M + S 0


︸ ︷︷ ︸

B̄k
α

v̄Ik

ūk

w̄k


︸ ︷︷ ︸

p̄k

=

MIk,Ik

v 0 0
0 M + S 0
0 0 M + S

−1  0
M∂ d̄
0


︸ ︷︷ ︸

b̄

.(57)

We thus use the preconditioner

(58) [R̄k]−1 =

MIk,Ik

v 0 0
0 M + S 0
0 0 M + S

−1

.

We have now handled both issues (a) and (b), and derived a discretized precon-
ditioned KKT system (57). It remains to discretize the Lagrange multiplier update
(36). Since the procedure for doing this is very similar to the discussion of the KKT
system, we leave the technical details to Appendix 9. The end result is the update

(59) MAk,Ak

v λ̄A
k

=MAk,:w̄k,

where “ Ak ” denotes the active indices.
To summarize, in each iteration of the PDAS algorithm we must solve the pre-

conditioned system (57). The Lagrange multiplier λ̄A
k

is thereafter computed by
solving (59). Finally, the active and inactive sets are updated according to steps 9
and 10 in Algorithm 1.

7.3. Numerical setup.

• All code was written in the framework of cbc.block, which is a FEniCS-
based Python implemented library for block operators. See [8] for a full
description of cbc.block.

• We used the PyTrilinos package to compute an approximation of the pre-
conditioner (58), using algebraic multigrid (AMG) with a symmetric Gauss-
Seidel smoother and three smoothing sweeps. All tables containing itera-
tion counts for the MINRES method were generated with this approximate
inverse Riesz map. On the other hand, the eigenvalues of the KKT sys-
tems [R̄k]−1B̄k

α, see (57)-(58), were computed with an exact inverse [R̄k]−1

computed in Octave.
• We divided the domain of Ω = (0, 1)× (0, 1) into N ×N squares, and each
of these squares were divided into two triangles.
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• The following stopping criterion was used to stop the MINRES iteration
process

(60)
∥rkn∥
∥rk0∥

=

[
( B̄k

αp̄
k
n − b̄, [R̄k]−1[B̄k

αp̄
k
n − b̄] )

( B̄k
αp̄

k
0 − b̄, [R̄k]−1[B̄k

αp̄
k
0 − b̄] )

]1/2
< ϵ,

where ϵ is a small positive parameter. Note that the superindex k is the
iteration index for the ”outer” PDAS method, while the subindex n is the
iteration index for the ”inner” MINRES algorithm at each step of the PDAS
method.

• In the synthetic examples no noise was added to the input data d, see (1).
For the problem involving real world data, however, the input data was
given by clinical recordings and obviously contained a significantly amount
of noise.

• Synthetic observation data d, used in (42), was produced by setting

(61) v(x) = 3 sin(2πx1), x = (x1, x2) ∈ Ωv,

in (43). Thereafter the boundary value problem (43)-(44) was solved and
d was put equal to u|∂Ω. Note that the control (61) cannot be recovered
by solving the optimality system (42)-(45), due to the inequality constraint
v(x) ≥ 0. Hence, the problem formulation might seem peculiar, but as the
goal of this example is to study the iteration numbers for the reduced KKT
systems, it is desirable to have active constraints for all reasonable values
of the regularization parameter α. An experimental investigation suggested
the use of a control function of the form (61) to obtain nonempty active
sets for large values of the regularization parameter α (α ≈ 1).

7.4. Results. We are now ready to proceed to the actual experiments. In the
introduction we mentioned that the KKT system associated with (1)-(2), without
box constraints, has a spectrum of the form (5), as long as assumptions A1-A5 in
Section 2 are fulfilled. Recall that Theorem 6.3 asserts that such a spectrum will
be inherited by each subsystem in the PDAS algorithm, provided that assumption
A5 still holds. Figure 1 shows the spectrum of such a subsystem. It is definitely
on the form (40), and we expect that the MINRES method will solve the KKT
systems efficiently.

Table 1 contains the average number of MINRES iterations required to solve the
reduced KKT systems. That is, the average number of MINRES iterations needed
in each iteration of the PDAS algorithm. In these experiments we used a zero initial
guess in every run of the MINRES method, i.e. p̄k0 = 0, see (60).

In [11] the authors proved that the number of required MINRES iterations cannot
grow faster than O([ln(α−1)]2), and also explained why iterations counts of order
O([ln(α−1)]) often will occur in practice. Consider the last row of Table 1, i.e.
N = 512. For the stopping criterion ϵ = 10−6 in (60), the iteration counts can be
relatively well modeled by the formula

32.2− 10.5 log10(α),

where we used the method of least squares to estimate the constants in this expres-
sion. Similarly, for N = 512 and the stopping criterion ϵ = 10−10, we can model
the work effort rather accurately with the formula

45.0− 20.1 log10(α).

We conclude that the required number of MINRES iteration only grows (ap-
proximately) logarithmically as the regularization parameter α → 0. Note that



950 O. L. ELVETUN AND B. F. NIELSEN

a) b)

Figure 1. The eigenvalues of [R̄k]−1B̄k
α in Example 1. Panel a)

displays the eigenvalues of the full system, i.e. no active constraints
and Ik = Ωv. Furthermore, α = 0.0001 and N = 32. Panel
b) shows the spectrum of a reduced KKT system, with 700 ac-
tive inequalities. We observe that there are fewer eigenvalues in
the interval [cα, 2α] in panel b), cf. (40)). More specifically, 700
eigenvalues have been ”removed” from this interval in panel b),
compared with panel a). We do not present a plot of the isolated
eigenvalues, i.e. λi ∈ (2α, a), since the full system only has three
isolated eigenvalues, and the reduced system only has one isolated
eigenvalue.

the spectral condition number κ(Bk,h
α ) of Bk,h

α is of order O(α−1), which is ”con-
firmed” by Figure 1. The standard theory for Krylov subspace solvers states that
MINRES needs O(κ(Bk,h

α )) iterations. Hence, the classical estimate provides a very
pessimistic estimate for the needed workload.

Table 1. The average number of MINRES iterations required to
solve the reduced KKT systems in the PDAS algorithm. The two
panels display the iteration counts for two different choices of ϵ,
see (60). Here, we used the initial guess p̄k0 = 0 in the MINRES
algorithm for iteration k of the PDAS method.

N\α 1 .1 .01 .001 .0001
32 23 32 38 46 56
64 27 36 42 51 66
128 27 37 42 52 71
256 33 42 48 59 75
512 33 44 52 59 78

(a) Stopping criterion ϵ = 10−6.

N\α 1 .1 .01 .001 .0001
32 34 45 55 70 86
64 39 52 64 83 103
128 41 54 67 85 109
256 48 61 75 95 121
512 49 64 80 103 130

(b) Stopping criterion ϵ = 10−10.

Table 1 contains iteration counts for both ϵ = 10−6 and ϵ = 10−10, cf. the
stopping condition (60). We observe that the iteration numbers increase roughly
by a factor of 1.5 if ϵ is decreased from 10−6 to 10−10. However, we see no visible
difference between the controls v1 and v2 computed with these two stopping criteria,
see Figure 2. In fact, the relative difference between the solutions depicted in this
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(a) Stopping criterion ϵ = 10−6.

(b) Stopping criterion ϵ = 10−10.

Figure 2. The solution of (42)-(45) for two different stopping
criteria. In these examples, N = 256 and α = 0.01. The relative

difference
∥v1−v2∥L2(Ω)

∥v1∥L2(Ω)
between these two control functions is 2.12∗

10−5.

figure is 2.12 ∗ 10−5. In retrospect, we conclude that the choice ϵ = 10−10 does not
significantly increase the accuracy of the solution compared to the choice ϵ = 10−6.
Thus, choosing a suitable stopping criterion is a delicate matter; the criterion must
be strict enough to obtain convergence, but not so hard that many unnecessary
iterations are performed.

We have previously mentioned that the experiments presented in Table 1 were
performed using the zero initial guess in every run of the MINRES method, i.e.
p̄k0 = 0. Intuitively, the initial guess p̄k0 = p̄k−1

n might seem preferable. That is,
we set the initial guess for the MINRES algorithm equal to the solution from the
previous PDAS iteration. In this case, however, (60) should be adjusted to avoid
an unreasonable strict stopping criterion when p̄k−1

n ≈ p̄∗, where p̄∗ is the exact
solution of the discretized PDE constrained optimization problem. We suggest the
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following alternative stopping criterion to terminate the MINRES iteration process:

(62)
∥rkn∥
∥r00∥

=

[
( B̄k

αp̄
k
n − b̄, [R̄k]−1[B̄k

αp̄
k
n − b̄] )

( B̄0
αp̄

0
0 − b̄, [R̄0]−1[B̄0

αp̄
0
0 − b̄] )

]1/2
< ϵ.

Note that the initial guess p̄k0 = p̄k−1
n and the alternative stopping criterion (62) will

consistently be used together. Similarly, when we employ the initial guess p̄k0 = 0,
the criterion (60) will be used to terminate the iteration process.

How these two different initial guesses affect the iteration counts, can be observed
by comparing Table 1 with Table 2. In Table 1 we used the initial guess p̄k0 = 0
in every run of the MINRES method, whereas for the numbers presented in Table
2 we employed p̄k0 = p̄k−1

n . For large values of α, we observe a reduction in the
iteration counts, but this effect seems to be less apparent for the smaller values of
α. We suspect this to be linked to our choice of synthetic observation data, d, which
was generated by the control (61). For this observation data d, and small values
of α, the solutions of (42)-(44) and (42)-(45) are very different, i.e. the inequality
constraints have a significant impact. As a result of this difference, the initial guess
p̄k0 = p̄k−1

n is not much better than the zero guess. We will return to this matter in
the next section.

Table 2. The average number of MINRES iterations required to
solve the reduced KKT systems in the PDAS algorithm. The two
tables contain the iteration counts for two different choices of ϵ,
see (62). Here, we used the initial guess p̄k0 = p̄k−1

n in the MINRES
algorithm for iteration k of the PDAS method.

N\α 1 .1 .01 .001 .0001
32 16 14 36 46 54
64 15 28 36 50 65
128 13 22 31 46 64
256 15 26 35 49 68
512 15 23 36 51 69

(a) Stopping criterion ϵ = 10−6.

N\α 1 .1 .01 .001 .0001
32 27 32 51 70 85
64 25 46 58 80 102
128 27 35 60 80 105
256 32 40 62 79 103
512 25 46 64 90 109

(b) Stopping criterion ϵ = 10−10.

8. The inverse problem of electrocardiography

We will now study a real world problem. In the inverse problem of electrocardio-
graphy one attempts to identify an ischemic region/infarction by combining ECG
recordings with the, so called, bidomain model 2. Since the derivation of the bido-
main model is not essential for understanding the optimization problem, we refer
to [13] for further details about this model.

The control function v in this application, however, must be addressed in some
detail. In this medical problem, the control v is the transmembrane potential of
the heart, i.e. the potential difference over the cell membrane of the heart cells.
According to biomedical knowledge, we know a priori that this potential satisfies

(63) v(x) ≈

{
0mV x in healthy tissue,

50mV x in ischemic tissue.

2Ischemia is a state of reduced blood supply to the heart, usually due to coronary artery
disease. It is a reversible condition, but also a precursor to a full heart attack.
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Our objective is to compute the transmembrane potential v by solving an optimiza-
tion problem. Thereafter, we use (63) to determine the ischemic region, i.e. this
region is the sub-domain of the heart where v(x) ≈ 50.

The optimization problem will be related to the form (1)-(3), where we have the
following information:

• The input data d in (1) is a normalized clinical ECG recording.
• The state equation (2) will be the bidomain model3.
• We use (63) to define suitable inequality constraints.
• The control space, however, is no longer an L2-space, but an H1-space.

In detail, the optimization problem can be formulated as follows

(64) min
(v,u)∈H1(ΩH)×H1(ΩB)

{
1

2
∥Tu− d∥2L2(∂ΩB) +

1

2
α∥v∥2H1(ΩH)

}
subject to ∫

ΩB

∇ψ ·M∇u dx = −
∫
ΩH

∇ψ ·Mi∇v dx, ∀ψ ∈ X,(65)

v(x) ≥ 0, x ∈ ΩH ,(66)

where

M(x) ≈

{
Mi(x) +Me(x), x ∈ ΩH ,

Mo(x), x ∈ ΩT .

Remark 8.1. Note that (63) also implies an upper bound for v. This upper bound,
however, is dependent on a number of model parameters and is, for reasons outside
the scope of this article, not as essential as the lower bound. In addition, our
simulations did not provoke any active upper constraints.

In this section we use the following notation:

· v is the transmembrane potential.
· u is the extracellular potential.
· draw is the ECG recording, and d = draw − 1

|∂ΩB |
∫
∂ΩB

draw is a nor-

malization of the data with respect to the boundary integral, see [10] for
details.

· Mi and Me are the intracellular and extracellular conductivity tensors of
the heart, respectively.

· Mo is the extracellular conductivity of the torso.
· ΩH is the domain of the heart.
· ΩT is the domain of the torso.
· ΩB = ΩH ∪ ΩT is the domain of the body.
· U = {q ∈ H1(ΩB) :

∫
∂ΩB

q = 0}. Reasons for using this particular Hilbert

space are discussed in [10].

For a visual representation of the domains ΩH , ΩT and ΩB , see Figure 3.

Remark 8.2. In this example, the control space is no longer L2(Ωv), but H
1(ΩH),

which is not covered by the analysis presented in the theoretical sections. To derive
a PDAS algorithm for this H1-framework is, to the authors knowledge, still an open
challenge. Essentially, the problem is that the inequality conditions can no longer be

3As in Example 1, the bidomain equation involves an operator Â mapping U onto its dual
space U ′. Hence, we need an inverse Riesz map to obtain a minimization problem of the form
(1)-(3).
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Figure 3. A 2D picture of the domains. ΩH represents the heart
and is depicted in gray color. We denote the remaining domain by
the torso, ΩT . The cavities (white areas) inside the heart represent
the ventricles.

expressed on the simple explicit form (7)-(8), but instead involve solving an obstacle
problem, see [6] for further details.

For a strictly finite dimensional optimization problem, however, a PDAS algo-
rithm exists. Unfortunately, we can then no longer guarantee that it will reflect the
structure of the associated infinite dimensional problem. Nevertheless, we find it
interesting to investigate the problem from a practical point of view.

Since the discretization of the optimality system associated with (64)-(66) is
almost identical to the discretization of the optimality system in Example 1, we
will first present the results and thereafter return to the mathematical treatment
of (64)-(66).

For the simulations, we have two different sets of patient data, both recorded
at Oslo University Hospital. For each of the two patients, we have patient specific
geometrical models. Figure 4 shows the body mesh associated with Patient 1. Note
that the grid is highly unstructured.

8.1. Results. Table 3 and Table 4 contains the iteration counts for Patient 1 and
Patient 2, respectively. The numbers are much higher than those reported for the
synthetic example (Example 1), but the growth is still (approximately) logarithmic
as α→ 0. For Patient 1 the iteration counts for k = 0, i.e. the first PDAS iteration,
can be modeled by the formula

2064.6− 1287.6 log10(α).

Similarly, we can model the average workload for Patient 1 by the formula

1225− 798.4 log10(α).

We would like to stress that, in this example, the relatively high iteration num-
bers do not appear to be linked to the fact that our control space is H1, instead
of L2. More precisely, the iteration counts for k = 0, i.e. when there are no active
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Figure 4. The body mesh associated with Patient 1. The blue
color represents the heart, and the red colors represent the lungs.
The mesh consists of 51, 489 nodes, whereof 33,156 are located in
the heart.

constraints, are not lower than for k > 0. Other possible explanations for the high
iteration numbers will be discussed in Section 9.

For this real world application, we are not only interested in the iteration counts,
but also in the actual time it takes to solve the optimization problem. All simula-
tions were performed on a regular laptop with the Intel R⃝CoreTMi5-2520M CPU @
2.50GHz × 4 processor. From Table 3, we conclude that it lasted between 5 and 13
minutes to solve the inequality constrained optimization problem for Patient 1. For
Patient 2, it took between 6 and 15 minutes, depending on the choice of α. For the
particular choice of regularization parameter α = 0.1, 664 seconds were required.
The computed control function for this choice of α can be seen in Figure 5. The
figure also displays the solution of (64)-(65), i.e. the optimization problem without
the inequality constraint. We see that the introduction of (66) sharpens the image,
and thus provides a more well defined separation of the ischemic region and the
healthy tissue. For the cardiologists, such a clear distinction is definitely desirable.
In fact, one may argue that the image computed without box constraints is of no
practical value.

Table 3. The wall time and the number of MINRES iterations
required to solve the optimization problem for Patient 1. Note
that k denotes the PDAS iteration number. Here, the stopping
criterion was ϵ = 10−6, see (62).

k\α 1 10−1/2 10−1 10−3/2 10−2

0 1808 2851 3694 3911 4497
1 1127 1480 1967 2281 2426
2 361 741 880 1046 1279
Mean 1099 1691 2180 2413 2734
Wall Time 308s 467s 598s 659s 770s

Recall that we, in Example 1, discussed the effect of the initial guess on the
performance of the MINRES algorithm. In the present real world application, we
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Table 4. The wall time and the number of MINRES iterations
required to solve the optimization problem for Patient 2. Note
that k denotes the PDAS iteration number. Here, the stopping
criterion was ϵ = 10−6, see (62).

k\α 1 10−1/2 10−1 10−3/2 10−2

0 1879 2977 3224 4080 4717
1 1332 1747 2499 2751 3256
2 608 1032 1403 2005 2233
Mean 1273 1919 2375 2945 3402
Wall Time 362s 538s 664s 794s 909s

Table 5. The wall time and the average number of MINRES it-
erations required to solve the optimization problem for Patient 1.
These numbers were generated with the initial guess p̄k0 = 0 in
every run of the MINRES method, and the stopping criterion was
ϵ = 10−6, see (60).

k\α 1 10−1/2 10−1 10−3/2 10−2

Mean 1488 2111 2821 3027 3408
Wall Time 400s 586s 761s 810s 902s

have so far reported results obtained with the initial guess p̄k0 = p̄k−1
n . For reason

of comparison, we also ran simulations with p̄k0 = 0, see (60). The iteration counts
and wall time obtained for these computations can be found in Table 5. Contrary
to what was observed in Example 1, we conclude that the initial guess p̄k0 = p̄k−1

n

yields a significant improvement, compared with the ”naive” guess p̄k0 = 0. We save
roughly 400 − 600 iterations on average. From a computing-time perspective, the
reduction is also significant, with savings in the range of 90 seconds to 3 minutes,
i.e. about a 20% reduction in computing-time.

8.2. Discretization. We now return to the mathematical aspects of (64)-(66).
Note that the control space V , the state space U and the observation space Z are

V = H1(ΩH),

U =

{
q ∈ H1(ΩB) :

∫
∂ΩB

q = 0

}
,

Z = L2(∂ΩB),

see Figure 3 for an overview of the domains. Hence, we are trying to recover a
function v ∈ H1(ΩH) from an observation d ∈ L2(∂ΩB) of u along the boundary
∂ΩB of the body ΩB . Notice the form of (63). Since the unknown control is
known, a priori, to be approximately piecewise constant, it seems natural to put
more weight on the derivative of v in the regularization. Therefore, we use the
weighted norm

∥v∥2V = ρ∥v∥2L2(ΩH) + ∥∇v∥2L2(ΩH)

on V , where 0 < ρ ≪ 1. This will be reflected in the block operators presented
below. In our experiments, we have chosen ρ = 10−4.
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(a) Inverse solution without inequality con-
straints.

(b) Inverse solution with inequality con-
straints.

Figure 5. The computed transmembrane potential v for Patient
2. Here, α = 0.1. Panel a) shows the solution of (64)-(65). Panel
b), on the other hand, displays the solution of the full problem
(64)-(66).

We start our derivation of the optimality system by considering the state equa-
tion (65). This equation can be written as

⟨Âu, ψ⟩ = −⟨B̂v, ψ⟩, ∀ψ ∈ U,

where

Â : U → U ′, u→
∫
ΩB

∇ψ ·M∇u dx, ψ ∈ U,

B̂ : V → U ′, v →
∫
ΩH

∇ψ ·Mi∇v dx, ψ ∈ U.

We can now proceed as in Example 1 and derive a KKT system with a structure
similar to (55). Once more, we refer to [9] for details regarding the matrix repre-
sentation of the operators in the KKT system. By letting “ Ik ” and “ : ” denote
the inactive indices and all indices, respectively, the discretization can roughly be
described as follows:
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• RV Ik yields the sum (ρMH + SH)I
k,Ik

of the mass matrix MH and the

stiffness matrix SH associated with the domain Ik ⊂ ΩH .
• RU yields the stiffness matrix SB associated with the domain ΩB .

4

• Â yields the matrix N associated with the operator −∇ ·M∇u on ΩB .

• B̂ yields the matrix L associated with the operator ∇ ·Mi∇v on ΩH , and

consequently, B̂Ik

yields the matrix LIk,:.
• RUT

∗T yields the matrix M∂ , which is the mass matrix associated with
the boundary ∂ΩB of the body ΩB.

Hence, the discretized KKT system will in this case read:(ρMH + SH)I
k,Ik

0 0
0 SB 0
0 0 SB

−1 α(ρMH + SH)I
k,Ik

0 LIk,:

0 M∂ N

L:,Ik

N 0

v̄Ik

ūk

w̄k



=

(ρMH + SH)I
k,Ik

0 0
0 SB 0
0 0 SB

−1  0
M∂ d̄
0

 .
We thus use the preconditioner

(67) [R̄k]−1 =

(ρMH + SH)I
k,Ik

0 0
0 SB 0
0 0 SB

−1

.

Finally, we update the Lagrange multiplier λ̄A
k

by solving

(ρMH + SH)A
k,Ak

λ̄A
k

= LAk,:w̄k,

where “ Ak ” denotes the active indices. (The derivation of this update is similar
to the one leading to (59).

8.3. A H1(Ωv) control space on a regular grid. We have already discussed
that the lack of a continuous PDAS algorithm for cases involving a H1(Ωv) control
space do not seem to affect the performance of the preconditioner for the inverse
ECG problem studied above. Now, we explore this issue further by considering the
optimization problem

(68) min
(v,u)∈H1(Ωv)×H1(Ω)

{
1

2
∥Tu− d∥2L2(∂Ω) +

1

2
α∥v∥2H1(Ωv)

}
subject to∫

Ω

∇ψ · ∇u dx+

∫
Ω

ψu dx = −
∫
Ωv

∇ψ · ∇v dx, ∀ψ ∈ H1(Ω),(69)

v(x) ≥ 0, x ∈ Ωv.(70)

The domains Ω and Ωv are defined as follows:

Ω = (0, 1)× (0, 1),

Ωv =

(
1

4
,
3

4

)
×
(
1

4
,
3

4

)
.

4Recall that U = {q ∈ H1(ΩB) :
∫
∂ΩB

q = 0}, which makes it possible to use the Poincaré

inequality to define the norm ∥ · ∥U on U as ∥q∥U =
∫
ΩB

|∇q|2. It therefore follows that the Riesz

map only yields the stiffness matrix.
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We will not present all the computational details, but instead focus on the iter-
ation numbers for the preconditioned MINRES scheme applied to the KKT system
associated with (68)-(70).

Table 6. The number of MINRES iterations required to solve the
optimization problem (68)-(70). Note that k denotes the PDAS it-
eration number. For k = 0 there are no active constraints, whereas
for k = 1 many constrains are active. Here, the stopping criterion
was ϵ = 10−10, see (62), α = 0.01, and the initial guess was set to
p̄k0 = 0 for each PDAS iteration.

N\k 0 1
64 237 209
128 273 227
256 297 277
512 334 275
1024 390 351

From Table 6 we conclude, at least for this problem, that there are no practi-
cal difficulties with combining our preconditioner with the PDAS algorithm. On
the contrary, we observe a decrease in the number of MINRES iterations needed
for k = 1, compared with the results obtained for k = 0. Note that, in the first
PDAS iteration, i.e. k = 0, there are no active constraints, whereas for k = 1 many
constrains are active. Hence, for this problem, the lack of a well defined extension

operator EIk

, see (17)-(19), does not seem to introduce any severe difficulties. Nev-
ertheless, further theoretical investigations are needed to develop a robust PDAS
algorithm for PDE-constrained optimization problems with H1(Ωv) control spaces.

9. Conclusions

In this article we have analyzed the KKT systems arising in each iteration of
the PDAS algorithm applied to PDE-constrained optimization problems with box
constraints. More specifically, we have investigated whether the system

Bk
αp

k = b

can be solved efficiently with the MINRES method. Here, α is the Tikhonov regu-
larization parameter, and Bk

α denotes the indefinite Hermitian operator arising in
each iteration of the PDAS scheme.

Our main theoretical result shows that the discretized operator Bk,h
α , associated

with Bk
α, has a spectrum with a very limited number N(α) of isolated eigenvalues,

whereas the remaining eigenvalues are contained in three bounded intervals:

(71) sp(Bk,h
α ) ⊂ [−b,−a] ∪ [cα, 2α] ∪ {λ1, λ2, ..., λN(α)} ∪ [a, b].

For severely ill-posed problems N(α) = O(ln(α−1)). Theoretically, we therefore
conclude that the MINRES algorithm will solve the KKT systems efficiently. Fur-
thermore, since the spectral condition number κ(Bk,h

α ) of Bk,h
α is of order O(α−1),

and the standard theory for the MINRES method states that O(κ(Bk,h
α )) iterations

are required, we conclude that the classical analysis provides a pessimistic estimate
for the needed workload.

In [11] it was established that the spectrum of the KKT system associated with
(1)-(2), without inequality constraints, is on the form (71). From a technical point
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of view, the main challenge addressed in this paper was to prove that this property
is inherited by the KKT system arising in each iteration of the PDAS method.

Table 7. The number of MINRES iterations required to solve the
optimization problem for Patient 1. These numbers were generated
with the alternative preconditioner (72). Note that k denotes the
PDAS iteration number. Here, the stopping criterion was ϵ = 10−6,
see (62).

k\α 1 10−1/2 10−1 10−3/2 10−2

0 993 1528 2194 2661 3085
1 621 953 1224 1622 1715
2 191 444 693 817 948
Mean 602 975 1370 1700 1916
Wall Time 177s 285s 390s 471s 518s

We presented a number of numerical experiments. In the first synthetic example,
Example 1, we were interested in the growth of the iteration numbers with respect to
both the regularization parameter α and the mesh parameter h. For the parameter
α, we observed iteration counts almost of order

O(ln(α−1))

as α→ 0. Moreover, tables 1 and 2 show that the algorithm is robust with respect
to the mesh parameter h. Theoretically, the spectral condition numbers of the
KKT systems are bounded independently of any h > 0, and the slight increase
we observed in practice is probably due to computational issues with the algebraic
multigrid scheme.

In Section 8 we presented results for a real world problem. Namely, the inverse
problem of electrocardiography (ECG) in which the unknown source is an ischemic
region in the heart. Also for this problem, iteration counts approximately of order
O(ln(α−1)) were obtained. The numbers were, however, much higher than the
iteration counts encountered in Example 1. This can be due to a number of reasons:
The size of the domain, the unstructured grid, the noise in the data, or the form of
the state equations. All these issues should be investigated properly in a separate
paper.

Neither the inverse ECG problem, nor the synthetic example considered in Sec-
tion 8.3, fulfill all the assumptions needed by our theoretical analysis. More specif-
ically, these examples involve an H1 control space, such that suitable extension
operators, needed by the PDAS scheme, are not readily available. Nevertheless, our
experiments revealed that solving the associated KKT systems, with many active
constraints, did not require more MINRES iterations than solving unconstrained
problems. Also, we obtained a rather limited growth in the iteration numbers, as α
decreased, for the real world application. In fact, we solved this problem in roughly
5 to 15 minutes, depending on the value of regularization parameter α. With opti-
mized preconditioners, code optimization and a stronger CPU, it should be possible
to reduce the computing time to less than 1 minute. For example, by changing the
preconditioner (67) to

(72) [Rk]−1 =

(ρMH + SH)I
k,Ik

0 0
0 N 0
0 0 N

−1

,
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we get iteration counts as reported in Table 7. Clearly, substituting the stiffness
matrix SB in (67) with the matrix N , associated with the operator −∇ ·M∇ on
ΩB , reduces the iteration counts and computing time significantly.

The overall conclusion of this paper is: By combining the MINRES method and
the PDAS algorithm, some PDE constrained optimization problems arising in real
world applications can be solved within reasonable time limits.
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Appendix

We will discretize the update of the Lagrange multiplier in Example 1, see the
discussion preceding (59). The generic update for this multiplier is given in (36) as

(A.1) λA
k

= [BAk

]∗wk,

where in each iteration of the PDAS method

BAk

= BEAk

,

see (28). Furthermore, recall from (50) that

B = R−1
U B̂.

It then follows from (28) that

BAk

= R−1
U B̂EAk

= R−1
U B̂Ak

,

where
B̂Ak

= B̂EAk

.

The update (A.1) involves the adjoint operator [BAk

]∗ of BAk

. According to a
rather technical argument presented in [11],

[BAk

]∗ = [RL2(Ak)]
−1[B̂Ak

]′,

where the symbol ”′” is used to denote dual operators and RL2(Ak) is the Riesz

map of the space L2(Ak), see (16). Hence, the continuous Lagrangian update in
Example 1 is

λA
k

= [RL2(Ak)]
−1[B̂Ak

]′wk,

or
RL2(Ak)λ

Ak

= [B̂Ak

]′wk.

We again refer to [9] for further details about the discretization. Let the superscript
notation ”Ak” and ” : ” denote the active indices and all the indices, respectively.
The discretized update for the Lagrange multiplier then reads

MAk,Ak

v λ̄A
k

=MAk,:w̄k.
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