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Abstract. This paper studies a regularization approach for simultaneously reconstructing space-
time dependent Robin coefficient γ(x, t) and heat flux q(x, t). The differentiability results and
adjoint systems are established. A standard finite element method (FEM) is employed to discretize
the constrained optimization problem which is reduced to a sequence of unconstrained optimization
problem by adding regularization terms. We propose an improved algorithm for the introduced
problem based on modified conjugate gradient method (MCGM) for quadratic minimization.
Numerical experiments present the efficiency, accuracy, and robustness of the proposed algorithm.
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1. Introduction

The inverse problem arising in reconstructing the heat transfer coefficient, called
Robin coefficient γ(x, t), which represents the convection between the conducting
body and the ambient environment from the boundary measurements of the solu-
tion and space-time dependent heat flux q(x, t). Háo [8] determined the space or
time dependent heat transfer coefficient using nonlinear conjugate gradient method
combined with a boundary element direct solver. In many distributed parameter
identification problems, the Robin inverse problem suffers from ill-posedness, such
as, small error in the data which leads to large deviations in the solution. Therefore,
specialized techniques are necessary to keep the stability in the solution. Numer-
ically, an engineering approach has been applied to estimate the time-dependent
Robin coefficient from the measured temperature data for quenching process [1],
using the sequential function specification method [2]. However, the approach is
generally influenced by the noise in the data and then the accuracy of the solutions.
Another popular engineering approach is the variational method [14, 23]. Marián
[19] studied the recovery of a time-dependent Robin coefficient in a semilinear par-
abolic equation from an over-specified nonlocal boundary conditions and proposed
a temporal discretization based on Rothes method with some convergence analysis.
However, the spatial discretization that is necessary for practical computations was
not considered.

Slodička, et al. [18] introduced a mathematical analysis for the estimation of
the time-dependent Robin coefficient in a nonlinear boundary condition for one-
dimensional heat equation, and showed the existence and uniqueness of the solu-
tion. Deng, et al. [3, 4] introduced a two-level space-time domain decomposition
method for solving an inverse source problem associated with the time-dependent
convection-diffusion equation in three dimensions. Jiang, et al. [11] proposed an
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efficient overlapping domain decomposition method for solving some typical linear
inverse problems, including identification of the flux, source strength, and initial
temperature in second order elliptic and parabolic systems. Jin and Lu [13] studied
the space-time dependent Robin coefficient in one and two dimensional cases using
nonlinear conjugate gradient method. Xie and Zou [21] introduced the mathemat-
ical and numerical justification of regularization approaches for reconstructing the
heat flux in both space and time with investigation of a FEM. Jiang and Talaat [12]
focused on the numerical simultaneous reconstruction of the spatially-dependent
Robin coefficient and heat flux using Levenberg-Marquardt and surrogate func-
tional method. The present study focuses on reconstructing the space-time depen-
dent Robin coefficient and heat flux, simultaneously using MCGM for solving the
nonlinear inverse problem.

The rest of this paper is organized as follows: Section 2 describes the mathemati-
cal and variational formulation of the problem. Section 3 investigates the Tikhonov
regularization approach in the case that γ(x, t) and q(x, t) are unknowns parame-
ters. Section 4 derives the differentiability results to find the gradient formula with
respect to γ(x, t) and q(x, t). Also, introduces the adjoint problems to find explicit
relations that simplify computing the step lengths. Section 5 introduces the FEM
and its convergence analysis. Section 6 introduces the numerical algorithm based
on the MCGM. Section 7 presents the numerical experiments to investigate the
efficiency, accuracy, and robustness of the proposed algorithm. Finally, we draw
the conclusion and the future work in section 8.

2. Mathematical formulation

Let Ω ⊂ Rd, d ≥ 1 be a bounded, connected, and polyhedral domain. Consider
the following parabolic system with the Robin and Neumann boundary conditions

(1)































∂u

∂t
−∇ · (α(x)∇u) = f(x, t) in Ω× (0, T ),

α(x)
∂u

∂n
+ γ(x, t)u(x, t) = g(x, t) on Γi × (0, T ),

α(x)
∂u

∂n
= q(x, t) on Γc × (0, T ),

u(x, 0) = 0 x ∈ Ω.

We assume that the boundary ∂Ω consists of two parts, i.e. ∂Ω = Γi ∪ Γc, and
Γc ≡ Γc1 ∪ Γc2 ∪ Γc3 is a finite collection of disjoint, smooth (d − 1)-dimensional
polyhedral domain. Also, γ(x, t) and q(x, t) are the heat transfer coefficient (Robin)
and heat flux respectively which are contained in the following sets

K1 = {γ(x, t) : 0 < γ1 ≤ γ(x, t) ≤ γ2 <∞ a.e. in Γi × (0, T )},
K2 = {q(x, t) : 0 < q1 ≤ q(x, t) ≤ q2 <∞ a.e. in Γc × (0, T )},

where γ1, γ2, q1, and q2 are positive given constants. In this problem, the Robin
boundary condition is specified on Γi and the Neumann boundary condition on Γc.
We refer readers to [9] and the references therein for more physical backgrounds
and [16, 25] for the analytical and numerical methods to solve the inverse problems.

Let u(x, t) solve the forward problem (1) and zδ ∈ L2(0, T ;L2(Γc)) represent the
measured data on Γc over t ∈ (0, T ). The parameter δ is used to emphasize the
existence of noise in the data. We recall the following lemma for setting the inverse
problem to achieve the uniqueness results (see [5]).

proposition 2.1. Suppose that Ω is an open, bounded, and connected domain with
the boundary ∂Ω. The given source strength f(x, t) ∈ L2(0, T ;L2(Ω)), g(x, t) ∈
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L2(0, T ;L2(Γi)), and q(x, t) ∈ L2(0, T ;L2(Γc)). The thermal conductivity α(x) ∈
C(Ω) such that 0 < α0 < α(x) < α1 <∞, and α0 and α1 are positive constants.

Lemma 2.1. Suppose that the norm ‖ · ‖H1(Γi) is defined by

‖u‖2H1(Γi)
= ‖∇u‖2L2(Ω) + ‖u‖2L2(Γi)

,

this is equivalent to the standard norm ‖u‖2H1(Ω) and

c1‖u‖2H1(Γi)
≤ ‖u‖2H1(Ω) ≤ c2‖u‖2H1(Γi)

,

c1 and c2 are positive constants (see Sec. 7.1 [5]).

Lemma 2.2. ([13]) For any (γ, q) ∈ K1 × K2 there exists a unique solution
u(γ, q)(x, t) ≡ u(γ, q) ∈ L2(0, T ;H1(Ω)) to the forward problem (1). Furthermore,
it has the following regularities

u(γ, q) ∈ L2(0, T ;H1(Ω)), u(γ, q) ∈ L2(0, T ;L2(Ω)), u(γ, q) ∈ C(0, T ;L2(Ω)).

Then, it satisfies the following priori estimate

‖u(γ, q)‖L2(0,T ;H1(Ω)) ≤ C
(

‖f‖L2(0,T ;L2(Ω)) + ‖g‖L2(0,T ;L2(Γi)) + ‖q‖L2(0,T ;L2(Γc))

)

.

Then, from Lemmas 2.1 and 2.2 we deduce that the solution u(γ, q) of the forward
problem (1) is well-defined on L2(0, T ;H1(Ω)).

3. Tikhonov regularization and the existence of minimizers

In this section, we investigate the Tikhonov regularization approach to the con-
sidered problem (1). The ill-posedness in the considered problem lies in the follow-
ing aspects:
(1) The solution of the problem u(γ, q) does not necessarily exist for the given mea-
sured data.
(2) The solution may not be unique, and/or does not continuously depend on
the cauchy data which are collected experimentally using devices such as thermal
sensors. To cope with the numerical instability of system (1), we introduce the
following Tikhonov regularization:

min
(γ,q)∈K1×K2

J(γ, q) =
1

2

∫ T

0

‖u(γ, q)− zδ‖2L2(Γc)
dt

+
β

2
‖γ‖2L2(0,T ;L2(Γi))

+
η

2
‖q‖2L2(0,T ;L2(Γc))

,(2)

where u ≡ u(γ, q)(x, t) ∈ L2(0, T ;H1(Ω)) satisfies

(3) u(x, 0) = 0 in Ω,

and
∫ T

0

∫

Ω

∂tuvdxdt +

∫ T

0

∫

Ω

α∇u · ∇vdxdt +
∫ T

0

∫

Γi

γuvdsdt =

∫ T

0

∫

Ω

fvdxdt

+

∫ T

0

∫

Γi

gvdsdt+

∫ T

0

∫

Γc

qvdsdt ∀ v ∈ L2(0, T ;H1(Ω)).(4)

The constrained optimization problem with β = η = 0 denoted by J0, is equivalent
to the inverse problem when the cauchy data is achievable.

Theorem 3.1. ([12]) There exists at least one minimizer to system (2)-(4).
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Proof. Clearly the functional J(γ, q) is bounded from below by zero in K1 × K2;
thus there exists a minimizing sequence {(γn, qn)} such that

(5) lim
n→∞

J(γn, qn) = inf
(γ,q)∈K1×K2

J(γ, q).

From the uniform boundedness of the admissible setK1×K2, the sequence {(γn, qn)}
is uniformly bounded in K1 × K2. Thus the existence of such subsequence as
{(γn, qn)}, and {(γn, qn)} ⇀ (γ∗, q∗) weakly in K1 × K2 (refers to Theorem 1.19
in [7]). Then from Theorem 3.1 [12] it can be shown that there exists at least one
minimizer (γ∗, q∗) for (2)-(4) such that

J(γ∗, q∗) =
1

2

∫ T

T0

‖u(γ∗, q∗)− zδ‖2L2(Γc)
dt

+
β

2
‖γ∗‖2L2(0,T ;L2(Γi))

+
η

2
‖q∗‖2L2(0,T ;L2(Γc))

=
1

2
lim
n→∞

∫ T

T0

‖u(γn, hn)− zδ‖2L2(Γc)
dt

+
β

2
‖γ∗‖2L2(0,T ;L2(Γi))

+
η

2
‖q∗‖2L2(0,T ;L2(Γc))

≤ 1

2
lim
n→∞

∫ T

T0

‖u(γn, qn)− zδ‖2L2(Γc)
dt+

β

2
lim
n→∞

inf ‖γn‖2L2(0,T ;L2(Γi))

+
η

2
lim
n→∞

inf ‖qn‖2L2(0,T ;L2(Γc))

≤ lim
n→∞

inf J(γn, qn) = inf
(γ,q)∈K×L2(Γc)

J(γ, q),(6)

which implies that (γ∗, q∗) is a minimizer of (2)-(4). �

4. Differentiability results and adjoint problem

In this section, we show the partial Fréchet derivatives of the forward solution
u(γ, q) and their adjoint problems. Denote u1γ ≡ u

′

γ(γ, q)d and u1q ≡ u
′

q(γ, q)p, as
the partial Fréchet derivatives of the forward solution with respect to the Robin
coefficient γ(x, t) and heat flux q(x, t) in any directions d ∈ L2(0, T ;L2(Γi)) and p ∈
L2(0, T ;L2(Γc)), respectively. u

1
γ and u1q can be obtained by solving the following

systems

(7)























∂u1
γ

∂t −∆u1γ = 0 in Ω× (0, T ),
∂u1

γ

∂n + γu1γ = −du(γ, q) on Γi × (0, T ),
∂u1

γ

∂n = 0 on Γc × (0, T ),
u1γ(x, 0) = 0 in Ω,

and

(8)























∂u1
q

∂t −∆u1q = 0 in Ω× (0, T ),
∂u1

q

∂n + γu1q = 0 on Γi × (0, T ),
∂u1

q

∂n = p on Γc × (0, T ),
u1q(x, 0) = 0 in Ω,

which are linear with respect to d and p, respectively.

Theorem 4.1. ([13]) For any γ, γ + d ∈ K1 and q, q + p ∈ K2, the mapping
(γ, q) 7→ u(γ, q) from K1 × K2 7→ L2(0, T ;H1(Ω)) is Lipschitz continuity and
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Fréchet differentiable, then

(9) lim
‖d‖

L2(0,T ;L∞(Γi))
→0

‖u(γ + d, q)− u(γ, q)− u1γ‖L2(0,T ;H1(Ω))

‖d‖L2(0,T ;L∞(Γi))
= 0,

and

(10) lim
‖p‖

L2(0,T ;L∞(Γc))→0

‖u(γ, q + p)− u(γ, q)− u1q‖H1(Ω)

‖p‖L2(0,T ;L∞(Γc))
= 0.

Next, we derive the gradient formula of the functional J(γ, q). From Theorem
4.1 we have the following expansions

u(γ + d, q) = u(γ, q) + u
′

γ(γ, q)d+O(‖d‖2L2(0,T ;L∞(Γi))
),

and

u(γ, q + p) = u(γ, q) + u
′

q(γ, q)p+O(‖p‖2L2(0,T ;L∞(Γc))
).

Now, we define the adjoint equations for the partial Gáteaux derivatives ω∗
γ ≡

u
′

γ(γ, q)
∗ν and ω∗

q ≡ u
′

q(γ, q)
∗ζ for any directions ν and ζ, respectively as

(11)



















∂ω∗

γ

∂t +∆ω∗
γ = 0 in Ω× (0, T ),

∂ω∗

γ

∂n + γω∗
γ = 0 on Γi × (0, T ),

∂ω∗

γ

∂n = −ν on Γc × (0, T ),
ω∗
γ(x, T ) = 0 in Ω,

and

(12)



















∂ω∗

q

∂t +∆ω∗
q = 0 in Ω× (0, T ),

∂ω∗

q

∂n + γω∗
q = 0 on Γi × (0, T ),

∂ω∗

q

∂n = ζ on Γc × (0, T ),
ω∗
q (x, T ) = 0 in Ω.

The next theorem shows the differentiability of the functional J(γ, q) with respect
to γ(x, t) and q(x, t).

Theorem 4.2. Suppose that the functional J(γ, q) is Fréchet differentiable, then

its Fréchet derivatives J
′

γ(γ, q) and J
′

q(γ, q) in the directions d and p are respectively
given by

(13) J
′

γ [d] =

∫ T

0

∫

Γi

d
[

−u(γ, q)ω∗
γ + βγ

]

dsdt,

and

(14) J
′

q[p] =

∫ T

0

∫

Γc

p
[

ω∗
q + ηq

]

dsdt.

Proof. From Theorem 4.1 and noting that

‖u1γ‖L2(0,T ;L2(Γi)) ≤ C‖d‖L2(0,T ;L∞(Γi)) and ‖u1q‖L2(0,T ;L2(Γc)) ≤ C‖p‖L2(0,T ;L∞(Γc)).

We have

(15) min
(γ,q)∈K1×K2

J0(γ, q) =

∫ T

0

∫

Γc

(u(γ, q)− zδ)2dsdt.
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Then, the difference of the functional J(γ, q) with respect to the Robin coefficient
is computed as follows

Rγ ≡J0(γ + d, q)− J0(γ, q),

=
1

2

∫ T

0

∫

Γc

(u(γ + d, q)− zδ)2dsdt−
∫ T

0

∫

Γc

(u(γ, q)− zδ)2dsdt,

=
1

2

∫ T

0

∫

Γc

{

(u(γ, q) + u1γ +O(‖d‖2L2(0,T ;L∞(Γi))
)− zδ)2 − (u(γ, q)− zδ)2

}

dsdt,

=

∫ T

0

∫

Γc

{

(u(γ, q)− zδ)u1γ +O(‖d‖2L2(0,T ;L∞(Γi))
)

+ (u1γ +O(‖d‖2L2(0,T ;L∞(Γi))
))2
}

dsdt,

=

∫ T

0

∫

Γc

(u(γ, q)− zδ)u1γdsdt+O(‖d‖2L2(0,T ;L∞(Γi))
)dsdt.

Dividing the above equation by ‖d‖2L2(0,T ;L∞(Γi))
and taking the limit with respect

to ‖d‖2L2(0,T ;L∞(Γi))
, we obtain

(16) J
′

γ,0[d] =

∫ T

0

∫

Γc

(u(γ, q)− zδ)u1γdsdt.

Similarly, the Fréchet derivative J
′

q,0 in the direction p is defined as

(17) J
′

q,0[p] =

∫ T

0

∫

Γc

(u(γ, q)− zδ)u1qdsdt.

Taking ϕ = u1γ and ψ = ω∗
γ , multiplying (7) by ψ, multiplying (11) by ϕ, and

applying Green’s second identity, we obtain
∫ T

0

∫

Ω

{ψ∇ · ∇ϕ− ϕ∇ · ∇ψ} dxdt =
∫ T

0

∫

∂Ω

(

∂ϕ

∂n
ψ − ∂ψ

∂n
ϕ

)

dsdt = 0.(18)

Substituting the boundary conditions for ϕ and ψ, we obtain

−
∫ T

0

∫

Γi

du(γ, q)ψdsdt =

∫ T

0

∫

Γc

νϕdsdt.(19)

Taking ϕ̃ = u1q, ψ̃ = ω∗
q , multiplying (8) by ψ̃ and multiplying (12) by ϕ̃. Then, we

apply Green’s second identity
∫ T

0

∫

Ω

(

ψ̃∇ · ∇ϕ̃− ϕ̃∇ · ∇ψ̃
)

dxdt =

∫ T

0

∫

∂Ω

(

∂ϕ̃

∂n
ψ̃ − ∂ψ̃

∂n
ϕ̃

)

dsdt = 0.(20)

Substituting the boundary conditions for ϕ̃ and ψ̃, we get
∫ T

0

∫

Γc

pψ̃dsdt =

∫ T

0

∫

Γc

ζϕ̃dsdt.(21)

Substituting (19) into (16), we deduce

(22) J
′

γ [d] =

∫ T

0

∫

Γi

d
[

−u(γ, q)ω∗
γ + βγ

]

dsdt,

and

J
′

γ,0[d] = −
∫ T

0

∫

Γi

d
[

u(γ, q)ω∗
γ

]

dsdt.
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Similarly, the Fréchet derivative of J0 with respect to q(x, t) in the direction p has
the form

(23) J
′

q[p] =

∫ T

0

∫

Γc

p
[

ω∗
q + ηq

]

dsdt,

and

J
′

q,0[p] =

∫ T

0

∫

Γc

pω∗
qdsdt.

This completes the proof of Theorem 4.2. �

5. Finite element method and its convergence

In this section we investigate the FEM for solving the continuous minimization
problem (2)-(4). We define the finite element space V h using the continuous and
piecewise linear space over the triangulation T h as

V h =
{

ϕh : ϕh ∈ C(Ω̄) : ϕh|T i ∈ p(T i) ∀ T i ∈ T h
}

,

where p(T i) denotes the space of linear polynomials on the element T i. Also, we
define the spaces V h

Γi
and V h

Γc
as the restrictions of V h on Γi and Γc, respectively.

Let {xi}Ni=1 be the set of all nodal points of triangulation T h, then the constrained
subsets K1 and K2 are approximated by

Kh,τ
1 = {γh ∈ V h

Γi
: γ1 ≤ γh ≤ γ2 a.e. (x, t) ∈ (0, T )× Γi},

Kh,τ
2 = {qh ∈ V h

Γc
: q1 ≤ qh ≤ q2 a.e. (x, t) ∈ (0, T )× Γc}.

To fully discretize the optimization problem (2)-(4), for the time discretization, the
time interval (0, T ) is divided intoM equally spaced subintervals using nodal points

∆t : 0 = t0 < t1 < · · · < tM = T,

with tn = nτ, τ = T/M . For u : (0, T ) → L2(Ω), we define un = u(·, tn), 0 < n <
M . For a given sequence {un}Mn=0 ⊂ L2(Ω) we have

(24) ∂tu
n =

un − un−1

τ
, ūn =

1

τ

∫ tn

tn−1

u(·, t)dt, and ū0 = u(·, 0) at n = 0.

For the convergence analysis, we use the projection operator Qh from H1(Ω) to V h

(cf. [22, 21])

lim
h→0

‖v −Qhv‖H1(Ω) = 0 ∀v ∈ H1(Ω)

‖Qhv‖L2(Ω) ≤ C‖v‖L2(Ω), ‖Qhv‖H1(Ω) ≤ C‖v‖H1(Ω), ∀v ∈ H1(Ω)

‖v −Qhv‖L2(Ω) ≤ Ch‖v‖H1(Ω), ∀v ∈ H1(Ω).(25)

We formulate the finite element problem corresponding to (2)-(4) as follows

min
(γn

h
,qn

h
)∈Kh,τ

1 ×Kh,τ
2

JM
h (γh, qh) =

τ

2

M
∑

n=0

ρn‖unh(γh, qh)− zδ‖2L2(Γc)
+

τ

2
β

M
∑

n=0

ρn‖γnh‖2L2(Γi)
+
τ

2
η

M
∑

n=0

ρn‖qnh‖2L2(Γc)
,(26)
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where unh ≡ unh(γh, qh)(x, t) ∈ V h and u0h = 0, satisfies
∫

Ω

∂τu
n
hvhdx +

∫

Ω

αn∇unh · ∇vhdx+

∫

Γi

γnhu
n
hvhds =

∫

Ω

f̄nvhdx

+

∫

Γi

ḡnvhds+

∫

Γc

qnhvhds ∀ vh ∈ V h.(27)

Here, {ρn} are the coefficients of the trapezoidal rule, i.e., ρ0 = ρM = 1
2 and ρn = 1

for n = 1, . . . ,M − 1.

Lemma 5.1. For any sequence {(γnh , qnh)} of system (26)-(27) in Kh,τ
1 × Kh,τ

2

converges weakly to some (γ, q) ∈ K1 ×K2 as n→ ∞, we have

lim
n→∞

∫ T

0

∫

Γc

|unh(γnh , qnh )− zn|2dxdt =
∫ T

0

∫

Γc

|u(γ∗, q∗)− z |2dxdt.

Proof. Let {zn} be a sequence such that zn → z strongly in L2(0, T ;L2(Γc)). By
the definition of {(γnh , qnh)}, we have

lim
n→∞

∫ T

0

∫

Γc

|unh(γnh , qnh)− zn|2dxdt ≤ lim
n→∞

∫ T

0

∫

Γc

|u(γ, q)− z |2dxdt

∀ (γ, q) ∈ K1 ×K2.

This implies that {(γnh , qnh)} is bounded in Kh,τ
1 ×Kh,τ

2 . Therefore, there exists a
subsequence denoted by {(γnh , qnh)}, such that

(γnh , q
n
h)⇀ (γ∗, q∗) weakly in K1 ×K2.

Since, there exists a minimizer for the optimization problem (26)-(27) (Theorem
3.1), we deduce

unh(γ
n
h , q

n
h) → u(γ∗, q∗) srtongly in K1 ×K2

By applying Cauchy-Schwarz inequality, we have

∫ T

0

∫

Γc

|unh(γnh , qnh)− zn|2dxdt−
∫ T

0

∫

Γc

|u(γ∗, q∗)− z|2dxdt

=

∫ T

0

∫

Γc

(

|unh(γnh , qnh)− zn|2 + |unh(γnh , qnh)− z|2 − |unh(γnh , qnh)− z|2

− |u(γ∗, q∗)− z|2
)

dxdt,

=

∫ T

0

∫

Γc

{(z − zn)(2u(γnh , q
n
h)− z − zn) + (u(γnh , q

n
h )− u(γ∗, q∗))

(u(γnh , q
n
h ) + u(γ∗, q∗)− 2z)}dxdt,

≤ (

∫ T

0

∫

Γc

|z − zn|2dxdt) 1
2 (

∫ T

0

∫

Γc

|2u(γnh , qnh)− z − zn|2dxdt) 1
2

+ (

∫ T

0

∫

Γc

|u(γnh , qnh)− u(γ∗, q∗)|2dxdt) 1
2

(

∫ T

0

∫

Γc

|u(γnh , qnh) + u(γ∗, q∗)− 2z|2dxdt) 1
2 .(28)

Taking the limit of (28) at n→ ∞, which concludes the proof. �
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Next, we investigate the convergence analysis of the discrete minimizer to the
minimizer of the continuous problem (2)-(4). We introduce a step function approx-
imation of a function f(x, t) ∈ C((0, T );X) for a Banach space X

(29) S∆f(x, t) =

M
∑

n=1

χn(t)f(x, tn).

Then, the following limit holds [24]

(30) lim
τ→0

∫ T

0

‖S∆f(·, t)− f(·, t)‖2Xdt = 0.

We approximate the Robin coefficient γ(x, t) and heat flux q(x, t) by a piecewise
constant functions γh,τ (x, t) and qh,τ (x, t) over the interval ∆t as follows:

γh,τ (x, t) =

M
∑

n=1

χn(t)γ
n
h (x) and qh,τ (x, t) =

M
∑

n=1

χn(t)q
n
h (x),

where γnh (x) ∈ V h
Γi
, qnh(x) ∈ V h

Γc
, and χn(t) is the characteristic function in the

interval (tn−1, tn), which we will use in the rest of the paper. To prove the existence
of the minimizer to the finite element problem (26)-(27), we show the following
continuity of unh(γh, qh) in (26)-(27) with respect to (γh, qh).

Lemma 5.2. For any sequence {γkh,τ , qkh,τ} in Kh,τ
1 ×Kh,τ

2 converges weakly to some

(γ, q) ∈ Kh,τ
1 ×Kh,τ

2 in a certain norm as k → ∞ we have, for n = 1, 2, . . . ,M,

unh(γ
k
h,τ , q

k
h,τ ) → unh(γ, q) in H1(Ω) as k → ∞.

Proof. By the definition of unh(γh,τ , qh,τ ), (for simplicity, we use the notations unh =
unh(γh,τ , qh,τ ) and u

n = u(γ, q)(·, tn) in the following proof), we have
∫

Ω

∂tu
n
hvhdx+

∫

Ω

αn∇unh · ∇vhdx+

∫

Γi

γkh,τu
n
hvhds =

∫

Ω

f̄nvhdx

+

∫

Γi

ḡnvhds+

∫

Γc

qkh,τvhds ∀ vh ∈ V h,(31)

∫

Ω

∂tu
n
hvhdx+

∫

Ω

αn∇unh · ∇vhdx+

∫

Γi

γhu
n
hvhds =

∫

Ω

f̄nvhdx

+

∫

Γi

ḡnvhds+

∫

Γc

qhvhds ∀ vh ∈ V h.(32)

Taking vh = τunh in (31), we obtain

1

2
‖unh‖2L2(Ω) −

1

2
‖un−1

h ‖2L2(Ω) + ταn‖∇unh‖2L2(Ω) + τγ1‖unh‖2L2(Γi)

≤ τ‖f̄n‖L2(Ω)‖unh‖L2(Ω) + τ‖ḡn‖L2(Γi)‖unh‖L2(Γi) + τ‖qkh‖L2(Γc)‖unh‖L2(Γc)

≤ A1 +A2 +A3.(33)

Using Young’s inequality and Sobolev trace theorem, we derive

A1 ≤ τ

4ε
‖f̄n‖2L2(Ω) + τε‖unh‖2L2(Ω),(34)

A2 ≤ τ

4ε
‖ḡn‖2L2(Γi)

+ τε‖unh‖2L2(Γi)

≤ τ

4ε
‖ḡn‖2L2(Γi)

+ τεc1‖unh‖2H1(Ω),(35)
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A3 ≤ τ

4ε
‖qnh‖2L2(Γc)

+ τεc2‖unh‖2H1(Ω).(36)

Substituting (34)-(36) into (33) and summing both sides over n = 1, 2, . . . , k ≤M ,
we obtain

1

2
‖ukh‖2L2(Ω) + τc3

k
∑

n=1

‖∇unh‖2L2(Ω) + τγ1

k
∑

n=1

‖unh‖2L2(Γi)

≤ τ

4ε

k
∑

n=1

[‖f̄n‖2L2(Ω) + ‖ḡn‖2L2(Γi)
+ ‖qnh‖2L2(Γc)

] + τc4

k
∑

n=1

‖unh‖2L2(Ω).(37)

Here, ci(i = 1, 2, 3, 4) are constants that do not dependent on h, τ , and k, and ε is a
small constant. We have the initial u0h = 0, c3 = 1−εc1−εc2, and c4 = ε(1+c1+c2).
Then, using Gronwall’s inequality [5], we obtain

(38) max
1≤n≤M

‖unh‖L2(Ω) ≤ C, τ

M
∑

n=1

‖∇unh‖L2(Ω) ≤ C, τ

M
∑

n=1

‖unh‖L2(Γi) ≤ C.

And C is independent of h, τ , and k. By subtracting (31) from (32), and let
wn

h(k) = unh,τ(γ
k
h , q

k
h,τ )− unh(γh, qh), we get

∫

Ω

∂tw
n
h(k)vhdx +

∫

Ω

αn∇wn
h(k) · ∇vhdx+

∫

Γi

γkh,τw
n
h(k)vhds

=

∫

Γi

(γh − γkh,τ )u
n
h(k)vhds+

∫

Γc

(qkh,τ − qh)vhds ∀ vh ∈ V h.(39)

Then, by taking vh = τwn
h(k), it yields

1

2
‖wn

h(k)‖2L2(Ω) −
1

2
‖wn−1

h (k)‖2L2(Ω)

+ταn‖∇wn
h(k)‖2L2(Ω) + τγ1‖wn

h(k)‖2L2(Γi)

≤ τmax
x∈Γi

|γh − γkh,τ |‖unh(k)‖L2(Γi)‖wn
h(k)‖L2(Γi)

+τmax
x∈Γc

|qkh,τ − qh|‖wn
h(k)‖L2(Γc).(40)

By summing up the above equation over n = 1, 2, . . . , k ≤ M and using Young’s
inequality, we obtain

1

2
‖wk

h(k)‖2L2(Ω) −
1

2
‖w0

h(k)‖2L2(Ω)

+τ

k
∑

n=1

α0‖∇wn
h(k)‖2L2(Ω) + τ

k
∑

n=1

γ1‖wn
h(k)‖2L2(Γi)

≤ τ

k
∑

n=1

max
x∈Γi

|γh − γkh,τ |‖unh(k)‖L2(Γi)‖wn
h(k)‖L2(Γi)

+τ

k
∑

n=1

max
x∈Γc

|qkh,τ − qh|‖wn
h(k)‖L2(Γc).(41)

Then, we deduce wn
h(k) → 0 in H1(Ω), by applying Gronwall’s inequality [15,

21]. �

The following theorem shows the existence of minimizers to system (26)-(27).
The proof of the following theorem is similar to Theorem 3.1.
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Theorem 5.1. There exists at least one minimizer to the finite element problem
(26)-(27).

The following two lemmas are important for convergence analysis of the finite
element approximation

Lemma 5.3. Let unh(γh, qh) be the solution of system (26)-(27) corresponding to

(γh, qh) ∈ Kh,τ
1 ×Kh,τ

2 , then the following stability estimates are hold:

max
1≤n≤M

‖unh‖2L2(Ω) + γ1

M
∑

n=1

‖unh‖2L2(Γi)
+ τα

M
∑

n=1

‖∇unh‖2L2(Ω)

≤ C
[

‖f‖2L2(0,T ;L2(Ω)) + ‖g‖2L2(0,T ;L2(Γi))
+ ‖qh‖L2(0,T ;L2(Γc))

]

,(42)

and

max
1≤n≤M

‖∇unh‖2L2(Ω) + γ1 max
1≤n≤M

‖unh‖2L2(Γi)
+ τ

M
∑

n=1

‖∂τunh‖2L2(Ω)

≤ C
[

‖f‖2L2(0,T ;L2(Ω)) + ‖g‖2L2(0,T ;L2(Γi))
+ ‖qh‖L2(0,T ;L2(Γc))

]

.(43)

Proof. Take vnh = τunh(γ
k
h , q

k
h) in (31) and follow the same proof of Lemma 5.2,

then we obtain (42). The stability estimate (43) can be proved similarly by taking
vh = τ∂τv

n
h in (27); this concludes the proof of this lemma. �

Lemma 5.4. For any sequence {γh, qh} ∈ Kh,τ
1 × Kh,τ

2 and (γh, qh) converges
weakly to some (γ, q) in K1 ×K2 as h, τ tend to 0, then

(44) τ

M
∑

n=0

∫

Γc

|unh(γh, qh)− zδ|2ds→
∫ T

0

∫

Γc

|u(γ, q)− zδ|2dxdt strongly.

Proof. We use unh and u to denote unh(γh, qh) and u(γ, q), respectively and

un = u(γ, q; tn) ≡ u(γ, q;nτ) for 0 ≤ n ≤M ,

ūn ≡ ūn(γ, q) =
1

τ

∫ tn

tn−1

u(γ, q; t)dt for 1 ≤ n ≤M ,

ū0 = ū0(γ, q) = 0.(45)

By taking v = τ−1vh in (4), then integrating over (tn−1, tn) and subtracting it from
(27), it yields

∫

Ω

∂τ (u
n
h − un)vhdx+

1

τ

∫ tn

tn−1

∫

Ω

αn∇(unh − u) · ∇vhdxdt

+
1

τ

∫ tn

tn−1

∫

Γi

γnh (u
n
h − u)vhdsdt =

1

τ

∫ tn

tn−1

∫

Γi

(γnh − γ)uvhdsdt

+
1

τ

∫ tn

tn−1

∫

Γc

(qnh − q)vhdsdt ∀ vh ∈ V h.(46)
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Taking vh = τηnh in the above equation and letting ηnh = unh −Qhū
n, we have

1

2
‖ηnh‖2L2(Ω) −

1

2
‖ηn−1

h ‖2L2(Ω) + τα0‖∇ηnh‖2L2(Ω) + τγ1‖ηnh‖2L2(Ω)

≤ τ

∫

Ω

∂τη
n
hη

n
hdx+

∫ tn

tn−1

∫

Γi

(γnh − γ)uηnhdsdt

+

∫ tn

tn−1

∫

Γc

(qnh − q)ηnhdsdt ∀ vh ∈ V h,

= (I)1 + (I)2 + (I)3.(47)

Summing the above equation over n = 1, 2, . . . , k ≤M , we obtain

1

2
‖ηkh‖2L2(Ω) −

1

2
‖η0h‖2L2(Ω) + τα0

k
∑

n=1

‖∇ηnh‖2L2(Ω)

+τγ1

k
∑

n=1

‖ηnh‖2L2(Ω) ≤
k
∑

n=1

(I)1 +

k
∑

n=1

(I)2 +

k
∑

n=1

(I)3.(48)

We next estimate (I)1, (I)2, and (I)3. For any sequence {an} and {bn}, the following
formula is satisfied

(49)
k
∑

n=1

(an − an−1)bn = akbk − a0b0 −
k
∑

n=1

an−1(bn − bn−1).

We have

k
∑

n=1

(I)1 = τ
k
∑

n=1

∫

Ω

∂τ (u
n − ūn)ηnhdx,

=

∫

Ω

(uk − ūk)ηkhdx− τ

k
∑

n=1

∫

Ω

(un−1 − ūn−1)∂τη
n
hdx,

≤ √
τ

{

∫ tk

tk−1

‖ut‖2L2(Ω)dt

}
1
2

‖ηkh‖L2(Ω)

+ τ

{

∫ T

0

‖ut‖2L2(Ω)dt

}
1
2
{

k
∑

n=1

‖ηnh‖L2(Ω)

}

1
2

,

≤ C
√
τ.(50)

Here, we have used the stability estimates (42)-(43) and the property of Qh

k
∑

n=1

(I)2 =

k
∑

n=1

∫ tn

tn−1

∫

Γi

(γnh − γ)uηnhdsdt,

≤ γ1
4γ2

k
∑

n=1

∫ tn

tn−1

∫

Γi

|γnh − γ||ηnh |2dsdt+
γ2
γ1

k
∑

n=1

∫ tn

tn−1

∫

Γi

|γnh − γ||u|2dsdt,

≤γ1
2
τ

k
∑

n=1

‖ηnh‖2L2(Γi)
+
γ2
γ1

∫ T

0

∫

Γi

|γnh − γ||u|2dsdt,(51)



SPACE-TIME ROBIN COEFFICIENT AND HEAT FLUX 905

k
∑

n=1

(I)3 =

k
∑

n=1

∫ tn

tn−1

∫

Γc

(qnh − q)ηnhdsdt,

≤ Cτ

k
∑

n=1

‖ηnh‖2L2(Γc)
.(52)

Then

max
1≤n≤M

‖ηnh‖2L2(Ω) ≤
k
∑

n=1

(I)1 +

k
∑

n=1

(I)2 +

k
∑

n=1

(I)3,(53)

τ

k
∑

n=1

‖∇ηnh‖2L2(Ω) ≤
k
∑

n=1

(I)1 +

k
∑

n=1

(I)2 +

k
∑

n=1

(I)3,(54)

and

τ
k
∑

n=1

‖ηnh‖2L2(Ω) ≤
k
∑

n=1

(I)1 +
k
∑

n=1

(I)2 +
k
∑

n=1

(I)3.(55)

Now, using the above estimates (I)1, (I)2, and (I)3 as τ and h → 0, we deduce
ηnh → 0 and unh → Qhū

n as n → ∞ (see Lebesgue dominant convergence theorem
[17]). Using the following relation

unh − ūn = (unh −Qhū
n) + (Qhū

n − ūn),

we obtain

max
1≤n≤M

‖unh − ūn‖2L2(Ω) → 0, τ

k
∑

n=1

‖∇(unh − ūn)‖2L2(Ω) → 0,

and τ

k
∑

n=1

‖unh − ūn‖2L2(Ω) → 0 as τ, h→ 0.(56)

Now, we can verify Lemma 5.4. Using the boundedness of unh, γh, qh, and property
of Qh, it suffices to prove that

IMh − Iσh ≡ τ

M
∑

n=0

∫

Γc

|unh(γh, qh)− zδh|2ds−
∫ T

0

∫

Γc

|u(γ, q)− zδh|2dxdt → 0

as τ, h→ 0,(57)

where zδh = Qhz
δ. By rewriting (57) as follows

IMh − Iσh ≡ τ

M
∑

n=0

∫ tn

tn−1

∫

Γc

(

|unh(γh, qh)− zδh|2 − |u(γ, q)− zδh|2
)

dxdt.(58)

Hence, by using the Cauchy-Schwarz inequality and stability estimates (42), we get

IMh − Iσh ≤ τ

(

M
∑

n=0

∫ tn

tn−1

‖∇(unh − u)‖2L2(Γc)
dt

)1/2

(

M
∑

n=0

∫ tn

tn−1

‖∇(unh + u− 2zδh)‖2L2(Γc)
dt

)1/2

,

≤ C

(

M
∑

n=0

∫ tn

tn−1

‖∇(unh − u)‖2L2(Γc)
dt

)1/2

.(59)
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Moreover, the following identity is true

‖∇(unh − u)‖2L2(Γc)
≤ ‖∇(unh − ūn)‖2L2(Γc)

+ ‖∇(u− ūn)‖2L2(Γc)
.

Using the obtained results of (53)-(55) and the approximation property of the aver-
aging function, we deduce IMh → Iσh as τ and h tend to 0. The proof is complete. �

Next, we prove the convergence analysis of the finite element problem (26)-(27).

Theorem 5.2. Let {(γ∗h,τ , q∗h,τ )}h,τ>0 be a sequence of a minimizer to the finite

element minimization problem (26)-(27). Then each subsequence {(γ∗h,τ , q∗h,τ )}h,τ>0

has a subsequence converges weakly to a minimizer of the continuous problem (2)-
(4).

Proof. First, we take γh,τ = γ1 and qh,τ = q1 in (26) and unh(γh,τ , qh,τ ) be the
corresponding solution to (26)-(27), we easily see that

JM
h,τ (γ

∗
h,τ , q

∗
h,τ ) ≤ JM

h,τ (γ1, q1) ≤ C.

Using the stability estimates (42)-(43), with C not depend on h and τ . Hence,
by the definition of JM

h,τ we have ‖γ∗h,τ‖L2(0,T ;L2(Γi)) ≤ C, and ‖q∗h‖L2(0,T ;L2(Γc)) ≤
C. Subsequently, there exists a subsequence of {(γ∗h,τ , q∗h,τ )}h,τ>0 still denoted by

(γ∗h,τ , q
∗
h,τ ) converges weakly to some (γ∗, q∗) ∈ K1 ×K2 as h, τ → 0 (see [7]).

Now, for any (γ, q) ∈ K1 × K2 and ε1, ε2 > 0, there exists a function (γε, qε) ∈
H1(0, T ;H

1
2 (Γi))×H1(0, T ;H

1
2 (Γc)); (see [6]) such that

‖γε − γ‖L2(0,T ;L2(Γi)) ≤ ε1 and ‖qε − q‖L2(0,T ;L2(Γc)) ≤ ε2.

Define an extension (γ̂ε, q̂ε) of (γε, qε) such that (γ̂ε, q̂ε) ∈ H1(0, T ;H1(Ω)) ×
H1(0, T ;H1(Ω)) (see [20]),

‖γ̂ε‖H1(0,T ;H1(Ω)) ≤ C‖γε‖
H1(0,T ;H

1
2 (Γi))

and ‖q̂ε‖H1(0,T ;H1(Ω)) ≤ C‖qε‖
H1(0,T ;H

1
2 (Γc))

.

Noting that (γ∗h,τ , q
∗
h,τ ) is a minimizer of JM

h,τ over Kh,τ
1 ×Kh,τ

2 , we define

γ̂h,τε (x, t) =

M
∑

n=1

χn(t)Qhγ̂ε(x, tn) and q̂
h,τ
ε (x, t) =

M
∑

n=1

χn(t)Qhq̂ε(x, tn).

Suppose that γh,τε and qh,τε are restrictions of γ̂h,τε and q̂h,τε on Γi and Γc, respec-

tively. Then, (γh,τε , qh,τε ) ∈ Kh,τ
1 ×Kh,τ

2 and for any ε > 0, we have

γh,τε (x, t) =







γ̂ε(x, t) if γ1 ≤ γ̂ε(x, t) ≤ γ2,
γ1 if γ̂ε(x, t) < γ1,
γ2 if γ̂ε(x, t) > γ2,

and

qh,τε (x, t) =







q̂ε(x, t) if q1 ≤ q̂ε(x, t) ≤ q2,
q1 if q̂ε(x) < q1,
q2 if q̂ε(x) > q2.

Then, using the trace theorem, we have

‖γh,τε − γε‖2L2(0,T ;L2(Γi))
≤ ‖γh,τε − γε‖2

L2(0,T ;H
1
2 (Γi))

≤ C‖γ̂h,τε − γ̂ε‖L2(0,T ;H1(Ω)) = C‖Qhγ̂ε − γ̂ε‖L2(0,T ;H1(Ω)),(60)

and

‖qh,τε − qε‖2L2(0,T ;L2(Γc))
≤ ‖qh,τε − qε‖2

L2(0,T ;H
1
2 (Γc))

≤ C‖q̂h,τε − q̂ε‖L2(0,T ;H1(Ω)) = C‖Qhq̂ε − q̂ε‖L2(0,T ;H1(Ω)).(61)
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Thus, (γh,τε , qh,τε ) → (γε, qε) in K1 ×K2 as h, τ → 0.
By using this, the lower simi-continuity of L2-norm, and Lemma 5.4, we deduce

J(γ∗, q∗) =
1

2

∫ T

0

‖u(γ∗, q∗)− zδ‖2L2(Γc)
dt

+
1

2
β‖γ∗‖2L2(0,T ;L2(Γi))

+
1

2
η‖q∗‖2L2(0,T ;L2(Γc))

,

≤ lim
h,τ→0

inf JM
h,τ (γ

∗
h,τ , q

∗
h,τ ),

≤ lim
h,τ→0

inf JM
h,τ (γ

h,τ
ε , qh,τε ),

=
1

2

∫ T

0

‖u(γε, qε)− zδ‖2L2(Γc)
dt

+
1

2
β‖γε‖2L2(0,T ;L2(Γi))

+
1

2
η‖qε‖2L2(0,T ;L2(Γc))

,

= J(γε, qε).

Taking ε→ 0 and using Lemma 2.1, we deduce

J(γ∗, q∗) ≤ J(γ, q) ∀(γ, q) ∈ K1 ×K2.

Then, (γ∗, q∗) is a minimizer to system (2)-(4). This completes the proof. �

6. Numerical algorithm

In this section, we describe the MCGM for the numerical solution of the opti-
mization problem. Every iteration of the algorithm requires solving two auxiliary
equations (adjoint and sensitivity) which are needed for computing the gradient
and step lengths, respectively. The modification consists of simultaneously recon-
structing the space-time dependent parameters Robin coefficient and heat flux. The
detailed steps of the proposed algorithm are given below.

Algorithm 6.1. (1) Choose the initial guess (γ0, q0), set (d0q, d
0
γ) = (−J ′

q0 ,−J
′

γ0),

and k := 0.
(2) Solve (1) for u(γk, qk) and compute residual at kth step

rkq = u(γk, qk)− zδ on Γc × (0, T ).

(3) Solve (12) for ω∗
q (γ

k, qk) with the boundary conditions and compute the gra-
dient:

J
′

q(γ
k, qk) = ω∗

q (γ
k, qk) + ηqk.

(4) Determine the conjugate coefficient:

βk
q =

‖J ′

q(γ
k, qk)‖2L2(0,T ;L2(Γc))

‖J ′

q(γ
k−1, qk−1)‖2L2(0,T ;L2(Γc))

.

(5) Compute the descent direction for q(x, t)

dk+1
q = −J ′

q(γ
k, qk) + βk

q d
k
q .

(6) Solve (8) for u1q(γ
k, qk).

(7) Compute the step length

αk
q = −〈rk, u1q(γk, qk, dk+1

q )〉L2(0,T,L2(Γc)) + η〈qk, dk+1
q 〉L2(0,T,L2(Γc))

‖u1q(γk, qk, dk+1
q )‖2L2(0,T,L2(Γc))

+ η‖dk+1
q ‖2L2(0,T,L2(Γc))

.
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(8) Update q(x, t) by
qk+1 = qk + αkd

k+1
q .

(9) Solve (1) for u(γk, qk+1) and compute the residual for γ

rkγ = u(γk, qk+1)− zδ on Γc × (0, T ).

(10) Solve (11) for ω∗
γ(γ

k, qk+1) and compute the gradient:

J
′

γ(γ
k, qk+1) = −u(γk, qk+1)ω∗

γ(γ
k, qk+1) + βγk.

(11) Determine the conjugate coefficient:

βk
γ =

‖J ′

γ(γ
k, qk+1)‖2L2(0,T ;L2(Γi))

‖J ′

γ(γ
k−1, qk+1)‖2L2(0,T ;L2(Γi))

.

(12) Compute the descent direction for γ(x, t)

dk+1
γ = −J ′

γ(γ
k, qk+1) + βk

q d
k
q .

(13) Solve (7) for u1γ(γ
k, qk+1).

(14) Compute the step length

αk
γ = −〈rk, u1γ(γk, qk+1, dk+1

γ )〉L2(0,T,L2(Γc)) + β〈γk, dk+1
γ 〉L2(0,T ;L2(Γi))

‖u′

γ(γ
k, qk+1, dk+1

γ )‖2L2(0,T,L2(Γc))
+ β‖dk+1

γ ‖2L2(0,T ;L2(Γi))

.

(15) Update γ(x, t) by
γk+1 = γk + αk

γd
k+1
γ .

(16) If
‖qk+1 − qk‖L2(0,T ;L2(Γc))

‖qk‖L2(0,T ;L2(Γc))
≤ ε1 and

‖γk+1 − γk‖L2(0,T ;L2(Γi))

‖γk‖L2(0,T ;L2(Γi))
≤ ε2 stop;

otherwise k := k + 1 and go to 2.

The quadratic approximation of the cost functional determines the step lengths
αk
q and αk

γ . The numerical experiments indicate that the step lengths work very
well. There are many successful applications in various scientific fields that provide
the numerical procedure for Hilbert space gradient. Jameson [10] observed that,
the aerodynamic shapes are generally smooth while the gradients are not. In addi-
tion, recommended for an explicit smoothing in the optimization process which is
now regarded as one of the most successful implementation of the gradient adjoint
method in aerodynamic design and optimization. Also, applications of the inverse
problems into other fields such as: electrical impedance tomography, inverse spec-
tral problem, and the Cauchy problem with the boundary conditions have been
investigated. From the previous works and their applications, it encourages us
to study the performance and the simultaneous reconstruction of the parameters
identification γ and q for the optimization inverse problem (2)-(4).

7. Numerical experiments and discussions

The previous section introduced the numerical algorithm 6.1 using the MCGM
for solving the nonlinear optimization inverse problem. In this section, we shall
execute the proposed algorithm 6.1 for reconstructing the parameters identification
heat flux and Robin coefficient, simultaneously in (2)-(4). The considered solution
domain Ω is a rectangular as Ω = (0, 1)× (0, 1), discretized using triangular mesh
which is generated by dividing each element of the regular rectangular mesh into
two triangles. The domain boundaries consist of two parts, Γi = {(x, y) : x =
1, 0 ≤ y ≤ 1}, and Γc = ∂Ω/Γi. The number of triangular finite elements NE is
equal to 2×N×M , where N ,M are the step sizes of x and y, respectively. We solve
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Table 1. The numerical results with 1% noise in the data.

Example δ ∆t k REγ REq J(γ, q) NE β η
7.1 0.01 0.06 5 0.039 0.0352 0.039 512 10−3 10−3

7.2 0.01 0.01 4 0.0382 0.0167 0.0202 288 10−4 10−3

7.3 0.01 0.01 5 0.0392 0.0296 0.0367 864 10−3 10−3

7.4 0.01 0.02 4 0.0379 0.0271 0.024 512 10−3 10−3

the forward problem (1) using linear FEM for space discretization, and backward
difference scheme for the time discretization. In our test cases, the simulated noisy
data zδ are generated by adding some uniformly distributed random variable R
varying in [−1, 1], where

(62) zδ = u+ δRu on Γc × (0, T ).

In the following study, the random variable R is realised by using the MATLAB
function rand(·) and the regularization parameters β and η and the tolerance pa-
rameters ε1 and ε2 are set to be 10−3. In all numerical experiments the time varies
in the interval [0, 1], step size ∆t is optional, and thermal conductivity α is fixed
to 1.

Next, we illustrate the numerical experiments for reconstructing the unknown
parameters and discuss their performances with the exact solutions.

Remark 7.1. The relative error of the Robin coefficient is defined by REγ =
‖γk − γ‖L2(0,T ;L2(Γi))

‖γ‖L2(0,T ;L2(Γi))
and the relative error of the heat flux is defined by REq =

‖qk − q‖L2(0,T ;L2(Γc))

‖q‖L2(0,T ;L2(Γc))
.

Example 7.1. Take the exact Robin coefficient γ(x, t) = 1
4e

(y−t) × sin(πt) + 2 on

Γi and the exact heat flux q(x, t) = 1
4 (x − 1)4 × sin(2πt) + 3 on Γc. Consider the

analytical solution of the forward problem to be u(x, t) = 1
2 (x

2 + y2) sin(πt) and

then, the source function is given by f(x, t) = π
2 (x

2 + y2) cos(πt) − 2 sin(πt), and

the ambient temperature is given by g(x, t) = x sin(πt) + 1
2γ(x, t)(x

2 + y2) sin(πt).

Example 7.2. Take the exact Robin coefficient γ(x, t) = 1
4 (y − 1)ey−t + 3 on

Γi and the exact heat flux q(x, t) = 1
4 (t − 1)(x − 1)4 + 3 on Γc. Consider the

analytical solution u(x, t) = x2 + y2 + t cos(xy) and then, the source function given
by f(x, t) = cos(xy) − (4 − t cos(xy)(x2 + y2)) and ambient temperature g(x, t) =
2x− ty sin(xy) + γ(x, t)(x2 + y2 + t cos(xy)) on Γi.

Example 7.3. Take the exact Robin coefficient γ(x, t) = 1
4 (y − 1)e(y−t) + 3 on Γi

and the exact heat flux q(x, t) = 1
4 (x − 1)2e(y−t) + 3 on Γc. Consider the exact

solution u(x, t) = x2 + y2 + t cos(xy), the source function f(x, t) = cos(xy) −
(4 − t(x2 + y2) cos(xy)), and the ambient temperature g(x, t) = 2x − ty sin(xy) +
γ(x, t)(x2 + y2 + t cos(xy)).

Example 7.4. Consider the exact Robin coefficient γ(x, t) = 1
4e

(y−t) × sin(πt) + 3

on Γi and the exact heat flux q(x, t) = 1
4 (x−1)4×sin(πt)+3, on Γc, u(x, t) =

1
2 (x

2+

y2) sin(πt), f(x, t) = π
2 (x

2 + y2) cos(πt) − 2 sin(πt), and the ambient temperature

function g(x, t) = x sin(πt) + 1
2γ(x, t)(x

2 + y2) sin(πt) on Γi.
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Figure 1. Exact and reconstruction Robin coefficient (a) and heat
flux (b) for Example 7.1 and (γ0, q0) = (2, 3) at 1% noise in the
data.
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Figure 2. Exact and reconstruction γ(x, t) (a) and q(x, t) (b) for
Example 7.2 and (γ0, q0) = (3, 3) at 1% noise in the data.
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Figure 3. Exact and reconstruction Robin coefficient (a) and heat
flux (b) for Example 7.3 and (γ0, q0) = (3, 3) at 1% noise in the
data.
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Figure 4. Exact and reconstruction Robin coefficient (a) and heat
flux (b) for Example 7.4 and (γ0, q0) = (2, 3) at 1% noise in the
data.

In this work, we study the numerical experiments using variant functions to
show the accuracy and efficiency of the proposed algorithm. For the proposed
inverse problem (2)-(4), there are some input parameters of great influence on
accuracy of the obtained results. Such parameters includes, step sizes N , M , ∆t
and the noise level in the data, the regularization parameters η and β, as well
as the initial guess γ0 and q0. Moreover, in case of initial guess taken to be some
constants with 1% noise in the data, the numerical results appear quite satisfactory.
The numerical experiments show that the reconstructed results are reasonable. In
inverse problems, we can not expect the error rate to be very small along with the
behaviour because of the nature of ill-posed inverse problems. We focused on the
behavior of solutions in addition to the accuracy errors which were defined by the
relative errors.

Table 1 presents the relative error, residual error, the number of iterations, and
the cost functional in Examples 7.1-7.4. For all examples, 1% noise was added
to the measured data and the initial guess was taken to be constants. It can be
clearly observed that both plots in each of Figures 1-4 are satisfactory. Hence, the
proposed method has a reasonable reconstruction accuracy and low errors. On the
other hand, Figures 1(b), 2(a), 3(a), 4(b) apparently, look undesirable. This is
because, it is difficult to expect the exact reconstruction of the inverse problem es-
pecially, for cases where multiple space-time dependent parameters are required. In
addition, the heat flux represented on three parts of the domain boundaries causes
discontinuity problem. Also, the Robin inverse problem is highly ill-posedness. In
particular, small change in the input parameters makes large deviations in the so-
lutions of the problem. As a test case, we considered the initial guess is close to
the exact solution of the Robin coefficient and heat flux. It can be observed that
the exact and reconstructed Robin coefficient and heat flux shown in Figures 5-8
are quite satisfactory. This can be attributed to the reduced amount of noise in
the data. Figure 9 shows the exact and noisy data obtained by Algorithm 6.1 for
Examples 7.2 and 7.4. One of the important advantages of the MCGM is being
fast and accurate as shown in Fig. 10. The accuracy errors are defined by residual
errors ‖u(γ, q) − zδ‖L2(0,T ;L2(Γi)) and ‖u(γ, q) − zδ‖L2(0,T ;L2(Γc)) with respect to
γ and q. The relative errors of γ and q are reduced gradually with the iteration
number k.
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Figure 5. Exact and reconstruction Robin coefficient (a) and heat
flux (b) by Algorithm 6.1 for Example 7.1.
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Figure 6. Exact and reconstruction γ(x, t) (a) and q(x, t) (b) by
Algorithm 6.1 for Example 7.2.
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Figure 7. Exact and reconstruction Robin coefficient (a) and heat
flux (b) for Example 7.3.



SPACE-TIME ROBIN COEFFICIENT AND HEAT FLUX 913

0

0.5

1

0

0.5

1
3

3.1

3.2

3.3

3.4

3.5

t

exact solution

x

γ(
x,

 t)

0

0.5

1

0

0.5

1

3

3.1

3.2

3.3

3.4

t

reconstruction solution

x

γk (x
, t

)

0

0.5

1

0

0.5

1
3

3.05

3.1

3.15

3.2

3.25

t

exact solution

x

q(
x,

 t)

0

0.5

1

0

0.5

1

2.95

3

3.05

3.1

3.15

3.2

t

reconstruction solution

x

qk (x
, t

)

(a) (b)

Figure 8. Exact and reconstruction Robin coefficient (a) and heat
flux (b) for Example 7.4.
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Figure 9. Exact and noisy data (a) and (b) for Examples 7.2 and
7.4, respectively by Algorithm 6.1.
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Figure 10. Convergence history of the method: the relative errors
(a) and residual errors (b) of γ and q by Algorithm 6.1, with δ = 1%
noise in the data for Example 7.1.
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8. Conclusions and outlook

In this paper, the variational formulation of the parabolic inverse problem is
derived and the Tikhonov regularization approach is investigated. We derived the
differentiability results to obtain the gradient of the Robin coefficient and heat flux.
Also, introduced the adjoint equations to simplify computing the minimizer. We
proposed a fully discrete FEM to solve the minimization problem and proved its
convergence. A numerical algorithm is proposed for simultaneously reconstruct-
ing the unknown parameters using a MCGM. The numerical results show that the
proposed algorithm is accurate, efficient, and robust. Furthermore, the proposed
method introduced a convergent and stable numerical results for the parameters
identification. Several experiments are introduced to verify the efficiency and ac-
curacy of the MCGM.

As a future work, we plan to extend the modified conjugate gradient method to
simultaneously reconstruct different parameters in the nonlinear inverse problems,
such as reconstructing the space-time dependent conductivity, diffusivity coefficient
and others.
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