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A NOVEL ADAPTIVE FINITE VOLUME METHOD FOR

ELLIPTIC EQUATIONS

YANHUI ZHOU AND QINGSONG ZOU

Abstract. In this paper, we propose a novel adaptive finite volume method (AFVM) for elliptic
equations. As a standard adaptive method, a loop of our method involves four steps: Solve →

Estimate → Mark → Refine. The novelty of our method is that we do not have the traditional
“completion” procedure in the Refine step. To guarantee the conformity, a triangular element with
a hanging node is treated as a quadrilateral element, and the corresponding function space consists
of the bilinear functions. The optimal computational complexity of our AFVM is validated by
numerical examples.
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1. Introduction

The finite volume method (FVM) is a popular numerical tool for partial dif-
ferential equations (PDEs), cf. [1, 2, 5, 13–18, 20–22, 24–26, 28, 29, 31–33, 37]. Re-
cently, the adaptive finite volume method (AFVM) attracts a lot of attention,
see [6,8,11,12,19,23,27,30,36]. Especially the a posteriori error estimator has been
studied in many papers, see [36] for the hierarchical type and [6, 11, 12, 23, 27, 30]
the residual type error estimators.

In this paper, we design a novel AFVM for elliptic equations. Unlike the pre-
vious works which pay a lot of attention on the construction of a posteriori error
estimators for the FVM, here we construct our novel adaptive method modifying
the adaptive strategy. It is known that an iteration of a standard adaptive method
involves four steps: Solve → Estimate → Mark → Refine. In particular, in the
Refine step, after having refined the mesh according to the previous marking step,
we should refine more elements to eliminate the so called “hanging nodes”. The
novelty of our method is that we do not have the traditional “completion” pro-
cedure in the Refine step which allow hanging nodes. In order to guarantee the
conformity, a triangular element with one hanging node will not be divided if the
edge with the hanging node is not a base of the triangle. We consider this triangle
with the hanging node as a quadrilateral. We only divide a triangular element has
a hanging node on the base, or has more than one hanging nodes on edges. As a
consequence, our meshes in AFVM consist of hybrid triangular and quadrilateral
elements, to ensure the continuity of our trial function of the finite volume scheme
in the Solve step, we let the trial function on triangular element be constructed
as the linear function and on quadrilateral element (a triangular element with a
hanging node) as the isoparametric bilinear. In other words, we define the trial
function as{

linear function, if a triangular element has no hanging node
isoparametric bilinear function, if a triangular element has a hanging node

.

We follow the Zienkiewicz-Zhu [34,35] type gradient recovery operator in the Esti-

mate step, and the marking strategy proposed by Dörfler [10] in the Mark step.
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One may naturally ask a question: how about the actual significance of the novel
AVFM? It is known that to keep the conformity, in the Refine step, one often needs
an additive “completion” procedure [3] to eliminate the hanging nodes. Our nu-
merical experiments show that the novel AFVM decrease the steps of bisection for
the conformity compare to the standard AFVM which needs traditional “comple-
tion” procedure. Moreover, our AFVM possesses the local conservation property.
Furthermore, suppose u is the exact solution of the elliptic equation, our numerical
results show that

|u− uk|1 ≤ C1N
−1/2
k and ‖u− uk‖0 ≤ C2N

−1
k ,

where uk and Nk are the FVM solution and the number of elements of the mesh
to k-th iteration, C1 and C2 are two constants. We note that in our numerical
example, the optimal convergence order of H1 and L2 errors can be obtained even
if u ∈ H1+ 2

3
−ε(Ω) for all ε > 0 and u /∈ H2(Ω), and the domain Ω is not convex.

The main idea of our AFVM can be applied to general elliptic equations. To
illustrate the basic idea, we focus on the model problem

−O · (αOu) = f in Ω,(1)

u = 0 on ∂Ω,(2)

where Ω ⊂ R
2 is a convex polygon domain, α is a piecewise continuous function

that bounded below: There exists a positive constant α0 > 0 such that α(x) ≥ α0

for almost all x ∈ Ω, and f is a real valued function defined on Ω. The stability
analysis of our finite volume scheme is a routine under the framework of linear
on triangular element [29] and isoparametric bilinear on quadrilateral element [25],
and we obtain the optimal convergence rate of H1 and L2 norms.

The rest of this paper is organized as follows. In the next section we introduce
a FVM on hybrid triangular and quadrilateral meshes. The optimal convergence
properties are studied both in H1 and L2 spaces. Our novel AFVM is presented in
Section 3. Numerical examples are provided in Section 4 to validate that our novel
AFVM has optimal computational cost and the theoretical results of our FVM.

We end this section with some notations. For an integer m ≥ 0 and 1 ≤ p ≤ ∞,
Wm,p(Ω) denote the standard Sobolev spaces of functions that have generalized
derivatives up to order m in Lp(Ω). The norm (or semi-norm) is defined by

‖u‖m,p,Ω =
(∑

|α|≤m ‖Dαu‖pp
)1/p

(or |u|m,p,Ω =
(∑

|α|=m ‖Dαu‖pp
)1/p

) for 1 ≤
p < ∞, and with the standard modification for p = ∞. Hm(Ω) := Wm,2(Ω) and
H1

0 (Ω) denote the subspace of H1(Ω) of functions vanishing on the boundary ∂Ω.
For simplicity, in the rest of the paper we will omit the subscript index when p = 2
and the domain index Ω if needed. Furthermore, (·, ·) denotes the standard L2(Ω)-
inner product. To avoid writing constants repeatedly, “A . B” means that A can
be bounded by B multiplied by a constant which is independent of the parameters
which A and B may depend on, “A & B” means that B can be bounded by A.
“A ∼ B” means “A . B” and “B . A”.

2. A finite volume method on hybrid meshes

2.1. A hybrid triangular and quadrilateral mesh. We partition Ω into a
mesh Th consisting of a finite number of triangles and convex quadrilaterals, where
h is the largest diameter of all triangles and quadrilaterals, and we call Th the
primal mesh of Ω, see Fig.1. We denote by Nh the set of all vertices of Th, and let
N ◦

h = Nh\∂Ω be the set of all interior vertices.
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Figure 1. A hybrid triangular and quadrilateral mesh.

Suppose Pi(i = 1, 2, 3, 4) are four vertices of quadrilateral τQ ∈ Th, Mi is the

midpoint of the edge PiPi+1 (i = 1, 2, 3, 4). We denote Q as the intersection point
of M1M3 and M2M4, and call point Q as the averaging center of τQ. We denote

SQ and dQ as the area of τQ and the length |−−−→P1P2 +
−−−→
P3P4| respectively. We note

that the length dQ equals to the distance vector of the diagonal midpoints of τQ.
Moreover, if τQ is a parallelogram, then dQ = 0.

We call a partition Th conform if different triangles and quadrilaterals in Th have
no common interior points, and a vertex of any triangle or quadrilateral does not
lie on the interior of an edge of any other triangle or quadrilateral.

A partition Th is called shape regular provided the following conditions are sat-
isfied:

(i) For each triangle τT ∈ Th, there exists a positive constant c1 independent of
h such that hT

ρT
≤ c1, where hT is the largest diameter of τT and ρT is the

maximum diameter of circles contained in τT .
(ii) For each quadrilateral τQ ∈ Th, the ratio of the maximal edge to minimal edge

lengths is bounded by a constant, and the four angles are bigger than θ0 and
smaller than π − θ0 with some θ0 > 0.

We call a partition Th quasi uniform if Th is shape regular and satisfies the
following conditions:

(i) For each triangle τT ∈ Th, there exists a positive constant c2 independent of
h such that h

ρT
≤ c2.

(ii) For each quadrilateral τQ ∈ Th, SQ ∼ h2, dQ . h2.

2.2. A finite volume scheme on hybrid meshes. Our finite volume scheme
is based on the framework of Petrov-Galerkin method. We first construct the trial
function space. For any quadrilateral τQ ∈ Th, there exists a unique invertible
bilinear transformation FτQ maps the reference unit square τ̂Q = [0, 1]2 to τQ
(cf. [4]). With respect to Th, we define the trial function space

(3) Uh = {vh ∈ C(Ω) :
vh|τT ∈ P1, ∀τT ∈ Th
vh|τQ ∈ Q1(τ̂Q) ◦ F−1

τQ , ∀τQ ∈ Th ; vh|∂Ω = 0},

where P1 and Q1 are the sets of all polynomials and bi-polynomials of degree no
more than 1 respectively, τT and τQ are the triangular and quadrilateral element
of Th, F−1

τQ denotes the inverse of the transformation FτQ , and Q1(τ̂Q) ◦ F−1
τQ is a

composite function. From the definition of Uh, we have

(4) dimUh = #N 0
h ,
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Figure 2. A control volume VP associated with a node P of a
hybrid mesh.

where dimS and #S are the dimension and cardinality of the set S.
Now, we proceed to present the dual partition of Ω and the corresponding test

function space. The dual partition is another mesh of Ω, and the test function
space is based on the dual mesh. The dual partition of Ω is constructed as fol-
lows. For each vertex P of Th (see Fig.2), the point P is a common vertex of
2PP1P2P3, 4PP3P4, 4PP4P5, 2PP5P6P7, 4PP7P1. Let Q1, Q4 be the av-
eraging centers of 2PP1P2P3, 2PP5P6P7; and Q2, Q3, Q5 be the barycenters of
4PP3P4, 4PP4P5, 4PP7P1; and M1,M3,M4,M5,M7 be the midpoints of edges
PP1, PP3, PP4, PP5, PP7. Then we connect pointsM1, Q1,M3, Q2,M4, Q3,M5, Q4,
M7, Q5,M1 successively to obtain a polygonal domain VP surrounding point P , and
call VP a control volume with respect to the vertex P . Let T ′

h be a dual partition
of Ω if T ′

h is constructed by all control volumes VP , P ∈ Nh. In other words, we
define

T ′
h = {VP : P ∈ Nh}.

The corresponding test function space Vh contains all the piecewise constant func-
tions with respect to T ′

h defined as

Vh = Span{ψVP
: P ∈ N 0

h},
where ψVP

is the characteristic function on VP . Similar to (4), we have

(5) dimVh = #N 0
h .

It follows from (4) and (5) that

(6) dimUh = dimVh = #N 0
h .

We are now ready to describe the finite volume scheme on hybrid meshes. The
finite volume solution of Eqs. (1) and (2) is a function uh ∈ Uh which satisfies the
following conservation law

(7) −
∫

∂VP

α
∂uh
∂n

ds =

∫

VP

f dxdy

on each control volume VP , P ∈ N 0
h , where n is the unit outward normal on the

boundary ∂VP . Let wh ∈ Vh, and wh can be written as

wh =
∑

P∈N 0

h

wPψVP
,
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where the coefficients wP , P ∈ N 0
h of wh are constants. Multiplying (7) with wP

and then summing up for all P ∈ N 0
h , then we obtain

−
∑

P∈N 0

h

wP

∫

∂VP

α
∂uh
∂n

ds =

∫

Ω

fwh dxdy.

Define the finite volume scheme bilinear form for all v ∈ H1
0 (Ω), wh ∈ Vh as

ah(v, wh) = −
∑

P∈N 0

h

wP

∫

∂VP

α
∂uh
∂n

ds.

The finite volume scheme for solving Eqs. (1) and (2) reads as: Find uh ∈ Uh such
that

(8) ah(uh, wh) = (f, wh), ∀wh ∈ Vh.

2.3. Stability and convergence. From (6) we define a linear bijective mapping
Πh : vh ∈ Uh → Vh such that

Πhvh(P ) = vh(P ), ∀P ∈ Nh.

Theorem 2.1. Suppose Th is a conform and shape regular hybrid mesh, and the

coefficient α is a piecewise constant with respect to Th, then

(9) ah(vh,Πvh) & |vh|21,Ω, ∀vh ∈ Uh.

Consequently, Let u ∈ H1
0 (Ω)∩H2(Ω) be the exact solution of (1) and (2), uh ∈ Uh

be the numerical solution of (8). We have

(10) |u− uh|1 . h|u|2.

Furthermore, if Th is a quasi uniform hybrid mesh and f ∈ H1(Ω), α ∈W 2,∞(Ω),
then

(11) ‖u− uh‖0 . h2‖f‖1.

Proof. We have the coercivity of triangular [29] and quadrilateral [25] meshes re-
spectively, then summing up them we obtain (9). The H1 error estimate (10) is a
routine by (9). Similar to the L2 error estimate on triangular [13] and quadrilat-
eral [21] meshes, (11) can be proved by Aubin-Nitsche technique [4, 9]. �

Remark 2.1. In the Section 4, numerical example 4.1 shows that we also obtained
the optimal convergence rate of L2 norm even if Th is not quasi uniform; examples
4.2 and 4.3 show that the above FVM is stable even if Th is not shape regular.

Now, we are ready to introduce a novel hybrid mesh. In Fig.3, there are three
triangles 4P1P2P4, 4PP2P3 and 4PP3P4, it is a triangular mesh. However, this
mesh can not ensure the conformity since there exists a hanging node P . To guar-
antee the conformity, we consider this triangular grid as a novel hybrid mesh when
we treat 4P1P2P4 with the hanging node P as a quadrilateral P4P1P2P . This new
feature is great useful to the following adaptive finite volume method since it allow
hanging nodes.
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Figure 3. Treat 4P1P2P4 with the hanging node P as a quadri-
lateral and the control volume VP .

3. A novel adaptive finite volume method

In this section, we present a novel adaptive finite volume method (AFVM) for (1)
and (2). Our AFVM is a loop involves: Solve → Estimate → Mark → Refine.
The novelty of our method is that we do not have the traditional “completion”
procedure in the Refine step. Let Tk be the k-th iteration mesh of Ω, and suppose
T1 is a triangular mesh. For convenience, we denote uk := uTk

, ηk(uk, τ)τ∈Tk
:=

ηTk
(uTk

, τ)τ∈Tk
, Mk := MTk

, and Nk as the number of elements of the mesh Tk.
Firstly, we discuss the Solve subroutine. For the mesh Tk, the subroutine

uk = Solve(Tk)
outputs the finite volume solution uk of (1) and (2). We note that Tk (k ≥ 2) may be
hybrid triangular and quadrilateral meshes, since in the Refine step there produce
quadrilateral element (a triangular element with a hanging node). Therefore, the
trial function space of mesh Tk (k ≥ 2) should be linear function on triangular
element and bilinear on quadrilateral, which is different from T1. For example,
in Fig.3, it should be linear on triangular elements 4PP2P3 and 4PP3P4, and
bilinear on quadrilateral P4P1P2P . Moreover, for the mesh Tk (k ≥ 2), the trial
function space can be rewritten as

Uh = {vh ∈ C(Ω) :
vh|τ ∈ P1, if τ has no hanging node
vh|τ ∈ Q1(τ̂ ) ◦ F−1

τ , if τ has a hanging node
; vh|∂Ω = 0}.

Secondly, we present gradient recovery error estimator for the finite volume so-
lution uk and the corresponding mesh Tk. Define G : uk ∈ Uh → Guk ∈ (Wh)

2 be
a Zienkiewicz-Zhu [34, 35] type gradient recovery operator, such that for arbitrary
vertex P ∈ Nh

Guk(P ) =
1

|wP |

∫∫

wP

∇uk dxdy,

where

Wh := {vh ∈ C(Ω) :
vh|τ ∈ P1, if τ has no hanging node,
vh|τ ∈ Q1(τ̂ ) ◦ F−1

τ , if τ has a hanging node,
∀τ ∈ Th},

wP :=
⋃

{τ ∈ Tk : P ∈ τ}
and |wP | is the area of wP . Then the subroutine

ηk(uk, τ)τ∈Tk
= Estimate(Tk, uk)

outputs the gradient recovery local indicator defined by

ηk(uk, τ) := ‖Guk −∇uk‖0,τ , ∀τ ∈ Tk.
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Figure 4. Divide a triangle p(1)p(2)p(3) for reducing the error.

Thirdly, we use the marking strategy proposed by Dörfler [10] to mark Tk. For
arbitrary subset S of the mesh Tk, we define

η2k(uk,S) :=
∑

τ∈S

η2k(uk, τ)

as the global error estimator on S. Let the local indicators ηk(uk, τ), τ ∈ Tk ordered
from the largest to the smallest according to their size, then we choose a subset
Mk ⊂ Tk with minimal cardinality such that

(12) η2k(uk,Mk) ≥ θη2k(uk, Tk),
where θ ∈ (0, 1) is a given constant. In short, the subroutine

Mk = Mark (ηk(uk, τ)τ∈Tk
, Tk, θ)

outputs the subset Mk which satisfies (12).
In the last Refine step, we use the longest edge bisection [7]. There are three

procedures to accomplish this step. Firstly, marking the subset Mk for reducing
the error. Secondly, marking edges for the conformity. Finally, refining the mesh
Tk. We include two parts to interpret them below. The first part illustrate how
to implement them in the first loop of our AFVM. The second part describe the
difference between the first and remainder loops of AFVM in the Refine step.

For each triangular element τ ∈ T1, we label the longest edge of τ as base or
refinement edge. The opposite vertex of the base is called peak. Firstly, for each
triangle τ ∈ M1 ⊂ T1, we mark the base, and the triangle is bisected to two new
children triangles by connecting the peak to the midpoint of the base for reducing
the error, and connect the midpoint of the base to the midpoint of the marked edges
for the conformity (Fig.4). After all the triangles of subset M1 are refined, there
need more bisections to eliminate the hanging nodes for conformity in general. Our
strategy is that for each triangle τ ∈ T1\M1, we divide it as above if there has
a hanging node on the base; otherwise we mark the base if and only if the two
shortest edges of τ are marked, and then divide the triangle to four new children
triangles by connecting the peak and the midpoints of the two shortest edges to
the midpoint of the base for conformity respectively; if there is only one hanging
node which not on the base, we consider the triangle τ with the hanging node as
a quadrilateral and need not completion. For example, in Fig.5(a)(b), we treat the
triangle p(1)p(2)p(3) with the hanging node p(4) as a quadrilateral; and in Fig.5(c)

we mark the base p(2)p(3) since the two shortest edges p(1)p(2) and p(1)p(3) being
marked. We mention that in Fig.3 the dashed line shows the control volume VP of
the hanging node P , and the contribution of quadrilateral P4P1P2P is 4Q1M2M4,
which is different from Fig.2.

After the first loop of AFVM, there should generate quadrilateral elements (a
triangular element with a hanging node) in mesh Tk (k ≥ 2). Therefore, we need
to refine triangular and quadrilateral elements for reducing the error and ensuring



886 Y. ZHOU AND Q. ZOU

1

2 3

4le
ft

(a)

right

1

2 3

4

(b)

le
ft right

1

2 3

4 5

6
mark
(c)

Figure 5. Divide a triangle p(1)p(2)p(3) for the conformity that
allow hanging node.
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Figure 6. Divide a quadrilateral p(1)p(2)p(3)p(4) for reducing the error.

right

1

2

3 4
6

5

mark
(a)

1

2

3 4
5

mark
(b)

1

2

3 4
5

mark
(c)

Figure 7. Divide a quadrilateral p(1)p(2)p(3)p(4) for the confor-
mity that allow hanging node.

the conformity in the Refine step. The unique difference is how to divide a quadri-
lateral element compare to the first loop. Now, we proceed to present it. The
concepts of base and peak of a quadrilateral are similar to a triangle, for example
in Fig.6, vertex p(1) and edge p(3)p(4) are the peak and base to the quadrilateral
p(1)p(2)p(3)p(4). For each quadrilateral τ ∈ Mk ⊂ Tk (k ≥ 2), we mark the base,
and the quadrilateral is divided to three new children triangles by connecting the
peak and hanging node to the midpoint of the base for reducing the error (Fig.6(a));
for conformity we connect the midpoint p(5) of the base to the midpoint p(6) if the

edge p(1)p(4) is marked (Fig.6(b)), and treat the hanging node as a new vertex

if p(1)p(2) or p(2)p(3) is marked (Fig.6(c)(d)) and need not completion. For each
quadrilateral τ ∈ Tk\Mk (k ≥ 2), in order to ensure the conformity, we mark the
base as long as one edge of τ is marked, and connect the hanging node p(2) to the

midpoint of the base p(3)p(4) (Fig.7); we connect the midpoint of the edge p(1)p(4)

to the midpoint of the base p(3)p(4) if p(1)p(4) is marked (Fig.7(a)), and treat the

hanging node of p(1)p(2) or p(2)p(3) as a new vertex if it is marked (Fig.7(b)(c))
and need not completion. Then, the subroutine

Tk+1 = Refine(Mk, Tk)
outputs hybrid triangular and quadrilateral mesh Tk+1 which allow hanging nodes.

In short, the novelty of our AFVM is that we do not have the traditional “comple-
tion” procedure in the Refine step. To ensure the conformity, a triangular element
with a hanging node is treated as a quadrilateral element.
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(a) hybrid triangular and rectangular (b) hybrid triangular and trapezoidal

Figure 8. Two kinds of hybrid meshes for Example 4.1.

To illustrate the practicability and effectiveness of our AFVM, we are interested
in the following type result

|u− uk|1 . N
−1/2
k and ‖u− uk‖0 . N−1

k .

The numerical results in the next section show that the optimal convergence rate
with the above norms can be obtained, even if the exact solution u has lower
regularity and with the Ω non convex.

4. Numerical Results

In this section, we present example 4.1 to validate our above theoretical results
of FVM, examples 4.2 and 4.3 to the AFVM.

Example 4.1. We consider the problem (1), (2) with Ω = [0, 1]2 and α = 1. We
choose the exact solution as

u(x, y) = sin(πx) sin(πy).

Two kinds of hybrid triangular and quadrilateral meshes are implemented. The
first kind of meshes are hybrid triangular and rectangular (Fig.8(a)), the second
kind of meshes are hybrid triangular and trapezoidal (Fig.8(b)). The numerical
results are presented in Table 1 and Table 2. In these two tables, the first column
N indicates the number of elements along the x-direction. For example, in Fig.8(a)
N = 4, and in Fig.8(b) N = 8. We see that the optimal accuracy order can be
obtained under L2 and H1 norms which are consistent with our theoretical results.
Furthermore, we also give the accuracy order under L∞ and W 1,∞ norms. We
mention that the second kind of meshes are not quasi uniform, since the distance
vector of the diagonal midpoints of the trapezoids are O(h), not O(h2).

Example 4.2. We consider the elliptic equation

−O · (αOu) = f

on the domain Ω = {−1 ≤ x ≤ 1,−1 ≤ y ≤ 1}. We choose α = 1 and the exact
solution as

u(x, y) = e−(x2+y2)/0.01.

We note that the boundary condition is inhomogeneous for this equation.
We implement our AFVM to this problem, choose the initial triangulation T1 as

in Fig.9(a), the iteration number n = 30 and parameter θ = 0.3. Fig.9(b) shows
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Table 1. Error and convergence order on hybrid triangular and
rectangular meshes.

N L2 error Order H1 error Order L∞ error Order W 1,∞ error Order
2 1.8e-001 / 1.4e+000 / 3.7e-001 / 1.8e+000 /
4 4.0e-002 2.15 6.6e-001 1.05 9.7e-002 1.92 1.0e+000 0.88
8 1.1e-002 1.91 3.4e-001 0.94 2.9e-002 1.75 5.1e-001 0.97
16 2.7e-003 1.96 1.7e-001 0.97 8.0e-003 1.85 2.6e-001 0.99
32 6.9e-004 1.98 8.8e-002 0.98 2.1e-003 1.91 1.4e-001 0.91
64 1.7e-004 1.99 4.4e-002 0.99 5.5e-004 1.95 7.0e-002 0.97
128 4.3e-005 2.00 2.2e-002 1.00 1.4e-004 1.98 3.5e-002 0.99

Table 2. Error and convergence order on hybrid triangular and
trapezoidal meshes.

N L2 error Order H1 error Order L∞ error Order W 1,∞ error Order
4 1.0e-001 / 1.1e+000 / 2.5e-001 / 1.9e+000 /
8 2.8e-002 1.89 5.5e-001 0.94 7.5e-002 1.74 1.0e+000 0.91
16 7.0e-003 1.97 2.8e-001 0.98 2.0e-002 1.94 5.1e-001 0.98
32 1.8e-003 1.99 1.4e-001 1.00 5.0e-003 1.97 2.6e-001 0.99
64 4.4e-004 2.00 7.0e-002 1.00 1.2e-003 2.00 1.3e-001 1.00
128 1.1e-004 2.00 3.5e-002 1.00 3.1e-004 2.00 6.4e-002 1.00

(a) original mesh (b) mesh after 30 iterations

Figure 9. Original and adaptive meshes for Example 4.2.

the adaptive mesh after 30 iterative steps. In Fig.10(a), the horizontal coordinate
indicate the quantity logNk, while the vertical coordinate present the logarithm of
errors; we depict log ‖u − uk‖0,Tk

by the solid curve with ‘◦’, log ‖u − uk‖∞,Tk
by

the solid curve with ‘∗’, and − logNk by the solid curve with ‘2’. In Fig.10(b), the
horizontal coordinate indicate the quantity log

√
Nk; we depict log |u − uk|1,Tk

by
the colid curve with ‘◦’, and − log

√
Nk by the solid curve with ‘2’. We observe

that ‖u − uk‖0,Tk
and ‖u− uk‖∞,Tk

decay with N−1
k , and |u − uk|1,Tk

decay with

N−0.5
k . Therefore, the optimal convergence order of L2, H1 and L∞ norms can be

obtained by using our AFVM. Moreover, the numerical results show that the Solve

step is stable even if Tk is not shape regular, since there is an angle equal to π for
the quadrilateral element (a triangular element with a hanging node).
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Figure 10. The L2, L∞ and H1 errors of our AFVM for Example 4.2.

Table 3. The number of elements of each iteration for Example 4.2.

S
N

S
N

S
N

NAFVM SAFVM NAFVM SAFVM NAFVM SAFVM
1 8 8 11 62 72 21 384 846
2 12 12 12 68 119 22 496 1100
3 18 18 13 76 184 23 638 434
4 20 26 14 84 200 24 830 1854
5 26 34 15 102 234 25 1130 2478
6 30 42 16 136 274 26 1476 3350
7 38 48 17 166 342 27 1982 4552
8 44 54 18 188 412 28 2676 6186
9 50 60 19 240 500 29 3610 8488
10 56 66 20 308 656 30 4996 11650

To illustrate the advantage of our AFVM compare to the standard AFVM need
traditional “completion” procedure. We also implement the standard AFVM to
example 4.2, the choice of the parameters of these two AFVMs are same in each
iteration, and the unique difference is that the standard AFVM needs “completion”
procedure compare to our AFVM. We list the number of elements in each iteration
of the two AFVMs in Table 3. In this table, S indicates the iterative steps, N
indicates the number of elements in each iteration. The NAFVM indicates our
novel AFVM, and SAFVM indicates the standard AFVM. It shows that our AFVM
decrease the steps of bisection for the conformity compare to the standard AFVM.

Example 4.3. We consider the elliptic equation on the L-shape domain Ω = {−1 ≤
x ≤ 1,−1 ≤ y ≤ 1}\{0 ≤ x ≤ 1,−1 ≤ y ≤ 0} with α = 1 and the exact solution as

u(x, y) = r
2

3 sin(
2θ

3
),

where r = (x2 + y2)
1

2 and θ = arctan y
x . A direct calculation yields the right-hand

side function f = 0. We note that the domain Ω is not convex and the boundary
condition is inhomogeneous for this equation.

We implement our AFVM to this problem, choose the initial triangulation T1
as in Fig.11(a), the iteration number n = 30 and parameter θ = 0.3. Fig.11(b)
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(a) original mesh (b) mesh after 30 iterations

Figure 11. Original and adaptive meshes for Example 4.3.

Table 4. Error and convergence order of our AFVM for Example 4.3.

S Nk L2 error Order H1 error Order L∞ error Order
26 2342 2.6e-004 1.82 2.4e-002 1.01 8.6e-004 1.23
27 3138 2.2e-004 1.14 2.1e-002 0.97 6.6e-004 1.78
28 4196 1.5e-004 2.81 1.8e-002 1.02 5.5e-004 1.33
29 5672 1.1e-004 2.14 1.6e-002 0.98 4.2e-004 1.81
30 7674 7.8e-005 2.16 1.3e-002 1.00 3.5e-004 1.22
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(a) L2 and L∞ errors (b) H1 error

Figure 12. The L2, L∞ and H1 errors of our AFVM for Example 4.3.

shows the adaptive mesh after 30 iterative steps. The partial numerical results
are presented in Table 4. Fig.12 shows the complete results of the true error with
respect to Nk. We observe that ‖u − uk‖0,Tk

and |u − uk|1,Tk
decay with N−1

k

and N−0.5
k respectively. Note that for linear FVM on triangle or bilinear FVM on

quadrilateral, the convergence rate for ‖u−uh‖0 and |u−uh|1 are O(h2) ∼ O(N−1)
and O(h) ∼ O(N−0.5) for uniform meshes, if u is sufficiently regular. In our

numerical example, u ∈ H1+ 2

3
−ε(Ω) for all ε > 0 and u /∈ H2(Ω), and the domain Ω

is not convex, we could not obtain these results if we use uniform meshes. However,
the optimal convergence order of L2 and H1 norms can be obtained by using our
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Table 5. The number of elements of each iteration for Example 4.3.

S
N

S
N

S
N

NAFVM SAFVM NAFVM SAFVM NAFVM SAFVM
1 6 6 11 59 59 21 76 672
2 8 8 12 69 75 22 752 886
3 12 12 13 82 92 23 1001 1182
4 16 16 14 101 112 24 1320 1564
5 18 18 15 130 142 25 1750 2100
6 24 24 16 160 190 26 2342 2816
7 29 29 17 206 242 27 138 3778
8 34 34 18 261 302 28 4196 5084
9 41 41 19 344 393 29 5672 6836
10 48 49 20 440 506 30 7674 9274

AFVM. From Table 4 and Fig. 12(a), we also observe that the convergence order of
‖u−uk‖∞,Tk

is bigger than 1. We also implement the standard AFVM to example
4.3, and the results are listed in Table 5.
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