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A QUADRILATERAL ‘MINI’ FINITE ELEMENT FOR THE

STOKES PROBLEM USING A SINGLE BUBBLE FUNCTION

BISHNU P. LAMICHHANE

Abstract. We consider a quadrilateral ’mini’ finite element for approximating the solution of

Stokes equations using a quadrilateral mesh. We use the standard bilinear finite element space
enriched with element-wise defined bubble functions for the velocity and the standard bilinear

finite element space for the pressure space. With a simple modification of the standard bubble

function we show that a single bubble function is sufficient to ensure the inf-sup condition. We
have thus improved an earlier result on the quadrilateral ’mini’ element, where more than one

bubble function are used to get the stability.

Key words. Stokes equations, mixed finite elements, Mini finite element, inf-sup condition,

bubble function.

1. Introduction

A very simple finite element method for the Stokes problem for a simplicial mesh
is presented by Arnold, Brezzi and Frotin [1], where the velocity space is discretised
by using the standard linear finite element space enriched with element-wise bubble
functions and the pressure space is discretised by using the standard linear finite
element space. The enrichment of the velocity space is done to ensure the stability
of the finite element method, and this increases one vector degree of freedom per
element. An extension of the finite element method to the quadrilateral mesh is
done by Bai [2], where the author enriches the velocity space with more than a
single vector bubble function per element. The inf-sup condition is proved by using
a macro element technique [9], where a single quadrilateral element is used as a
macro element.

In this article we show that with a small modification of the standard bubble
function we can get the stability just by using a single vector bubble function per
element. The main difference with the technique proposed by Bai [2] is that it is
not possible to show the inf-sup condition using a single quadrilateral element as
a macro element. We need to use a macro element consisting of four quadrilateral
elements to prove the inf-sup condition in our situation. Another relevant finite
element method is presented by Lamichhane [8], where two different meshes are
used to discretise the velocity and the pressure space, and a single vector bubble
degree of freedom per element is used to get the stability. The pressure space is
discretised by the space of piecewise constant functions on the dual mesh. However,
the main difficulty of the technique presented by Lamichhane [8] is that the bubble
function is obtained by multiplying the standard bubble function by the gradient
of a bilinear basis function, and hence the bubble function cannot be defined on a
reference element. The standard bubble function on the unit square is the lowest
degree polynomial which vanishes on the boundary of the square. Here we modify
the standard bubble function [1, 2] to get stability of the numerical scheme by using
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a single vector bubble function per element with a continuous pressure approxima-
tion. We also investigate two choices of bubble functions, where both of them can
be defined on a reference element. Thus the main contribution of the paper is to
introduce a modification of the standard bubble function so that the discrete ve-
locity space can be enriched by a single bubble function per element to satisfy the
inf-sup condition for a quadrilateral mesh. The idea can easily be extended to the
three-dimensional case.

2. Stokes equations

This section is devoted to the introduction of the boundary value problem of the
Stokes equations. Let Ω in R2, be a bounded domain with polygonal boundary Γ.
For a prescribed body force f ∈ [L2(Ω)]2, the Stokes equations with homogeneous
Dirichlet boundary condition in Γ reads

(1)
−ν∆u +∇p = f in Ω

divu = 0 in Ω

with u = 0 on Γ, where u is the velocity, p is the pressure, and ν denotes the
viscosity of the fluid.

Here we use standard notations L2(Ω), H1(Ω) and H1
0 (Ω) for Sobolev spaces, see

[4, 6] for details. Let V := [H1
0 (Ω)]2 be the vector Sobolev space with inner product

(·, ·)1,Ω and norm ‖ · ‖1,Ω defined in the standard way: (u,v)1,Ω :=
∑2
i=1(ui, vi)1,Ω,

and the norm being induced by this inner product. We also define another subspace
M of L2(Ω) as

P =

{
q ∈ L2(Ω) :

∫
Ω

q dx = 0

}
.

The weak formulation of the Stokes equations is to find (u, p) ∈ V ×P such that

(2)
ν
∫

Ω
∇u : ∇v dx +

∫
Ω

div v p dx = `(v), v ∈ V ,∫
Ω

divu q dx = 0, q ∈ P,

where `(v) =
∫

Ω
f · v dx. It is well-known that the weak formulation of the Stokes

problem is well-posed [7]. In fact, if the domain Ω is convex, and f ∈ [L2(Ω)]2, we
have u ∈ [H2(Ω)]2, p ∈ H1(Ω) and the a priori estimate holds

‖u‖2,Ω + ‖p‖1,Ω ≤ C‖f‖0,Ω,

where the constant C depends on the domain Ω.

3. Finite element discretizations

We consider a quasi-uniform triangulation Th of the polygonal domain Ω, where
Th consists of parallelograms. The finite element meshes are defined by maps from
the reference square K̂ = (0, 1)2 to the actual parallelogram K ∈ Th. Let Q1(K̂)

be the space of bilinear polynomials in K̂. We start with the finite element space
of continuous functions whose restrictions to an element K are obtained by maps
of bilinear functions from the reference element:

(3) Sh :=
{
vh ∈ H1

0 (Ω), vh|K = v̂h ◦ F−1
K , v̂h ∈ Q1(K̂), K ∈ Th

}
,

where FK : K̂ → K is an affine mapping.

Remark 1. For a convex quadrilateral the mapping FK : K̂ → K is an iso-
parametric map, which may not be an affine mapping. The mapping becomes an
affine mapping if K is a parallelogram.
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Let bK be a bi-variate polynomial of x ∈ R2 with bK = 0 on ∂K, bK(xK) = 1 and
positive on K, where xK ∈ R2 is the centroid of K. This is called a bubble function
corresponding to the element K ∈ Th. Defining the space of bubble functions

Bh := {bh ∈ C0(Ω) : bh|K = cKbK , cK ∈ R, K ∈ Th},(4)

we introduce our finite element space for velocity as V h = [Sh ⊕ Bh]2. The finite
element space for the pressure is taken as the standard bilinear finite element space

(5) S∗h :=
{
vh ∈ L2

0(Ω) ∩H1(Ω), vh|K = v̂h ◦ F−1
K , v̂h ∈ Q1(K̂), K ∈ Th

}
.

Then, the finite element approximation of (2) is defined as a solution to the
following problem: find (uh, ph) ∈ V h × S∗h such that

(6)
a(uh,vh) + b(vh, ph) = `(vh), vh ∈ V h,
b(uh, qh) = 0, qh ∈ S∗h.

We need the following conditions to prove that there is a unique solution of the
discrete problem (6) and the discrete solution converges optimally to the continuous
solution.

(1) The bilinear forms a(·, ·) on V h×V h and b(·, ·) on V h×S∗h are continuous.
(2) The bilinear form a(·, ·) on V h × V h is elliptic.
(3) There exists a constant β > 0 independent of the mesh-size such that for

any qh ∈ S∗h, we have

sup
vh∈V h

b(vh, qh)

‖vh‖1,Ω
≥ β‖qh‖0,Ω.(7)

The constant β with the property

β = inf
qh∈S∗

h

sup
vh∈V h

b(vh, qh)

‖vh‖1,Ω, ‖qh‖0,Ω
(8)

is called the inf-sup constant.

4. The Macro-Element Technique

We prove the inf-sup condition (7) using a macro-element technique proposed by
Stenberg [9]. A macro-element M is a connected set of elements in Th. Moreover,
two macro-elements M1 and M2 are said to be equivalent if they can be mapped
continuously onto each other [9]. We define the following three spaces associated
with the macro-element Mi:

V i
h = [H1

0 (Mi)]
2 ∩ V ,

Sih =
{
vh ∈ H1(Mi), vh|K = v̂h ◦ F−1

K , v̂h ∈ Q1(K̂), K ∈ Th, K ⊂Mi

}
, and

Bi =
{
qh ∈ Sih| b(vh, qh) = 0, vh ∈ V i

h

}
.

Moreover, we denote by Γh the set of all edges in Th interior to Ω. The macro-
element partition Mh of Ω then consists of macro-elements {Mi}Ni=1 with Ω̄ =⋃N
i=1 M̄i. The macro-element technique is given by the following theorem [9].

Theorem 2. Suppose that there is a fixed set of equivalence classes Ej, j = 1, · · · , q,
of macro-elements, a positive integer L, and a macro-element partition Mh such
that

(M1) For each Mi ∈ Ej, j = 1, · · · , q, the space Bi is one-dimensional, consisting
of functions that are constant on Mi.

(M2) Each Mi ∈Mh belongs to one of the classes Ej, j = 1, · · · , q.
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(M3) Each T ∈ Th is contained in at least one and not more than L macro-
elements of Mh.

(M4) Each e ∈ Γh is contained in the interior of at least one and not more than
L macro-elments of Mh.

Then the inf-sup condition (7) is satisfied.

T4

xi

T1
T2

T3

Figure 1. The set Mi, where four elements of Th touch the vertex xi.

In the following we consider a macro-element consisting of four squares as shown
in Figure 1. With this partition of macro-elements we can see that Assumptions
(M2)–(M4) are all satisfied. We now show that the proof of Assumption (M1)
depends on the choice of bubble functions. We note that the earlier approach by
Bai [2] also uses the macro-element technique but use a single quadrilateral element
as a macro element. In contrast to that earlier approach we need to use a macro-
element consisting of four quadrilateral elements.

4.1. Choice of bubble functions. For simplicity of calculation we assume that
Mi is a parallelogram so that there is an invertible affine mapping Fi : Ŝ → Mi,
which transforms the square Ŝ = [−1, 1]2 to Mi with the property

(9)

[
x
y

]
= Ai

[
ξ
η

]
+

[
x0

y0

]
,

where Ai is a 2 by 2 matrix, (x, y) ∈ Mi and (ξ, η) ∈ Ŝ. Let V ih = span{φk}5k=1,

V i
h = [V ih ]2 and Sih = span{ϕk}9k=1. We use the notation φ̂k and ϕ̂k to denote

corresponding basis functions on the square Ŝ, where φ̂k and ϕ̂k are functions of

ξ and η. We have shown the numbering of functions φ̂k and ϕ̂j on the reference

square Ŝ in Figure 2, where we have used big circles for the functions in V h, and
small circles for functions in S∗h.

Let vh ∈ V i
h with vh =

∑5
k=1 vkφk and vk ∈ R2. Then

b(vh, qh) =

∫
Mi

∇ · vh qh dx =

5∑
k=1

∫
Mi

vk · ∇φk qh dx.

Using a chain rule we write

∇φk = A−Ti

(
∇̂φ̂k ◦ F−1

i

)
,
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where ∇̂ denotes the gradient on the reference square Ŝ. Let qh =
∑9
j=1 qjϕj , and

thus ∫
Mi

∇ · vh qh dx =

5∑
k=1

9∑
j=1

qjvk ·
∫
Mi

∇φk qjϕj dx

= |detAi|
5∑
k=1

9∑
j=1

qjvk ·
∫
Ŝ

A−Ti ∇̂φ̂kϕ̂j dx̂.

We see that we can find a matrix D̃ such that∫
Mi

∇ · vh qh dx = ~qT D̃~v,

where

~q =


q1

q2

...
q9

 , and ~v =


v1

v2

...
v5

 =



v1

v2

v3

v4

...
v9

v10


.

Thus we need to show that the rank of the matrix D̃ is 8 in order to prove that the
dimension of the space Bi is one.

Since Ai is an invertible matrix, the rank of the matrix will be unchanged if we
replace Mi by the reference element Ŝ, so that we want to investigate the rank of
the matrix D ∈ R9×10, where the jth row of D is[∫

Ŝ

∂ξφ̂1ϕ̂j dx̂,

∫
Ŝ

∂ηφ̂1ϕ̂j dx̂,

∫
Ŝ

∂ξφ̂2ϕ̂j dx̂,

∫
Ŝ

∂ηφ̂2ϕ̂j dx̂, · · · ,∫
Ŝ

∂ξφ̂5ϕ̂j dx̂,

∫
Ŝ

∂ηφ̂5ϕ̂j dx̂

]
.

ϕ̂5

φ̂1

φ̂2

φ̂3

ϕ̂1 ϕ̂2 ϕ̂3

φ̂4

ϕ̂7 ϕ̂8 ϕ̂9

ϕ̂6

φ̂5

ϕ̂4

Figure 2. The numbering of functions φ̂k and ϕ̂j on the reference

square Ŝ.
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4.1.1. Standard bubble functions. Consider the unit square K = (−1, 1)2 in
two dimensions. We start with the standard choice of the bubble function bK =
(1− x2)(1− y2). The matrix D is explicitly computed as

D =



2
9

2
9 0 0 0 0 0 0 1

12
1
12

− 2
9

2
9

2
9

2
9 0 0 0 0 0 1

3

0 0 − 2
9

2
9 0 0 0 0 − 1

12
1
12

2
9 − 2

9 0 0 0 0 2
9

2
9

1
3 0

− 2
9 − 2

9
2
9 − 2

9
2
9

2
9 − 2

9
2
9 0 0

0 0 − 2
9 − 2

9 − 2
9

2
9 0 0 − 1

3 0

0 0 0 0 0 0 2
9 − 2

9
1
12 − 1

12

0 0 0 0 2
9 − 2

9 − 2
9 − 2

9 0 − 1
3

0 0 0 0 − 2
9 − 2

9 0 0 − 1
12 − 1

12



.

We compute the rank of this matrix using maple and obtain it to be 7. Thus in
this case the dimension of the space Bi will be two. Hence there is no hope of
getting the inf-sup condition for this choice of the bubble function.

4.1.2. The first choice of bubble functions. In the next step, we again take
K = (−1, 1)2 and consider the bubble function

bK = 4ϕK(1− x2)(1− y2),

where ϕK is the standard bilinear basis function corresponding to the lower-left
corner of the square K. Since ϕK = 1

4 (1−x)(1− y), the bubble function bK on the
reference square K can be defined as

bK = (1− x)(1− y)(1− x2)(1− y2).

Defined in this way the bubble function bK does not depend on the local numbering
of the vertices of K. In this case, the matrix D has rank 8, and is computed as

D =



4
15

4
15 0 0 0 0 0 0 1

12
1
12

− 4
15

8
45

4
15

4
15 0 0 0 0 0 1

3

0 0 − 4
15

8
45 0 0 0 0 − 1

12
1
12

8
45 − 4

15 0 0 0 0 4
15

4
15

1
3 0

− 8
45 − 8

45
8
45 − 4

15
4
15

4
15 − 4

15
8
45 0 0

0 0 − 8
45 − 8

45 − 4
15

8
45 0 0 − 1

3 0

0 0 0 0 0 0 8
45 − 4

15
1
12 − 1

12

0 0 0 0 8
45 − 4

15 − 8
45 − 8

45 0 − 1
3

0 0 0 0 − 8
45 − 8

45 0 0 − 1
12 − 1

12



.

Remark 3. We have used the gradient of the bilinear function ϕK to construct a
vector bubble function associated with the element K in [8]. Since the construction
of the bubble function using the gradient of ϕK cannot be done on a reference
element, this new bubble function is computationally much easier.
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4.1.3. The second choice of bubble functions. It is interesting to see if we
can multiply the bubble function by a linear function and obtain the stability. For
this purpose we can choose a bubble function on the unit square (−1, 1)2 as

bK = (a+ bx+ cy)(1− x2)(1− y2), abc 6= 0.

For simplicity we choose

bK =
1

4
(4 + x+ y)(1− x2)(1− y2).

We note that the factor 1/4 is used to force the value of the bubble function at
the centroid of the square to be 1. The resulting matrix D has also rank 8 in this
case, and hence the dimension of the space Bi is one. Moreover, the matrix D is
computed as

D =



19
90

19
90 0 0 0 0 0 0 1

12
1
12

− 19
90

7
30

19
90

19
90 0 0 0 0 0 1

3

0 0 − 19
90

7
30 0 0 0 0 − 1

12
1
12

7
30 − 19

90 0 0 0 0 19
90

19
90

1
3 0

− 7
30 − 7

30
7
30 − 19

90
19
90

19
90 − 19

90
7
30 0 0

0 0 − 7
30 − 7

30 − 19
90

7
30 0 0 − 1

3 0

0 0 0 0 0 0 7
30 − 19

90
1
12 − 1

12

0 0 0 0 7
30 − 19

90 − 7
30 − 7

30 0 − 1
3

0 0 0 0 − 7
30 − 7

30 0 0 − 1
12 − 1

12



.

Remark 4. The proof of stability is presented for the two-dimensional case. How-
ever, this can be extended to the three-dimensional case without a major change.

Remark 5. It is interesting to see if we can use a quadratic function symmetric
about the centroid of the element to multiply the standard bubble function. To check
this we use a bubble function on the reference square K = (−1, 1)2 defined as

bK =
1

64
(x2 + y2 + 64)(1− x2)(1− y2),

and compute the matrix D. In this case, the rank of the matrix D is just 7, and
hence the dimension of the space Bi is 2.

An immediate consequence of the above discussion is the well-posedness of the
discrete problem (6) for the above two choices of bubble functions. From the theory
of saddle point problem, see, e.g., [5], we have the following theorem.

Theorem 6. The discrete problem (6) has exactly one solution (uh, ph) ∈ V h×S∗h,
which is uniformly stable with respect to the data f , and there exists a constant C
independent of the mesh-size h such that

‖uh‖1,Ω + ‖ph‖0,Ω ≤ C‖f‖0,Ω.

The convergence theory is provided by an abstract result about the approxima-
tion of saddle point problems, see [5].

Theorem 7. Assume that (u, p) and (uh, ph) be the solutions of problems (2) and
(6), respectively. Then, we have the following error estimate:

(10) ‖u−uh‖1,Ω +‖p−ph‖0,Ω ≤ C
(

inf
vh∈V h

‖u− vh‖1,Ω + inf
qh∈S∗

h

‖p− qh‖0,Ω
)
.



876 BISHNU P. LAMICHHANE

5. Numerical Results

In this section we present two numerical experiments to verify the optimal a priori
error estimate and some numerical experiments to verify the inf-sup condition for
the proposed finite element scheme. For both examples we consider a simple unit
square Ω = (0, 1)2. For both examples we consider a uniform initial triangulation
consisting of four squares.
First example. For the first example we choose the exact solution u = (u1, u2) as

u1 = −2x2 y (2 y − 1) (x− 1)
2

(y − 1) , u2 = 2x y2 (2x− 1) (x− 1) (y − 1)
2
.

We use the kinematic viscosity ν = 1. The exact solution for the pressure is chosen
as

p = x(1− x)(1− 2y),

so that p ∈ L2
0(Ω). The exact solution u satisfies the homogeneous Dirichlet bound-

ary condition on ∂Ω, and the right hand side function f is computed by using the
exact solution u and the pressure p. We have presented the errors in the velocity
and the pressure approximation using the H1-norm and the L2- norm, respectively
in Table 1 for the first choice of the bubble function, and in Table 2 for the second
choice of the bubble function. We note that the standard choice of the bubble func-
tion leads to a singular matrix. From the presented tables we can see the optimal
convergence of the velocity approximation in the H1 and L2-norms, and a super-
convergence result for the pressure in the L2-norm. As we expect a convergence
rate of order 1 for the pressure approximation in the L2-norm but get a better
approximation of order 1.5, this is a super-convergence. This better convergence
is due to the fact that we have used the standard continuous bilinear finite ele-
ment space for the pressure approximation. We can also observe that all errors are
smaller for the second choice of bubble functions.

Table 1. Discretization errors for the velocity and pressure, Ex-
ample 1 (First choice).

level l # elem. ‖u− uh‖1,Ω ‖u− uh‖0,Ω ‖p− ph‖0,Ω
1 16 3.23129e-02 3.03116e-03 1.76150e-02
2 64 1.58286e-02 1.03 8.24246e-04 1.88 7.00356e-03 1.33
3 256 7.79938e-03 1.02 2.06421e-04 2.00 2.50753e-03 1.48
4 1024 3.87699e-03 1.01 5.12144e-05 2.01 8.78516e-04 1.51
5 4096 1.93346e-03 1.00 1.27289e-05 2.01 3.08875e-04 1.51
6 16384 9.65545e-04 1.00 3.17131e-06 2.00 1.08856e-04 1.50

Table 2. Discretization errors for the velocity and pressure, Ex-
ample 1 (Second choice).

level l # elem. ‖u− uh‖1,Ω ‖u− uh‖0,Ω ‖p− ph‖0,Ω
1 16 3.16876e-02 2.89325e-03 1.17765e-02
2 64 1.56503e-02 1.02 7.90369e-04 1.87 4.31789e-03 1.45
3 256 7.75922e-03 1.01 1.99983e-04 1.98 1.44890e-03 1.58
4 1024 3.86716e-03 1.00 4.99365e-05 2.00 4.93948e-04 1.55
5 4096 1.93102e-03 1.00 1.24544e-05 2.00 1.71287e-04 1.53
6 16384 9.64934e-04 1.00 3.10849e-06 2.00 5.99594e-05 1.51
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Second example. For the second example we consider an exact solution given in [3],
where the exact solution for the velocity u = (u1, u2) is given by

u1 = x+ x2 − 2xy + x3 − 3xy2 + x2y, u2 = −y − 2xy + y2 − 3x2y + y3 − xy2,

and the exact solution for the pressure is given by

p = xy + x+ y + x3y2 − 4

3
.

We use the kinematic viscosity ν = 1 and the exact solution to compute the right-
hand side function f . As in the first example we compute the errors in the velocity
and the pressure approximation using the H1–norm and the L2- norm, respectively.
The numerical results are tabulated in Tables 3 and 4 for the two choices of bubble
functions, respectively. As in the first example, we can see the optimal convergence
rates for the velocity approximation in H1 and L2-norms, and a better convergence
rate for the pressure in L2-norm. We also observe that all errors are smaller for
the second choice of bubble functions although the difference is quite small in this
example.

Table 3. Discretization errors for the velocity and pressure, Ex-
ample 2 (First choice).

level l # elem. ‖u− uh‖1,Ω ‖u− uh‖0,Ω ‖p− ph‖0,Ω
1 16 6.96126e-01 3.33821e-02 2.25132e+00
2 64 3.39100e-01 1.04 8.37772e-03 1.99 5.58680e-01 2.01
3 256 1.66684e-01 1.02 2.09556e-03 2.00 1.59539e-01 1.81
4 1024 8.26546e-02 1.01 5.24458e-04 2.00 4.49273e-02 1.83
5 4096 4.11633e-02 1.01 1.31193e-04 2.00 1.28191e-02 1.81
6 16384 2.05425e-02 1.00 3.28081e-05 2.00 3.80370e-03 1.75

Table 4. Discretization errors for the velocity and pressure, Ex-
ample 2 (Second choice).

level l # elem. ‖u− uh‖1,Ω ‖u− uh‖0,Ω ‖p− ph‖0,Ω
1 16 6.96024e-01 3.23184e-02 5.93926e+00
2 64 3.35337e-01 1.05 7.82819e-03 2.05 4.04732e-01 3.88
3 256 1.65795e-01 1.02 1.97572e-03 1.99 6.07983e-02 2.73
4 1024 8.24467e-02 1.01 4.97135e-04 1.99 1.78268e-02 1.77
5 4096 4.11137e-02 1.00 1.24714e-04 2.00 5.88206e-03 1.60
6 16384 2.05304e-02 1.00 3.12328e-05 2.00 1.98964e-03 1.56

6. Conclusion

In this contribution we present a finite element method for Stokes equations using
continuous bilinear finite elements enriched with bubble functions for the velocity
approximation and continuous bilinear finite elements for the pressure. In contrast
to an earlier contribution we show that a single vector bubble function per element
is enough to guarantee the stability of the discrete linear system. The numerical
results also demonstrate the optimal convergence rates for the velocity and pressure
approximation.
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