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VARIABLE TIME-STEP θ-SCHEME FOR NONLINEAR SECOND

ORDER EVOLUTION INCLUSION

KRZYSZTOF BARTOSZ

Abstract. We deal with a multivalued second order dynamical system involving a Clarke subd-
ifferential of a locally Lipschitz functional. We apply a time discretization procedure to construct
a sequence of solutions to a family of the approximate problems and show its convergence to
a solution of the exact problem as the time step size vanishes. We consider a nonautonomous
problem in which both the viscosity and the multivalued operators depend on time explicitly.
The time discretization method we use, is the θ-scheme with θ ∈ [ 1

2
, 1], thus, in particular, the

Crank-Nicolson scheme and the implicit Euler scheme are included. We apply our result to a class
of dynamic hemivariational inequalities.

Key words. Clarke subdifferential, hemivariational inequality, second order inclusion, time
discretization, numerical methods.

1. Introduction

In this paper we deal with a time discretization method for a second order,
dynamic subdifferential inclusion, involving nonlinear, time dependent viscosity
operator and a multivalued term that is a Clarke subdifferential of a locally Lipschitz
continuous function that is possibly nonmonotone and nonsmooth.

Various types of Clarke subdifferential inclusions, formulated often in an al-
ternative way, by means of hemivariational inequalities (HVIs), are motivated by
numerous physical phenomena, in which contact problems in mechanics play a lead-
ing role. Indeed, the number of applications became a main impulse for research in
this field. After first results of Clarke and Panagiotopoulos (see [10, 29]), the theory
of HVIs has been developed by Miettinen, Migórski, Motreanu, Naniewicz, Pana-
giotopulos and Ochal (see [21, 22, 23, 24, 25, 27, 28, 30]). Currently many authors
devote their attention either to the theory of HVIs (see for instance [8, 9, 14, 19])
or to its applications in modelling of contact problems in mechanics (see [4, 5]). For
the present state of the art we refer to [6, 26]. In spite of an impressive progress of
the theory, there are still relatively few results concerning numerical methods for
HVIs and many problems still remain open in this field. In particular, the dynamic
development of computational devices, allows to implement increasingly complex
mathematical models. Due to this fact, the numerical results become more and
more needed in case of HVIs as well. Haslinger and Miettinen were the first to ap-
ply the Finite Element Methods for problems modelled by HVIs (see [15, 20]). As
for the time discretization methods in HVIs, the strong results concerning parabolic
problems, were obtained by Kalita et al. in [7, 16, 17, 18]. Similar methods have
been used by Liu, Peng and Xiao in [31, 32, 33] in the case of evolution HVIs with
doubly nonlinear operators. In particular the second order HVIs has been studied
in [33] in the framework of the Gelfand triple V ⊂ H ⊂ V ∗, where the multivalued
term is defined on the space H . In this paper, the multivalued term is defined on
another Banach space U such that there exists a linear, continuous and compact
operator ι : V → U . In applications U = Lp(Γ;Rd), where Γ is contained in the
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boundary of the set Ω ⊂ Rd. It allows to apply our result to HVIs arising from non-
monotone and nonsmooth contact problems in mechanics. For other recent results
concerning numerical methods for static or dynamic HVIs, we refer for instance to
[2, 3, 11, 12, 13, 35].

In this work, we deal with a numerical analysis of dynamic, second order in-
clusion, which is based on time semidiscrete θ-scheme. To this end, we apply a
technique, that was used in [18] in a study of parabolic problems. We apply our
result to a class of dynamic boundary HVIs. In several ways, our paper improves
known existence results in this area. One of basic applications of HVI’s is mathe-
matical modelling of a behaviour of physical body which occupies a region Ω ∈ Rd

and stays in a contact with a foundation. It is usually assumed, that the body is
clamped on a part of boundary ΓD ⊂ ∂Ω. Our result allows to skip this restric-
tion (see Section 7). It generalizes also [22] by removing a smallness assumption
for p = 2 (see Remark 32 for details). Moreover, not only we provide the exis-
tence result, but we also construct a sequence of functions, which approximate the
solution of the exact problem. From this point of view, our method is not only
constructive but can be used in computer implementation. Finally, the present pa-
per generalizes also the result obtained by the author in [6] for the autonomous case.

The rest of the paper is organized as follows. In Section 2, we introduce the
notations and definitions used in the paper and present several auxiliary proposi-
tions. In Section 3, we formulate an abstract second order subdifferential inclusion
and describe assumptions on the data of the problem. We also provide two cru-
cial lemmas concerning properties of the Nemytskii operator corresponding to the
viscosity operator A. In Section 4, we formulate an auxiliary discrete problem and
provide its solvability. Based on this, we construct a sequence of piecewise constant
and piecewise linear functions, for which we derive a-priori estimates and, using the
reflexivity of the spaces, we obtain a weak convergence result. Finally, we provide
the main existence result, namely, we show, that the limit function is a solution of
the exact problem. In particular, this provides a constructive proof of the existence
for the problem. In Section 5, we use the (S+) property of the viscosity operator
in order to obtain a strong convergence result. In Section 6, we apply the abstract
result to a class of boundary HVIs arising from contact problems in mechanics. In
Section 7, we deal with the non-clamped dynamic contact problem modelled by
HVI’s.

2. Preliminaries

In this section we recall some definitions and propositions which we will refer
to in the sequel. We start with the definitions of Clarke directional derivative and
Clarke subdifferential. Let X be a real Banach space, X∗ its dual and let J : X → R

be a locally Lipschitz functional.

Definition 1. Generalized directional derivative in the sense of Clarke at the point
x ∈ X in the direction v ∈ X, is defined by

(1) J0(x, v) = lim sup
y→x,λց0

J(y + λv) − J(y)

λ
.

Definition 2. Clarke subdifferential of J at the point x ∈ X is defined by

∂J(x) = {ξ ∈ X∗ | J0(x, v) ≥ 〈ξ, v〉X∗×X for all v ∈ X}.
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Now we pass to the definition of a pseudomonotone operator.

Definition 3. (see [36], Chapter 27) A single valued operator A : X → X∗ is called
pseudomonotone, if for any sequence {vn}∞n=1 ⊂ X such that vn → v weakly in X
and lim supn→∞〈Avn, vn − v〉 ≤ 0 we have 〈Av, v − y〉 ≤ lim infn→∞〈Avn, vn − y〉
for every y ∈ X.

In the sequel we will use the following proposition.

Proposition 4. If the operator A : X → X∗ is linear and monotone, then it is
pseudomonotone.

Proposition 4 follows from Proposition 27.6 in [36] and the fact, that each linear
operator is hemicontinuous.

Definition 5. An operator A : X → X∗ is called to be of type (S)+ if vn → v
weakly in X and lim supn→∞〈Avn, vn − v〉 ≤ 0 imply that vn → v strongly in X.

Definition 6. Let X be a real Banach space. The multivalued operator A : X →
2X

∗

is called pseudomonotone if the following conditions hold

1) A has values which are nonempty, bounded, closed and convex,
2) A is upper semicontinuous from every finite dimensional subspace of X into

X∗ furnished with weak topology,
3) if vn → v weakly in X and v∗n ∈ A(vn) is such that lim supn→∞〈v∗n, vn−v〉 ≤

0 then for every y ∈ X there exists u(y) ∈ A(v) such that 〈u(y), v − y〉 ≤
lim infn→∞〈v∗n, vn − y〉.

The following result can be found, for example, in [26] (see Proposition 3.58).

Proposition 7. Let X be a real reflexive Banach space, and assume that A : X →
2X

∗

satisfies the following conditions

1) for each v ∈ X we have that A(v) is a nonempty, closed and convex subset
of X∗,

2) A is bounded, i.e., it maps bounded sets into bounded ones,
3) if vn → v weakly in X and v∗n → v∗ weakly in X∗ with v∗n ∈ A(vn) and if

lim supn→∞〈v∗n, vn − v〉 ≤ 0, then v∗ ∈ A(v) and 〈v∗n, vn〉 → 〈v∗, v〉.
Then the operator A is pseudomonotone.

Next we recall Proposition 5.6 of [6].

Proposition 8. Let X be a reflexive Banach space and A : X → 2X
∗

be a pseu-
domonotone operator. Then for a given v0 ∈ X and λ > 0 the operator M : X →
2X

∗

defined by M(v) = A(v0 + λv) for all v ∈ X is also pseudomonotone.

We also recall a well known property for the sum of two pseudomonotone oper-
ators.

Proposition 9. Let X be a reflexive Banach space. If A1, A2 : X → 2X
∗

are
pseudomonotone then so is A1 +A2.

In what follows we introduce the notion of coercivity.

Definition 10. Let X be a real Banach space and A : X → 2X
∗

be an operator.
We say that A is coercive if either D(A) is bounded or D(A) is unbounded and

lim
‖v‖X→∞ v∈D(A)

inf{〈v∗, v〉X∗×X | v∗ ∈ Av}
‖v‖X

= +∞.
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The following is the main surjectivity result for multivalued pseudomonotone
and coercive operator.

Proposition 11. Let X be a real, reflexive Banach space and A : X → 2X
∗

be
pseudomonotone and coercive. Then A is surjective, i.e., for all b ∈ X∗ there exists
v ∈ X such that Av ∋ b.

Let X be a Banach space and T > 0. We introduce the space BV (0, T ;X) of
functions of bounded total variation on [0, T ]. Let π denotes any finite partition of
[0, T ] by a family of disjoint subintervals {σi = (ai, bi)} such that [0, T ] = ∪n

i=1σi.
Let F denotes the family of all such partitions. Then, for a function x : [0, T ] → X
and for 1 ≤ q < ∞, we define a seminorm

‖x‖qBV q(0,T ;X) = sup
π∈F

{

∑

σi∈π

‖x(bi)− x(ai)‖qX

}

,

and the space

BV q(0, T ;X) = {x : [0, T ] → X | ‖x‖BV q(0,T ;X) < ∞}.
For 1 ≤ p ≤ ∞, 1 ≤ q < ∞ and Banach spaces X , Z such that X ⊂ Z, we introduce
a vector space

Mp,q(0, T ;X,Z) = Lp(0, T ;X) ∩BV q(0, T ;Z).

Then Mp,q(0, T ;X,Z) is also a Banach space with the norm given by ‖·‖Lp(0,T ;X)+
‖ · ‖BV q(0,T ;Z).

The following proposition will play the crucial role for the convergence of the
Rothe functions which will be constructed later. For its proof, we refer to [16].

Proposition 12. Let 1 ≤ p, q < ∞. Let X1 ⊂ X2 ⊂ X3 be real Banach spaces
such that X1 is reflexive, the embedding X1 ⊂ X2 is compact and the embedding
X2 ⊂ X3 is continuous. Then the embedding Mp,q(0, T ;X1;X3) ⊂ Lp(0, T ;X2) is
compact.

The following version of Aubin-Celina convergence theorem (see [1]) will be used
in what follows.

Proposition 13. Let X and Y be Banach spaces, and F : X → 2Y be a multifunc-
tion such that

(a) the values of F are nonempty, closed and convex subsets of Y ,
(b) F is upper semicontinuous from X into w − Y .

Let xn : (0, T ) → X, yn : (0, T ) → Y , n ∈ N, be measurable functions such that
xn converges almost everywhere on (0, T ) to a function x : (0, T ) → X and yn
converges weakly in L1(0, T ;Y ) to y : (0, T ) → Y . If yn(t) ∈ F (xn(t)) for all n ∈ N

and almost all t ∈ (0, T ), then y(t) ∈ F (x(t)) for a.e. t ∈ (0, T ).

In the forthcoming sections we will often use the following inequalities

ab ≤ εpap

p
+

bq

εqq
, or ab ≤ εap + q−1(εp)−

q
p bq,(2)

for all a, b ≥ 0, ε > 0, 1 < p, q < ∞, 1
p + 1

q = 1, and

(a1 + a2 + ...+ an)
p ≤ C(p)(ap1 + ap2 + ...+ apn),(3)

for all a1, ..., an ≥ 0, p > 0, n ∈ N, and C(p) = 1 for p ∈ (0, 1], C(p) = np−1 for
p > 1.
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3. Problem formulation

Let V be a real, reflexive and separable Banach space, V ∗ its dual and H a real,
separable Hilbert space. Identifying H with its dual we consider an evolution triple
V ⊂ H ⊂ V ∗ with dense, continuous and compact embeddings. We denote by 〈·, ·〉
the duality of V and V ∗, by (·, ·) the scalar product in H . Let i : V → H be an
embedding operator (for v ∈ V we will denote iv ∈ H again by v). For all u ∈ H
and v ∈ V we have 〈u, v〉 = (u, v). The norms in V and H we denote by ‖ · ‖
and | · | respectively. We also introduce a reflexive Banach space U and a linear,
continuous operator ι : V → U . By ‖i‖ and ‖ι‖ we denote the norms ‖i‖L(V,H)

and ‖ι‖L(V,U), respectively. For T > 0 and 1 < p < ∞, 1
p + 1

q = 1, we define

the spaces V = Lp(0, T ;V ), V∗ = Lq(0, T ;V ∗), H = L2(0, T ;H), U = Lp(0, T ;U),
U∗ = Lq(0, T ;U∗) and W = {v ∈ V | v′ ∈ V∗}, where v′ denotes the time derivative
of v understood in the sense of distributions. We consider two parallel problems
denoted by (P 1) and (P 2) which read as follows

(Pm)































Find (u,w, η) ∈ V ×W × U such that

u′(t) = w(t) for a.e. t ∈ (0, T ),

w′(t) + A(t, w(t)) +Bu(t) + ι∗η(t) = f(t) for a.e. t ∈ (0, T ),

η(t) ∈ M(t, ιz(t)) for a.e. t ∈ (0, T ),

u(0) = u0, w(0) = u1,

where m = 1, 2, A : [0, T ]× V → V ∗, B : V → V ∗, M : [0, T ]× U → 2U
∗

, f ∈ V∗,
and we put z = u in Problem (P 1) while z = u′ in Problem (P 2), respectively.
We impose the following hypotheses on the data of Problems (P 1) and (P 2).

H(A): The operator A : [0, T ]× V → V ∗ satisfies

(i) A(·, v) is measurable on [0, T ] for all v ∈ V ,
(ii) A(t, ·) is pseudomonotone for every for a.e. t ∈ (0, T ),
(iii) 〈A(t, v), v〉 ≥ α‖v‖p − β|v|2 for a.e. t ∈ (0, T ), for all v ∈ V with α > 0,

β ≥ 0,
(iv) ‖A(t, v)‖qV ∗ ≤ cA(1 + ‖v‖p) for a.e. t ∈ (0, T ), for all v ∈ V with cA > 0.

H(B): The operator B : V → V ∗ is bounded, linear, monotone and symmetric,
i.e., B ∈ L(V, V ∗), 〈Bv, v〉 ≥ 0 for all v ∈ V , 〈Bv,w〉 = 〈Bw, v〉 for all v, w ∈ V .

H(M): The multivalued operator M : [0, T ]× U → 2U
∗

satisfies

(i) M(·, u) is measurable for all u ∈ U ,
(ii) the set M(t, u) is nonempty, convex and weakly∗ compact in U∗ for all

u ∈ U and a.e. t ∈ (0, T ),
(iii) the mapping M(t, ·) is upper semicontinuous from the strong topology of

U into weak topology of U∗ for a.e. t ∈ (0, T ),

(iv) M satisfies the growth condition ‖η‖U∗ ≤ cM (1 + ‖z‖p−1
U ) for all z ∈ U ,

η ∈ M(t, z) a.e. t ∈ (0, T ) with cM ≥ 0.

H(ι): The operator ι ∈ L(V, U) is compact and its associated Nemytskii operator
ι : M2,2(0, T ;V, V ∗) → U defined by (ιv)(t) = ι(v(t)) is also compact.

H(U): The space U satisfies: for all ε > 0 there exists C(ε) > 0 such that
‖ιu‖U ≤ ε‖u‖+ C(ε)|u| for all u ∈ V.
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H0: f ∈ V∗, u0 ∈ V , u1 ∈ H .

Let A : V → V∗ be a Nemytskii operator corresponding to A defined by (Av)(t) =
A(t, v(t)) for all t ∈ (0, T ), v ∈ V . We provide two results concerning properties of
the operator A.

Lemma 14. Assume that H(A) holds and a sequence {vn} ⊂ V satisfies: vn is
bounded in Mp,q(0, T ;V, V ∗), vn → v weakly in V and lim supn→∞ < Avn, vn−v >
V ≤ 0. Then Avn → Av weakly in V∗.

Lemma 15. Assume that H(A) holds and, moreover, A(t, ·) is of type (S)+ for
a.e. t ∈ (0, T ). Then the operator A is of type (S)+ with respect to the space
Mp,q(0, T ;V, V ∗), i.e., for any sequence {vn} ⊂ V such that vn is bounded in
Mp,q(0, T ;V, V ∗), vn → v weakly in V and lim supn→∞ 〈Avn, vn − v〉V∗×V ≤ 0
we have vn → v strongly in V∗.

The proofs of Lemmas 14 and 15 can be obtained by standard techniques. For
details, see comments on Lemma 2 and 3 in [18].

4. The Rothe problem

In this section we consider a semi discrete approach to Problem (Pm), m = 1, 2,
known as Rothe method. To this end, we define the system of grids indexed by
n ∈ N

Tn = {0 = t0n < t1n < · · · < tNn
n = T }.

We define τkn = tkn − tk−1
n for k ∈ {1, . . . , Nn} and we use the notation τmax

n =
maxk=1,...,Nn

{τkn} and τmin
n = mink=1,...,Nn

{τkn}. We need the following regularity
assumption on the time grid.

H(t): the sequence of time grids satisfies

(i) limn→∞ τmax
n = 0,

(ii) there exists a constant K > 0 such that τmax
n ≤ Kτmin

n for all n ∈ N.

Moreover, in the analysis of each of Problems (P 1) and (P 2) we will use the follow-
ing additional assumptions.

H1: cM3p−2(KT )p−1‖ι‖p < α.
H2: cM‖ι‖p < α.

For a reflexive Banach spaceX and s ≥ 1 we introduce the operator πs,X
n : Ls(0, T ;X)

→ Ls(0, T ;X), defined by

(πs,X
n (v))(t) =

1

τkn

∫ tkn

tk−1
n

v(t) dt for t ∈ (tk−1
n , tkn), k = 1, 2, ..., Nn,

for all v ∈ Ls(0, T ;X).

We define Ak
n : V → V ∗, fk

n ∈ V ∗, for k = 1, ..., Nn by

Ak
n(u) =

1

τkn

∫ tkn

tk−1
n

A(t, u) dt for all u ∈ V,
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fk
n =

1

τkn

∫ tkn

tk−1
n

f(t) dt,

respectively. Moreover, we define the multivalued operator Mk
n : U → 2U

∗

for k =
1, ..., Nn by the following relation between its argument z ∈ U and the element
η ∈ U∗ of its value Mk

n(z) ⊂ U∗:

η ∈ Mk
n(z) ⇔ there exists ζkn : (tk−1

n , tkn) → U∗, such that η =
1

τkn

∫ tkn

tk−1
n

ζkn(t) dt,

and ζkn(t) ∈ M(t, z) for a.e. t ∈ (tk−1
n , tkn).

We approximate the initial conditions u0 and u1 by elements of V . Namely, let
{u0n}, {u1n} ⊂ V be sequences such that u0n → u0 in V and u1n → u1 in H as
n → ∞ and ‖u1n‖ ≤ C/

√
τn for some constant C > 0.

For a given Θ ∈ [0, 1] we formulate the following Rothe problem

(Pm
n )























































Find sequences {uk
n}Nn

k=1 ⊂ V, {wk
n}Nn

k=1 ⊂ V, {ηkn}Nn

k=1 ⊂ U∗ such that

1
τk
n
(uk

n − uk−1
n ) = wk−1+Θ

n , for k = 1, . . . , Nn,

1
τk
n
(wk

n − wk−1
n ) +Ak

n(w
k−1+Θ
n ) +B(uk−1+Θ

n ) + ι∗ηkn = fk
n ,

for k = 1, . . . , Nn,

ηkn ∈ Mk
n(ιz

k−1+Θ
n ), for k = 1, . . . , Nn,

u0
n = u0n, w0

n = u1n,

where wk−1+Θ
n = Θwk

n + (1 − Θ)wk−1
n , uk−1+Θ

n = Θuk
n + (1 − Θ)uk−1

n and we put
zk−1+Θ
n = uk−1+Θ

n in Problem (P 1
n) while z

k−1+Θ
n = wk−1+Θ

n in Problem (P 2
n). Now

we provide a theorem on existence of solution for both Problems (Pm
n ), m = 1, 2.

Theorem 16. Let the assumptions H(A), H(B), H(M) and H(t) hold. Then
there exists n0 ∈ N such that for all n > n0 Problem (P 1

n) has a solution. Assume
moreover that H(U) holds, and, if p > 2, then also H2 holds. Then there exists
n0 ∈ N such that for all n > n0 Problem (P 2

n) has a solution.

The proof of Theorem 16, will be preceded by several lemmas.

Lemma 17. Let the assumptions H(A) hold. Then the operators Ak
n are pseu-

domonotone for all n ∈ N and k ∈ {1, ..., Nn}.
Lemma 18. Let the assumptions H(M) hold. Then the multivalued operators

defined by V ∋ v → ι∗Mk
n(ιv) ∈ 2V

∗

are pseudomonotone for all n ∈ N and
k ∈ {1, ..., Nn}.

The proofs of Lemmas 17 and 18 follow the line of the proofs of Lemmas 1 and
4 in [18], respectivelly.

Now we define two multivalued operators T̃ k
n : [0,∞) × V × V → 2V

∗

and

T
k

n : V → 2V
∗

by

T̃ k
n (λ, v, u) = i∗iu+ΘτknA

k
nu+Θ2(τkn )

2Bu+Θτkn ι
∗Mk

n(ιv + λιu),

for all λ ≥ 0, v, u ∈ V, k = 1, . . . , Nn.

T
k

nu = i∗iu+ΘτknA
k
nu+Θ2(τkn )

2Bu +Θτkn ι
∗Mk

n ιu, for all u ∈ V, k = 1, . . . , Nn.

Now we formulate two lemmas concerning surjectivity of operators T̃ k
n and T

k

n.
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Lemma 19. Let the assumptions H(A), H(B) and H(M) hold. Then there exists

λ0 > 0 such that for all 0 < λ < λ0 and for all v ∈ V the operator T̃ k
n (λ, v, ·) : V →

2V
∗

is surjective.

Proof Let us fix v ∈ V . In order to prove the surjectivity of T̃ k
n (λ, v, ·) we apply

Proposition 11. To this end, we will show, that for all λ > 0, operator T̃ k
n (λ, v, ·) is

pseudomonotone and for λ small enough it is coercive. By Lemma 18 and Propo-
sition 8, we claim, that operator

V ∋ u → Θτkn ι
∗Mk

n(ιv + λιu) ∈ 2V
∗

is pseudomonotone. By Lemma 17, Proposition 4 and Proposition 9, opertor
T̃ k
n (λ, v, ·) is pseudomonotone. In order to show that it is coercive, we observe,

that for all u ∈ V we have
〈

T̃ k
nu, u

〉

= |u|2 +Θτkn
〈

Ak
nu, u

〉

+Θ2(τkn )
2 〈Bu, u〉+Θτkn

〈

ηkn, ιu
〉

U∗×U
,

where ηkn ∈ Mk
nι(ιv + λιu). Thus, by H(M)(iv), we have

〈

ηkn, ιu
〉

U∗×U
≥ −cM (1 + ‖ιv + λιu‖p−1

U )‖ιu‖U ≥(4)

− (cMC(p)λp−1‖ι‖p + 2ε)‖u‖p − (pε)−q/pq−1cqM (‖ι‖q + C(p)q‖ι‖pq‖v‖p),

for all ε > 0, where C(p) = 1 if 1 < p ≤ 2 and C(p) = 2p−1 if p > 2. Let us take
λ0 := α1/(p−1)[cMC(p)‖ι‖p]1/1−p. Then, for all 0 < λ < λ0, there exists ε > 0, such
that α− λp−1cMC(p)‖ι‖p − 2ε > 0, which together with H(A)(iii) and (4) implies

that T̃ k
nu is coercive. This completes the proof. �

Lemma 20. Let the assumptions H(A), H(B), H(M), H(U) and H(t) hold. More-
over, if p > 2, we assume also H2. Then there exists n0 ∈ N such that for all n > n0

operator T
k

n is surjective for k = 1, ..., Nn.

Proof. As in the proof of Lemma 19 we will show that operator T
k

n is pseudomono-
tone and coercive. From Lemma 17, Lemma 18, Proposition 4 and Proposition 9

we conclude that T
k

n is pseudomonotone. It remains to show that it is coercive. To
this end, we take u ∈ V and estimate

〈

T
k

nu, u
〉

= |u|2 +Θτkn
〈

Ak
nu, u

〉

+Θ2(τkn )
2 〈Bu, u〉+ Θτkn

〈

ηkn, ιu
〉

U∗×U
,(5)

where ηkn ∈ Mk
nιu. By H(M)(iv), we get

〈

ηkn, ιu
〉

U∗×U
≥ −cM (1 + ‖ιu‖p−1

U )‖ιu‖U .(6)

Assume first, that p ∈ (1, 2]. Using (2) with ε = 1 and H(U), we obtain

(1 + ‖ιu‖p−1
U )‖ιu‖U ≤

(

1 +
1

p

)

‖ιu‖pU +
1

q
≤
(

1 +
1

p

)

(ε‖u‖+ C(ε)|u|)p + 1

q

≤
(

1 +
1

p

)

2p−1 (εp‖u‖p + C(ε)p|u|p) + 1

q
.(7)

Using H(A)(iii), H(B) and (7) with ε = ε := 1
2

(

αp
(1+p)CM

)
1
p

, from (5) we get

〈

T
k

nu, u
〉

≥
(

1−Θτknβ
)

|u|2 + α

2
Θτkn‖u‖p −ΘτknC|u|p − ΘτknCM

q
,(8)
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where C = 2p−1CMC(ε)p
(

1 + 1
p

)

. Since p ≤ 2, we have |u|p ≤ |u|2 + 1 for all

u ∈ V . Then from (8) we deduce
〈

T
k

nu, u
〉

≥
(

1−Θτkn(β + C)
)

|u|2 +Θτkn‖u‖p −ΘτknC − ΘτknCM

q
.(9)

Taking n0 such that τmax
n < Θ−1(β +C)−1 for all n > n0, it follows from (9), that

T
k

n is coercive. If p > 2, then the coercivity of T
k

n follows directly from H(A)(iii),

(5), (6) and H2. By Proposition 11 we conclude that T
k

n is surjective. �

We pass to the proof of the existence result.

Proof of Theorem 16. Let uk−1
n , wk−1

n ∈ V , ηk−1
n ∈ U∗, k = 1, ..., N − 1 be

given. In order to provide the solvability of Problems (Pm
n ), m = 1, 2, we need

to show that there exist uk−1+Θ
n , wk−1+Θ

n , wk
n and uk

n, which satisfy the relations
formulated in the definition of Problem (Pm

n ), m = 1, 2.
We deal with Problem (P 1

n) first. Let λ0 be the constant from Lemma 19 and let
n0 ∈ N be such that for all n > n0 we have τmax

n < λ0/Θ. It implies that τknΘ < λ0

and by Lemma 19 it follows that operator T̃ k
n (τ

k
nΘ, uk−1

n ) is surjective. Thus, in
particular, there exists wk−1+Θ

n , such that

wk−1+Θ
n +ΘτknA

k
n(w

k−1+Θ
n ) + Θ2(τkn )

2Bwk−1+Θ
n +Θτkn ι

∗Mk
n(ιu

k−1
n

+ τknΘιwk−1+Θ
n ) ∋ Θτknf

k
n + wk−1

n −ΘτknBuk−1
n .(10)

Defining wk
n = 1

Θ

(

wk−1+Θ
n + (Θ− 1)wk−1

n

)

we write (10) in an equivalent form

1

τkn

(

wk
n − wk−1

n

)

+Ak
n(w

k−1+Θ
n ) +B

(

Θτknw
k−1+Θ
n + uk−1

n

)

+ ι∗ηkn ∋ fk
n ,(11)

where ηkn ∈ Mk
n(ιu

k−1
n + τknΘιwk−1+Θ

n ). Defining uk−1+Θ
n = τknΘwk−1+Θ

n + uk−1
n

and uk
n = 1

Θ

(

uk−1+Θ
n + (Θ− 1)uk−1

n

)

we obtain the solution of Problem (P 1
n).

Now we deal with problem (P 2
n). By Lemma 20 there exists n0 ∈ N such that for

all n > n0 operator T
k

n is surjective. Hence, there exists wk−1+Θ
n such that

wk−1+Θ
n +ΘτknA

k
n(w

k−1+Θ
n ) + Θ2(τkn )

2Bwk−1+Θ
n +Θτkn ι

∗Mk
n(ιw

k−1+Θ
n )

∋ Θτknf
k
n + wk−1

n −ΘτknBuk−1
n .

Defining wk
n, u

k−1+Θ
n and uk

n as above, we obtain the solution of Problem (P 2
n).

This completes the proof of the theorem. �

Now we give a lemma on a priori estimates for a solution of Problem (Pm
n ),

m = 1, 2.

Lemma 21. Let the assumptions H(A), H(B), H(M), H(U), H0 and H(t) hold and
let Θ ∈ [ 12 , 1]. Moreover, if p > 2 we assume hypotheses H1 (and H2, respectively).

If the triple
(

{uk
n}Nn

k=0, {wk
n}Nn

k=0, {ηkn}Nn

k=0

)

is a solution of Problem (P 1
n) (and (P 2

n),

respectively), then there exists n0 ∈ N such that for all n > n0, we have

max
k=1,...,Nn

|wk
n|2 +

Nn
∑

k=1

τkn‖wk−1+Θ
n ‖p ≤ const,(12)

max
k=1,...,Nn

‖uk
n‖ ≤ const,(13)

where const denotes a positive constant independent of n.
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Proof. We test the inclusion in Problem (Pm
n ), m = 1, 2 by wk−1+Θ

n and obtain

(wk
n − wk−1

n , wk−1+Θ
n ) + τkn

〈

Ak
nw

k−1+Θ
n , wk−1+Θ

n

〉

+ τkn
〈

Buk−1+Θ
n , wk−1+Θ

n

〉

+ τkn
〈

ηkn, ιw
k−1+Θ
n

〉

U∗×U
= τkn

〈

fk
n , w

k−1+Θ
n

〉

,(14)

where ηkn ∈ Mk
n(z

k−1+Θ
n ), and zk−1+Θ

n = uk−1+Θ
n in Problem (P 1

n), while z
k−1+Θ
n =

wk−1+Θ
n in Problem (P 2

n). Using the properties of scalar product in Hilbert space,
H(B) and the fact, that Θ ≥ 1

2 , we obtain

(wk
n − wk−1

n , wk−1+Θ
n ) =

1

2

(

|wk
n|2 − |wk−1

n |2 + (2Θ− 1)|wk
n − wk−1

n |2
)

≥ 1

2
|wk

n|2 −
1

2
|wk−1

n |2,(15)

and

〈

Buk−1+Θ
n , wk−1+Θ

n

〉

=
1

2

〈

Buk
n, u

k
n

〉

− 1

2

〈

Buk−1
n , uk−1

n

〉

+
1

2
(2Θ− 1)

〈

B(uk
n − uk−1

n ), uk
n − uk−1

n

〉

≥1

2

〈

Buk
n, u

k
n

〉

− 1

2

〈

Buk−1
n , uk−1

n

〉

.(16)

By (2) for δ > 0, we have

〈

fk
n , w

k−1+Θ
n

〉

≤ δ‖wk−1+Θ
n ‖p + 1

q
(δp)−

q

p
1

τkn

∫ tkn

tk−1
n

‖f(t)‖qV ∗ dt.(17)

In order to estimate
〈

ηkn, ιw
k−1+Θ
n

〉

U∗×U
we proceed in two steps. First, we deal

with Problem (P 1
n), namely, we have ηkn ∈ Mk

n(u
k−1+Θ
n ). From H(M)(iv) and the

relation

uk
n = u0

n +
k
∑

i=1

τ inw
i−1+Θ
n for k = 1, ..., Nn,(18)

we obtain
〈

ηkn, ιw
k−1+Θ
n

〉

U∗×U

≥− cM (1 + ‖ιuk−1+Θ
n ‖p−1

U )‖ιwk−1+Θ
n ‖U

≥− cM (1 + ‖ιuk−1
n +Θτkn ιw

k−1+Θ
n ‖p−1

U )‖ιwk−1+Θ
n ‖U

≥− cM



1 +

∥

∥

∥

∥

∥

ιu0
n +

k−1
∑

i=1

τ inιw
i−1+Θ
n +Θτkn ιw

k−1+Θ
n

∥

∥

∥

∥

∥

p−1

U



 ‖ιwk−1+Θ
n ‖U

≥− cM

(

1 + C(p)‖ιu0
n‖p−1

U

)

‖ιwk−1+Θ
n ‖U

− cMC(p)
(

Θτkn
)p−1 ‖ι‖p‖wk−1+Θ

n ‖p

− cMC(p)

∥

∥

∥

∥

∥

k−1
∑

i=1

τ inιw
i−1+Θ
n

∥

∥

∥

∥

∥

p−1

U

‖ιwk−1+Θ
n ‖U ,(19)
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where C(p) = 1 if p ∈ (1, 2] and C(p) = 3p−2 if p > 2. As for the first term of right
hand side we estimate

cM

(

1 + C(p)‖ιu0
n‖p−1

U

)

‖ιwk−1+Θ
n ‖U ≤ ε‖wk−1+Θ

n ‖p + C1(ε),(20)

for ε > 0 and C1(ε) =
1
q (pε)

− q

p ‖ι‖q(1 + C(p)‖ιu0
n‖p−1)q. Moreover, using (3), we

obtain the following auxiliary estimate

l
∑

k=1

τkn

∥

∥

∥

∥

∥

k−1
∑

i=1

τ inιw
i−1+Θ
n

∥

∥

∥

∥

∥

p−1

U

‖ιwk−1+Θ
n ‖U

≤
l
∑

k=1

τkn‖ιwk−1+Θ
n ‖U

(

l
∑

i=1

τ in
∥

∥ιwi−1+Θ
n

∥

∥

U

)p−1

≤
(

l
∑

k=1

τkn
∥

∥ιwk−1+Θ
n

∥

∥

U

)p

≤ (Nnτmax)
p−1

l
∑

k=1

τkn
∥

∥ιwk−1+Θ
n

∥

∥

p

U
,(21)

for l = 2, ..., Nn. By the convexity of the norm and the quadratic function we have

l
∑

k=1

τkn |wk−1+Θ
n |2 ≤ τmax

n

(

(1−Θ)|w0
n|2 +

l−1
∑

k=1

|wk
n|2 +Θ|wl

n|2
)

.(22)

Summing up (14) with k = 1, ...l and taking into account H(A)(iii), H(B), (15)-
(17), (19)-(22) and H(t), we get

(

1

2
− βΘτmax

n

)

|wl
n|2 +

1

2
τ ln
〈

Bul
n, u

l
n

〉

+
(

α− δ − cMC(p)(Θτkn )
p−1‖ι‖p − ε

)

l
∑

k=1

τkn‖wk−1+Θ
n ‖p

≤1

2
τ0n
〈

Bu0
n, u

0
n

〉

+

(

1

2
+ βτmax

n (1−Θ)

)

|w0
n|2 +

1

q
(δp)−

q

p ‖f‖qV∗

+ cMC(p)(KT )p−1
l
∑

k=1

τkn
∥

∥ιwk−1+Θ
n

∥

∥

p

U
+ β

l−1
∑

k=1

τmax
n |wk

n|2 + C1(ε)T.(23)

If 1 < p ≤ 2, we use H(U) and obtain

‖ιwk−1+Θ
n ‖pU ≤ 2p−1ǫp‖wk−1+Θ

n ‖p + 2p−1C(ǫ)p(|wk−1+Θ
n |2 + 1).(24)
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Concerning it in (23), and using (22), we get

(

1

2
−Θτmax

n (β + cMC(p)(2KT )p−1C(ǫ)p)

)

|wl
n|2

+
(

α− δ − cMC(p)(Θτkn )
p−1‖ι‖p − ε− cMC(p)(2KT )p−1ǫp

)

l
∑

k=1

τkn‖wk−1+Θ
n ‖p

+
1

2
τ ln
〈

Bul
n, u

l
n

〉

≤1

2
τ0n
〈

Bu0
n, u

0
n

〉

+
1

q
(δp)−

q

p ‖f‖qV∗ + T 2p−1C(ǫ)p

+

(

1

2
+ τmax

n (1 −Θ)(β + cMC(p)(2KT )p−1C(ǫ)p)

)

|w0
n|2

+ (β + cMC(p)(2KT )p−1C(ǫ)p)

l−1
∑

k=1

τmax
n |wk

n|2 + C1(ε)T.

Taking n0, such that for all n > n0, τmax
n < min{ 1

2MΘ ,
(

α
‖ι‖pcMC(p)

)
1

p−1

Θ−1},
where M := β+cMC(p)(2KT )p−1C(ǫ)p, we can find ε and ǫ small enough to apply
the Gronwall lemma and obtain (12).
If p > 2, we apply the inequality ‖ιwk−1+Θ

n ‖pU ≤ ‖ι‖p‖wk−1+Θ
n ‖p to the right hand

side of (23). Then, using H1 we can apply the Gronwall lemma to (23), provided

τmax
n ≤ min{ 1

2βΘ ,Θ−1
(

α(cMC(p)‖ι‖p)−1 − (KT )p−1
)

1
p−1 } and δ, ε small enough.

Now we deal with Problem (P 2
n), namely, we have ηkn ∈ Mk

n(w
k−1+Θ
n ). From

H(M)(iv) and (2), we have

〈

ηkn, ιw
k−1+Θ
n

〉

U∗×U
≥ −cM‖ιwk−1+Θ

n ‖pU − ε‖wk−1+Θ
n ‖p − C2(ε),(25)

where C2(ε) = q−1(εp)−
q

p cqM‖ι‖q. Summing up (14) with k = 1, ..., l, exploiting
H(A)(iii), H(B), (15)-(17), (25), and the fact, that Θ ≥ 1

2 , we get

(

1

2
− βΘτmax

n

)

|wl
n|2 + (α− δ − ε)

l
∑

k=1

τkn‖wk−1+Θ
n ‖p + 1

2
τ ln
〈

Bul
n, u

l
n

〉

≤ 1

2
τ0n
〈

Bu0
n, u

0
n

〉

+
1

2
|w0

n|2 +
1

q
(δp)−

q
p ‖f‖qV∗ + cM

l
∑

k=1

τkn
∥

∥ιwk−1+Θ
n

∥

∥

p

U

+ βτmax
n (1−Θ)|w0

n|2 + β

l−1
∑

k=1

τmax
n |wk

n|2 + C2(ε)T.(26)

If 1 < p ≤ 2, we use (24), together with (22) for the right hand side of (26) and
apply the Gronwall lemma provided τmax

n < 1
2MΘ , where M := β + cM2p−1C(ǫ)p,

ǫ < α
1
p c

− 1
p

M 2
1−p

p and δ, ε satisfy δ + ε < α − cM2p−1ǫp. If p ≥ 2, we use H2 and
apply the Gronwall lemma provided τmax

n < 1
2βΘ and δ + ε < α− cM‖ι‖p.
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In order to prove (13), we note that from (18) and the Hölder inequality, for
k = 1, ..., Nn, we get

‖uk
n‖ ≤‖u0

n‖+
k
∑

i=1

τ in‖wi−1+Θ
n ‖

=‖u0
n‖+

k
∑

i=1

(τ in)
1
q (τ in)

1− 1
q ‖wi−1+Θ

n ‖

≤‖u0
n‖+

(

k
∑

i=1

τ in

)

1
q
(

k
∑

i=1

(τ in)
p− p

q ‖wi−1+Θ
n ‖p

)

1
p

≤‖u0
n‖+ T

1
q

(

Nn
∑

i=1

τ in‖wi−1+Θ
n ‖p

)

1
p

.

Since the last term is bounded by (12), we deduce (13), which completes the proof.
�

Lemma 22. Let Θ ∈ [ 12 , 1] and the assumptions H(A), H(B), H(M), H(U), H0

and H(t) hold. Moreover, if p > 2 we assume hypotheses H1 (and H2, respectively).

If the triple
(

{uk
n}Nn

k=0, {wk
n}Nn

k=0, {ηkn}Nn

k=0

)

is a solution of Problem (P 1
n) (and (P 2

n),

respectively) then we have

Nn
∑

k=1

τkn‖Ak
nw

k−1+Θ
n ‖qV ∗ ≤ const,(27)

Nn
∑

k=1

τkn‖ηkn‖qU∗ ≤ const,(28)

Nn
∑

k=1

τkn

∥

∥

∥

∥

wk
n − wk−1

n

τkn

∥

∥

∥

∥

q

V ∗

≤ const,(29)

where const denotes a positive constant independent of n.

Proof. By the Jensen inequality and H(A)(iv), we get

‖Ak
nw

k−1+Θ
n ‖qV ∗ ≤ 1

τkn

∫ tkn

tk−1
n

‖A(t, wk−1+Θ
n )‖q dt ≤ cA(1 + ‖wk−1+Θ

n ‖p),(30)

which together with (12) gives (27). Next, using H(M)(iv) we obtain

Nn
∑

k=1

τkn‖ηkn‖qU∗ ≤ cqM2q−1T + cqM2q−1‖ι‖p
Nn
∑

k=1

τkn‖zk−1+Θ
n ‖p,

and, conclude that (28) follows either from (13) in case of Problem (P 1
n) or from

(12) in case of Problem (P 2
n).

Now we pass to the proof of (29). From the formulation of Problem (Pm
n ), m = 1, 2,
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we get

Nn
∑

k=1

τkn

∥

∥

∥

∥

wk
n − wk−1

n

τkn

∥

∥

∥

∥

q

V ∗

≤ C

Nn
∑

k=1

τkn
(

‖Ak
nw

k−1+Θ
n ‖qV ∗ + ‖Buk−1+Θ

n ‖qV ∗ + ‖ι∗ηkn‖qV ∗ + ‖fk
n‖qV ∗

)

,(31)

where C > 0 is independent of n. Using the convexity of the function ‖ · ‖q and
(13) we estimate

Nn
∑

k=1

τkn‖Buk−1+Θ
n ‖qV ∗ ≤‖B‖L(V,V ∗)

Nn
∑

k=1

τkn‖uk−1+Θ
n ‖qV

≤‖B‖L(V,V ∗)

Nn
∑

k=1

τkn
(

Θ‖uk
n‖q + (1−Θ)‖uk−1

n ‖q
)

≤‖B‖L(V,V ∗)T max
k=0,...,N

‖uk
n‖q.(32)

Finally using the Jensen inequality we get

Nn
∑

k=1

τkn‖fk
n‖qV ∗ ≤

Nn
∑

k=1

∫ tkn

tk−1
n

‖f(t)‖qV ∗ dt =

∫ T

0

‖f(t)‖qV ∗ dt = ‖f‖qV∗.(33)

Using (27), (28), (32) and (33), we obtain (29) directly from (31). The proof is
complete. �

Let the triple
(

{uk
n}Nn

k=0, {wk
n}Nn

k=0, {ηkn}Nn

k=0

)

be a solution of Problem (P 1
n) or

(P 2
n). For a fixed n ∈ N we define piecewise constant and piecewise linear functions

un, wn, ûn, ŵn : [0, T ] → V and ηn : [0, T ] → U∗ by

un(t) = uk−1+Θ
n for t ∈ (tk−1

n , tkn], k = 1, ..., Nn, and un(0) = u0
n,(34)

ûn(t) = uk−1
n +

uk
n − uk−1

n

τkn
(t− tk−1

n ) for t ∈ [tk−1
n , tkn], k = 1, ..., Nn,(35)

wn(t) = wk−1+Θ
n for t ∈ (tk−1

n , tkn], k = 1, ..., Nn, and wn(0) = w0
n,(36)

ŵn(t) = wk−1
n +

wk
n − wk−1

n

τkn
(t− tk−1

n ) for t ∈ [tk−1
n , tkn], k = 1, ..., Nn,(37)

ηn(t) = ηkn for t ∈ (tk−1
n , tkn], k = 1, ..., Nn, and ηn(0) = η1n.(38)

We introduce the Nemytskii operators A, B : V → V∗ and ι : V → U defined by
(Av)(t) = A(t, v(t)), (Bv)(t) = Bv(t), (ιv)(t) = ιv(t) for a.e. t ∈ [0, T ] for all v ∈ V .
Since

(

{uk
n}Nn

k=0, {wk
n}Nn

k=0, {ηkn}Nn

k=0

)

solves Problem (Pm
n ), m = 1, 2, it follows that
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the functions un, wn, ûn, ŵn and ηn satisfy































û′
n(t) = wn(t), for a.e. t ∈ (0, T ),

ŵ′
n(t) +

(

πq,V ∗

n Awn

)

(t) + (Bun) (t) + (ι∗ηn)(t) = (πq,V ∗

n (f))(t), for a.e. t ∈ (0, T ),

ηn(t) ∈ Mk
n((ι zn)(t)), for a.e. t ∈ (tk−1

n , tkn], for k = 1, ..., Nn,

un(0) = uΘ
n , ûn(0) = u0

n, wn(0) = wΘ
n , ŵn(0) = w0

n,

(39)

where ι∗ : U∗ → V∗ denotes the adjoint operator to ι and zn(t) = un(t) in Problem
(P 1

n) and zn(t) = wn(t) in Problem (P 2
n). Now we formulate a lemma on a priori

estimates for solution to (39).

Lemma 23. Let Θ ∈ [ 12 , 1] and the assumptions H(A), H(B), H(M), H(U), H0 and
H(t) hold. Moreover, if p > 2 we assume hypotheses H1 (and H2, respectively). Let

the triple
(

{uk
n}Nn

k=0, {wk
n}Nn

k=0, {ηkn}Nn

k=0

)

be a solution of Problem (P 1
n) (and (P 2

n),

respectively) and the functions un, wn, ûn, ŵn : [0, T ] → V and ηn : [0, T ] → U∗

be defined by (34)-(38). Then the following estimates hold

‖un‖L∞(0,T ;V ) ≤ const,(40)

‖wn‖L∞(0,T ;H) ≤ const,(41)

‖ûn‖C(0,T ;V ) ≤ const,(42)

‖ŵn‖C(0,T ;H) ≤ const,(43)

‖wn‖V ≤ const,(44)

‖πq,V ∗

n (Awn)‖V∗ ≤ const,(45)

‖ηn‖U∗ ≤ const,(46)

‖ŵ′
n‖V∗ ≤ const,(47)

‖wn‖Mp,q(0,T ;V,V ∗) ≤ const,(48)

‖un‖Mp,q(0,T ;V,V ∗) ≤ const,(49)

where const denotes a positive constant independent of n.

Proof. Since the sequence {u0
n} converges weakly to u0, it is bounded in V . We also

recall, that w0
n = u1n → u1 strongly in H , so the sequence {w0

n} is bounded in H .
Thus (40) and (41) follow directly from (13) and (12), respectively. Moreover, we
observe, that for t ∈ [tk−1

n , tkn], k = 1, ...Nn, the value ûn(t) is a convex combination
of elements uk−1

n and uk
n. Using the convexity of the norm and (13) again, we derive

(42). Using the same arguments, we obtain (43) from (12). In order to prove (44),

it is enough to observe that ‖wn‖pV =
∑Nn

k=1 τ
k
n‖wk−1+Θ

n ‖p and use (12). In order
to derive (45), we first observe that

(

πq,V ∗

n (Awn)
)

(t) = Ak
nw

k−1+Θ
n ,



Θ-SCHEME FOR SECOND ORDER INCLUSION 857

for t ∈ (tk−1
n , tkn), k = 1, ..., Nn. Thus we get

‖πq,V ∗

n (Awn)‖qV∗ =

∫ T

0

‖
(

πq,V ∗

n (Awn)
)

(t)‖qV∗ dt

=

Nn
∑

k=1

∫ tkn

tk−1
n

‖
(

πq,V ∗

n (Awn)
)

(t)‖qV∗ dt

=

Nn
∑

k=1

∫ tkn

tk−1
n

∥

∥Ak
nw

k−1+Θ
n

∥

∥

q

V∗
dt =

Nn
∑

k=1

τkn
∥

∥Ak
nw

k−1+Θ
n

∥

∥

q

V∗
.(50)

From (27) and (50), we get (45). Since ‖ηn‖qU∗ =
∑Nn

k=1 τ
k
n

∥

∥ηkn
∥

∥

q

U∗
, we obtain (46)

from (28). Similarly, we observe that

‖ŵ′
n‖qV∗ =

Nn
∑

k=1

τkn

∥

∥

∥

∥

wk
n − wk−1

n

τkn

∥

∥

∥

∥

q

V ∗

,(51)

and obtain (47) from (29). Now we pass to proof of (48). Taking into account
(44), it is enough to estimate the seminorm ‖wn‖BV q(0,T ;V ∗). Since the function
wn is piecewise constant, it will be measured by means of jumps between elements
of sequence {wk−1+Θ

n }Nn

k=1. Namely, let {kj}Mn

j=1 ⊂ {1, ..., Nn} be an increasing
sequence of numbers such that k1 = 1, kMn

= Nn and

‖wn‖BV q(0,T ;V ∗) =

Mn−1
∑

j=1

‖wkj+1−1+Θ
n − wkj−1+Θ

n ‖qV ∗ .(52)

For a fixed j = 1, ...,Mn − 1 we obtain

∥

∥wkj+1−1+Θ
n − wkj−1+Θ

n

∥

∥

q

V ∗
(53)

=
∥

∥wkj+1−1+Θ
n − wkj+1−2+Θ

n + wkj+1−2+Θ
n − ...+ wkj+Θ

n − wkj−1+Θ
n

∥

∥

q

V ∗

≤(kj+1 − kj)
q−1

kj+1−1
∑

l=kj

∥

∥wl+Θ
n − wl−1+Θ

n

∥

∥

q

V ∗

≤(Nn − 1)q−1

kj+1−1
∑

l=kj

∥

∥wl+Θ
n − wl−1+Θ

n

∥

∥

q

V ∗
.

Combining (52) with (53) and, using the convexity of the function V ∗ ∋ v → ‖v‖qV ∗ ,
we get

‖wn‖BV q(0,T ;V ∗) ≤ N q−1
n

Nn−1
∑

l=1

∥

∥wl+Θ
n − wl−1+Θ

n

∥

∥

q

V ∗

= N q−1
n

Nn−1
∑

l=1

∥

∥Θwl+1
n + (1−Θ)wl

n − (Θwl
n + (1−Θ)wl−1

n )
∥

∥

q

V ∗

= N q−1
n

Nn−1
∑

l=1

∥

∥Θ(wl+1
n − wl

n) + (1 −Θ)(wl
n − wl−1

n )
∥

∥

q

V ∗
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≤ N q−1
n

Nn−1
∑

l=1

(

∥

∥Θ(wl+1
n − wl

n)
∥

∥

q

V ∗
+ (1−Θ)

∥

∥(wl
n − wl−1

n )
∥

∥

q

V ∗

)

≤ N q−1
n

Nn
∑

l=1

∥

∥wl
n − wl−1

n

∥

∥

q

V ∗
= N q−1

n

Nn
∑

l=1

(Kτmin
n )q−1τkn

∥

∥

∥

∥

wl
n − wl−1

n

τkn

∥

∥

∥

∥

q

V ∗

≤ (TK)q−1
Nn
∑

l=1

τkn

∥

∥

∥

∥

wl
n − wl−1

n

τkn

∥

∥

∥

∥

q

V ∗

.(54)

Using (29), (44) and (54), we obtain (48). Analogously to (54), we obtain

‖un‖BV q(0,T ;V ∗) ≤(TK)q−1
Nn
∑

l=1

τkn

∥

∥

∥

∥

ul
n − ul−1

n

τkn

∥

∥

∥

∥

q

V ∗

≤(TK)q−1‖i‖‖wn‖Lq(0,T ;H),(55)

which together with (41) gives (49). This completes the proof of the lemma. �

Now we formulate the theorem concerning the convergence of functions defined
by (34)-(38) and the solvability of Problem (Pm), m = 1, 2.

Theorem 24. Let Θ ∈ [ 12 , 1] and the assumptions H(A), H(B), H(M), H(U),
H0 and H(t) hold. Moreover, if p > 2 we assume H1 (and H2, respectively). Let

the triple
(

{uk
n}Nn

k=0, {wk
n}Nn

k=0, {ηkn}Nn

k=0

)

be a solution of Problem (P 1
n) (and (P 2

n),

respectively) and the functions un, wn, ûn, ŵn : [0, T ] → V and ηn : [0, T ] → U∗

be defined by (34)-(38). Then, there exist u ∈ V, w ∈ W, η ∈ U and ξ ∈ V∗ such
that for a subsequence still enumerated by n, the following convergences hold

un → u weakly ∗ in L∞(0, T ;V ),(56)

ûn → u weakly ∗ in L∞(0, T ;V ),(57)

wn → w weakly ∗ in L∞(0, T ;H) and weakly in V ,(58)

ŵn → w weakly ∗ in L∞(0, T ;H),(59)

ŵ′
n → w′ weakly in V∗,(60)

πq,V ∗

n (Awn) → ξ weakly in V∗,(61)

ηn → η weakly in U∗,(62)

ι wn → ιw strongly in U ,(63)

ι un → ιu strongly in U .(64)

Moreover, the triple (u,w, η) is a solution of Problem (Pm), m = 1, 2.

Proof. The existence of limits required in (56)-(62) follows directly from the bounds
(40)-(47) obtained in Lemma 23. However, we still need to show, that un and ûn

converge to the same element, as well as for the sequences wn and ŵn. To this end,
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we estimate

‖ûn − un‖pV =

Nn
∑

k=1

∫ tkn

tk−1
n

‖ûn(t)− un(t)‖p dt

=

Nn
∑

k=1

∫ tkn

tk−1
n

∥

∥

∥

∥

(

t− tk−1
n

τkn
−Θ

)

(

uk
n − uk−1

n

)

∥

∥

∥

∥

p

dt

=

Nn
∑

k=1

∫ 1−Θ

−Θ

|s|p
∥

∥uk
n − uk−1

n

∥

∥

p
τkn ds

=
1

p+ 1

[

Θp+1 + (1−Θ)p+1
]

Nn
∑

k=1

τkn

∥

∥

∥

∥

uk
n − uk−1

n

τkn

∥

∥

∥

∥

p
(

τkn
)p

ds

≤ (τmax
n )

p 1

p+ 1

[

Θp+1 + (1 −Θ)p+1
]

Nn
∑

k=1

τkn‖wk−1+Θ
n ‖p.

Thus, using (12) and H(t)(i), we conclude that

‖ûn − un‖V → 0 as n → ∞,(65)

so both sequences have the same limit. Similarly, we estimate

‖ŵn − wn‖qV∗ ≤ (τmax
n )

q 1

q + 1

[

Θq+1 + (1 −Θ)q+1
]

Nn
∑

k=1

τkn

∥

∥

∥

∥

wk
n − wk−1

n

τkn

∥

∥

∥

∥

q

V ∗

.

Using (29) and H(t)(i), again we see that ‖ŵn − wn‖V∗ → 0 as n → ∞, so the
limits of both sequences coincide. The convergences (63) and (64) follow directly
from (48) and (49), and the hypotheses H(ι). In the remaining part of the proof
we show that (u,w, η) solves Problem (Pm). To this end we will pass to the limit
in (39) as n → ∞ and see that the limit relation fits the formulation of Problem
(Pm). Since û′

n = wn(t), we conclude from (57) and (58) that

u′(t) = w(t) for a.e. t ∈ (0, T ).(66)

It follows from H(B) that the Nemytskii operator B is continuous and, since it is
linear, it is also weakly continuous. Thus, from (56) we see that

Bun → Bu weakly in V∗ as n → ∞.(67)

It is well known that

πq,V ∗

n (f) → f strongly in V∗ with n → ∞.(68)

From (62), it is clear that

ι∗ηn → ι∗η weakly in V∗.(69)

It remains to pass to the limit with the term πq,V ∗

n (Awn) in (39). It will be preceded
by several auxiliary results, derived in what follows. First, by the direct calculation,
we obtain

〈ŵ′
n, ŵn − wn〉V∗×V =

(

1

2
−Θ

) Nn
∑

k=1

|wk
n − wk−1

n |2 ≤ 0.(70)

Using (70), we have

〈ŵ′
n, w − wn〉V∗×V = 〈ŵ′

n, w〉V∗×V − 〈ŵ′
n, ŵn〉V∗×V + 〈ŵ′

n, ŵn − wn〉V∗×V

≤ 〈ŵ′
n, w〉V∗×V − 〈ŵ′

n, ŵn〉V∗×V .
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Thus, by (60), we get

lim sup
n→∞

〈ŵ′
n, w − wn〉V∗×V ≤ 〈w′, w〉V∗×V − lim inf

n→∞
〈ŵ′

n, ŵn〉V∗×V

=
1

2

(

|w(T )|2 − |w(0)|2 − lim inf
n→∞

|ŵn(T )|2 + lim sup
n→∞

|ŵn(0)|2
)

.(71)

We observe that (59) implies ŵn → w weakly in V∗. Taking into account (60) and
the fact that the embedding {w ∈ V∗ |w′ ∈ V∗} ⊂ C(0, T ;V ∗) is continuous, we
claim that ŵn → w weakly in C(0, T ;V ∗). Thus, in particular, we have ŵn(T ) →
w(T ) weakly in V ∗. On the other hand, from (43), it follows that ŵn(T ) is bounded
in H , so for a subsequence still denoted by n, we may assume that ŵn(T ) → h
weakly in H (and, in consequence, weakly in V ∗), where h ∈ H . From uniqueness
of the limit, we have ŵn(T ) → w(T ) weakly in H . Since the norm is weakly lower
semicontinuous, we have

|w(T )|2 ≤ lim inf
n→∞

|ŵn(T )|2.(72)

Analogously, we have ŵn(0) → w(0) weakly in H . On the other hand, we know,
that ŵn(0) = w0

n = u1n → u1 strongly in H and in consequence ŵn(0) → u1 weakly
in H . Since the weak limit is unique, we have

w(0) = u1, and ŵn(0) → w(0) in H.(73)

Combining (71)-(73), we obtain

lim sup
n→∞

〈ŵ′
n, w − wn〉V∗×V ≤ 0.(74)

Next, we observe that

〈Bun, w − wn〉V∗×V = 〈Bûn − Bu,w − wn〉V∗×V

+ 〈Bu,w− wn〉V∗×V + 〈B(un − ûn), w − wn〉V∗×V .(75)

From (58) and (65), it follows that

lim
n→∞

(

〈Bu,w − wn〉V∗×V + 〈B(un − ûn), w − wn〉V∗×V

)

= 0.(76)

Using monotonicity of B, we obtain

〈Bûn − Bu,w − wn〉V∗×V = 〈Bûn − Bu, u′ − û′
n〉V∗×V =

1

2
〈B(u(0)− ûn(0)), u(0)− ûn(0)〉 −

1

2
〈B(u(T )− ûn(T )), u(T )− ûn(T )〉

≤ 1

2
‖B‖L(V,V ∗)‖u(0)− ûn(0)‖2.(77)

Since û′
n = wn, from (57) and (58), it is clear that ûn → u and û′

n → u′ both
weakly in V . Since the embedding {u ∈ V |u′ ∈ V} ⊂ C(0, T ;V ) is continuous, it
results that ûn → u weakly in C(0, T ;V ) and, in particular, ûn(0) → u(0) weakly
in V . On the other hand, by assumption, we have ûn(0) = u0

n = u0n → u0 in V .
Since the limit is unique, we have

u(0) = u0, and ûn(0) → u(0) in V.(78)

From (75)-(78), we get

lim sup
n→∞

〈Bun, w − wn〉V∗×V ≤ 0.(79)

It follows from (39), (63), (68), (74) and (79), that

lim sup
n→∞

〈

πq,V ∗

n (Awn), wn − w
〉

V∗×V
≤ 0.(80)
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Now, we calculate
〈

Awn − πq,V ∗

n (Awn), wn

〉

V∗×V
(81)

=

Nn
∑

k=1

∫ tkn

tk−1
n

〈

A(t, wk−1+Θ
n )− 1

τkn

∫ tkn

tk−1
n

A(s, wk−1+Θ
n )ds, wk−1+Θ

n

〉

dt

=

Nn
∑

k=1

〈

∫ tkn

tk−1
n

A(t, wk−1+Θ
n )dt−

∫ tkn

tk−1
n

A(s, wk−1+Θ
n )ds, wk−1+Θ

n

〉

dt = 0.

Next, for any ζ ∈ V , the direct calculation gives

〈

Awn − πq,V ∗

n (Awn), ζ
〉

V∗×V

(82)

=

Nn
∑

k=1

∫ tkn

tk−1
n

〈

A(t, wk−1+Θ
n )− 1

τkn

∫ tkn

tk−1
n

A(s, wk−1+Θ
n )ds, ζ(t)

〉

dt

=

Nn
∑

k=1

(

∫ tkn

tk−1
n

〈

A(t, wk−1+Θ
n ), ζ(t)

〉

dt−
∫ tkn

tk−1
n

〈

1

τkn

∫ tkn

tk−1
n

A(s, wk−1+Θ
n )ds, ζ(t)

〉

dt

)

=

Nn
∑

k=1

(

∫ tkn

tk−1
n

〈

A(t, wk−1+Θ
n ), ζ(t)

〉

dt−
〈

∫ tkn

tk−1
n

A(s, wk−1+Θ
n )ds,

1

τkn

∫ tkn

tk−1
n

ζ(t)dt

〉)

=

Nn
∑

k=1

(

∫ tkn

tk−1
n

〈

A(t, wk−1+Θ
n ), ζ(t)

〉

dt−
∫ tkn

tk−1
n

〈

A(s, wk−1+Θ
n ), (πp,V

n (ζ))(t)
〉

ds

)

=

Nn
∑

k=1

∫ tkn

tk−1
n

〈

A(t, wk−1+Θ
n ), ζ(t) − (πp,V

n (ζ))(t)
〉

dt =
〈

Awn, ζ − πp,V
n (ζ)

〉

V∗×V
.

From H(A)(iv) and (44), it follows, that the sequence Awn is bounded in V∗.
Moreover, it is clear that πp,V

n (ζ) → ζ in V . Thus, from (82), we have

Awn − πq,V ∗

n (Awn) → 0 weakly in V∗ as n → ∞.(83)

From (81) and (83), we get
〈

Awn − πq,V ∗

n (Awn), wn − w
〉

V∗×V
→ 0 as n → ∞.(84)

It follows from (80) and (84), that

lim sup
n→∞

〈Awn, wn − w〉V∗×V ≤ lim sup
n→∞

〈

πq,V ∗

n (Awn), wn − w
〉

V∗×V

+ lim
n→∞

〈

Awn − πq,V ∗

n (Awn), wn − w
〉

V∗×V
≤ 0.(85)

From (48), (58), (85) and Lemma 14, we get Awn → Aw weakly in V∗. Combining
it with (83), we obtain

πq,V ∗

n (Awn) → Aw weakly in V∗.(86)

Passing to the limit in the second equation in (39), and using (67)-(69) and (86),
we conclude that the limit function w satisfies

w′ +Aw + Bw + ι∗η = f.(87)
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Now we pass to the limit with the inclusion in (39). From the definition of Mk
n , it

follows that for a fixed n ∈ N and for all k = 1, ..., Nn there exists ζkn : (tk−1
n , tkn) →

U∗ such that ηkn = 1
τk
n

∫ tkn
tk−1
n

ζkn(t) dt and ζkn(t) ∈ M(t, (ι zn)(t)) for a.e. t ∈ (tk−1
n , tkn),

where zn(t) = un(t) in Problem (P 1) and zn(t) = wn(t) in Problem (P 2). We define
the function ζn : [0, T ] → U∗ by ζn(t) = ζkn(t) for all t ∈ (tk−1

n , tkn) for k = 1, ..., Nn.
Thus we have

ζn(t) ∈ M(t, (ι zn)(t)) for a.e. t ∈ (0, T ).(88)

By (40), (44), H(M)(iv), H(ι) and Haux we conclude that the sequence ζn remains
bounded in U∗. So, for a subsequence, we have

ζn → ζ weakly in U∗ as n → ∞.(89)

Using (63), (64), (88), (89), H(M)(ii) − (iii), and the fact, that every weakly∗
compact set is closed, we can apply Proposition 13, and conclude that

ζ(t) ∈ M(t, (ι z)(t)) for a.e. t ∈ (0, T ),(90)

where z = u in Problem (P 1) and z = w in Problem (P 2). We define ζn = πq,U∗

n (ζ)
and we will show that

ζn − ηn → 0 weakly in U∗.(91)

To this end, for any λ ∈ U , by the Foubini theorem, we have

〈

ζn − ηn, λ
〉

U∗×U
=

∫ T

0

〈

ζn(t)− ηn(t), λ(t)
〉

U∗×U
dt

(92)

=

Nn
∑

k=1

∫ tkn

tk−1
n

〈

1

τkn

∫ tkn

tk−1
n

ζ(s) ds − 1

τkn

∫ tkn

tk−1
n

ζn(s) ds, λ(t)

〉

U∗×U

dt

=

Nn
∑

k=1

1

τkn

∫ tkn

tk−1
n

∫ tkn

tk−1
n

〈ζ(s)− ζn(s), λ(t)〉U∗×U ds dt

=

Nn
∑

k=1

∫ tkn

tk−1
n

〈

ζ(s) − ζn(s),
1

τkn

∫ tkn

tk−1
n

λ(t) dt

〉

U∗×U

ds =
〈

ζ − ζn, π
q,U
n (λ)

〉

U∗×U
.

Since πq,U
n (λ) → λ strongly in U , we obtain (91) from (89) and (92). Moreover,

since ζn → ζ strongly in U∗, we conclude from (91) that ηn → ζ weakly in U . Since
the weak limit is unique, we have ζ = η and, from (90) we derive

η(t) ∈ M(t, (ι z)(t)) for a.e. t ∈ (0, T ).(93)

Summarizing, from (66), (73), (78), (87), and (93) it follows, that the triple (u,w, η)
solves Problem (Pm), m = 1, 2, which completes the proof. �

5. Strong convergence

In this section we deal with a strong convergence result of the Rothe method.
To this end, we impose more restrictive assumption on the operator A.

H(A)1: The operator A : [0, T ]× V → V ∗ satisfies: A(t, ·) is of type (S)+ for a.e.
t ∈ (0, T ).

Now we formulate the following theorem.
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Theorem 25. Let all assumptions of Theorem 24 hold and, moreover, operator A
satisfies H(A)1. Then ûn → u strongly in W 1,p(0, T ;V ) as n → ∞.

Proof. From (48), (58) and (85), we know that wn is bounded in Mp,q(0, T ;V, V ∗),
wn → w weakly in V and lim supn→∞ 〈Awn, wn − w〉V∗×V ≤ 0. Thus, by Lemma
15, we have wn → w strongly in V as n → ∞. Since û′

n = wn and u′ = w, we also
have for C > 0

‖ûn − u‖pV =

∫ T

0

‖ûn(t)− u(t)‖pdt

≤ C

∫ T

0

(

‖ûn(0)− u(0)‖p +
∫ t

0

‖wn(s)− w(s)‖pds
)

dt

≤ C(T ‖u0n − u0‖p + T ‖wn − w‖pV) → 0 with n → ∞.

It follows that ûn → u strongly in W 1,p(0, T ;V ), which completes the proof. �

Corollary 26. Let all assumptions of Theorem 24 hold. Assume moreover, that
operator A satisfies

〈A(t, v)−A(t, u), v − u〉 ≥ γ1‖v − u‖2 − γ2|v − u|2,(94)

for all u, v ∈ V , a.e. t ∈ (0, T ), with γ1 > 0, γ2 ≥ 0. Then ûn → u strongly in
W 1,p(0, T ;V ) as n → ∞.

Proof. We will show, that operator A satisfies H(A)1. Let us fix t ∈ (0, T ), for
which (94) holds true and let us consider a sequence {vn} ⊂ V , such that vn → v
weakly in V . Assume that lim supn→∞ 〈A(t, vn), vn − v〉 ≤ 0. By (94), we get

lim
n→∞

γ1‖vn − v‖2 ≤ lim sup
n→∞

〈A(t, vn), vn − v〉(95)

− lim
n→∞

〈A(t, v), vn − v〉+ γ2 lim
n→∞

|vn − v|2 ≤ γ2 lim
n→∞

|vn − v|2.

Since the embedding V ⊂ H is compact, then, from weak convergence vn → v in
V , it follows that limn→∞ |vn− v| = 0 and, from (95), also limn→∞ γ1‖vn− v‖ = 0.
We conclude that the operator A(t, ·) is of class (S)+ for a.e. t ∈ (0, T ), and we
can apply Theorem 25 to deduce the thesis. �

6. Boundary hemivariational inequalities

In this section we apply our result of Theorem 24 to a class of boundary hemi-
variational inequalities.

We restrict ourselves to the case p ≥ 2. Let Ω be an open bounded subset of
R

d with Lipschitz boundary ∂Ω and let Γ be an open subset of ∂Ω with positive
surface measure. According to the notation introduced at the beginning of Section
3, we define the following spaces. Let V = {v ∈ W 1,p(Ω;Rd)| γv = 0 on ∂Ω \ Γ}
and H = L2(Ω;Rd), where ι : W 1,p(Ω;Rd) → U := Lp(Γ;Rd) denotes the trace
operator. Identifying H with its dual, we have an evolution triple V ⊂ H ⊂ V ∗

with dense, continuous and compact embeddings. Let T > 0 and let the spaces V ,
H, W and U be defined as in the Section 3.

We consider the following two types of dynamic hemivariational inequalities.

Problem HVI1 Find u ∈ V such that u′ ∈ W and


















〈u′′(t) +A(t, u′(t)) +Bu(t)− f(t), v〉

+
∫

Γ
j0(x, t, γu(t); γv)dγ(x) ≥ 0 for all v ∈ V and a.e. t ∈ (0, T ),

u(0) = u0, u′(0) = u1.
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Problem HVI2 Find u ∈ V such that u′ ∈ W and



















〈u′′(t) +A(t, u′(t)) +Bu(t)− f(t), v〉

+
∫

Γ j
0(x, t, γu′(t); γv)dγ(x) ≥ 0 for all v ∈ V and a.e. t ∈ (0, T ),

u(0) = u0, u′(0) = u1.

In the above problems j0(x, t, γu(t); γv) and j0(x, t, γu′(t); γv) denote the Clarke
directional derivative with respect to the third variable in the direction γv. We
impose the following assumptions on the function j.

H(j): j : Γ× (0, T )× Rd → R is such that

(i) j(·, ·, ξ) is measurable for all ξ ∈ Rd and j(·, t, 0) ∈ L1(Γ), for a.e. t ∈ (0, T ),

(ii) j(x, t, ·) is locally Lipschitz for a.e. x ∈ Γ , t ∈ (0, T ),

(iii) |η|Rd ≤ cj(1 + |ξ|p−1
Rd ) for all η ∈ ∂j(x, t, ξ), a.e. t ∈ (0, T ), x ∈ Γ with

cj > 0.

In the assumption H(j) the symbol ∂j denotes the Clarke subdifferential of j with
respect to the variable ξ.

Let us define the constant cJ = cj2
1
p max{1, |Γ| 1q }, where |Γ| denotes d − 1 di-

mensional measure of Γ and impose two additional hypotheses.
H̃1: cJ3

p−2T p−1‖ι‖p < α.

H̃2: cJ‖ι‖p < α.

Now we formulate the theorem on existence of solution to Problems HVIi, i =
1, 2.

Theorem 27. Let assumptions H(A), H(B), H(j) and H0 hold. Moreover, if

p > 2, we assume the condition H̃1 (and H̃2, respectively). Then Problem HVI1
(and HVI2, respectively) admits a solution.

Before passing to the proof of Theorem 27 we define functional J : (0, T )×U → R

given by

J(t, v) =

∫

Γ

j(x, t, v(x))dΓ, for all v ∈ U, a.e. t ∈ (0, T ),

and a multivalued operator M : (0, T )× U → 2U
∗

given by M(t, v) = ∂J(t, v) for
all v ∈ U , a.e. t ∈ (0, T ). We remark, that under the hypotheses H(j) both J and
M are well defined. Now we formulate two auxiliary problems corresponding to
Problem HVI1 and HVI2 respectively.

Problem Q1 Find u ∈ V with u′ ∈ W and η ∈ U∗ such that



















u′′(t) +A(t, u′(t)) +Bu(t) + γ∗η(t) = f(t) a.e. t ∈ (0, T ),

η(t) ∈ M(t, γu(t)) a.e. t ∈ (0, T ),

u(0) = u0, u′(0) = u1.
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Problem Q2 Find u ∈ V with u′ ∈ W and η ∈ U∗ such that


















u′′(t) +A(t, u′(t)) +Bu(t) + γ∗η(t) = f(t) a.e. t ∈ (0, T ),

η(t) ∈ M(t, γu′(t)) a.e. t ∈ (0, T ),

u(0) = u0, u′(0) = u1.

Now we formulate three lemmas concerning properties of the data of Problems
Qi, i = 1, 2.

Lemma 28. If the assumption H(j) holds, then the multivalued operator M satisfies
assumptions H(M) with cM = cJ .

Proof. The hypothesis H(M)(i) follows from Proposition 3.44 of [26]. The hy-
potheses H(M)(ii) and H(M)(iii) follow from Proposition 3.23 ((iv) and (vi),
respectively) of [26]. Finally H(M)(iv) follows directly from H(j)(iii). �

Lemma 29. The operator ι satisfies assumption H(ι).

Proof. Let ε ∈ (0, 12 ). Then the embedding i : V → W 1−ε,p(Ω;Rd) is compact.

The trace operator γ1 : W 1−ε,p(Ω;Rd) → W
1
2
−ε,p(Γ;Rd) is linear and continuous

and, finally, the embedding j : W
1
2
−ε,p(Γ;Rd) → Lp(Γ;Rd) = U is also linear

and continuous. Thus ι = j ◦ γ1 ◦ i is linear, continuous and compact. More-
over, the spaces V ⊂ W 1−ε,p(Ω;Rd) ⊂ V ∗ satisfy assumptions of Proposition 12
so the embedding Mp,q(0, T ;V, V ∗) ⊂ Lp(0, T ;W 1−ε,p(Ω;Rd)) is compact. Since
the embedding Lp(0, T ;W 1−ε,p(Ω;Rd)) ⊂ U is continuous the Nemytskii operator
corresponding to ι is compact. �

Lemma 30. The space U satisfies assumption H(U).

Proof. As in the proof of Lemma 29 we take ε ∈ (0, 12 ). Since the embedding

V ⊂ W 1−ε,p(Ω;Rd) is compact and W 1−ε,p(Ω;Rd) ⊂ H is continuous, we can
apply the Ehrling Lemma (cf. Lemma 7.6 of [34]). Thus, for any ε > 0 there is
C(ε) > 0 such that for all v ∈ V

‖v‖W 1−ε,p(Ω;Rd) ≤ ε‖v‖+ C(ε)|v|.(96)

Using notation from the proof of Lemma 29, we have for all v ∈ V

‖ιv‖U = ‖(j ◦ γ1)v‖U ≤ c‖v‖W 1−ε,p(Ω;Rd),

with c > 0. This together with (96) completes the proof. �

Proof of Theorem 27. First, we note that if assumption H(j) holds, then every
solution to Problem Qi is a solution to Problem HVIi, i = 1, 2 (see Remark 4 in
[22]). Thus, it is enough to establish the solvability of ProblemsQi, i = 1, 2. Taking
Θ ≥ 1

2 we consider a time discretization Θ-scheme described in Section 4 based on
the uniform partition of the interval [0, T ]. Then the assumption H(t) is satisfied

with the constant K = 1. Observe, that in this particular case, assumptions H̃1 and
H̃2 are equivalent with H1 and H2. Using assumptions H(A), H(B) and Lemmas
28-30, we can apply Theorem 24 for ProblemsQi, i = 1, 2 and obtain their solutions.
The proof is complete. �

Remark 31. From the Corollary 26, we have a strong convergence of the approxi-
mate sequence ûn to a solution of Problem HVIi, i = 1, 2 provided the operator A
satisfies condition (94).
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Remark 32. The existence result for Problems HVIi, i = 1, 2, has been obtained in
[22] only for p = 2 and under the restrictions analogous to assumptions H̃i, i = 1, 2.

In Theorem 27 we do not assume H̃1, H̃2 in case p = 2. Moreover, in [22], the
operator A is assumed to satisfy 〈A(t, v), v〉 ≥ α‖v‖2 a.e. t ∈ (0, T ), for all v ∈ V
with α > 0, which is more restrictive assumption than H(A)(iii). Thus our result
is stronger, than the one obtained in [22].

7. Application to non-clamped dynamic contact problems

In this section, we shortly explain, what is the motivation to relax the classical
coercivity assumption by means of less restrictive condition H(A)(iii).
Hemivariational inequalities studied in Section 6 arise from nonmonotone contact
problems in mechanics. We refer again to [22] for details and to [26] for the current
stay of art. In the typical setting, a physical body occupies a region Ω ⊂ Rd, d = 2, 3
and the main unknown in the problem is displacement field u : Ω → Rd. One defines

also a deformation operator given by ε(u) = (εij(u)), εij(u) =
1
2 (

∂ui

∂xj
+

∂uj

∂xi
), i, j =

1, ..., d and the spaces H = L2(Ω)d, H1 = {u ∈ L2(Ω)d, | εij(u) ∈ L2(Ω), i, j =
1, ..., d} with the norms given by ‖u‖2H =

∫

Ω
u2 dx, ‖u‖2H1

=
∫

Ω
u2 dx +

∫

Ω
ε(u) :

ε(u) dx. It is also defined viscosity operator A : Sd → Sd, which in particular
satisfies the coercivity condition

A(x, t, τ) : τ ≥ ατ : τ for all τ ∈ Sd, a.e. (x, t) ∈ Ω× [0, T ] withα > 0.(97)

The typical assumption met in the literature (see [26]) is that u = 0 on a part of
boundary ΓD ⊂ ∂Ω, where ΓD has a positive measure. It means, that the body
is clamped at ΓD. This assumption allows to use the following Korn’s inequality
∫

Ω
u2 dx ≤ C

∫

Ω
ε(u) : ε(u) dx for all u ∈ V := {v ∈ H1, | v = 0 on ΓD} with C > 0

and introduce a norm ‖u‖V =
(∫

Ω
ε(u) : ε(u) dx

)
1
2 , equivalent with ‖u‖H1

for all
u ∈ V . The advantage of the new norm is that the operator A : [0, T ]× V → V ∗

defined by 〈A(t, u), v〉V ∗×V =
∫

ΩA(x, t, ε(u(x)) : ε(u(x))) dx is coercive. Namely,

from (97), one has 〈A(t, u), u〉V ∗×V ≥ α‖u‖2V for all t ∈ [0, T ], u ∈ V . This property
of operatorA is exploited in many publications concerning existence result for HVI’s
as well. We remind, that Theorem 27 allows us to obtain the existence result under
more general assumption H(A)(iii). Thus, we can proceed in a different way,
namely put V = H1 and observe, that (97) implies 〈A(t, u), u〉V ∗×V ≥ α

∫

Ω
ε(u) :

ε(u) dx = α‖u‖2V −α‖u‖2H , which is equivalent to H(A)(iii) with β = α and allows
us to apply our theoretical existence result. In this case, we do not need to change
the norm, and the Korn’s inequality is useless. In the consequence, we can avoid
the assumption, that the body is clamped on the part of boundary.
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[24] S. Migórski, A. Ochal, A unified approach to dynamic contact problems in viscoelasticity,

Journal of Elasticity 83 (2006), 247–275.



868 K. BARTOSZ

[25] S. Migorski, A. Ochal, Boundary hemivariational inequality of parabolic type, Nonlinear
Analysis Series A: Theory Methods and Applications 57 (2004), 579–596.
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