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A SIMPLE FAST ALGORITHM FOR MINIMIZATION OF THE

ELASTICA ENERGY COMBINING BINARY AND LEVEL SET

REPRESENTATIONS

XUE-CHENG TAI AND JINMING DUAN

Abstract. For curves or general interfaces, Euler’s elastica energy has a wide range of applications
in computer vision and image processing. It is however difficult to minimize the functionals related

to the elastica energy due to its non-convexity, nonlinearity and higher order with derivatives. In

this paper, we propose a very simple way to combine level set and binary representations for
interfaces and then use a fast algorithm to minimize the functionals involving the elastica energy.

The proposed algorithm essentially just needs to solve a total variation type minimization problem

and a re-distance problem. Nowadays, there are many fast algorithms to solve these two problems
and thus the overall efficiency of the proposed algorithm is very high. We then apply the new

Euler’s elastica minimization algorithm to image segmentation, image inpainting and illusory

shape reconstruction problems. Extensive experimental results are finally conducted to validate
the effectiveness of the proposed algorithm.

Key words. Euler’s elastica energy, image segmentation, image inpainting, illusory shape, corner

fusion, level set method, binary level set method, fast sweeping.

1. Introduction

For a two-dimensional curve γ, its elastica energy is defined as

(1) E (γ) =

∫
γ

(
a+ bκ2

)
ds.

Here κ is the curvature of the curve γ, ds is arc length and a and b are two
positive parameters. If we set b = 0, E (γ) measures the total length of the curve.
If a = 0, then E (γ) measures the twisting energy of the curve which is related
to the curvature. The elastica energy has no difficulty to be extended for higher
dimensional interface problems. For a function u defined on the domain Ω, the
Euler’s elastica energy of all level curves of u over Ω can be expressed as a functional
of u by

(2) E (u) =

∫
Ω

(
a+ b

∣∣∣∣∇ · ∇u|∇u|
∣∣∣∣2
)
|∇u| dx.

In the field of image processing, Euler’s elastica energy was first introduced by
Nitzberg, Mumford, and Shiota for segmenting an image into objects with different
depths in the scene [1]. Since then, it has been adapted to many fundamental
problems in mathematical imaging. This includes image inpainting [2, 3, 4], image
restoration [5, 6, 4, 7], image zooming [4] and image segmentation [8, 9, 10].

It is however nontrivial to minimize the functional (2) directly, because it involves
non-differentiable, nonlinear and higher order terms. Recently, a lot of research have
focused on the developments of fast and reliable numerical methods for minimizing
curvature based functionals, including the multigrid algorithm [11], the homotopy
method [12], augmented Lagrangian method (ALM) based algorithms [13, 14, 4],
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graph cut based algorithms [7, 15] and convex relaxation approaches [16, 17, 18, 19].
Among them the ALM based algorithms are particularly of interest, because the
resulting minimization problems by the ALM can be implemented very easily and
efficiently. ALM thus has become a powerful tool for developing efficient numerical
schemes to deal with many nonlinear image processing models, such as the non-
differentiable Rudin-Osher-Fatemi (ROF) model [20], the Euler’s elastica and mean
curvature models [4, 9, 14, 21]. The main idea of the ALM is to convert the original
problem into a few subproblems, each of which is a very simple problem and can
thus be solved efficiently. The minimizer of the original problem is obtained when
the overall algorithm has converged. To minimize the Euler’s elastica energy (2)
with a data fidelity term D(u) using the ALM, (2) is first transformed into the
following equivalent constrained minimization problem

(3) min
u,p,m,n

∫
Ω

(
a+ b(∇ · n)

2
)
|p| dx+D(u) s.t. p = ∇u, n = p

|p| .

The constraint n = p
|p| in (3) can be converted to

|m| ≤ 1, |p| = m · p, m = n.

With these new constraints, the augmented Lagrangian functional for (3) is:

E (u,p,m,n;λ1,λ2,λ3) =

∫
Ω

(
a+ b(∇ · n)

2
)
|p| dx+D(u)

+ µ1

∫
Ω

(|p| − p ·m)dx+

∫
Ω

λ1 (|p| − p ·m)dx

+
µ2

2

∫
Ω

|p−∇u|2dx+

∫
Ω

λ2 · (p−∇u)dx

+
µ3

2

∫
Ω

|n−m|2dx+

∫
Ω

λ3 · (n−m)dx+ δR(m),

(4)

where R =
{
m ∈ L2 (Ω) : |m| ≤ 1 a.e. in Ω

}
and δR(m) is the characteristic func-

tion on the convex set R, which is given by

δR(m) =

{
0 if m ∈ R
+∞ otherwise

.

Moreover, µ1, µ2 and µ3 are positive penalty parameters while λ1, λ2 and λ3 are
Lagrange multipliers. Since m is forced to be inside R, |m| ≤ 1, |p| −m · p ≥ 0
for any p, and |p| −m · p = 0 if and only if m = p

|p| . This simplifies p’s subprob-

lem because quadratic term is avoided. The unknown m is introduced to decouple
p and n such that p’s subproblem can be solved by the shrinkage and m’s sub-
problem by the fast Fourier transform. Notice that the fidelity term D(u) should
be addressed properly according to different applications. For example, for noise
removal with Gaussian noise, it is common to choose D(u) =

∫
Ω

(u− f)
2
dx. In

such a case, the algorithm can be used directly and give fast numerical implemen-
tations. However, an additional variable should be introduced for the algorithm
when D(u) =

∫
Ω
|u− f |dx, which is common for impulsive noise removal. We refer

the reader to [4] for more details on the application of the ALM to different D(u).
One now needs to minimize the augmented Lagrangian functional for each of the
variables u,p,m,n by fixing the others. After all the variables are solved, the La-
grange multipliers λ1,λ2,λ3 should be updated. The procedure is repeated until
all the variables have converged.

By considering the underlying relation between the length term and the curvature
term in the Euler’s elastica energy, in this paper we propose a novel algorithm for
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different image processing applications using the elastica energy. The proposed
algorithm has several advantages:

• It has fewer parameters and therefore significantly reduces the effort of
choosing appropriate parameters for obtaining desirable results.
• For image segmentation, it uses the relaxed binary representation for the

length term and the signed distance representation for the calculation of
curve curvature. Consequently, the original elastica problem boils down
to a total variation type minimization problem and a re-distance problem,
which can be solved efficiently with existing approaches.
• In addition to image segmentation, it can be easily extended to binary

image inpainting and illusory shape problems.

In the following, we shall introduce the proposed algorithm in detail.

2. Euler’s Elastica Energy Minimization for Segmentation, Inpainting
and Illusory Shape Reconstruction

In this section, we shall explain the details in using the new algorithm to minimize
the Euler’s elastica energy for different imaging applications. We start with image
segmentation, followed by image inpainting and illusory shape reconstruction.

2.1. Image Segmentation. For image segmentation, the authors in [9] suggested
to substitute the regularisation term in the conventional Chan-Vese model with the
Euler’s elastica regularizer (2) and propose to solve

(5) min
u∈[0,1]

∫
Ω

(
α+ β

∣∣∣∣∇ · ∇u|∇u|
∣∣∣∣2
)
|∇u| dx+

∫
Ω

Q(c1, c2)udx.

Note that D(u) =
∫

Ω
Q(c1, c2)udx in this case, where c1 and c2 are two constants

which are known already and Q(c1, c2) = (c1 − f)2 − (c2 − f)2 for a given input
image f . This fidelity term is the same as in the original Chan-Vese model [22]. In
[9], (5) is optimized by the ALM introduced in the last section.

Alternatively, one can also use variational level set method to solve the same
segmentation problem [23, 24]. The corresponding minimization model is:

(6) min
φ

∫
Ω

(
α+ β

∣∣∣∣∇ · ∇φ|∇φ|
∣∣∣∣2
)
|∇H (φ)| dx+

∫
Ω

Q(c1, c2)H (φ) dx.

In (6), the function φ is a continuous signed distance function (SDF) and H(φ)
is the Heavide function of φ. In contrast to (5), the minimization problem (6)
uses the zero level set of the continuous SDF to represent a contour. Such curve
representation allows to calculate the geometric features of a curve such as normal
and curvature more naturally than the relaxed binary representation used in (5).
However, (6) may be more complicated than (5) when discretized for a numerical
solution.

In the following, we combine both (5) and (6) and propose to solve the following
minimization problem for image segmentation:

(7) min
u,φ

∫
Ω

g (φ) |∇u| dx+

∫
Ω

Q (c1, c2)udx,

under constraints:

u = H(φ),
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with

(8) g (φ) = α+ β

∣∣∣∣∇ · ∇φ|∇φ|
∣∣∣∣2.

In the above, we still need the function φ to be a signed distance function. Note that
we use the binary function u to express the length term and the SDF function φ to
calculate the curvature values. The minimization problem (7) has two unknowns
and we shall use an alternating minimization like procedure to solve it. First we
fix φk and optimize the following functional to get uk+1

(9) uk+1 = argmin
u∈{0,1}

∫
Ω

g
(
φk
)
|∇u| dx+

∫
Ω

Q (c1, c2)udx.

Then uk+1 is fixed and we solve φk+1 from

uk+1 = H(φk+1).

Given the binary function uk+1, there is a unique SDF φk+1 satisfying the above
relation and we denote this relationship by:

(10) φk+1 = SDF
(
uk+1

)
.

Note that problem (9) is non-convex due to the binary constraint. It is known from
[25] that it is equivalent to the following convex problem:

(11) uk+1 = argmin
u∈[0,1]

∫
Ω

g
(
φk
)
|∇u| dx+

∫
Ω

Q (c1, c2)udx

in the sense that a threshold of a solution of (11) by a value µ ∈ (0, 1) gives a
global minimizer for (9). Let us take µ = 0.5 as the threshold value in this paper.
Then φk+1 in (10) can be easily calculated by a re-distance process which can be
efficiently solved by the fast marching method [26, 27] or the fast sweeping method
[28, 29, 30]. The latter is adopted in this paper.

Unfortunately, as the contour evolution speed using the binary function u is too
fast and the numerical computation can be unstable for the proposed model (7). To
circumvent this drawback, we add another term to (9) and then we have to solve:

(12) uk+1 = argmin
u∈[0,1]

∫
Ω

g
(
φk
)
|∇u| dx+

∫
Ω

Q (c1, c2)udx+
θ

2

∫
Ω

(u− uk)
2
dx.

The positive parameter θ controls the similarity between uk+1 and uk. Larger θ
results in smaller changes between uk+1 and uk and thus contour evolutes slowly
and steadily.

Note that (12) is a total variation minimization problem with a simple fidelity
term which is essentially similar to the ROF model. Nowadays, there are many
fast algorithms available to solve this problem. It is clear to see that our algorithm
is very easy to implement and it just needs a ROF model solver and a re-distance
solver. In addition, we have very few parameters to tune compared to other fast
numerical algorithms for minimizing the elastica energy.

The minimizer for the proposed model (7) shall be found by iterating (12) and
(10) until the system converges. For clarity, we present the overall algorithm for
the Euler’s elastica energy segmentation as follows.



FAST ALGORITHM FOR MINIMIZATION OF THE ELASTICA ENERGY 813

Algorithm 1 Euler’s Elastica energy for Image Segmentation

1: Input: f , u0, a, b, θ
2: while some stopping criteria is not satisfied do . Criteria can be relative

error of φ
3: Update uk+1 via (12) . Use fast total variation solvers
4: Update φk+1 via Eq. (10) . Use fast sweep method
5: Update g(φk+1) via Eq. (8)
6: end while
7: return optimal uk+1 . Extract the interface from uk+1

2.2. Image Inpainting. In this section, we shall try to use similar ideas as were
used in the last section for image inpainting, especially for inpainting and smoothing
of binary images. More precisely, let f be a given binary image defined on an
image domain Ω with image information in the region B missing. The problem is
to mathematically reconstruct the original image u in the damaged domain B ⊂ Ω,
using the following model involving Euler’s elastica energy:

(13) min
u∈{0,1},φ

∫
Ω

g (φ) |∇u| dx+

∫
Ω

λB(u− f)
2
dx,

under constraints:

u = H(φ),

with g(φ) being as defined in (8) and λB be given in the form:

λB (x) =

{
1 x ∈ Ω\B
0 x ∈ B .

In (13), the fidelity term D(u) =
∫

Ω
λB(u− f)

2
dx is used, which forces the mini-

mizer u to stay close to the given binary image f outside of the inpainting domain
Ω\B (how close depends on the values of a and b in the regularizer). While inside
the broken region B, the regularizer plays the main role of filling in the missing
content. Using such Euler’s elastica regularizer, the inpainting model is capable of
interpolating large gaps of objects and making smooth connection along the level
curves of images in inpainting domains, so the inpainting results can be satisfactory
for the human visual system. Note that the variational approach (13) acts on the
whole image domain, instead of posing the problem only on the broken region B.
This makes the approach independent of the number and shape of the holes/gaps in
the image. Even more, it eliminates the difficulties related to boundary conditions
on the inpainting region B.

The problem (13) with its constraints can be optimized in a manner analogous
to (7). First, φ is fixed to minimize uk+1, which is given as

(14) uk+1 = argmin
u∈{0,1}

∫
Ω

g
(
φk
)
|∇u| dx+

∫
Ω

λB(u− f)
2
dx.

To guarantee the stability of numerical computation, an additional term is added
to the inpainting model (14)

(15) uk+1 = argmin
u∈[0,1]

∫
Ω

g
(
φk
)
|∇u| dx+

∫
Ω

λB(u− f)
2
dx+

θ

2

∫
Ω

(u− uk)
2
dx.

Note that in (15) we have also relaxed the binary constraint. In addition, (15) is
a ROF inpainting model which can be efficiently minimized by the well-established
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solvers. After uk+1 is obtained, φ′s update follows the following equation

(16) φk+1 = SDF
(
uk+1

)
,

which can be iteratively solved by using the fast sweep method to the 0.5 level set of
uk+1 calculated from (15). After φk+1 is updated from (16), we go back to update
uk+1 from (15) again. This procedure is repeated until the convergence is achieved.
Lastly, we present the overall algorithm for the Euler’s elastica inpainting energy
as follows.

Algorithm 2 Euler’s Elastica for Image Inpainting

1: Input: f , λB, u
0, a, b, θ

2: while some stopping criteria is not satisfied do . Criteria can be relative
error of φ

3: Update uk+1 via (15) . Use fast total variation solvers
4: Update φk+1 via Eq. (16) . Use fast sweep method
5: Update g(φk+1) via Eq. (8)
6: end while
7: return optimal uk+1 . Extract the interface from uk+1

2.3. Illusory Shapes via Corner Fusion. Illusory shapes (or contours) are vi-
sual illusions that evoke the perception of a shape without a luminance or color
change over that shape. A famous illusory example (Kanizsa triangle) has been
shown in the left image of Figure 1, where our visual system allows us to see an
illusory triangle, as shown in the middle (coloured in gray for visibility). The per-
ceptibility of illusory shapes reveals the powerful capability of the human vision
system. As vision system is connected to brain, studies on illusory shapes often
play an important role in contemporary brain and cognitive sciences.

Figure 1. Kanizsa’s Triangle (left). These spatially separate
shapes give the impression of a white triangle, defined by a sharp
illusory contour. The middle image shows such illusory triangle
which occludes the three black circles in the right.

Many researchers have developed quantitative models and algorithms for au-
tomatic or semi-automatic detection of illusory shapes. Among them variational
PDE approaches [31, 32, 33, 8] are commonly employed. These methods are either
image- or edge-based models, which normally involve computational tools such as
active contours [32], curvatures, domain acttraction, and level set implementation
[33, 8]. More specifically, an semi-automatic variational method was proposed by
the authors in [34], where they first define corner bases using manually selected
corner points and then reconstruct illusory shapes from images using the elastica
phase field theory. In contrast to the phase field, we intent to extract illusory
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Figure 2. Illustration on how to construct a convex corer using
pre- and post-normal vectors. The right image is a zoom-in version
of the red circle in the left. The red dot in the images represents
the corner c.

shapes by using the Euler’s elastica regularizer introduced above, together with the
the fidelity term defined by the corner base technique [34].

Here, we explain some details on how to define the corner bases as given in
[34]. First, we use Q to denote the region for the given shapes and see the black
regions in Figure 2. Let c be a given corner of Q (c ∈ ∠Q) with pre- and post-
normal vectors n− and n+, respectively. For any r > 0, the r-corner base B(c) at
c is defined: First the base B(c) = (R(c), fc) is the r-disk under the given norm
R(c) = x : ‖x− c‖ ≤ r; Second the corner signature fc is defined on B(c) via

(17) fc(x) =

{
1 n− · (x− c) ≥ 0 and n+ · (x− c) ≥ 0
0 otherwise

.

Based on the concept of the corner base defined above, we propose to minimize the
following objective energy minimization model for illusory shape reconstruction.

(18) min
u∈{0,1},φ

∫
Ω\Q

g (φ) |∇u| dx+
∑
c∈∠Q

∫
R(c)\Q

(u− fc)2
dx.

Note that in (18) the new fidelity term D(u) involves using multiple corners of Q.
The regularizer and fidelity term in (18) are defined over different computational
domains and it is therefore difficult to optimize it. By making using of the indicator
function λc, these two energy terms can act on the same image domain Ω\Q (see
Figure 2 left). An equivalent form of (18) is thus given by

(19) min
u∈{0,1},φ

∫
Ω\Q

g (φ) |∇u| dx+
∑
c∈∠Q

∫
Ω\Q

λc(u− fc)2
dx,

where λc = fc. To guarantee the stability of numerical implementation of (19), an
additional term is added to (19) in a manner analogous to (12) and (15).

(20) min
u∈[0,1],φ

∫
Ω\Q

g (φ) |∇u| dx+
∑
c∈∠Q

∫
Ω\Q

λc(u− fc)2
dx+

θ

2

∫
Ω\Q

(u− uk)2dx.

Note that in (20) the binary constraint has been relaxed to the interval [0, 1] to
guarantee a global solution to (20). By introducing another indicator function
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to (20), the minimization of this problem can be easily transformed into a prob-
lem on the whole image domain Ω instead of Ω\Q and it can be solved by Split-
Bregman/Augmeted Lagrangian methods. After uk+1 is obtained, φ′s update fol-
lows the following equation

(21) φk+1 = SDF
(
uk+1

)
,

which can be iteratively solved by using the fast sweep method to the 0.5 level set of
uk+1 calculated from minimizing (20). The updates of φk+1 and uk+1 are repeated
until the convergence is achieved. Afterwards, the embedded illusory shape can
be reconstructed by assembling the inpainted regions accordingly (see Figure 7
for details). Lastly, we present the following overall algorithm for illusory shape
restoration via corner fusion.

Algorithm 3 Euler’s Elastica for Illusory Shape Reconstruction

1: Input: Corners c, u0, a, b, θ
2: Construct corner base fc and indicator function λc via (17).
3: while some stopping criteria is not satisfied do . Criteria can be relative

error of φ
4: Update uk+1 via (20) . Use fast total variation solvers
5: Update φk+1 via Eq. (21) . Use fast sweep method
6: Update g(φk+1) via Eq. (8)
7: end while
8: return optimal uk+1 . Extract the interface from uk+1

3. Experimental Results

Figure 3. Segmentation results using Algorithm 1. The 2nd
and 4th images are the segmented contours of the 1st and 3rd
images, respectively.

In this section, numerous experiments are conducted to show the effectiveness
of the proposed algorithm for image segmentation (Figure 3-5), image inpainting
(Figure 6) and illusory shape reconstruction (Figure 7). We note that the split
Bregman method [35, 36, 37, 38], which has been proven to be equivalent to the
ALM in [13], is adpoted to minimize (12), (15) and (20) in this work. There are only
four parameters in the algorithm, that is, a, b, c and another penalty parameter
resulted from the variable split technique. The algorithm therefore requires less
efforts from users in terms of parameter tuning.

Figure 3 shows the final segmentation results using the proposed Euler’s elastica
algorithm. As evident, parts of the circle and the letters ”UCLA” are erased. Even
though one can easily recognize the shape and the letters, existing segmentation
models, such as Chan-Vese’s model, might just capture the existing boundaries
instead of restoring the missing ones. In image inpainting problems, as shown
in Figure 6, missing information of images can be also recovered but the broken
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regions must be specified first. In contrast, our segmentation model is capable to
interpolate the missing boundaries automatically without specifying the regions.

Figure 4. Intermediate segmentation results. 1st row: evolving
contours overlapping on an incomplete circle. 2nd row: evolving
contours alone (0.5 level set of u in (12) at different iteration). 3rd
row: SDFs calculated from the corresponding contours in the 2nd
row. The color bar at the most right shows the value range of the
SDFs in the last row.

Figure 5. Same as Figure 4, but with the incomplete letters ”ULCA”.

Figure 4 and 5 show the intermediate contour evolution results and the corre-
sponding signed distance maps. We start the iteration for Algorithm 1 by using
the boundaries of the incomplete object (i.e. circle or UCLA) as the initialization
for u0. As iteration proceeds, one can observe that the evolving contour is grad-
ually merged together and finally forms an intact shape regardless of the existing
gaps within the object. The distance function φ in (10), as shown in the last row
of Figure 4 and 5, remains a smooth SDF during all the iterations. Such SDF
preservation is crucial for the success of the algorithm, because the use of the SDF
allows the accurate computation of the curvature of a curve.

Figure 6 shows the inpainting results for some synthetic images and a Chinese
handwriting. We note that Algorithm 2 is now only applicable to binary images.



818 X. TAI AND J. DUAN

Figure 6. Inpainting results using Algorithm 2. The 1st and
3rd rows show the damaged images, while the 2nd and 4th rows
show the restored images.

The red regions in the first and third rows are the inpainting domains, while the
second and fourth rows are inpainting results. As we expect, the Euler’s elastica
algorithm shows a property of long connectivity and the curvature term makes
smooth connection along the level curves of images on inpainting domains. For the
Chinese handwritting, we intentionally use complicated shapes for the inpainting
domains. Even though in this complex case, the algorithm performs very well.
The algorithm is therefore very promising for inpainting the Chinese or Western
damaged calligraphy.

Figure 7 shows an illusory triangle reconstruction example using Algorithm 3.
Based on the corner base technique defined in (17) and the elastica fusion model in
(20), we show the output of the model for the Kanizsas Triangle in Figure 1. (a)
shows the six corner bases for the Kanizsas Triangle, and (b) shows the optimal
elastica field u > 0.5 by applying (20) to fuse the six corner bases. Note that in
(b) the region plotted in black denotes the optimal elastica field u < 0.5, where the
connected components are labelled as R0, R1, R2 and R4. and the gray P region
represents u > 0.5. With such partitions, the meaningful illusory triangle (e) as
well as occluded background objects (f) can be reconstructed.
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(f)(e)(d)

(c)(b)

Q

Q Q

R1

R3R2
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R0

Figure 7. Illusory triangle reconstruction using Algorithm 3.
(a): Kanizsa’s triangle overlapped with the corner bases. The
pixel values in blue and gray regions are 0 and 1, respectively. (b):
Elastica fusion with u > 0.5 in gray. (c): P region in (b). (d): R1,
R2 and R3 regions in (b). (e): R1, R2 and R3 and P regions in
(b). (f): R1, R2 and R3 and Q regions in (b).

4. Conclusion

This work described a very simple algorithm for the minimization of the Euler’s
elastica energy related variational models. It is well-known that it is difficult to min-
imize these energies because they involve non-convex, nonlinear, non-differentiate
and higher order terms. The new algorithm only needs to solve a total variation
type minimization problem and a re-distance problem, which results in fewer built-
in parameters. The experimental results indicate that the method yields very good
results for image segmentation, image inpainting and illsuroy shape restoration.
Due to the simplicity and effectiveness of the proposed algorithm, we believe that
it will have promising applications in a number of real industrial problems related
to image processing and computer vision.
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