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A PRIORI ERROR ANALYSIS OF THE LOCAL DISCONTINUOUS

GALERKIN METHOD FOR THE VISCOUS BURGERS-POISSON

SYSTEM

NATTAPOL PLOYMAKLAM, PRATIK M. KUMBHAR, AND AMIYA K. PANI

Abstract. In this paper, we propose and analyze the local discontinuous Galerkin method for the
viscous Burgers-Poisson system. The proposed method preserves two invariants and hence, yields
solutions even for long time. A priori error estimates, which are of order O(hk+1), when poly-
nomials of degree k ≥ 1 are used for approximating solutions are established. Finally, numerical
experiments are conducted to confirm our theoretical results.
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1. Introduction

We consider the following coupled system of viscous Burgers and Poisson equa-
tions: find a pair of solutions (u, φ) such that

(1) ut + (
u2

2
− φ)x − ǫuxx = 0, x ∈ [0, L] = I, t > 0,

(2) φxx − φ = u,

with ǫ > 0 and periodic boundary conditions:

u(t, L) = u(t, 0), ux(t, L) = ux(t, 0) and

φ(t, L) = φ(t, 0), φx(t, L) = φx(t, 0), for t > 0,(3)

and initial condition:

(4) u(0, x) = u0(x), x ∈ I.

This problem is one dimensional version of the Navier-Stokes-Poisson system, which
often models the transport of charged particles under the influence of the self-
consistent electro-static potential as a force arising in the study of collision of dusty
plasma, see [7], [9]. This system admits conservation of momentum and L2 a priori
bound. Global existence of weak solutions to the Navier-Stokes-Poisson system
with large initial data has been proved by Donatelli [6] using Galerkin method and
P.L.Lions theory, [13]. Without much difficulty, this theory can be extended to
include the global existence of a unique solution for the Burgers-Poisson system
(1)-(4).

In recent years, Discontinuous Galerkin (DG) methods are becoming popular
due to their flexibility in local mesh adaptivity, element wise conservative property
and in taking care of nonuniform degrees of approximation of the solution whose
smoothness may exhibit a wide variation over the computational domain. These
methods are using completely discontinuous piecewise-polynomials for the numer-
ical solution and the test functions. These schemes are first proposed for solving
first order PDEs such as nonlinear conservation laws, [14], [1], [2], [3], [4]. The
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local discontinuous Galerkin (LDG) method is an extension of DG methods for
solving higher order PDEs. It was first designed for convection-diffusion equations
in [5], and has been extended to other higher order wave equations, including the
KdV equation, [19], [16], [11], [17], see, also the recent review paper [18] on the
LDG methods for higher order PDEs. The idea of the LDG method is to rewrite
higher order equations into a first order system, and then apply DG schemes on
the system with appropriate choices of numerical fluxes. Related to our problem,
a LDG method was proposed in [12] for the inviscous Burgers-Poisson equation.
This scheme preserves the mass and energy of the smooth solution and was proven
to be optimal convergence for k even.

In this article, LDG method is applied to the viscous Burgers-Poisson system
(1)-(4). Then, it is observed that the semidiscrete system preserves two invariants
and as a result, we prove a priori bounds in L∞(L2) for the discrete solutions. It is,
further, shown that rate of convergence is of order k+1 for approximate solution uh,
when polynomial of order k is used to approximate u. The generalized numerical
fluxes, which depend on a parameter θ ∈ [0, 1/2] are used in the proposed scheme.
For θ = 1/2, it is noted that the order of convergence is optimal as in [12] for even
degree polynomial degrees. When θ ∈ [0, 1/2), optimal error estimates are derived,
but with constants in the error analysis explicitely depend on 1/

√
ǫ, where ǫ is a

viscosity parameter.
We use standard notation for norms and seminorms in Sobolev spaces. Say for

example, for any integer m ≥ 0, we denote by Hm(I), the Hilbert Sobolev space
with norm ‖ · ‖m and seminorm | · |m. We also use the spaces Lp(0, T ;Hm(I)), 1 ≤
p ≤ ∞ as the spaces of functions v such that

∫ T

0 ‖v(s)‖pHm(I) ds < ∞. Denote by

C a positive generic constant, which does not depend on the mesh parameters, but
may vary from context to context in the text.

2. Conservation Properties and A Priori Bounds

This section deals with some conservation properties and a priori bounds for the
viscous Burgers-Poisson system (1)-(4).

Theorem 2.1. Let (u, φ) be a pair of solutions of the coupled system (1)-(4). Then
the following conservation property holds:

(5)

∫ L

0

u(x, t)dx =

∫ L

0

u0(x) dx.

Further, u satisfies

(6)

∫ L

0

|u(x, t)|2dx ≤
∫ L

0

|u0(x)|2 dx.

Proof. Integrating equation (1) with respect to space variable x yields
∫ L

0

ut dx+

∫ L

0

(
u2

2
)x dx−

∫ L

0

φx dx− ǫ

∫ L

0

uxx dx = 0,

which can be rewritten using periodic boundary conditions as

d

dt

∫ L

0

u(t, x) dx = 0.

Integrating above equation with respect to time t yields the equation of conservation
of momentum, that is,

(7)

∫ L

0

u(t, x) dx =

∫ L

0

u(0, x) dx =

∫ L

0

u0(x) dx.
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For (6), multiply equation (2) with term φx and then integrate it with respect to x

from 0 to L. Now use of periodic boundary condition yields
∫ L

0 uφx = 0. We then
multiply (1) with the term u and integrate it with respect to x to obtain

∫ L

0

utu dx+

∫ L

0

(
u2

2
)xu dx−

∫ L

0

φxu dx− ǫ

∫ L

0

uxxu dx = 0,

which can again be rewritten using integration by parts as

1

2

d

dt

∫ L

0

u2(t, x) dx = −ǫ
∫ L

0

(ux)
2 dx.

On integrating with respect to time leads to

(8)

∫ L

0

u2(t, x) dx+ 2ǫ

∫ t

0

∫ L

0

(ux)
2 dx dt =

∫ L

0

u20(x) dx.

Since the second term on the left hand side of (8) is non-negative, hence, it com-
pletes the estimate (6). �

Remark 2.1. In stead of periodic boundary conditions, if we use homogeneous
Dirichlet boundary conditions, then the conservation of momentum property (5)
is not valid, where as the property (6) holds. In case of homogeneous Neumann
boundary condition, the conservation property (5) remains valid.

3. LDG Method

In this section, a local discontinuous Galekin method is proposed for approx-
imating solutions of the Burgers-Poisson equation (1)-(2) subject to initial data
u0(x), posed on I = [0, L] with periodic boundary conditions in spatial direction.
The resulting semidiscrete scheme also admits conservation of momentum.

To describe the method, the interval I is partitioned into N sub-interval with
the partition 0 = x1/2, x3/2, ...., xN+1/2 = L. Let Ij = [xj−1/2, xj+1/2] with mesh
size hj = xj+1/2 − xj−1/2 for j = 1, 2, ...N and the center of cell be denoted by

xj =
1
2 (xj−1/2 + xj+1/2).

Let V k
h be defined as the space of piece-wise polynomials of degree up to k in

each cell Ij , that is,

V k
h = {vh : vh|Ij ∈ P k(Ij), j = 1, 2, ....N}.

Since functions belonging to V k
h are allowed to have discontinuities across the cell

interfaces, then for vh ∈ V k
h , vh may have two different values on cell interface and

denote (vh)
−
j+1/2 and (vh)

+
j+1/2, respectively, by the limit values of vh at xj+1/2

from the left and right. Now, set the jump and average across the cell interface as

[vh] := v+h − v−h and {vh} :=
v+

h
+v−

h

2 , respectively. For piece-wise function v with
v|Ij ∈ Hm(Ij), set the discrete Hm-norm as

‖v‖m :=
( N∑

j=1

‖v‖2Hm(Ij)

)1/2

and the seminorm as |v|m :=
( N∑

j=1

‖d
mv

dxm
‖2L2(Ij)

)1/2

.

For elements in V k
h , we have the following inverse property and trace inequality:

(i) Inverse Property. For vh ∈ V k
h ,

(9) ‖vh‖L∞ ≤ C h−1/2 ‖vh‖ and ‖vhx‖ ≤ C h−1 ‖vh‖.
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(ii) Trace Inequality. For any vh ∈ V k
h ,

(10) ‖vh‖Γh
≤ C h−1/2 ‖vh‖,

where

‖vh‖Γh
:=

( N∑

j=1

(
|(vh)−j+1/2|

2 + |(vh)+j+1/2|
2
) )1/2

.

For LDG method, first rewrite (1)-(2) by introducing two auxiliary variables
w =

√
ǫux and p = φx as :

(11) ut + (
u2

2
)x − p−

√
ǫwx = 0,

(12) w −
√
ǫux = 0,

(13) p− φx = 0,

(14) px − φ = u.

Now, the LDG method is to seek (uh, ph, φh, wh) ∈
(
V k
h

)4

such that for (v, z, ψ, q) ∈
(
V k
h

)4

(15)
∫

Ij

(uh)tv dx−
∫

Ij

(
u2h
2
)vx dx+

û2hv

2
|∂Ij−

∫

Ij

phv dx+
√
ǫ

∫

Ij

whvx dx−
√
ǫŵhv|∂Ij = 0,

(16)

∫

Ij

whz dx +

∫

Ij

√
ǫuhzx dx−

√
ǫûhz|∂Ij = 0,

(17)

∫

Ij

phψ dx+

∫

Ij

φhψx dx− φ̂hψ|∂Ij = 0,

(18) −
∫

Ij

phqx dx−
∫

Ij

(φh + uh)q dx+ p̂hq|∂Ij = 0,

(19)

∫

Ij

(uh − u)|t=0v dx = 0.

Here, the choice of numerical fluxes û2h, φ̂h, p̂h, ûh, ŵh are given, respectively, by

(20) û2h =
1

3
((u+h )

2 + u+h u
−
h + (u−h )

2),

(21) φ̂h = θφ+h + (1− θ)φ−h ,

(22) p̂h = (1− θ)p+h + θp−h ,

(23) ûh = θu+h + (1− θ)u−h ,

(24) ŵh = (1− θ)w+
h + θw−

h ,

where θ ∈ [0, 1/2]. Note that the numerical fluxes at the endpoints of I are de-
fined using U−

1/2 := U−
N+1/2 and U+

N+1/2 := U+
1/2, where U represents each one of

uh, ph, φh or wh.
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With notation:

(25) aj(ψh, χ) :=

∫

Ij

ψhχx dx− ψ̂hχ|∂Ij , ψh, χ ∈ P k(Ij),

take summation over j from j = 1 to j = N to arrive for (v, ψ, q, z) ∈ (V k
h )4 at

(26) ((uh)t, v)−
N∑

j=1

∫

Ij

(
u2h
2
)vx dx+

N∑

j=1

û2hv

2
|∂Ij − (ph, v) +

√
ǫ

N∑

j=1

aj(wh, v) = 0,

(27) (wh, z) +
√
ǫ

N∑

j=1

aj(uh, z) = 0,

(28) (ph, ψ) +

N∑

j=1

aj(φh, ψ) = 0,

(29) −
N∑

j=1

aj(ph, q)− ((φh + uh), q) = 0,

(30) ((uh − u)|t=0, v) = 0.

Below, we discuss some properties of the bilinear form aj(·, ·).
• For χ ∈ P k(Ij),

(31) aj(χ, χ) =

∫

Ij

χ χx dx− χ̂ χ|∂Ij =
1

2
χ2|∂Ij − χ̂ χ|∂Ij ,

and hence, for χ ∈ V k
h , it follows that

a(χ, χ) :=

N∑

j=1

aj(χ, χ) =

N∑

j=1

(1
2
χ2|∂Ij − χ̂ χ|∂Ij

)

=

N−1∑

j=0

(
χ̂ [χ]− 1

2
[χ2]

)
j+1/2

= −(
1

2
− θ)

N−1∑

j=0

[χ]2j+1/2.(32)

• For zh, χ ∈ P k(Ij), there holds

aj(zh, χ) = −
∫

Ij

zhx χ dx+ zh χ|∂Ij − ẑh χ|∂Ij

= −aj(χ, zh) + zh χ |∂Ij − ẑh χ |∂Ij − χ̂ zh |∂Ij .(33)

3.1. Discrete conservation properties. This subsection focuses on the proper-
ties of the numerical solution uh, namely; conservation of momentum and L2 bound
of the scheme.

Theorem 3.1. For the LDG scheme (26)-(30) with numerical fluxes (20)-(24) and
θ ∈ [0, 1/2], the following relations hold for all t > 0

(34)

∫ L

0

uh(t, x)dx =

∫ L

0

uh(0, x)dx,
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(35)

‖uh(t)‖2 + 2

∫ t

0

‖wh(τ)‖2 dτ + (1− 2θ)

N∑

j=1

∫ t

0

([φh]
2 + [ph]

2)j+1/2 dτ = ‖uh(0)‖2.

Proof. In order to prove the conservation of momentum equation, that is, (34),
choose v = 1 in (26) and ψ = 1 in (28). Then, add the resulting equations to arrive
at

d

dt

∫

I

uhdx = 0,

and, an integration with respect to time t yields the conservation of momentum,
that is, (5).

Now to prove (35), choose v = uh, ψ = −φh and q = −ph in equations (26),(28)
and (29), respectively. Then, add the resulting equations to obtain

1

2

d

dt
‖uh(t)‖2 +

√
ǫ

N∑

j=1

aj(wh, uh)(36)

=
N∑

j=1

u3h
6
|∂Ij −

N∑

j=1

û2huh
2

|∂Ij +
N∑

j=1

aj(φh, φh)−
N∑

j=1

aj(ph, ph).

Using the property (32) of aj(·, ·),

1

2

d

dt
‖uh(t)‖2 +

√
ǫ

N∑

j=1

aj(wh, uh) =

N−1∑

j=0

(
û2h
2
[uh]− [

u3h
6
])j+1/2

+
N−1∑

j=0

(φ̂h[φh]− [
φ2h
2
])j+1/2 −

N−1∑

j=0

(p̂h[ph]− [
p2h
2
])j+1/2.

(37)

In order to estimate the second term on the left hand side of (37), we substitute
z = wh in (16) to obtain

(38)

∫

Ij

w2
hdx+

√
ǫ aj(uh, wh) = 0.

An application of property (33) for the second term on the left hand side of (38)
provides∫

Ij

w2
h dx−

√
ǫ aj(wh, uh)−

√
ǫûhwh|∂Ij −

√
ǫŵh(uh)|∂Ij +

√
ǫ uhwh|∂Ij = 0.

On summation over j establishes

√
ǫ

N∑

j=1

aj(wh, uh)

=‖wh(t)‖2 −
√
ǫ

N∑

j=1

ûhwh|∂Ij −
√
ǫ

N∑

j=1

ŵhuh|∂Ij +
√
ǫ

N∑

j=1

uhwh|∂Ij .(39)

Using the numerical fluxes (23)-(24), we obtain

√
ǫ

N∑

j=1

aj(wh, uh) =‖wh(t)‖2 +
√
ǫ

N−1∑

j=0

(
(ŵh[uh] + ûh[wh])j+1/2 − [uhwh]j+1/2

)

=‖wh(t)‖2.(40)
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To estimate the terms on right hand side of equation (37), a use of the numerical
flux (20) yields

û2h
2
[uh]− [

u3h
6
] =

1

6
(((u+h )

2 + u+h u
−
h + (u−h )

2)(u+h − u−h )− ((u+h )
3 − (u−h )

3))

= 0.

(41)

A substitution of estimates (40) and (41) in (37) shows

1

2

d

dt
‖uh(t)‖2 + ‖w2

h(t)‖2

=

N−1∑

j=0

(φ̂h[φh]− [
φ2h
2
])j+1/2 −

N−1∑

j=0

(p̂h[ph]− [
p2h
2
])j+1/2

=

N−1∑

j=0

(φ̂h − {φh})[φh]j+1/2 −
N−1∑

j=0

(p̂h − {ph})[ph]j+1/2

=

N−1∑

j=0

(θ − 1

2
)(((φ+h )

2 + (φ−h )
2 − 2φ−h φ

+
h ) + ((p+h )

2 + (p−h )
2 − 2p−h p

+
h ))j+1/2.

Hence,

(42)
1

2

d

dt
‖uh(t)‖2 + ‖wh(t)‖2 +

N−1∑

j=0

(
1

2
− θ)([φh]

2 + [ph]
2)j+1/2 = 0.

On integrating with respect to t, it now follows that

‖uh(t)‖2 + 2

∫ t

0

‖wh‖2 dτ +
N−1∑

j=0

(1− 2θ)

∫ t

0

([φh]
2 + [ph]

2)j+1/2dτ = ‖uh(0)‖2.

This completes the rest of the proof. �

As a consequence, the following a priori bound is derived for the discrete solution
uh and wh for 0 ≤ θ < 1/2

‖uh(t)‖2 + 2

∫ t

0

‖wh(τ)‖2dτ ≤ ‖uh(0)‖2.(43)

3.2. Existence, Uniqueness of discrete solutions. In this subsection, we dis-
cuss the existence and uniqueness results for the discrete viscous Burgers-Poisson
system (17)-(18). Note that the addition of diffusion term does not change the weak
formulation of p − ux = 0 and φx − φ = u, which are used to prove the following
lemmas (see, [12] ). Since proof of the following lemma follows similarly to the
proof of Lemmas 3.1, we just state it without proof.

Lemma 3.2. For the discrete scheme (26)-(30) with the numerical fluxes (20)-(24),
the following estimate holds for any θ ∈ [0, 1]

(44) ‖ph(t)‖ + ‖φh(t)‖ ≤ ‖uh(t)‖, t > 0.

Below, we sketch of the proof of wellposedness of the discrete problem (26)-(30).

Lemma 3.3. There exists a unique solution {uh, wh, φh, ph} ∈ (V k
h )4 of the discrete

problem (26)-(30) with numerical fluxes (20)-(24) for t ∈ (0, T ].
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Since V k
h is finite dimensional, the discrete problem (26)-(30) yields a system of

non linear ODEs coupled with linear algebraic equations which is known as a DAE
system. Moreover, it is of index one as it is easy to check that each of {wh, φh, ph}
can be written explicitely as a function of uh. On substitution in (26), we, therefore,
obtain a system of nonlinear ODEs. An application of Picard’s theorem ensures the
existence of a local solution uh, say, in (0, th). Since uh is bounded in L∞(L2)-norm,
using continuation argument, one proves existence of a unique solution uh for all
t > 0. Again use uh to establish the existence of unique solution {wh, φh, ph} for
t > 0.

Now, we discuss some a priori error estimates of the viscous Burgers-Poisson
system.

4. A Priori Error Analysis

In this section, we deal with a priori error estimates for the solutions of the
viscous Burgers-Poisson system using LDG method.

For our subsequent use, we recall the definition of the global projection and some
of its properties from [12].

4.1. Global projection. Let ω|Ij ∈ Hs(Ij) with s ≥ k+1. Define the projection
Qθ as :

(45)

∫

Ij

(Qθω)vdx =

∫

Ij

ωvdx, ∀v ∈ P k−1, j = 1, 2, ...., N,

(46) Q̂θωj+1/2 = ω̂j+1/2, j = 1, 2, ...., N,

where

v̂ = θv+ + (1− θ)v−.

Note that for j = N , we use the periodic extension to define (Qθω)
+
N+1/2. This

projection Qθ satisfying (45)-(46) is uniquely defined for either θ 6= 1
2 or θ = 1

2 with
k even and N odd. For a proof, we refer to Lemma 4.1 of [12]. We now observe
that a use of (45)-(46) yields

(47) aj(Qθω − ω, v) = 0 ∀v ∈ P k−1(Ij).

Below, we recall some properties of the projection Qθω, whose proof can be
obtained from Lemmas 4.2-4.3 of [12].

Approximation properties of the global projection. The following approx-
imation properties hold for the global projection Qθ.

• For ω|Ij ∈ Hk+1(Ij) for j = 1, 2, ..., N , there exists a positive constant
C = C(k, θ), independent of ω such that for k ≥ 0

(48) ‖Qθω − ω‖ ≤ C hk+1 |ω|k+1,

where h is the maximum size of subintervals Ij and k is the degree of the
polynomial.

• For k ≥ 1, there holds

‖ω −Qθω‖Γh
:=

( N∑

j=1

(
|(ω −Qθω)(x

−
j+1/2)|2 + |(ω −Qθω)(x

+
j+1/2)|2

) )1/2

≤C hk+1/2 |ω|k+1.(49)



792 N. PLOYMAKLAM, P.M. KUMBHAR, AND A.K. PANI

4.2. Optimal error estimates. This subsection focuses on optimal a priori es-
timates for the LDG scheme (15)-(18).

With the help of the global projections (45)- (46), define

ηφ = Qθφ− φh, ηp = Q1−θp− ph, ηu = Qθu− uh, ηw = Q1−θw − wh,

ζφ = Qθφ− φ, ζp = Q1−θp− p, ζu = Qθu− u, ζw = Q1−θw − w

and

η̂φ = Q̂θφ− φ̂h, η̂p = Q̂1−θp− p̂h, η̂u = Q̂θu− ûh, η̂w = Q̂1−θw − ŵh

ζ̂φ = Q̂θφ− φ, ζ̂p = Q̂1−θp− p, ζ̂u = Q̂θu− u, ζ̂w = Q̂1−θw − w.

Then,

φ− φh := ηφ − ζφ, p− ph := ηp − ζp,

u− uh := ηu − ζu, w − wh := ηw − ζw,
(50)

and

φ− φ̂h = η̂φ − ζ̂φ, p− p̂h = η̂p − ζ̂p,

u− ûh = η̂u − ζ̂u, w − ŵh = η̂w − ζ̂w.
(51)

Since the scheme with fluxes (20)-(24) is consistent, (26)-(29) also hold for solutions
(u, p, w, φ). Hence, taking the difference, we obtain for (v, z, ψ, q) ∈ (V k

h )4 and using
the notations (50)-(51) and (47), we arrive at

((ηu)t, v) +
√
ǫ

N∑

j=1

aj(ηw, v) =

∫

I

(ζu)tv dx +

N∑

j=1

∫

Ij

(
u2

2
− u2h

2
)vx dx

−
N∑

j=1

(u2
2

− û2h
2

)
v|∂Ij + (ηp, v)− (ζp, v),(52)

(53) (ηw, z) +
√
ǫ

N∑

j=1

aj(ηu, z) = (ζw , z),

(54) (ηp, ψ) +

N∑

j=1

aj(ηφ, ψ) = (ζp, ψ),

(55)

N∑

j=1

aj(ηp, q) + (ηφ, q) = (ζφ, q)− ((ηu − ζu), q).

In the following Lemma, we estimate ηp, ηφ. Although, the proof is similar in
spirit to the proof of the Lemma 4.1 of [12], but for completeness we present a brief
proof of it.

Lemma 4.1. Let (u,w, p, φ) and (uh, wh, ph, φh), respectively, be the solution of
the problem (11)-(14) and the discrete system (15)-(18) with the choice of fluxes
(20)-(24). Assume θ ∈ [0, 1] for which Qθ and Q1−θ are uniquely defined. Then,
the following estimate holds for all t > 0

‖ηp‖+ ‖ηφ‖ ≤ 2
(
‖Q1−θp− p‖+ ‖Qθφ− φ‖+ ‖ u− uh‖

)
.(56)
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Proof. On substitution of ψ = ηp and q = ηφ in (54) - (55), respectively, to arrive
at

(57) ‖ηp(t)‖2 +
N∑

j=1

aj(ηφ, ηp) = (ζp, ηp),

and

N∑

j=1

aj(ηp, ηφ) + ‖ηφ(t)‖2 = (ζφ, ηφ)− ((u − uh), ηφ).(58)

Using property (33), we arrive at

N∑

j=1

(
aj(ηφ, ηp) + aj(ηp, ηφ)

)
=

N∑

j=1

(
ηφηp|∂Ij − η̂p ηφ|∂Ij − η̂φ ηp|∂Ij

)

=

N−1∑

j=0

(
− [ηφηp] + η̂p [ηφ] + η̂φ [ηp]

)
j+1/2

= 0.(59)

Adding equations (57) - (58), apply property (59) to obtain

‖ηp‖2 + ‖ηφ‖2 = (ζp, ηp) + (ζφ, ηφ)− ((u− uh), ηφ).(60)

A use of the Cauchy-Schwarz inequality in (60) yields

‖ηφ‖2 + ‖ηp‖2 ≤ ‖ζp‖ ‖ηp‖+
(
‖ζφ‖+ ‖ u− uh‖

)
‖ηφ‖

≤
(
‖ζp‖+ ‖ζφ‖+ ‖ u− uh‖

) (
‖ηp‖+ ‖ηφ‖

)
.

Apply (a+ b)2 ≤ 2(a2 + b2) to complete the rest of the proof. �

Below in Lemma 4.2, we provide an estimate of ηu and ηw. Since its proof is
similar to the proof of the Theorem 4.5 in [12], we shall only indicate only the
changes.

Lemma 4.2. Under the assumption of Lemma 4.1, u ∈ L∞(0, T ;Hk+2), φ ∈
L2(0, T ;Hk+2) and for θ = 1/2 with k even and N odd, there exists a positive
constant C independent of h such that for all t ∈ (0, T ]

‖ηu‖L∞(0,T ;L2) + ‖ηw‖L2(0,T ;L2)

≤C hk+1
(
‖u‖L∞(0,T ;Hk+2) + ‖ut‖L2(0,T ;Hk+1) + ‖φ‖L2(0,T ;Hk+2)

)
.

Proof. Choose v = ηu in (52) and obtain



794 N. PLOYMAKLAM, P.M. KUMBHAR, AND A.K. PANI

1

2

d

dt
‖ηu(t)‖2 +

√
ǫ

N∑

j=1

aj(ηw, ηu)

=((ζu)t, ηu) +
1

2

N∑

j=1

∫

Ij

(u2 − u2h)(ηu)x dx+
1

2

N−1∑

j=0

(u2 − û2h)[ηu]j+1/2

+ (ηp, ηu)− (ζp, ηu)

=((ζu)t, ηu) +
1

2

N∑

j=1

∫

Ij

(u2 − u2h)(ηu)x dx+
1

2

N−1∑

j=0

(u2 − {uh}2)[ηu]j+1/2

+
1

2

N−1∑

j=0

({uh}2 − û2h)[ηu]j+1/2 + (ηp, ηu)− (ζp, ηu).

An application of the identity a2

2 − b2

2 = a(a− b)− (a−b)2

2 shows

1

2

d

dt
‖ηu(t)‖2 +

√
ǫ

N∑

j=1

aj(ηw, ηu)

=((ζu)t, ηu) +

N∑

j=1

∫

Ij

u(u− uh)(ηu)x dx − 1

2

N∑

j=1

∫

Ij

(u − uh)
2(ηu)xdx

+
N−1∑

j=0

u(u− {uh})[ηu]j+1/2 −
1

2

N−1∑

j=0

(u− {uh})2[ηu]j+1/2

+
1

2

N−1∑

j=0

({uh}2 − û2h)[ηu]j+1/2 + (ηp, ηu)− (ζp, ηu).

On substitution of u − {uh} = {u − uh} = {ηu} − {ζu}, in above equation, we
obtain

1

2

d

dt
‖ηu(t)‖2 +

√
ǫ

N∑

j=1

aj(ηw, ηu)

=((ζu)t, ηu) +
N∑

j=1

∫

Ij

u(ηu − ζu)(ηu)xdx− 1

2

N∑

j=1

∫

Ij

(ηu − ζu)
2(ηu)xdx

+

N−1∑

j=0

u({ηu} − {ζu})[ηu]j+1/2 −
1

2

N−1∑

j=0

({ηu} − {ζu})2[ηu]j+1/2

+
1

2

N−1∑

j=0

({uh}2 − û2h)[ηu]j+1/2 + (ηp, ηu)− (ζp, ηu),

(61)

For the second term on the left hand side of (61), we first substitute z = ηw in (53)
to establish

(62) ‖ηw(t)‖2 +
√
ǫ

N∑

j=1

aj(ηu, ηw) = (ζw, ηw).
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Adding (62) to (61), a use of the property (33) yields

1

2

d

dt
‖ηu(t)‖2 + ‖ηw(t)‖2 = ((ζu)t, ηu) + (ηp, ηu)− (ζp, ηu) + (ζw, ηw)

+ τ1 + τ2 + τ3 + τ4 + τ5,(63)

where,

τ1 =

N∑

j=1

∫

Ij

uηu(ηu)xdx+

N−1∑

j=0

u{ηu}[ηu]j+1/2,

τ2 = −
N∑

j=1

∫

Ij

uζu(ηu)xdx−
N−1∑

j=0

u{ζu}[ηu]j+1/2,

τ3 = −1

2

N∑

j=1

∫

Ij

η2u(ηu)xdx − 1

2

N−1∑

j=0

{ηu}2[ηu]j+1/2,

τ4 =

N∑

j=1

∫

Ij

ηuζu(ηu)xdx− 1

2

N∑

j=1

∫

Ij

ζ2u(ηu)xdx

+

N−1∑

j=0

{ηu}{ζu}[ηu]j+1/2 −
1

2

N−1∑

j=0

{ζu}2[ηu]j+1/2,

τ5 =
1

2

N−1∑

j=0

({uh}2 − û2h)[ηu]j+1/2,

Using projection properties (48)-(49) with the inverse property (9) and trace in-
equality (10), bounds of τ1, .., τ5,

∫
I ηpηu dx,

∫
I ζpηu dx and

∫
I(ζu)tηu dx are es-

timated as in the proof of the Theorem 4.6 in [12]. A use of Young’s inequality
shows

d

dt
‖ηu‖2 + ‖ηw‖2 ≤ C

(
h2k+2 + ‖ηu‖2 + h−3/2‖ηu‖3

)

≤ C
(
h2k+2 + ‖ηu‖2 + h−3‖ηu‖4

)
.(64)

Observe that,

ηu(0) = ζu(0) + (u0 − uh(0)),

where uh(0) is prepared by using standard L2 projection of the given data and
hence

(65) ‖ηu(0)‖2 ≤ ‖ζu(0)‖2 + ‖(u0 − uh(0))‖2 ≤ Ch2k+2.

On integrating (64) with respect to time t and on using (65), we find that

‖ηu(t)‖2 +
∫ t

0

‖ηw(s)‖2 ds

≤‖ηu(0)‖2 + C

∫ t

0

(h2k+2 + ‖ηu(τ)‖2 + h−3‖ηu(τ)‖4) dτ.

Setting

(66) ‖|(ηu, ηw)(t)‖|2 := ‖ηu(t)‖2 +
∫ t

0

‖ηw(s)‖2 ds
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and a function Φ as

(67) Φ(t) = h2k+2 +

∫ t

0

(
‖|(ηu, ηw)(τ)‖|2 + h−3‖|(ηu, ηw)(τ)‖|4

)
dτ,

we rewrite (66) as

(68) ‖|(ηu, ηw)(t)‖|2 ≤ CΦ(t).

Without loss of generality assume that ‖|(ηu, ηw)(t)‖| > 0, otherwise, we may have
to add an arbitrarily small quantity say δ and proceed as in a similar way as describe
below and then pass the limit as δ 7→ 0. Then, note that 0 < Φ(0) ≤ Φ with Φ
differentiable. On differentiating Φ(t) with respect to time t, we obtain

Φ′(t) = ‖|(ηu, ηw)(t)‖|2 + h−3 ‖|(ηu, ηw)(t)‖|4

≤ C Φ(t) + C2 h−3(Φ(t))2

≤ C∗

(
Φ(t) + h−3 (Φ(t))2

)
where C∗ = C max{1, C}.

Moreover, Φ′ > 0 and hence, Φ is strictly monotonically increasing function
which is also positive. An integrating with respect to time t yields

(69)

∫ t

0

Φ′(s)

Φ(s)
(
1 + h−3(Φ(s))

) ds ≤
∫ t

0

C∗ ds ≤ C∗T.

Now, we evaluate the integral on the left hand side of (69) exactly and hence, after
taking exponential on both sides and using Φ(0) = h2(k+1), we obtain

Φ(t) (1 + h2k−1)

h2(k+1) (1 + h−3(Φ(t)))
≤ eC∗T .

On simplifying

Φ(t)
(
1− h2k−1(eC∗T − 1)

)
≤ eC∗T h2(k+1).

For sufficiently small h > 0, the term
(
1 − h2k−1(eC∗T − 1)

)
can be made greater

than equal to 1/2. Therefore, Φ(t) ≤ C̃ h2k+2. On substitution in (68) completes
the rest of the proof. �

Using Lemma 4.2, approximation properties (48) and triangle inequality, we
obtain below one of the main theorems of this section which is valid under the
condition that θ = 1/2.

Theorem 4.3. Let u ∈ L∞(0, T ;Hk+2(I)) ∩H1(0, T ;Hk+1(I)), and
φ ∈ L2(0, T ;Hk+2(I)), k ≥ 1, be the smooth solution to (1), for 0 < t < T . Then
for θ = 1/2, k even and N odd, the numerical solutions pair {uh, wh}, obtained
from the scheme (15)-(19) and the numerical fluxes (20)-(24) satisfies

(70) ‖u− uh‖L∞(0,T ;L2(I)) + ‖w − wh‖L2(0,T ;L2(I)) = O(hk+1),

where C is a positive depending on T and the data given, but is independent of the
maximum mesh size h.

As a consequence of Lemma 4.2 and using Lemma 4.1, we have the following
corollary.

Corollary 4.4. For θ = 1/2 and for k even with N odd, the following estimates
hold:

‖p− ph‖L∞(0,T ;L2(I)) + ‖φ− φh‖L∞(0,T ;L2(I)) = O(hk+1).
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Proof. Note that using Theorem 4.3 and Lemma 4.1, one observes that

‖p− ph‖ ≤ ‖ζp‖+ ‖ηp‖
≤ 3‖ζp‖+ 2‖ζφ‖+ 2‖u− uh‖
≤ C hk+1.

Similarly, it is easy to show ‖φ− φh‖ ≤ Chk+1. �

However, several numerical experiments in the next Section indicate that for
θ ∈ [0, 1/2) optimal error estimates in Theorem 4.3 and Corollary 4.4 are valid for
both even and odd degree polynomials. To substantiate our claim, we provide some
results below.

Theorem 4.5. Let u ∈ L∞(0, T ;Hk+2(I)) ∩H1(0, T ;Hk+1(I)), and
φ ∈ L2(0, T ;Hk+2(I)) with k ≥ 1, be the smooth solution to (1), for 0 < t < T .
Then for θ ∈ [0, 1/2), the numerical solutions pair {uh, wh}, obtained from the
scheme (15)-(19) and the numerical fluxes (20)-(24) satisfies

(71) ‖u− uh‖L∞(0,T ;L2(I)) + ‖w − wh‖L2(0,T ;L2(I)) ≤ C(T ) ǫ−1/2 hk+1,

where C is a positive depending on T , and the data given, but is independent of
the maximum mesh size h. In addition if φ ∈ L∞(0, T ;Hk+2(I)) k ≥ 1, then, the
following estimates holds:

‖p− ph‖L∞(0,T ;L2(I)) + ‖φ− φh‖L∞(0,T ;L2(I)) ≤ C(T ) ǫ−1/2 hk+1.

For simplicity of exposition, we shall prove the Theorem 4.5, when θ = 0 and for
other values of θ ∈ (0, 1/2), the proof goes in a similar lines, provided the following
Conjecture 4.6 is valid.

Conjecture 4.6. Let the pair {ηu, ηw} ∈ V k
h × V k

h satisfy (53). Then, there is a
positive constant C, independent h and ǫ, such that

( N∑

j=1

(
‖ηu,x‖2L2(Ij)

+ |h−1/2[ηu]j+1/2|2
) )1/2

≤ C ǫ−1/2
(
‖ηw‖+ ‖ζw‖

)

≤ C ǫ−1/2
(
‖ηw‖+ hk+1

)
.(72)

Note that the proof of the above Conjecture is given, when θ = 1 which corre-
sponds to our case with θ = 0.

For the proof of theorem 4.5, when θ = 0, we shall not repeat the arguments
stated in the theorem of Lemma 4.2, but briefly indicate below the major differences
in the arguments.

Proof of the Theorem 4.5. Since u − uh := ηu − ζu and estimate of ζu is known,
therefore, it is enough to estimate of ηu. Returning to (63) in the proof of Lemma
4.2 with θ = 0, there is hardly any change in the proof of estimates of τ1, τ3 and τ5
and hence,

|τ1|+ |τ3|+ |τ5| ≤ C
(
h2(k+1) + ‖ηu‖2 + h−3/2‖ηu‖3

)
.(73)
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For the estimate of τ2, since {ζu} 6= 0 when θ = 0, we need to estimate the extra
boundary term using the Cauchy-Schwarz inequality, (49) and Conjecture 4.6 as

| −
N∑

j=1

u {ζu} [ηu]j+1/2| ≤ C

N∑

j=1

h1/2 (|ζ−u |j+1/2|+ |ζ+u |j+1/2|)(h−1/2|[ηu]j+1/2|)

≤ C h1/2‖ζu‖Γh

( N∑

j=1

(h−1/2|[ηu]j+1/2|)2
)1/2

≤ C ǫ−1/2 ‖ζu‖
(
hk+1 + ‖ηw‖

)

≤ C ǫ−1/2 hk+1
(
hk+1 + ‖ηw‖

)
.(74)

Using rest of the estimates for τ2 from Theorem 4.5 of [12], we altogether obtain
using the Young’s inequality (ab ≤ δ

2a
2 + 1

2δ b
2, for a, b ≥ 0 and δ > 0)

|τ2| ≤ C
(
h2(k+1) + ‖ηu‖2 + ǫ−1/2 h(k+1)(hk+1 + ‖ηw‖)

)

≤ C(δ)
(
h2(k+1) + ‖ηu‖2 + ǫ−1 h2(k+1)

)
+
δ

2
‖ηw‖2.(75)

For the estimation of τ4, only term involving boundary terms needs to be evaluated
as the other terms have exactly same estimates as in the proof of Theorem 4.5 of
[12]. Therefore, to estimate the boundary term, a use approximation property (49)
with the Cauchy-Schwarz inequality, Lemma 4.6 and the Young’s inequality yields

|
N∑

j=1

((
{ηu} −

1

2
{ζu}

)
{ζu} [ηu]

)
j+1/2

|

≤ C

N∑

j=1

(
|η−u |+ |η+u |+ |ζ+|

)
j+1/2

|ζ+u |j+1/2| [ηu]j+1/2

≤ Chk+1/2
N∑

j=1

(
|η−u |+ |η+u |+ hk+1/2

)
j+1/2

[ηu]j+1/2

≤ Chk+1/2
N∑

j=1

h1/2
(
|η−u |+ |η+u |+ hk+1/2

)
j+1/2

h−1/2[ηu]j+1/2

≤ Chk+1/2 h1/2 ‖ηu‖Γh

( N∑

j=1

h−1[ηu]
2
j+1/2

)1/2

≤ C ǫ−1/2 hk+1/2 ‖ηu‖
(
hk+1 + ‖ηw‖

)

≤ C
(
h2(k+1) + ǫ−1 h2k+1 ‖ηu‖2

)
+
δ

2
‖ηw‖2.(76)

Following the estimates of the rest of the terms in τ4 in the proof of Theorem 4.5
of [12], we arrive with (76) at

|τ4| ≤ C
(
h2(k+1) + ǫ−1 h2k+1 ‖ηu‖2

)
+
δ

2
‖ηw‖2.(77)
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On substitution of estimates (73), (75) and (84) in (63), we use δ = 1/2 to find as
in the proof of Lemma 4.2 a counter part of inequality (64) as

d

dt
‖ηu‖2 + ‖ηw‖2 ≤ C

(
(ǫ−1 + 1)h2(k+1) + (1 + ǫ−1h2k+1)‖ηu‖2 + h−3/2‖ηu‖3

)

≤ C
(
(ǫ−1 + 1)h2(k+1) + (1 + ǫ−1h2k+1)‖ηu‖2 + h−3‖ηu‖4

)
.(78)

The rest of the proof of Lemma 4.2 follows with modification of Φ as
(79)

Φ(t) = (1+ǫ−1)h2k+2+

∫ t

0

(
(1+ǫ−1 h2k+1) ‖|(ηu, ηw)(τ)‖|2+h−3‖|(ηu, ηw)(τ)‖|4

)
dτ

Note that the result holds for fixed ǫ > 0. Proceed similarly as in the proof of the
Lemma 4.2, we arrive at for small h

Φ(t) ≤ (1 + ǫ−1)eC∗(1+ǫ−1h2k+1)T h2(k+1).

Therefore,

(80) ‖|(ηu, ηw)(t)‖|2 ≤ CΦ(t) ≤ C C̃ (1 + ǫ−1) h2(k+1) ≤ C
1

ǫ
h2(k+1)

This concludes the rest of the proof. �

Remark 4.1. Note that the estimates in Theorem 4.5 are optimal for fixed ǫ and are
not valid uniformly with respect to ǫ as ǫ 7→ 0 as against the results of the Theorem
4.3. This is mainly due to the use of Lemma 4.6 for taking care of the nonlinearity
specially in the estimates of (74) and (76). But a more careful observation of the
estimate in (74) reveals with out using Lemma 4.6 and applying trace inequality
(10) and the global projection property like (49) that

| −
N∑

j=1

u {ζu} [ηu]j+1/2| ≤ C

N∑

j=1

(|ζ−u |j+1/2|+ |ζ+u |j+1/2|) |[ηu]j+1/2|

≤ C ‖ζu‖Γh
‖ηu‖Γh

≤ C hk ‖ηu‖.(81)

Hence, the estimate of τ2 term in Theorem 4.5 now becomes

|τ2| ≤ C
(
h2k + ‖ηu‖2

)
.(82)
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More over, for the estimate (76) in the term τ4 of the proof of the Theorem 4.5, we
now apply(10) and the global projection property like (49) to obtain

|
N∑

j=1

((
{ηu} −

1

2
{ζu}

)
{ζu} [ηu]

)
j+1/2

|

≤ C

N∑

j=1

(
|η−u |+ |η+u |+ |ζ+|

)
j+1/2

|ζ+u |j+1/2| [ηu]j+1/2

≤ Chk+1/2
N∑

j=1

(
|η−u |+ |η+u |+ hk+1/2

)
j+1/2

[ηu]j+1/2

≤ Chk+1/2
N∑

j=1

(
|η−u |+ |η+u |+ hk+1/2

)
j+1/2

[ηu]j+1/2

≤ Chk+1/2 ‖ηu‖2Γh

≤ C hk−1/2 ‖ηu‖2

≤ C
(
h2(k+1) + h−3 ‖ηu‖4

)
.(83)

Following the estimates of the rest of the terms in τ4 in the proof of Theorem 4.5
of [12], we arrive with (83) at

|τ4| ≤ C
(
h2(k+1) + h−3 ‖ηu‖4

)
.(84)

Similar to the proof of the Theorem 4.5, substitute the estimates to arrive at

d

dt
‖ηu‖2 + ‖ηw‖2 ≤ C

(
h2k + h−3‖ηu‖4

)
.(85)

The rest of the analysis follows as in the proof of Theorem 4.3 to derive sub-optimal
estimate

(86) ‖u− uh‖L∞(0,T ;L2(I)) + ‖w − wh‖L2(0,T ;L2(I)) = O(hk),

which does not depend explicitly on ǫ−1/2.

5. Numerical results

In this section, we perform the numerical simulations on general viscous BP
system

(87) ut + (
u2

2
− φ)x − ǫuxx = f(x, t), x ∈ [0, L] = I, t > 0

(88) φxx − φ = u,

with the same boundary and initial conditions as (1)-(2). Our proposed scheme
reduces the problem (87)-(88) into the system of ODEs

(89)
d

dt
~a = L(~a, t),

where ~a = ~a(t) is the coefficient vector of uh. To further approximate the solution
of the system (89), we use the third order TVD RK scheme [8]
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Table 1

k N
θ = 0, ǫ = 1/10

‖u− uh‖ order ‖u− uh‖∞ order ‖w − wh‖ order
1 5 2.0388e-01 2.7734e-01 2.2951e-01

10 4.9798e-02 2.0335 8.2017e-02 1.7577 8.3916e-02 1.4516
20 1.1284e-02 2.1418 1.9282e-02 2.0886 2.2834e-02 1.8777
40 2.7039e-03 2.0611 4.4963e-03 2.1005 5.7866e-03 1.9804
80 6.6806e-04 2.0170 1.0674e-03 2.0747 1.4518e-03 1.9948

2 5 1.6241e-02 2.5013e-02 1.6845e-02
10 2.0839e-03 2.9623 3.9864e-03 2.6495 2.4213e-03 2.7984
20 2.6629e-04 2.9682 5.1223e-04 2.9602 3.2222e-04 2.9097
40 3.3466e-05 2.9922 6.2396e-05 3.0373 4.1259e-05 2.9653
80 4.1884e-06 2.9982 7.7201e-06 3.0147 5.2006e-06 2.9880

3 5 1.3740e-03 3.2986e-03 2.0556e-03
10 8.2364e-05 4.0602 2.1133e-04 3.9643 1.5526e-04 3.7268
20 5.1575e-06 3.9973 1.2728e-05 4.0534 1.0401e-05 3.9000
40 3.2328e-07 3.9958 7.3910e-07 4.1061 6.6583e-07 3.9654
80 2.0224e-08 3.9986 4.3919e-08 4.0728 4.1911e-08 3.9898

4 5 8.0351e-05 1.7147e-04 9.7122e-05
10 2.5626e-06 4.9706 5.9801e-06 4.8417 3.1020e-06 4.9685
20 8.0488e-08 4.9927 1.8076e-07 5.0480 9.7244e-08 4.9955
40 2.5183e-09 4.9982 5.5438e-09 5.0270 3.0471e-09 4.9961
80 7.8731e-11 4.9994 1.7246e-10 5.0066 9.5402e-11 4.9973

~a1 = ~a(t) + ∆tL(~a(t), t)

~a2 =
3

4
~a(t) +

1

4
~a1 +

1

4
∆tL(~a1, t+∆t)

~a(t+∆t) =
1

3
~a(t) +

2

3
~a2 +

2

3
∆tL(~a2, t+

∆t

2
)

Below, we discuss two examples: one with periodic boundary conditions and
other one with Dirichlet boundary conditions.

5.1. Example 1. We test the proposed scheme on the non-homogeneous problem
(87)-(88) with f(x, t) = − 1

2 cos(x − t) + ǫ sin(x − t) + cos(x − t) sin(x − t) and
u(x, 0) = sin(x). The exact solution of this problem is given by

u(x, t) = sin(x− t)

φ(x, t) = −1

2
sin(x− t).

5.1.1. Accuracy test. We run the simulation on the domain [0, 2π] at t = 1 using
∆t = 0.0001. The value of ǫ is fixed at 1/10. For θ = 1/2, we use ǫ = 1/10. For
θ = 0, we use ǫ = 1/10, 1/100, 1/1000, 1/10000.

The results in the first four tables show that we can achieve (k + 1)-order of
accuracy if θ = 0, which confirms our theoretic findings given in Theorem 4.5.
However, as ǫ becomes smaller and smaller, we start to lose the superconvergence
for k odd. Finally, when ǫ = 0, it is observed in [12] that the (k+1)-order of accuracy
can be achieved only for k even. This result is consistent with the inviscous Burgers-
Poisson equation [12]. The results in tables 5 corresponds to the case θ = 1/4.
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Table 2

k N
θ = 0, ǫ = 1/100

‖u− uh‖ order ‖u− uh‖∞ order ‖w − wh‖ order
1 5 3.2328e-01 3.6130e-01 1.5506e-01

10 1.2984e-01 1.3161 1.7635e-01 1.0348 1.2534e-01 0.3070
20 3.1738e-02 2.0324 3.9362e-02 2.1635 5.9163e-02 1.0831
40 5.3134e-03 2.5785 8.5844e-03 2.1970 1.7721e-02 1.7393
80 8.9217e-04 2.5742 1.6385e-03 2.3893 4.5447e-03 1.9632

2 5 1.9219e-02 4.0640e-02 9.4163e-03
10 1.7010e-03 3.4981 2.5775e-03 3.9789 1.8927e-03 2.3147
20 2.2288e-04 2.9321 4.7986e-04 2.4253 4.0077e-04 2.2396
40 3.0563e-05 2.8664 7.1167e-05 2.7534 7.8836e-05 2.3458
80 4.0637e-06 2.9109 8.6607e-06 3.0387 1.3215e-05 2.5766

3 5 2.7282e-03 3.9711e-03 2.7922e-03
10 1.6787e-04 4.0225 3.8538e-04 3.3652 3.3356e-04 3.0654
20 7.1141e-06 4.5606 1.9341e-05 4.3166 2.7439e-05 3.6036
40 3.4985e-07 4.3459 1.0059e-06 4.2651 1.8187e-06 3.9153
80 2.0310e-08 4.1065 5.6500e-08 4.1541 1.2020e-07 3.9194

4 5 9.2490e-05 2.2458e-04 1.0465e-04
10 2.3969e-06 5.2701 5.8055e-06 5.2737 4.5874e-06 4.5117
20 7.7214e-08 4.9562 2.1897e-07 4.7286 2.0415e-07 4.4900
40 2.4919e-09 4.9536 6.5668e-09 5.0594 8.0486e-09 4.6647
80 7.8521e-11 4.9880 1.8774e-10 5.1284 2.7818e-10 4.8547

Table 3

k N
θ = 0, ǫ = 1/1000

‖u− uh‖ order ‖u− uh‖∞ order ‖w − wh‖ order
1 5 3.5181e-01 3.9157e-01 5.4044e-02

10 1.8182e-01 0.9523 2.4786e-01 0.6597 5.6150e-02 -0.0551
20 8.2851e-02 1.1339 1.3673e-01 0.8582 5.0705e-02 0.1471
40 2.7697e-02 1.5808 3.6894e-02 1.8898 3.3757e-02 0.5870
80 5.3698e-03 2.3668 6.1613e-03 2.5821 1.2970e-02 1.3800

2 5 1.9584e-02 4.2807e-02 3.1992e-03
10 1.5649e-03 3.6455 2.2156e-03 4.2720 6.5149e-04 2.2959
20 1.8270e-04 3.0985 3.1696e-04 2.8054 1.5950e-04 2.0302
40 2.3350e-05 2.9680 4.8526e-05 2.7075 3.7702e-05 2.0808
80 3.0681e-06 2.9280 7.6729e-06 2.6609 8.9789e-06 2.0701

3 5 3.9413e-03 4.3871e-03 1.2223e-03
10 4.4060e-04 3.1611 9.5367e-04 2.2017 3.2856e-04 1.8954
20 3.3511e-05 3.7167 6.2666e-05 3.9277 4.9405e-05 2.7334
40 1.5009e-06 4.4808 2.8277e-06 4.4700 4.9075e-06 3.3316
80 5.4373e-08 4.7868 1.2395e-07 4.5117 3.4383e-07 3.8352

4 5 1.0052e-04 2.3377e-04 4.8462e-05
10 2.0176e-06 5.6386 3.8261e-06 5.9331 1.8901e-06 4.6803
20 5.9925e-08 5.0733 1.3550e-07 4.8195 1.1244e-07 4.0713
40 1.9704e-09 4.9266 5.9395e-09 4.5118 6.2640e-09 4.1659
80 6.7755e-11 4.8620 2.3095e-10 4.6847 3.4924e-10 4.1648
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Table 4

k N
θ = 0, ǫ = 1/10000

‖u− uh‖ order ‖u− uh‖∞ order ‖w − wh‖ order
1 5 3.5496e-01 3.9478e-01 1.7261e-02

10 1.8890e-01 0.9100 2.5724e-01 0.6179 1.8452e-02 -0.0962
20 9.6043e-02 0.9759 1.6220e-01 0.6653 1.8572e-02 -0.0093
40 4.6361e-02 1.0508 7.9448e-02 1.0297 1.7825e-02 0.0592
80 1.9337e-02 1.2616 2.8940e-02 1.4569 1.4841e-02 0.2643

2 5 1.9647e-02 4.2946e-02 1.0233e-03
10 1.5621e-03 3.6527 2.1982e-03 4.2881 2.1129e-04 2.2760
20 1.7878e-04 3.1272 2.7232e-04 3.0129 5.2349e-05 2.0130
40 2.1894e-05 3.0295 3.3385e-05 3.0280 1.2601e-05 2.0546
80 2.7510e-06 2.9925 5.1780e-06 2.6887 3.1059e-06 2.0205

3 5 4.1383e-03 4.6185e-03 4.0243e-04
10 5.5488e-04 2.8988 1.4944e-03 1.6279 1.3873e-04 1.5365
20 6.4602e-05 3.1025 1.7191e-04 3.1198 3.1246e-05 2.1506
40 6.1030e-06 3.4040 1.5968e-05 3.4284 6.1922e-06 2.3351
80 3.6911e-07 4.0474 6.7325e-07 4.5679 7.7617e-07 2.9960

4 5 1.0255e-04 2.2554e-04 1.6424e-05
10 2.0505e-06 5.6442 3.8575e-06 5.8696 6.4710e-07 4.6657
20 5.6146e-08 5.1907 1.0990e-07 5.1334 3.8065e-08 4.0874
40 1.7335e-09 5.0175 4.1854e-09 4.7146 2.1697e-09 4.1329
80 5.4746e-11 4.9848 1.5017e-10 4.8007 1.3589e-10 3.9970

Table 5

k N
θ = 1/4, ǫ = 1/10

‖u− uh‖ order ‖u− uh‖∞ order ‖w − wh‖ order
1 5 2.6814e-01 3.2185e-01 1.8409e-01

10 8.9032e-02 1.5906 1.1929e-01 1.4320 1.1095e-01 0.7306
20 2.1332e-02 2.0613 3.3916e-02 1.8144 4.0375e-02 1.4583
40 4.8176e-03 2.1467 7.8323e-03 2.1145 1.1209e-02 1.8488
80 1.1492e-03 2.0677 1.7592e-03 2.1545 2.8724e-03 1.9643

2 5 1.6221e-02 3.2720e-02 1.2031e-02
10 1.6509e-03 3.2965 3.1440e-03 3.3795 1.4365e-03 3.0662
20 2.0201e-04 3.0308 3.7388e-04 3.0720 1.7460e-04 3.0404
40 2.5167e-05 3.0048 4.6143e-05 3.0184 2.1722e-05 3.0068
80 3.1434e-06 3.0011 5.7479e-06 3.0050 2.7147e-06 3.0003

3 5 1.9972e-03 4.6369e-03 2.3566e-03
10 1.3250e-04 3.9139 3.3880e-04 3.7747 2.4305e-04 3.2774
20 8.4209e-06 3.9759 2.1092e-05 4.0057 1.9115e-05 3.6685
40 5.2986e-07 3.9903 1.2048e-06 4.1298 1.2965e-06 3.8820
80 3.3155e-08 3.9983 6.9668e-08 4.1122 8.2972e-08 3.9659

4 5 7.7137e-05 1.9411e-04 8.1797e-05
10 2.0459e-06 5.2366 4.5215e-06 5.4239 1.8708e-06 5.4503
20 6.2286e-08 5.0377 1.3263e-07 5.0913 5.2795e-08 5.1472
40 1.9349e-09 5.0086 4.1126e-09 5.0112 1.6093e-09 5.0358
80 6.0385e-11 5.0019 1.2811e-10 5.0046 5.0008e-11 5.0082
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Table 6

k N
θ = 1/2, ǫ = 1/10

‖u− uh‖ order ‖u− uh‖∞ order ‖w − wh‖ order
0 5 3.6079e-01 4.1791e-01 5.7311e-02

15 1.2005e-01 1.0017 1.3769e-01 1.0106 1.4206e-02 1.2696
45 4.0026e-02 0.9998 4.5541e-02 1.0071 4.5310e-03 1.0402
135 1.3342e-02 1.0000 1.5120e-02 1.0036 1.5036e-03 1.0041

2 5 1.5333e-02 2.6582e-02 7.5385e-03
15 4.1908e-04 3.2766 5.9120e-04 3.4642 1.3368e-04 3.6704
45 1.5231e-05 3.0172 2.1322e-05 3.0242 4.8172e-06 3.0250
135 5.6298e-07 3.0018 7.8770e-07 3.0023 1.7803e-07 3.0020

3 5 3.7800e-03 5.8459e-03 1.7401e-03
15 1.4584e-04 2.9628 2.4965e-04 2.8704 7.5612e-05 2.8546
45 5.4232e-06 2.9963 9.3695e-06 2.9880 2.8253e-06 2.9920
135 2.0094e-07 2.9996 3.4788e-07 2.9977 1.0472e-07 2.9993

4 5 7.6576e-05 1.3690e-04 5.0985e-05
15 2.3275e-07 5.2758 3.7040e-07 5.3817 7.4292e-08 5.9450
45 9.4001e-10 5.0171 1.4902e-09 5.0206 2.9729e-10 5.0255
135 3.9985e-12 4.9699 6.8782e-12 4.8956 1.3249e-12 4.9274

Moreover in table 6, convergence rates for θ = 1/2 are considered and it is shown
that optimal rates of convergence are achieved only for k even as predicted by the
Theorem 4.3.

5.1.2. Energy-preserving test. We run the same example on a longer period
of time to test the Energy-preserving property of the proposed scheme against the
the scheme (26)-(30) with the Lax-Friedrich flux

(90) û2 =
1

2

(
(u−h )

2 + (u+h )
2 − σ(u+h − u+h )

)
, σ = 2 max

u∈[u−

h
,u+

h
]
|u|.

Using k = 2, N = 80, and ∆t = 0.001, we plot the decaying of energy ‖u(·, t)‖ −
‖u(·, 0)‖ from the initial time to the time t = 100 using θ = 1/4 and θ = 1/2 in
Figures 1 and 2, respectively.
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Figure 1. The loss of energy from t = 0 to t = 100.
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Figure 2. The loss of energy from t = 0 to t = 100.

Table 7

k N
θ = 0, ǫ = 1/10

‖u− uh‖ order ‖u− uh‖∞ order ‖w − wh‖ order
1 40 1.2231e-01 1.6244e-01 2.6912e-01

80 4.9729e-02 1.2984 1.0810e-01 0.5875 2.0980e-01 0.3592
160 1.3170e-02 1.9168 3.3023e-02 1.7108 7.3256e-02 1.5180
320 3.8009e-03 1.7929 1.1698e-02 1.4972 1.9559e-02 1.9052
640 1.0471e-03 1.8600 3.4005e-03 1.7825 4.9544e-03 1.9810

2 40 5.6573e-02 8.4813e-02 2.1547e-01
80 6.2863e-03 3.1698 1.3734e-02 2.6265 2.6513e-02 3.0227
160 8.5312e-04 2.8814 2.1423e-03 2.6806 3.7012e-03 2.8406
320 1.1718e-04 2.8641 3.5382e-04 2.5981 4.9873e-04 2.8917
640 1.5550e-05 2.9137 5.0821e-05 2.7995 6.3964e-05 2.9629

3 40 6.0195e-03 1.7721e-02 1.8538e-02
80 6.7208e-04 3.1630 1.9713e-03 3.1683 2.6617e-03 2.8001
160 4.8549e-05 3.7911 1.9500e-04 3.3376 2.2289e-04 3.5779
320 3.2886e-06 3.8839 1.4183e-05 3.7813 1.4688e-05 3.9236
640 2.1486e-07 3.9360 9.9745e-07 3.8297 9.3265e-07 3.9772

4 40 2.1454e-03 4.2698e-03 8.0431e-03
80 7.8971e-05 4.7638 2.4591e-04 4.1180 4.0057e-04 4.3276
160 2.6014e-06 4.9240 1.0234e-05 4.5867 1.1966e-05 5.0651
320 8.7346e-08 4.8964 3.8211e-07 4.7432 3.8816e-07 4.9461
640 2.8526e-09 4.9364 1.2742e-08 4.9063 1.2258e-08 4.9848

5.2. Example 2. We test the proposed scheme on the non-homogeneous problem
with Dirichlet boundary conditions. The exact solutions are given by

u(x, t) = − sech(t− x)− sech3(t− x) + sech(t− x) tanh2(t− x)

φ(x, t) = sech(x− t).

Here, zero boundary conditions are used in place of (1).
We run the simulation on the domain [−20, 20] at t = 0.1 using ∆t = 0.00001.

The values of ǫ and θ are fixed at 1/10 and 0 as shown in the table below. It is
observed that the order of convergence is k + 1.
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6. Conclusion

In this article, the LDG method is applied to the viscous Burgers-Poisson sys-
tem and optimal convergence rates are proved only for even polynomial degrees k
in Theorem 4.3, when θ = 1/2. It is further observed that the bounds in the error
analysis are valid uniformly with respect to ǫ. Subsequently in Theorem 4.5, opti-
mal error estimates are shown for both even and odd polynomial degrees, but the
constants in the error estimates depend on ǫ−1/2 for θ ∈ [0, 1/2). With appropriate
changes in our error analysis, it is possible to prove similar convergence rate for the
problem (1) -(2) with either Dirichlet or Neumann boundary conditions.
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